JP2023138913A - Vinyl chloride-based resin for paste processing, and vinyl chloride-based resin composition for paste processing containing the same - Google Patents

Vinyl chloride-based resin for paste processing, and vinyl chloride-based resin composition for paste processing containing the same Download PDF

Info

Publication number
JP2023138913A
JP2023138913A JP2023037038A JP2023037038A JP2023138913A JP 2023138913 A JP2023138913 A JP 2023138913A JP 2023037038 A JP2023037038 A JP 2023037038A JP 2023037038 A JP2023037038 A JP 2023037038A JP 2023138913 A JP2023138913 A JP 2023138913A
Authority
JP
Japan
Prior art keywords
vinyl chloride
weight
parts
chloride resin
paste processing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2023037038A
Other languages
Japanese (ja)
Inventor
翔太 備後
Shota Bingo
祐太 矢作
Yuta Yahagi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tosoh Corp
Original Assignee
Tosoh Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tosoh Corp filed Critical Tosoh Corp
Publication of JP2023138913A publication Critical patent/JP2023138913A/en
Pending legal-status Critical Current

Links

Landscapes

  • Compositions Of Macromolecular Compounds (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)

Abstract

To provide a vinyl chloride-based resin for paste processing which suppresses formation of a crater when a sheet is prepared by coating onto a base material, can obtain a foam excellent in surface smoothness in foaming, is also excellent in leakage suppression characteristics from the rear of a coating blade, and is excellent, especially, for wallpaper, and a vinyl chloride-based resin composition for paste processing containing the same.SOLUTION: A vinyl chloride-based resin for paste processing that contains a vinyl chloride-based resin of a large-particle group of a particle diameter of more than 0.5 μm and 5 μm or less, and a vinyl chloride-based resin of a small-particle group of a particle diameter of 0.5 μm or less satisfies (1) an average degree of polymerization of 700-1,000, (2) cumulative weight frequency of the large-particle group of 60-90 wt.% and cumulative weight frequency of the small-particle group of 10-40 wt.% in particle diameter distribution measurement, and (3) a most frequent diameter of the distribution of the large-particle group of 1.55-1.80 μm, and a most frequent diameter of the distribution of the small-particle group of 0.15-0.45 μm.SELECTED DRAWING: None

Description

本発明は、ペースト加工用塩化ビニル系樹脂(以下、ペースト塩ビと略記する場合がある。)及びそれを含むペースト塩ビ組成物に関し、より詳しくは、基材上にコーティングしシートを作成する際にクレーターの形成を抑制し、発泡時には表面平滑性に優れる発泡体を得ることのできるペースト塩ビ組成物ゾル、更にはクレーターの形成を抑制し、かつコーティング刃の裏からの漏れ抑止特性に優れたペースト塩ビ組成物ゾルを与えるペースト塩ビ及びそれを含むペースト塩ビ組成物に関するものである。 The present invention relates to a vinyl chloride resin for paste processing (hereinafter sometimes abbreviated as paste vinyl chloride) and a paste vinyl chloride composition containing the same. A paste PVC composition sol that suppresses the formation of craters and can produce a foam with excellent surface smoothness when foamed, and a paste that suppresses the formation of craters and has excellent leakage prevention properties from the back of the coating blade. The present invention relates to a paste vinyl chloride that provides a vinyl chloride composition sol and a paste vinyl chloride composition containing the same.

ペースト塩ビは、一般的に可塑剤、安定剤、発泡剤等の配合剤と混練することにより、ペースト塩ビ組成物ゾルとして加工に供され、種々の加工法により様々な成形品が得られる。その中でも壁紙、床材、発泡シートのような建築資材はペースト塩ビの主要な用途の一つである。 Paste PVC is generally processed into a paste PVC composition sol by kneading it with compounding agents such as plasticizers, stabilizers, and blowing agents, and various molded products can be obtained by various processing methods. Among them, construction materials such as wallpaper, flooring, and foam sheets are one of the main uses of paste PVC.

例えば、壁紙はゾルを基材上にコーティングして、加熱乾燥させることで原反を作製し、得られた原反を発泡・エンボスさせることで製造される。この製造方法において、原反を作製する工程で原反上にクレーターが発生し、満足な品質を有する壁紙が得られないという課題がある。 For example, wallpaper is manufactured by coating a base material with a sol, heating and drying it to produce a raw fabric, and then foaming and embossing the resulting raw fabric. This manufacturing method has a problem in that craters are generated on the original fabric during the process of producing the original fabric, making it impossible to obtain wallpaper with satisfactory quality.

このため、クレーターの発生を抑制したペースト塩ビ、それを含むペースト塩ビ組成物ゾルが望まれ、例えば、カレンダー法による、表面クレーターの少ない塩化ビニル樹脂フィルムの製造方法が提案されている(例えば、特許文献1参照。)。 For this reason, there is a need for paste PVC and paste PVC composition sol containing the paste that suppresses the generation of craters, and for example, a method for producing a PVC resin film with fewer surface craters using a calendaring method has been proposed (for example, the patent (See Reference 1).

特開平1-244827号公報Japanese Patent Application Publication No. 1-244827

しかし、特許文献1に提案された表面クレーターの少ない塩化ビニル樹脂フィルムの製造方法は、製造設備、その作業法として煩雑なカレンダー法による製造方法であり、より簡略なコーティング法による製造方法についてはなんら考慮のなされていないものであり、より簡易な製造法であるコーティング法にも適用可能なペースト塩ビ、ペースト塩ビ組成物の出現が望まれていた。 However, the method for manufacturing a vinyl chloride resin film with few surface craters proposed in Patent Document 1 uses a calendaring method, which requires complicated manufacturing equipment and working methods, and there is nothing about a manufacturing method using a simpler coating method. This has not been considered, and it has been desired to create a paste vinyl chloride and a paste vinyl chloride composition that can be applied to a coating method, which is a simpler manufacturing method.

そこで、本発明は、これら課題を解決し、従来のペースト塩ビでは困難とされていた、基材上にコーティングしシートを作成する際にクレーターの形成を抑制し、発泡時には表面平滑性に優れる発泡体を得ることのできるペースト塩ビ及びそれを含むペースト塩ビ組成物を提供することを目的とするものである。 Therefore, the present invention solves these problems and suppresses the formation of craters when coating a base material to create a sheet, which was considered difficult with conventional paste PVC, and provides foaming with excellent surface smoothness during foaming. The object of the present invention is to provide a paste PVC and a paste PVC composition containing the same.

本発明者は、上記課題に鑑み、鋭意検討した結果、特定の重合度と、特定の粒子径分布とを有するペースト塩ビ及びそれを含むペースト塩ビ組成物が、基材上にコーティングしシートを作成する際にクレーターの形成を抑制し、表面平滑性に優れる発泡体を提供することが可能となることを見出し、本発明を完成するに至った。 In view of the above-mentioned problems, as a result of intensive studies, the present inventors created a sheet by coating a base material with a paste PVC having a specific degree of polymerization and a specific particle size distribution, and a paste PVC composition containing the same. The inventors have discovered that it is possible to suppress the formation of craters during the process and provide a foam with excellent surface smoothness, and have completed the present invention.

すなわち、本発明は、粒子径0.5μmを超えて5μm以下の大粒子群の塩化ビニル系樹脂と0.5μm以下の小粒子群の塩化ビニル系樹脂を含むペースト塩化ビニル系樹脂であって、下記(1)~(3)の特性を満足することを特徴とするペースト加工用塩化ビニル系樹脂に関するものである。
(1)平均重合度が700~1000。
(2)粒子径分布測定における該大粒子群の累積重量頻度が60~90wt%かつ該小粒子群の累積重量頻度が10~40wt%。
(3)該大粒子群の分布の最頻径が1.55~1.80μmであり、該小粒子群の分布の最頻径が0.15~0.45μm。
That is, the present invention provides a paste vinyl chloride resin containing a vinyl chloride resin having a large particle group with a particle size exceeding 0.5 μm and 5 μm or less and a vinyl chloride resin having a small particle group having a particle size of 0.5 μm or less, The present invention relates to a vinyl chloride resin for paste processing, which is characterized by satisfying the following characteristics (1) to (3).
(1) Average degree of polymerization is 700 to 1000.
(2) The cumulative weight frequency of the large particle group in particle size distribution measurement is 60 to 90 wt%, and the cumulative weight frequency of the small particle group is 10 to 40 wt%.
(3) The mode diameter of the distribution of the large particle group is 1.55 to 1.80 μm, and the mode diameter of the distribution of the small particle group is 0.15 to 0.45 μm.

以下に、本発明を詳細に説明する。 The present invention will be explained in detail below.

本発明のペースト塩ビは、粒子径0.5μmを超えて5μm以下の大粒子群の塩化ビニル系樹脂と0.5μm以下の小粒子群の塩化ビニル系樹脂を含むものであり、(1)平均重合度が700~1000のペースト塩ビである。そして、特に、発泡時の表面平滑性に優れるものとなることから、平均重合度が700~900であることが好ましい。ここで、平均重合度が1000を超えるものである場合、発泡時の表面平滑性に劣るものとなる。一方、700未満のものである場合、機械特性、発泡性に劣るものとなる。ここで、平均重合度の測定方法としては、その測定が可能であれば如何なる方法でもよく、例えばJIS K6721のウベローデ粘度計を用いて、溶液粘度測定法により重合度として算出する方法を挙げることができる。 The paste PVC of the present invention contains a large particle group of vinyl chloride resin with a particle size of more than 0.5 μm and 5 μm or less and a vinyl chloride resin of a small particle group of 0.5 μm or less, and (1) average It is a paste PVC with a degree of polymerization of 700 to 1000. In particular, the average degree of polymerization is preferably from 700 to 900, since this results in excellent surface smoothness during foaming. Here, if the average degree of polymerization exceeds 1000, the surface smoothness during foaming will be poor. On the other hand, if it is less than 700, the mechanical properties and foamability will be poor. Here, the average degree of polymerization may be measured by any method as long as it can be measured; for example, a method of calculating the degree of polymerization by a solution viscosity measurement method using a JIS K6721 Ubbelohde viscometer may be mentioned. can.

本発明のペースト塩ビは、(2)粒子径分布測定における大粒子群の累積重量頻度が60~90wt%かつ小粒子群の累積重量頻度が10~40wt%のペースト塩ビであり、特にコーティングの際にクレーターが形成しにくいものとなることから、(2’)大粒子群の累積重量頻度が60~80wt%かつ小粒子群の累積重量頻度が20~40wt%のものであることが好ましい。ここで、大粒子群の累積重量頻度が60wt%未満のものである場合や小粒子群が40wt%を超えるものである場合、ペースト塩ビ組成物ゾルとした際の粘度の上昇が激しいためハンドリングの点で劣るものとなる。一方、大粒子群の累積重量頻度が90wt%を超えるものである場合や小粒子群が10wt%未満のものである場合、コーティングの際にクレーターが形成しやすいものとなる。なお、本発明における粒子径分布の測定方法としては、粒子径分布の測定が可能であればいかなる方法を用いることも可能であり、例えばペースト塩ビを水に分散し、一次粒子とした後、該一次粒子をディスク遠心式粒度分布測定装置にて測定する方法、重合後の塩化ビニル系樹脂ラテックスをディスク遠心式粒度分布測定装置にて測定する方法、等を挙げることができる。 The paste PVC of the present invention is a paste PVC in which (2) the cumulative weight frequency of large particle groups in particle size distribution measurement is 60 to 90 wt% and the cumulative weight frequency of small particle groups is 10 to 40 wt%; (2') It is preferable that the cumulative weight frequency of the large particle group is 60 to 80 wt% and the cumulative weight frequency of the small particle group is 20 to 40 wt%, since craters are difficult to form. If the cumulative weight frequency of the large particle group is less than 60 wt% or the small particle group exceeds 40 wt%, the viscosity will increase sharply when the paste PVC composition is made into a sol, making handling difficult. It will be inferior in points. On the other hand, if the cumulative weight frequency of the large particle group exceeds 90 wt% or if the cumulative weight frequency of the small particle group is less than 10 wt%, craters are likely to form during coating. In addition, as a method for measuring the particle size distribution in the present invention, any method can be used as long as it is possible to measure the particle size distribution. For example, paste PVC is dispersed in water to form primary particles, and then the Examples include a method in which primary particles are measured using a disk centrifugal particle size distribution analyzer, a method in which the vinyl chloride resin latex after polymerization is measured using a disk centrifugal particle size distribution analyzer, and the like.

また、更にコーティングの際にクレーターが形成しにくく、コーティング刃の裏からのもれ抑止に優れ、加工性にも優れるものとなることから(2’’)粒子径分布測定における該大粒子群の累積重量頻度が80~90wt%かつ該小粒子群の累積重量頻度が10~20wt%であることが好ましい。 In addition, it is difficult to form craters during coating, is excellent in preventing leakage from the back of the coating blade, and has excellent processability (2''), so the large particle group in particle size distribution measurement is Preferably, the cumulative weight frequency is 80 to 90 wt% and the cumulative weight frequency of the small particle group is 10 to 20 wt%.

本発明のペースト塩ビは、(3)大粒子群の分布の最頻径が1.55~1.80μmであり、小粒子群の分布の最頻径は0.15~0.45μmのペースト塩ビである。ここで、大粒子群の最頻径が1.80μmを超えるものである場合や、小粒子群の最頻径が0.45μmを超えるものである場合、コーティングの際にクレーターが形成しやすいものとなる。一方、大粒子群の最頻径が1.55μm未満のものである場合や、小粒子群の最頻径が0.15μm未満のものである場合、ペースト塩ビ組成物ゾルとした際の粘度の上昇が激しいためハンドリングの点で劣るものとなる。なお、最頻径とは分布におけるピークトップの粒子径を意味するものである。 The paste PVC of the present invention has (3) a paste PVC in which the mode diameter of the distribution of large particle groups is 1.55 to 1.80 μm, and the mode diameter of the distribution of small particle groups is 0.15 to 0.45 μm. It is. If the most frequent diameter of the large particle group exceeds 1.80 μm or the most frequent diameter of the small particle group exceeds 0.45 μm, craters are likely to form during coating. becomes. On the other hand, when the most frequent diameter of the large particle group is less than 1.55 μm, or when the most frequent diameter of the small particle group is less than 0.15 μm, the viscosity of the paste PVC composition sol increases. Due to the steep climb, handling is inferior. Note that the most frequent diameter means the particle diameter at the top of the peak in the distribution.

本発明のペースト塩ビは、特にクレーターの発生を抑制したペースト塩ビ、ペースト塩ビ組成物となることから、更に、(4)ペースト塩ビ100重量部に対し、フタル酸ジイソノニル60重量部、液状安定剤3.0重量部を配合しペースト塩ビ組成物ゾルとし、粘弾性測定装置にて昇温速度10℃/分で昇温した際の98℃における複素粘度が10000Pa・s以上、のものであることが好ましい。その際の液状安定剤としては、例えばバリウム系安定剤、カルシウム系安定剤、亜鉛系安定剤に加えカルシウム-亜鉛系やバリウム-亜鉛系等の複合安定剤等を挙げることができ、粘弾性測定装置としては、市販品を用いることができる。 Since the paste PVC of the present invention is a paste PVC or paste PVC composition that particularly suppresses the generation of craters, it further contains (4) 60 parts by weight of diisononyl phthalate and 3 parts by weight of a liquid stabilizer per 100 parts by weight of paste PVC. 0 parts by weight to form a paste PVC composition sol, which has a complex viscosity of 10,000 Pa·s or more at 98°C when heated at a rate of 10°C/min using a viscoelasticity measuring device. preferable. Examples of liquid stabilizers used in this case include barium-based stabilizers, calcium-based stabilizers, zinc-based stabilizers, and composite stabilizers such as calcium-zinc-based and barium-zinc-based stabilizers. A commercially available device can be used as the device.

また、本発明のペースト塩ビは、ペースト塩ビ自体、又はペースト塩ビ組成物ゾル、ペースト塩ビ組成物を調製する際の取扱い性に優れることから、(5)嵩比重が0.40~0.60g/cc、のものであることが好ましい。なお、嵩比重は、例えば粉体特性総合測定装置(ホソカワミクロン社製、(商品名)パウダテスタPT-X)により測定することができる。 In addition, the paste PVC of the present invention has excellent handling properties when preparing the paste PVC itself, a paste PVC composition sol, or a paste PVC composition. cc, is preferable. Incidentally, the bulk specific gravity can be measured, for example, by a powder property comprehensive measuring device (manufactured by Hosokawa Micron Co., Ltd., (trade name) Powder Tester PT-X).

また、本発明のペースト塩ビは、更にクレーターの発生を抑制しつつ、刃裏もれ抑止に優れ、加工性にも優れるペースト塩ビ、ペースト塩ビ組成物となることから、(4’)ペースト塩ビ100重量部に対し、フタル酸ジイソノニル60重量部、液状安定剤3.0重量部を配合しペースト塩ビ組成物ゾルとし、粘弾性測定装置にて昇温速度10℃/分で昇温した際の98℃における複素粘度が5000Pa・s以上、のものであることが好ましく、(6)ペースト塩ビ100重量部に対し、フタル酸ジイソノニル53重量部、炭酸カルシウム100重量部、酸化チタン10重量部、発泡剤3重量部、希釈剤10重量部、液状安定剤3重量部を配合しペースト塩ビ組成物ゾルとし、粘弾性測定装置にて測定した際のせん断速度4000sec-1における第一法線応力差が20000Pa以下となるものであることが好ましい。 In addition, the paste PVC of the present invention is a paste PVC or a paste PVC composition that further suppresses the generation of craters, is excellent in preventing leakage on the back of the blade, and has excellent workability. 98 when the paste PVC composition sol was prepared by adding 60 parts by weight of diisononyl phthalate and 3.0 parts by weight of a liquid stabilizer to the parts by weight, and the temperature was raised at a heating rate of 10°C/min using a viscoelasticity measuring device. It is preferable that the complex viscosity at °C is 5000 Pa·s or more, and (6) 53 parts by weight of diisononyl phthalate, 100 parts by weight of calcium carbonate, 10 parts by weight of titanium oxide, and a blowing agent per 100 parts by weight of paste vinyl chloride. 3 parts by weight, 10 parts by weight of diluent, and 3 parts by weight of liquid stabilizer to make a paste PVC composition sol, and the first normal stress difference at a shear rate of 4000 sec -1 when measured with a viscoelasticity measuring device was 20000 Pa. It is preferable that the following is true.

本発明のペースト塩ビを構成する塩化ビニル系樹脂としては、塩化ビニル単独重合樹脂、塩化ビニル共重合樹脂を挙げることができ、塩化ビニルモノマーと共重合可能なモノマーとしては、例えば、酢酸ビニル、プロピオン酸ビニル、ミリスチン酸ビニル、安息香酸ビニル等のビニルエステル類;アクリル酸、メタクリル酸、マレイン酸、フマル酸等の不飽和カルボン酸またはその無水物;アクリル酸メチル、アクリル酸エチル、アクリル酸ブチル等のアクリル酸エステル類;メタクリル酸メチル、メタクリル酸エチル、メタクリル酸ブチル等のメタクリル酸エステル類;マレイン酸エステル、フマル酸エステル、桂皮酸エステル類等の不飽和カルボン酸エステル類;ビニルメチルエーテル、ビニルアミルエーテル、ビニルフェニルエーテル等のビニルエーテル類;エチレン、プロピレン、ブテン、ペンテン等のモノオレフィン類;塩化ビニリデン、スチレン及びその誘導体;アクリロニトリル、メタクリロニトリル等を挙げることができ、これらモノマーは1種類以上で共重合を行ったものでもよい。 Examples of the vinyl chloride resin constituting the paste vinyl chloride of the present invention include vinyl chloride homopolymer resins and vinyl chloride copolymer resins, and examples of monomers copolymerizable with vinyl chloride monomers include vinyl acetate and propion. Vinyl esters such as vinyl acid, vinyl myristate, and vinyl benzoate; Unsaturated carboxylic acids such as acrylic acid, methacrylic acid, maleic acid, and fumaric acid, or their anhydrides; Methyl acrylate, ethyl acrylate, butyl acrylate, etc. Acrylic acid esters; Methacrylic acid esters such as methyl methacrylate, ethyl methacrylate, and butyl methacrylate; Unsaturated carboxylic acid esters such as maleic acid ester, fumaric acid ester, and cinnamic acid ester; Vinyl methyl ether, vinyl Examples include vinyl ethers such as amyl ether and vinyl phenyl ether; monoolefins such as ethylene, propylene, butene, and pentene; vinylidene chloride, styrene, and their derivatives; acrylonitrile, methacrylonitrile, etc., and one or more of these monomers may be used. Copolymerization may also be performed.

本発明のペースト塩ビは、重合開始剤、乳化剤、乳化助剤、緩衝剤、連鎖移動剤、高級アルコール、高級脂肪酸、高級脂肪酸エステル、塩素化パラフィン等の分散助剤、重合度調整剤等のペースト塩ビを製造する際に一般的に添加される物質等を含有していてもよい。また、ペースト塩ビの製造方法としては、一般的な乳化重合法、ミクロ懸濁重合法、シード乳化重合法、シードミクロ懸濁重合法等の方法を挙げることができ、これら重合法により得られる塩化ビニル系樹脂ラテックスから水分を除去することによりペースト塩ビとして製造することができる。 The paste PVC of the present invention is a paste containing polymerization initiators, emulsifiers, emulsification aids, buffers, chain transfer agents, higher alcohols, higher fatty acids, higher fatty acid esters, dispersion aids such as chlorinated paraffin, and polymerization degree regulators. It may contain substances that are generally added when producing vinyl chloride. In addition, methods for producing paste PVC include general emulsion polymerization, micro-suspension polymerization, seeded emulsion polymerization, and seeded micro-suspension polymerization. It can be manufactured as a paste PVC by removing water from vinyl resin latex.

そして、塩化ビニル系樹脂ラテックスから水分を除去する方法としては、例えば、噴霧乾燥、流動層乾燥、通気乾燥、回転乾燥、伝導加熱乾燥による方法等が挙げられ、中でも効率よく水分を除去できることから噴霧乾燥による方法が好ましい。 Examples of methods for removing moisture from vinyl chloride resin latex include spray drying, fluidized bed drying, ventilation drying, rotary drying, and conduction heating drying. A method by drying is preferred.

以下に、本発明のペースト塩ビとする際に用いられる塩化ビニル系樹脂ラテックスを得る方法の一例として、シードミクロ懸濁重合法を示す。 Below, a seed microsuspension polymerization method will be shown as an example of a method for obtaining the vinyl chloride resin latex used to form the paste PVC of the present invention.

シードミクロ懸濁重合法とは、i)ミクロ懸濁重合法により油溶性重合開始剤を含む塩化ビニル系樹脂を含有する塩化ビニル系樹脂シードラテックスを得る第一段階、ii)得られたシードラテックスを塩化ビニルモノマー、又は塩化ビニルモノマーとこれと共重合可能なモノマーを、脱イオン水、乳化剤、緩衝剤、必要に応じて高級アルコール等の乳化助剤の存在下で緩やかな攪拌で重合を行い、シードラテックスを肥大化させて塩化ビニル系樹脂ラテックスを得る第二段階からなる重合方法である。 The seed micro-suspension polymerization method consists of: i) the first step of obtaining a vinyl chloride resin seed latex containing a vinyl chloride resin containing an oil-soluble polymerization initiator by a micro-suspension polymerization method, and ii) the obtained seed latex. Polymerize vinyl chloride monomer, or vinyl chloride monomer and a monomer copolymerizable with it, with gentle stirring in the presence of deionized water, an emulsifier, a buffer, and if necessary an emulsification aid such as a higher alcohol. This is a polymerization method consisting of a second step in which a vinyl chloride resin latex is obtained by enlarging the seed latex.

ここで、塩化ビニルモノマーと共重合可能なモノマー単量体としては、上記したものを挙げることができる。 Here, examples of the monomer copolymerizable with the vinyl chloride monomer include those mentioned above.

また、乳化剤としては、例えば、ラウリル硫酸エステルナトリウム、ミリスチル硫酸エステルカリウム等のアルキル硫酸エステル塩類;ドデシルベンゼンスルホン酸ナトリウム、ドデシルベンゼンスルホン酸カリウム等のアルキルアリールスルホン酸塩類;ジオクチルスルホコハク酸ナトリウム、ジヘキシルスルホコハク酸ナトリウム等のスルホコハク酸塩類;ラウリン酸アンモニウム、ステアリン酸カリウム等の脂肪酸塩類;ポリオキシエチレンアルキル硫酸エステル塩類、ポリオキシエチレンアルキルアリール硫酸エステル塩類等のアニオン系乳化剤:ソルビタンモノオレート、ポリオキシエチレンソルビタンモノステアレート等のソルビタンエステル類;ポリオキシエチレンアルキルフェニルエーテル類;ポリオキシエチレンアルキルエステル類等のノニオン系乳化剤等の従来より知られているものを1種類又は2種類以上用いることができる。 Examples of emulsifiers include alkyl sulfate salts such as sodium lauryl sulfate and potassium myristyl sulfate; alkylaryl sulfonates such as sodium dodecylbenzenesulfonate and potassium dodecylbenzenesulfonate; sodium dioctylsulfosuccinate and dihexylsulfosuccinate. Sulfosuccinates such as sodium acid; fatty acid salts such as ammonium laurate and potassium stearate; anionic emulsifiers such as polyoxyethylene alkyl sulfate ester salts and polyoxyethylene alkylaryl sulfate ester salts: sorbitan monooleate, polyoxyethylene sorbitan One or more conventionally known emulsifiers such as sorbitan esters such as monostearate; polyoxyethylene alkyl phenyl ethers; and nonionic emulsifiers such as polyoxyethylene alkyl esters can be used.

必要に応じて用いられる乳化助剤としては、例えば、セチルアルコール、ラウリルアルコール等の高級アルコール;ラウリン酸、パルミチン酸、ステアリン酸等の高級脂肪酸;そのエステル;芳香族炭化水素、高級脂肪酸炭化水素、塩素化パラフィンのようなハロゲン化炭化水素等が挙げられる。 Examples of emulsifying aids used as necessary include higher alcohols such as cetyl alcohol and lauryl alcohol; higher fatty acids such as lauric acid, palmitic acid, and stearic acid; esters thereof; aromatic hydrocarbons, higher fatty acid hydrocarbons, Examples include halogenated hydrocarbons such as chlorinated paraffin.

緩衝剤としては、例えば、リン酸一水素アルカリ金属塩、リン酸二水素アルカリ金属塩、フタル酸水素カリウム、炭酸水素ナトリウム、ホウ酸-苛性カリウム溶液等が挙げられる。 Examples of the buffer include alkali metal monohydrogen phosphate, alkali metal dihydrogen phosphate, potassium hydrogen phthalate, sodium hydrogen carbonate, boric acid-caustic potassium solution, and the like.

連鎖移動剤としては、例えば、トリクロルエチレン、四塩化炭素などのハロゲン系炭化水素、2-メルカプトエタノール、3-メルカプトプロピオン酸オクチル、ドデシルメルカプタンなどのメルカプタン類、アセトン、n-ブチルアルデヒドなどのアルデヒド類等が挙げられ、重合度を調整できるものであればいかなるものを用いてもよい。 Examples of chain transfer agents include halogen hydrocarbons such as trichlorethylene and carbon tetrachloride, mercaptans such as 2-mercaptoethanol, octyl 3-mercaptopropionate, and dodecyl mercaptan, and aldehydes such as acetone and n-butyraldehyde. etc., and any material may be used as long as the degree of polymerization can be adjusted.

シードミクロ懸濁重合法に用いられる油溶性重合開始剤を含む塩化ビニル系樹脂シードラテックスは、以下のようなミクロ懸濁重合法で調製することが可能である。まず、塩化ビニルモノマー、油溶性重合開始剤、界面活性剤、緩衝剤、高級アルコール、高級脂肪酸、高級脂肪酸エステル、塩素化パラフィン等の分散助剤、必要に応じて重合度調整剤を添加してプレミックスし、ホモジナイザーにより均質化処理して油滴の調製を行なう。この際のホモジナイザーとしては、例えば、コロイドミル、振動攪拌機、二段式高圧ポンプ等を用いることができる。そして、均質化処理した液を重合器に送り、緩やかに攪拌しながら重合器内の温度を上げて重合反応を開始し、所定の転化率に達するまで重合を行なうことにより油溶性重合開始剤を含有するシードラテックスを調製することが可能である。 The vinyl chloride resin seed latex containing an oil-soluble polymerization initiator used in the seed microsuspension polymerization method can be prepared by the following microsuspension polymerization method. First, a dispersion aid such as a vinyl chloride monomer, an oil-soluble polymerization initiator, a surfactant, a buffer, a higher alcohol, a higher fatty acid, a higher fatty acid ester, a chlorinated paraffin, and a polymerization degree regulator are added as necessary. Premix and homogenize using a homogenizer to prepare oil droplets. As the homogenizer at this time, for example, a colloid mill, a vibration stirrer, a two-stage high-pressure pump, etc. can be used. Then, the homogenized liquid is sent to a polymerization vessel, and the temperature inside the polymerization vessel is raised while stirring gently to initiate a polymerization reaction. By polymerizing until a predetermined conversion rate is reached, an oil-soluble polymerization initiator is added. It is possible to prepare a seed latex containing:

油溶性重合開始剤としては、10時間半減期温度30~70℃のジアシルパーオキサイドが好ましく、そのような重合開始剤としては、例えば、イソブチリルパーオキサイド、3,3,5-トリメチルヘキサノイルパーオキサイド、オクタノイルパーオキサイド、ラウロイルパーオキサイド、ステアロイルパーオキサイド、コハク酸パーオキサイド等が挙げられる。 As the oil-soluble polymerization initiator, diacyl peroxide having a 10-hour half-life temperature of 30 to 70°C is preferred, and examples of such polymerization initiators include isobutyryl peroxide, 3,3,5-trimethylhexanoyl peroxide, oxide, octanoyl peroxide, lauroyl peroxide, stearoyl peroxide, succinic acid peroxide, and the like.

そして、得られた油溶性重合開始剤を含む塩化ビニル系樹脂シードラテックスをii)の工程にて、塩化ビニル単量体等の存在下で肥大化を行い、重合を行うことにより塩化ビニル系樹脂ラテックスとすることが可能である。 Then, in step ii), the obtained vinyl chloride resin seed latex containing an oil-soluble polymerization initiator is enlarged in the presence of a vinyl chloride monomer, etc., and polymerized to form a vinyl chloride resin. It can be latex.

本発明のペースト塩ビは、可塑剤、場合によって充填剤、発泡剤等を配合することによりペースト塩ビ組成物、ペースト塩ビ組成物ゾルとして各種用途に用いることができる。その際には優れる特性を有する組成物となることから、ペースト塩ビ100重量部に対し、可塑剤20~200重量部を含有するものであることが好ましい。また、発泡体とする際には、ペースト塩ビ100重量部に対して、可塑剤20~200重量部、充填剤1~300重量部、発泡剤0.1~30重量部、安定剤0.1~30重量部を含有するペースト塩ビ組成物ゾルとすることが好ましい。 The paste vinyl chloride of the present invention can be used for various purposes as a paste vinyl chloride composition or a paste vinyl chloride composition sol by adding a plasticizer, optionally a filler, a blowing agent, etc. In this case, it is preferable that the composition contains 20 to 200 parts by weight of plasticizer per 100 parts by weight of the paste PVC, since this results in a composition having excellent properties. In addition, when making a foam, for 100 parts by weight of paste PVC, 20 to 200 parts by weight of plasticizer, 1 to 300 parts by weight of filler, 0.1 to 30 parts by weight of blowing agent, and 0.1 part by weight of stabilizer. It is preferable to prepare a paste PVC composition sol containing up to 30 parts by weight.

可塑剤としては、例えば、フタル酸ビス(2-エチルヘキシル)(DOPと略記する場合もある)、フタル酸ジイソノニル、フタル酸ジイソデシル、フタル酸ジブチル等のフタル酸エステル類;アジピン酸(2-エチルヘキシル)、アジピン酸ジイソノニル等のアジピン酸エステル類;トリメリット酸トリ(2-エチルヘキシル)、トリメリット酸トリイソデシル、トリメリット酸トリノルマルオクチル等のトリメリット酸エステル類;リン酸トリ(2-エチルヘキシル)、リン酸トリクレジル、リン酸トリキシレニル等のリン酸エステル類;ジエチレングリコールジベンゾアート、ジプロピレングリコールジベンゾアート等の安息香酸エステル;その他ポリエステル系可塑剤やセバシン酸エステル、マゼライン酸エステル、マレイン酸エステル、エポキシ化植物油等、一般に可塑剤として使用されているものを用いることができる。 Examples of plasticizers include phthalate esters such as bis(2-ethylhexyl) phthalate (sometimes abbreviated as DOP), diisononyl phthalate, diisodecyl phthalate, and dibutyl phthalate; adipic acid (2-ethylhexyl) , adipate esters such as diisononyl adipate; trimellitic acid esters such as tri(2-ethylhexyl) trimellitate, triisodecyl trimellitate, trin-octyl trimellitate; tri(2-ethylhexyl) phosphate, phosphorus Phosphoric acid esters such as tricresyl acid and tricylenyl phosphate; Benzoic acid esters such as diethylene glycol dibenzoate and dipropylene glycol dibenzoate; Other polyester plasticizers, sebacic acid ester, mazelaic acid ester, maleic acid ester, epoxidized vegetable oil, etc. , those commonly used as plasticizers can be used.

充填剤としては、例えば、炭酸カルシウム、珪藻土、炭酸マグネシウム、酸化チタン等が挙げられる。 Examples of the filler include calcium carbonate, diatomaceous earth, magnesium carbonate, and titanium oxide.

発泡剤としては、例えば、重炭酸ナトリウム、炭酸アンモニウム、重炭酸アンモニウム、亜硝酸アンモニウム、アミド化合物、ホウ水素化ナトリウム等の無機系発泡剤;イソシアネート化合物、アゾジカルボンアミド、アゾビスイソブチロニトリル、バリウムアゾジカルボキシレート等のアゾ化合物;p,p’-オキシビスベンゼンスルホニルヒドラジド、p-トルエンスルホニルヒドラジド等のヒドラジン誘導体;セミカルバジド化合物、アジ化合物、ジニトロソペンタメチレンテトラミン等のニトロソ化合物;トリアゾール化合物等の有機系発泡剤等が挙げられる。そして、必要に応じて上記発泡剤と亜鉛華(酸化亜鉛)等の分解促進剤を併用することも可能である。 Examples of blowing agents include inorganic blowing agents such as sodium bicarbonate, ammonium carbonate, ammonium bicarbonate, ammonium nitrite, amide compounds, and sodium borohydride; isocyanate compounds, azodicarbonamide, azobisisobutyronitrile, and barium. Azo compounds such as azodicarboxylate; hydrazine derivatives such as p,p'-oxybisbenzenesulfonylhydrazide and p-toluenesulfonylhydrazide; nitroso compounds such as semicarbazide compounds, azide compounds, and dinitrosopentamethylenetetramine; triazole compounds, etc. Examples include organic blowing agents. It is also possible to use the above-mentioned foaming agent together with a decomposition accelerator such as zinc white (zinc oxide), if necessary.

また、安定剤としては、例えば、エポキシ系安定剤、バリウム系安定剤、カルシウム系安定剤、スズ系安定剤、亜鉛系安定剤等が挙げられる。また、市販のカルシウム-亜鉛系、バリウム-亜鉛系等の複合安定剤を使用することもできる。 Examples of the stabilizer include epoxy stabilizers, barium stabilizers, calcium stabilizers, tin stabilizers, and zinc stabilizers. Furthermore, commercially available composite stabilizers such as calcium-zinc type, barium-zinc type, etc. can also be used.

さらに、ペースト塩ビ組成物とする際には、本発明の目的を超えない範囲でペースト塩ビ組成物に通常添加される添加剤、例えば、酸化防止剤、難燃剤、希釈剤、滑剤、紫外線吸収剤、顔料等の着色剤、界面活性剤、帯電防止剤等を添加してもよく、またそれらの配合量も一般に使用される範囲で差し支えない。 Furthermore, when preparing a paste PVC composition, additives that are normally added to paste PVC compositions, such as antioxidants, flame retardants, diluents, lubricants, and ultraviolet absorbers, may be added to the extent that does not exceed the purpose of the present invention. , coloring agents such as pigments, surfactants, antistatic agents, etc. may be added, and the amounts thereof may be within the generally used ranges.

本発明のペースト塩ビは、成形加工時のペースト塩ビ組成物ゾルがその取扱い性に優れることからペースト塩ビ組成物として壁紙、床材、発泡シートのような建築資材等に適用可能であり、特に発泡剤を含むペースト塩ビ組成物ゾルによるコーティングシートのクレーター形成が抑制されたものとなることから、表面平滑性、意匠性に優れる発泡壁紙、発泡シートとして適したものとなる。 The paste PVC of the present invention can be applied as a paste PVC composition to wallpaper, flooring, construction materials such as foam sheets, etc., because the paste PVC composition sol during molding is excellent in handling properties, and is particularly applicable to foamed sheets. Since the formation of craters on the coated sheet due to the paste PVC composition sol containing the agent is suppressed, it is suitable for foamed wallpaper and foamed sheets with excellent surface smoothness and design.

本発明のペースト塩ビは、基材上にコーティングしシートを作成する際にクレーターの形成を抑制し、発泡時には表面平滑性に優れる発泡体を得ることが可能であり、その工業的価値は非常に高いものである。 The paste PVC of the present invention suppresses the formation of craters when it is coated on a base material to create a sheet, and when foamed, it is possible to obtain a foam with excellent surface smoothness, and its industrial value is extremely high. It's expensive.

次に、実施例及び比較例により本発明を更に詳細に説明するが、本発明はこれらに限定されるものではない。 Next, the present invention will be explained in more detail with reference to Examples and Comparative Examples, but the present invention is not limited thereto.

以下に実施例より得られたペースト塩ビ、組成物の評価方法を示す。 Below, methods for evaluating the paste PVC and compositions obtained in Examples will be shown.

<平均重合度>
JIS K6721のウベローデ粘度計を用いて、溶液粘度測定法により平均重合度を算出した。
<Average degree of polymerization>
The average degree of polymerization was calculated by solution viscosity measurement using a JIS K6721 Ubbelohde viscometer.

<粒子径分布>
ディスク遠心式粒度分布測定装置(日本ルフト株式会社製、(商品名)DC24000UHR)を使用し、粒子径分布を測定した。
<Particle size distribution>
Particle size distribution was measured using a disk centrifugal particle size distribution analyzer (manufactured by Nippon Luft Co., Ltd., (trade name) DC24000UHR).

<嵩比重>
粉体特性総合測定装置(ホソカワミクロン株式会社製、(商品名)パウダテスタPT-X)を使用して測定した。粉体の流動特性と相関し、高い値ほど粉体の流動特性が良好であることを示す。
<Bulk specific gravity>
The measurement was performed using a powder property comprehensive measuring device (manufactured by Hosokawa Micron Co., Ltd., (trade name) Powder Tester PT-X). It correlates with the flow characteristics of the powder, and the higher the value, the better the flow characteristics of the powder.

<複素粘度>
ペースト塩ビ100重量部、フタル酸ジイソノニル(株式会社ジェイプラス製)60重量部、液状安定剤(株式会社ADEKA製、(商品名)SC-320)3.0重量部からなるペースト塩ビ組成物ゾルを粘弾性測定装置(アントンパール社製、(商品名)MCR302)を用いて、昇温速度10℃/分で昇温した際の測定温度98℃における複素粘度を測定した。
<Complex viscosity>
A paste PVC composition sol consisting of 100 parts by weight of paste PVC, 60 parts by weight of diisononyl phthalate (manufactured by J-Plus Co., Ltd.), and 3.0 parts by weight of a liquid stabilizer (manufactured by ADEKA Co., Ltd., (trade name) SC-320) was prepared. Using a viscoelasticity measuring device (manufactured by Anton Paar, (trade name) MCR302), the complex viscosity was measured at a measurement temperature of 98° C. when the temperature was raised at a heating rate of 10° C./min.

<クレーターの評価方法>
ペースト塩ビ100重量部、フタル酸ジイソノニル(株式会社ジェイプラス製)53重量部、炭酸カルシウム(白石カルシウム株式会社製、(商品名)ホワイトンH)100重量部、酸化チタン(テイカ株式会社製、(商品名)JR600A)10重量部、発泡剤(大塚化学株式会社製、(商品名)AZウルトラ1050)3重量部、希釈剤(東燃ゼネラル石油株式会社製、(商品名)Exxsol D40)20重量部、安定剤(株式会社ADEKA製、(商品名)FL-230)3重量部を用い、ディゾルバーを用いて混練し、ペースト塩ビ組成物ゾルを得た。得られたペースト塩ビ組成物ゾルを低温恒温器内にて3℃に冷却した後、予め195℃で5秒加熱した難燃紙上に0.12mmの厚みでコーティングし、195℃で10秒加熱することにより、原反を作製し、その時の原反上のクレーター数を数えた。
<Crater evaluation method>
100 parts by weight of paste PVC, 53 parts by weight of diisononyl phthalate (manufactured by J-Plus Co., Ltd.), 100 parts by weight of calcium carbonate (manufactured by Shiraishi Calcium Co., Ltd. (trade name) Whiten H), titanium oxide (manufactured by Teika Co., Ltd.) (Product name) JR600A) 10 parts by weight, blowing agent (Otsuka Chemical Co., Ltd., (Product name) AZ Ultra 1050) 3 parts by weight, diluent (TonenGeneral Sekiyu Co., Ltd., (Product name) Exxsol D40) 20 parts by weight and 3 parts by weight of a stabilizer (manufactured by ADEKA Co., Ltd., (trade name) FL-230) were kneaded using a dissolver to obtain a paste PVC composition sol. The resulting paste PVC composition sol was cooled to 3°C in a low-temperature incubator, then coated with a thickness of 0.12 mm on flame-retardant paper that had been previously heated at 195°C for 5 seconds, and heated at 195°C for 10 seconds. By doing this, an original fabric was prepared, and the number of craters on the original fabric at that time was counted.

<表面平滑性の評価方法>
得られた原反を230℃で35秒加熱することにより発泡体を得た。得られた発泡体の表面平滑性を目視で観察することにより評価した。
<Evaluation method of surface smoothness>
A foam was obtained by heating the obtained original fabric at 230° C. for 35 seconds. The surface smoothness of the obtained foam was evaluated by visual observation.

表面平滑性の評価基準を以下に示す。 The evaluation criteria for surface smoothness are shown below.

〇:表面が平滑
×:表面が粗い
<低せん断粘度の評価方法>
<クレーターの評価方法>で記載したのと同様の配合でペースト塩ビ組成物ゾルを調整し、B8H型粘度計(東京計器社製)ローターNo.3を用いて、回転数20rpmの条件で低せん断粘度を評価した。ここで、低せん断粘度が700~2500mPa・sの範囲にあるものをハンドリング性に優れるものと判断した。
〇: Surface is smooth ×: Surface is rough <Low shear viscosity evaluation method>
A paste PVC composition sol was prepared with the same formulation as described in <Crater evaluation method>, and a B8H type viscometer (manufactured by Tokyo Keiki Co., Ltd.) rotor No. Low shear viscosity was evaluated using No. 3 at a rotation speed of 20 rpm. Here, those with low shear viscosity in the range of 700 to 2,500 mPa·s were judged to have excellent handling properties.

<第一法線応力の評価方法>
ペースト塩ビ100重量部、フタル酸ジイソノニル(株式会社ジェイプラス製)53重量部、炭酸カルシウム(白石カルシウム株式会社製、(商品名)ホワイトンH)100重量部、酸化チタン(テイカ株式会社製、(商品名)JR600A)10重量部、発泡剤(大塚化学株式会社製、(商品名)AZウルトラ1050)3重量部、希釈剤(東燃ゼネラル石油株式会社製、(商品名)Exxsol D40)10重量部、安定剤(株式会社ADEKA製、(商品名)FL-230)3重量部を用い、ディゾルバーを用いて混練し、ペースト塩ビ組成物ゾルを得た。得られたペースト塩ビ組成物ゾルを23℃で24時間静置した後、粘弾性測定装置(アントンパール社製、(商品名)MCR302)を用いて、第一法線応力差を測定した。
<Evaluation method of first normal stress>
100 parts by weight of paste PVC, 53 parts by weight of diisononyl phthalate (manufactured by J-Plus Co., Ltd.), 100 parts by weight of calcium carbonate (manufactured by Shiraishi Calcium Co., Ltd. (trade name) Whiten H), titanium oxide (manufactured by Teika Co., Ltd.) Product name) JR600A) 10 parts by weight, blowing agent (manufactured by Otsuka Chemical Co., Ltd., (product name) AZ Ultra 1050) 3 parts by weight, diluent (manufactured by TonenGeneral Sekiyu Co., Ltd., (product name) Exxsol D40) 10 parts by weight and 3 parts by weight of a stabilizer (manufactured by ADEKA Co., Ltd., (trade name) FL-230) were kneaded using a dissolver to obtain a paste PVC composition sol. After the obtained paste PVC composition sol was allowed to stand at 23° C. for 24 hours, the first normal stress difference was measured using a viscoelasticity measuring device (manufactured by Anton Paar, (trade name) MCR302).

合成例1
1mステンレス製オートクレーブ中に脱イオン水360kg、塩化ビニルモノマー300kg、過酸化ラウロイル5.7kg及び15重量%ドデシルベンゼンスルホン酸ナトリウム水溶液30kgを仕込み、該重合液をホモジナイザーにより3時間循環し均質化処理を行なった後、反応系の温度を45℃に上げて重合を開始した。重合系の圧力が低下した後、未反応塩化ビニルモノマーを回収し、固形分含有率35重量%、平均粒子径0.55μmの油溶性重合開始剤含有塩化ビニル樹脂シードラテックス(a)を得た。
Synthesis example 1
360 kg of deionized water, 300 kg of vinyl chloride monomer, 5.7 kg of lauroyl peroxide, and 30 kg of a 15% by weight sodium dodecylbenzenesulfonate aqueous solution were placed in a 1 m 3 stainless steel autoclave, and the polymerization solution was circulated for 3 hours using a homogenizer for homogenization treatment. After this, the temperature of the reaction system was raised to 45°C to start polymerization. After the pressure of the polymerization system was reduced, the unreacted vinyl chloride monomer was recovered to obtain an oil-soluble polymerization initiator-containing vinyl chloride resin seed latex (a) with a solid content of 35% by weight and an average particle size of 0.55 μm. .

合成例2
1mステンレス製オートクレーブ中に脱イオン水360kg、塩化ビニルモノマー300kg、過酸化ラウロイル10kg、15重量%ドデシルベンゼンスルホン酸ナトリウム水溶液30kg及びドデシルメルカプタン1.5kgを仕込み、該重合液をホモジナイザーにより3時間循環し均質化処理を行なった後、反応系の温度を45℃に上げて重合を開始した。重合系の圧力が低下した後、未反応塩化ビニルモノマーを回収し、固形分含有率35重量%、平均粒子径0.60μmの油溶性重合開始剤含有塩化ビニル樹脂シードラテックス(b)を得た。
Synthesis example 2
360 kg of deionized water, 300 kg of vinyl chloride monomer, 10 kg of lauroyl peroxide, 30 kg of 15% by weight sodium dodecylbenzenesulfonate aqueous solution, and 1.5 kg of dodecyl mercaptan were placed in a 1 m 3 stainless steel autoclave, and the polymerization solution was circulated for 3 hours using a homogenizer. After homogenization, the temperature of the reaction system was raised to 45° C. to initiate polymerization. After the pressure of the polymerization system was reduced, the unreacted vinyl chloride monomer was recovered to obtain an oil-soluble polymerization initiator-containing vinyl chloride resin seed latex (b) with a solid content of 35% by weight and an average particle size of 0.60 μm. .

合成例3
1mステンレス製オートクレーブ中に脱イオン水400kg、塩化ビニルモノマー350kg、16重量%ラウリン酸カリウム水溶液2kg及び16重量%ドデシルベンゼンスルホン酸ナトリウム水溶液5kgを仕込んだ後、反応系の温度を60℃に上げて重合を開始した。重合系の圧力が低下した後、未反応塩化ビニルモノマーを回収し、固形分含有率40重量%、平均粒子径0.15μmであるシードラテックス(c)を得た。
Synthesis example 3
After charging 400 kg of deionized water, 350 kg of vinyl chloride monomer, 2 kg of 16 wt% potassium laurate aqueous solution, and 5 kg of 16 wt% sodium dodecylbenzenesulfonate aqueous solution into a 1 m 3 stainless steel autoclave, the temperature of the reaction system was raised to 60 °C. Polymerization was started. After the pressure of the polymerization system was reduced, unreacted vinyl chloride monomer was recovered to obtain seed latex (c) having a solid content of 40% by weight and an average particle size of 0.15 μm.

実施例1
2.5Lステンレス製オートクレーブ中に脱イオン水610g、塩化ビニルモノマー730g、5重量%ドデシルベンゼンスルホン酸ナトリウム15.3g、リン酸水素ナトリウム/水酸化カリウム混合液10g、3-メルカプトプロピオン酸-2-エチルヘキシルを0.5g、合成例1により得られた平均粒子径0.55μmのシードラテックス(a)を塩化ビニルモノマー100重量部に対し4.4重量部、合成例3により得られた平均粒子径0.15μmのシードラテックス(c)を塩化ビニルモノマー100重量部に対し10.0重量部仕込み、この反応混合物の温度を66℃に上げて重合を開始した。重合を開始してから重合を終了までの間、塩化ビニルモノマーに対し0.7重量部の5重量%ドデシルベンゼンスルホン酸ナトリウムを連続的に添加した。重合圧が66℃における塩化ビニルモノマーの飽和蒸気圧から0.402MPaまで降下したときに重合を停止し、未反応塩化ビニルモノマーを回収し、塩化ビニル樹脂ラテックスを得た。得られた塩化ビニル樹脂ラテックス中の塩化ビニル樹脂は、粒子径0.5μmを超えて5μm以下の大粒子群の累積重量頻度が70.3wt%、最頻径が1.73μmで、0.5μm以下の小粒子群の累積重量頻度が29.7wt%、最頻径が0.22μmであった。
Example 1
In a 2.5 L stainless steel autoclave, 610 g of deionized water, 730 g of vinyl chloride monomer, 15.3 g of 5% by weight sodium dodecylbenzenesulfonate, 10 g of sodium hydrogen phosphate/potassium hydroxide mixture, 3-mercaptopropionic acid-2- 0.5 g of ethylhexyl, 4.4 parts by weight of seed latex (a) with an average particle diameter of 0.55 μm obtained in Synthesis Example 1 per 100 parts by weight of vinyl chloride monomer, and the average particle diameter obtained in Synthesis Example 3. 10.0 parts by weight of 0.15 μm seed latex (c) was added to 100 parts by weight of vinyl chloride monomer, and the temperature of the reaction mixture was raised to 66° C. to initiate polymerization. From the start of the polymerization until the end of the polymerization, 0.7 parts by weight of 5% by weight sodium dodecylbenzenesulfonate was continuously added to the vinyl chloride monomer. When the polymerization pressure decreased from the saturated vapor pressure of the vinyl chloride monomer at 66° C. to 0.402 MPa, the polymerization was stopped, and the unreacted vinyl chloride monomer was recovered to obtain a vinyl chloride resin latex. The vinyl chloride resin in the obtained vinyl chloride resin latex has a cumulative weight frequency of 70.3 wt% of large particles with a particle size of more than 0.5 μm and 5 μm or less, and a mode diameter of 1.73 μm, and a diameter of 0.5 μm. The cumulative weight frequency of the following small particle group was 29.7 wt%, and the mode diameter was 0.22 μm.

得られた塩化ビニル樹脂ラテックスを回転円盤式のスプレードライヤーを用い、熱風温度110℃、出口温度50℃で噴霧乾燥し、顆粒状のペースト塩ビを得た。得られたペースト塩ビは、平均重合度が790、嵩比重が0.49g/ccであった。また、得られたペースト塩ビを用いてペースト塩ビ組成物ゾル、発泡体を作製し、複素粘度、クレーター数、表面平滑性および低せん断粘度を評価した。複素粘度は16000Pa・s、クレーターは発生せず、発泡体の表面は平滑であり、低せん断粘度は1050mPa・sと良好な値であった。評価結果を表1に示す。 The obtained vinyl chloride resin latex was spray-dried using a rotating disc type spray dryer at a hot air temperature of 110°C and an outlet temperature of 50°C to obtain granular paste PVC. The obtained paste PVC had an average degree of polymerization of 790 and a bulk specific gravity of 0.49 g/cc. In addition, a paste PVC composition sol and foam were prepared using the obtained paste PVC, and the complex viscosity, number of craters, surface smoothness, and low shear viscosity were evaluated. The complex viscosity was 16,000 Pa·s, no craters were generated, the surface of the foam was smooth, and the low shear viscosity was a good value of 1,050 mPa·s. The evaluation results are shown in Table 1.

実施例2
2.5Lステンレス製オートクレーブ中に脱イオン水610g、塩化ビニルモノマー730g、5重量%ドデシルベンゼンスルホン酸ナトリウム15.3g、リン酸水素ナトリウム/水酸化カリウム混合液10g、合成例1により得られた平均粒子径0.55μmのシードラテックス(a)を塩化ビニルモノマー100重量部に対し4.4重量部、合成例3により得られた平均粒子径0.15μmのシードラテックス(c)を塩化ビニルモノマー100重量部に対し10.0重量部仕込み、この反応混合物の温度を63.5℃に上げて重合を開始した。重合を開始してから重合を終了までの間、塩化ビニルモノマーに対し0.7重量部の5重量%ドデシルベンゼンスルホン酸ナトリウムを連続的に添加した。重合圧が63.5℃における塩化ビニルモノマーの飽和蒸気圧から0.373MPaまで降下したときに重合を停止し、未反応塩化ビニルモノマーを回収し、塩化ビニル樹脂ラテックスを得た。得られた塩化ビニル樹脂ラテックス中の塩化ビニル樹脂は、粒子径0.5μmを超えて5μm以下の大粒子群の累積重量頻度が72.1wt%、最頻径が1.70μmで、0.5μm以下の小粒子群の累積重量頻度が27.9wt%、最頻径が0.20μmであった。
Example 2
In a 2.5 L stainless steel autoclave, 610 g of deionized water, 730 g of vinyl chloride monomer, 15.3 g of 5% by weight sodium dodecylbenzenesulfonate, 10 g of sodium hydrogen phosphate/potassium hydroxide mixture, the average obtained from Synthesis Example 1 4.4 parts by weight of seed latex (a) with a particle size of 0.55 μm per 100 parts by weight of vinyl chloride monomer, and 4.4 parts by weight of seed latex (c) with an average particle size of 0.15 μm obtained in Synthesis Example 3 with 100 parts by weight of vinyl chloride monomer. 10.0 parts by weight was added, and the temperature of this reaction mixture was raised to 63.5°C to initiate polymerization. From the start of the polymerization until the end of the polymerization, 0.7 parts by weight of 5% by weight sodium dodecylbenzenesulfonate was continuously added to the vinyl chloride monomer. When the polymerization pressure decreased from the saturated vapor pressure of the vinyl chloride monomer at 63.5° C. to 0.373 MPa, the polymerization was stopped, and the unreacted vinyl chloride monomer was recovered to obtain a vinyl chloride resin latex. The vinyl chloride resin in the obtained vinyl chloride resin latex has a cumulative weight frequency of 72.1 wt% of large particles with particle diameters exceeding 0.5 μm and 5 μm or less, and a mode diameter of 1.70 μm, and a particle size of 0.5 μm. The following small particle groups had a cumulative weight frequency of 27.9 wt% and a mode diameter of 0.20 μm.

得られた塩化ビニル樹脂ラテックスを回転円盤式のスプレードライヤーを用い、熱風温度110℃、出口温度50℃で噴霧乾燥し、顆粒状のペースト塩ビを得た。得られたペースト塩ビは、平均重合度が850、嵩比重が0.49g/ccであった。また、得られたペースト塩ビを用いてペースト塩ビ組成物ゾル、発泡体を作製し、複素粘度、クレーター数、表面平滑性および低せん断粘度を評価した。複素粘度は18500Pa・s、クレーターは発生せず、発泡体の表面は平滑であり、低せん断粘度は1260mPa・sと良好な値であった。評価結果を表1に示す。 The obtained vinyl chloride resin latex was spray-dried using a rotating disc type spray dryer at a hot air temperature of 110°C and an outlet temperature of 50°C to obtain granular paste PVC. The obtained paste PVC had an average degree of polymerization of 850 and a bulk specific gravity of 0.49 g/cc. In addition, a paste PVC composition sol and foam were prepared using the obtained paste PVC, and the complex viscosity, number of craters, surface smoothness, and low shear viscosity were evaluated. The complex viscosity was 18,500 Pa·s, no craters were generated, the surface of the foam was smooth, and the low shear viscosity was a good value of 1,260 mPa·s. The evaluation results are shown in Table 1.

実施例3
シードラテックス(a)の添加量を塩化ビニルモノマー100重量部に対し5.3重量部、シードラテックス(c)の添加量を塩化ビニルモノマー100重量部に対し12.0重量部としたこと以外は、実施例1と同様の方法により、塩化ビニル樹脂ラテックス、ペースト塩ビを得た。
Example 3
Except that the amount of seed latex (a) added was 5.3 parts by weight per 100 parts by weight of vinyl chloride monomer, and the amount of seed latex (c) added was 12.0 parts by weight per 100 parts by weight of vinyl chloride monomer. By the same method as in Example 1, vinyl chloride resin latex and paste vinyl chloride were obtained.

得られた塩化ビニル樹脂ラテックス中の塩化ビニル樹脂は、粒子径0.5μmを超えて5μm以下の大粒子群の累積重量頻度が62.4wt%、最頻径が1.60μmで、0.5μm以下の小粒子群の累積重量頻度が37.6wt%、最頻径が0.21μmであった。得られたペースト塩ビは、平均重合度が720、嵩比重が0.53g/ccであった。また、得られたペースト塩ビを用いてペースト塩ビ組成物ゾル、発泡体を作製し、複素粘度、クレーター数、表面平滑性および低せん断粘度を評価した。複素粘度は25200Pa・s、クレーターは発生せず、発泡体の表面は平滑であり、低せん断粘度は1800mPa・sと良好な値であった。評価結果を表1に示す。 The vinyl chloride resin in the obtained vinyl chloride resin latex has a cumulative weight frequency of 62.4 wt% of large particles with a particle diameter of more than 0.5 μm and 5 μm or less, and a mode diameter of 1.60 μm, and a diameter of 0.5 μm. The cumulative weight frequency of the following small particle groups was 37.6 wt%, and the mode diameter was 0.21 μm. The obtained paste PVC had an average degree of polymerization of 720 and a bulk specific gravity of 0.53 g/cc. In addition, a paste PVC composition sol and foam were prepared using the obtained paste PVC, and the complex viscosity, number of craters, surface smoothness, and low shear viscosity were evaluated. The complex viscosity was 25,200 Pa·s, no craters were generated, the surface of the foam was smooth, and the low shear viscosity was a good value of 1,800 mPa·s. The evaluation results are shown in Table 1.

実施例4
シードラテックス(a)の添加量を塩化ビニルモノマー100重量部に対し5.0重量部、シードラテックス(c)の添加量を塩化ビニルモノマー100重量部に対し10.0重量部としたこと以外は、実施例1と同様の方法により、塩化ビニル樹脂ラテックス、ペースト塩ビを得た。
Example 4
Except that the amount of seed latex (a) added was 5.0 parts by weight per 100 parts by weight of vinyl chloride monomer, and the amount of seed latex (c) added was 10.0 parts by weight per 100 parts by weight of vinyl chloride monomer. By the same method as in Example 1, vinyl chloride resin latex and paste vinyl chloride were obtained.

得られた塩化ビニル樹脂ラテックス中の塩化ビニル樹脂は、粒子径0.5μmを超えて5μm以下の大粒子群の累積重量頻度が65.2wt%、最頻径が1.64μmで、0.5μm以下の小粒子群の累積重量頻度が34.8wt%、最頻径が0.21μmであった。得られたペースト塩ビは、平均重合度が740、嵩比重が0.52g/ccであった。また、得られたペースト塩ビを用いてペースト塩ビ組成物ゾル、発泡体を作製し、複素粘度、クレーター数、表面平滑性および低せん断粘度を評価した。複素粘度は24000Pa・s、クレーターは発生せず、発泡体の表面は平滑であり、低せん断粘度は1170mPa・sと良好な値であった。評価結果を表1に示す。 The vinyl chloride resin in the obtained vinyl chloride resin latex has a cumulative weight frequency of 65.2 wt% of large particles with a particle size of more than 0.5 μm and 5 μm or less, and a mode diameter of 1.64 μm, and a diameter of 0.5 μm. The cumulative weight frequency of the following small particle groups was 34.8 wt%, and the mode diameter was 0.21 μm. The obtained paste PVC had an average degree of polymerization of 740 and a bulk specific gravity of 0.52 g/cc. In addition, a paste PVC composition sol and foam were prepared using the obtained paste PVC, and the complex viscosity, number of craters, surface smoothness, and low shear viscosity were evaluated. The complex viscosity was 24,000 Pa·s, no craters were generated, the surface of the foam was smooth, and the low shear viscosity was a good value of 1,170 mPa·s. The evaluation results are shown in Table 1.

比較例1
2.5Lステンレス製オートクレーブ中に脱イオン水610g、塩化ビニルモノマー730g、5重量%ドデシルベンゼンスルホン酸ナトリウム15.3g、リン酸水素ナトリウム/水酸化カリウム混合液10g、合成例1により得られた平均粒子径0.55μmのシードラテックス(a)を塩化ビニルモノマー100重量部に対し4.4重量部、合成例3により得られた平均粒子径0.15μmのシードラテックス(c)を塩化ビニルモノマー100重量部に対し10.0重量部仕込み、0.1重量%硫酸銅を0.7g仕込み、この反応混合物の温度を55℃に上げて重合を開始した。重合中、0.05重量%アスコルビン酸水溶液を、重合温度を維持するように連続的に添加し、重合圧が55℃における塩化ビニルモノマーの飽和蒸気圧から0.471MPaまで降下したときに重合を停止した。なお、重合を開始してから重合終了までの間、塩化ビニルモノマーに対し0.7重量部の5重量%ドデシルベンゼンスルホン酸ナトリウムを連続的に添加した。重合終了後、未反応塩化ビニルモノマーを回収し、塩化ビニル樹脂ラテックスを得た。得られた塩化ビニル樹脂ラテックス中の塩化ビニル樹脂は、粒子径0.5μmを超えて5μm以下の大粒子群の累積重量頻度が69.3wt%、最頻径が1.73μmで、0.5μm以下の小粒子群の累積重量頻度が30.7wt%、最頻径が0.22μmであった。
Comparative example 1
In a 2.5 L stainless steel autoclave, 610 g of deionized water, 730 g of vinyl chloride monomer, 15.3 g of 5% by weight sodium dodecylbenzenesulfonate, 10 g of sodium hydrogen phosphate/potassium hydroxide mixture, the average obtained from Synthesis Example 1 4.4 parts by weight of seed latex (a) with a particle size of 0.55 μm per 100 parts by weight of vinyl chloride monomer, and 4.4 parts by weight of seed latex (c) with an average particle size of 0.15 μm obtained in Synthesis Example 3 with 100 parts by weight of vinyl chloride monomer. 10.0 parts by weight and 0.7 g of 0.1% by weight copper sulfate were added, and the temperature of the reaction mixture was raised to 55° C. to initiate polymerization. During the polymerization, a 0.05% by weight aqueous ascorbic acid solution was continuously added to maintain the polymerization temperature, and the polymerization was stopped when the polymerization pressure decreased from the saturated vapor pressure of vinyl chloride monomer at 55°C to 0.471 MPa. It stopped. Note that from the start of the polymerization until the end of the polymerization, 0.7 parts by weight of 5% by weight sodium dodecylbenzenesulfonate was continuously added to the vinyl chloride monomer. After the polymerization was completed, unreacted vinyl chloride monomer was collected to obtain vinyl chloride resin latex. The vinyl chloride resin in the obtained vinyl chloride resin latex has a cumulative weight frequency of 69.3 wt% of large particles with a particle diameter of more than 0.5 μm and 5 μm or less, and a mode diameter of 1.73 μm, which is 0.5 μm. The cumulative weight frequency of the following small particle groups was 30.7 wt%, and the mode diameter was 0.22 μm.

得られた塩化ビニル樹脂ラテックスを回転円盤式のスプレードライヤーを用い、熱風温度110℃、出口温度50℃で噴霧乾燥し、顆粒状のペースト塩ビを得た。得られたペースト塩ビは、平均重合度が1200、嵩比重が0.49g/ccであった。また、得られたペースト塩ビを用いてペースト塩ビ組成物ゾル、発泡体を作製し、複素粘度、クレーター数、表面平滑性および低せん断粘度を評価した。複素粘度は14000Pa・sで、クレーターは発生せず、低せん断粘度は1140mPa・sと良好な値であったが、発泡体の表面は粗く、平滑性が劣るものであった。評価結果を表2に示す。 The obtained vinyl chloride resin latex was spray-dried using a rotating disc type spray dryer at a hot air temperature of 110°C and an outlet temperature of 50°C to obtain granular paste PVC. The obtained paste PVC had an average degree of polymerization of 1200 and a bulk specific gravity of 0.49 g/cc. In addition, a paste PVC composition sol and foam were prepared using the obtained paste PVC, and the complex viscosity, number of craters, surface smoothness, and low shear viscosity were evaluated. The complex viscosity was 14,000 Pa·s, no craters were generated, and the low shear viscosity was a good value of 1,140 mPa·s, but the surface of the foam was rough and its smoothness was poor. The evaluation results are shown in Table 2.

比較例2
シードラテックス(c)の添加量を塩化ビニルモノマー100重量部に対し15.0重量部としたこと以外は、実施例1と同様の方法により、塩化ビニル樹脂ラテックス、ペースト塩ビを得た。
Comparative example 2
A vinyl chloride resin latex and paste vinyl chloride were obtained in the same manner as in Example 1, except that the amount of seed latex (c) added was 15.0 parts by weight per 100 parts by weight of vinyl chloride monomer.

得られた塩化ビニル樹脂ラテックス中の塩化ビニル樹脂は、粒子径0.5μmを超えて5μm以下の大粒子群の累積重量頻度が57.5wt%、最頻径が1.72μmで、0.5μm以下の小粒子群の累積重量頻度が42.5wt%、最頻径が0.21μmであった。得られたペースト塩ビは、平均重合度が720、嵩比重が0.54g/ccであった。また、得られたペースト塩ビを用いてペースト塩ビ組成物ゾル、発泡体を作製し、複素粘度、クレーター数、表面平滑性および低せん断粘度を評価した。複素粘度は25900Pa・sで、クレーターは発生せず、発泡体の表面は平滑であったが、低せん断粘度は3500mPa・sであり、粘度が高くハンドリング性に劣るものであった。評価結果を表2に示す。 The vinyl chloride resin in the obtained vinyl chloride resin latex has a cumulative weight frequency of 57.5 wt% of large particles with a particle diameter of more than 0.5 μm and 5 μm or less, and a mode diameter of 1.72 μm, which is 0.5 μm. The cumulative weight frequency of the following small particle groups was 42.5 wt%, and the mode diameter was 0.21 μm. The obtained paste PVC had an average degree of polymerization of 720 and a bulk specific gravity of 0.54 g/cc. In addition, a paste PVC composition sol and foam were prepared using the obtained paste PVC, and the complex viscosity, number of craters, surface smoothness, and low shear viscosity were evaluated. The complex viscosity was 25,900 Pa·s, no craters were generated, and the surface of the foam was smooth; however, the low shear viscosity was 3,500 mPa·s, indicating a high viscosity and poor handling properties. The evaluation results are shown in Table 2.

比較例3
シードラテックス(c)の添加量を塩化ビニルモノマー100重量部に対し2.5重量部としたこと以外は、実施例1と同様の方法により、塩化ビニル樹脂ラテックス、ペースト塩ビを得た。
Comparative example 3
A vinyl chloride resin latex and paste vinyl chloride were obtained in the same manner as in Example 1, except that the amount of seed latex (c) added was 2.5 parts by weight per 100 parts by weight of vinyl chloride monomer.

得られた塩化ビニル樹脂ラテックス中の塩化ビニル樹脂は、粒子径0.5μmを超えて5μm以下の大粒子群の累積重量頻度が90.9wt%、最頻径が1.70μmで、0.5μm以下の小粒子群の累積重量頻度が9.1wt%、最頻径が0.22μmであった。得られたペースト塩ビは、平均重合度が700、嵩比重が0.48g/ccであった。また、得られたペースト塩ビを用いてペースト塩ビ組成物ゾル、発泡体を作製し、複素粘度、クレーター数、表面平滑性および低せん断粘度を評価した。複素粘度は8500Pa・sで、クレーター数は100個/m以上であり、クレーターが発生しやすいものであった。発泡体の表面はクレーターにより荒れ、平滑性が劣るものであった。評価結果を表2に示す。 The vinyl chloride resin in the obtained vinyl chloride resin latex has a cumulative weight frequency of 90.9 wt% of large particles with particle diameters exceeding 0.5 μm and 5 μm or less, and a mode diameter of 1.70 μm, and a particle size of 0.5 μm. The following small particle groups had a cumulative weight frequency of 9.1 wt% and a mode diameter of 0.22 μm. The obtained paste PVC had an average degree of polymerization of 700 and a bulk specific gravity of 0.48 g/cc. In addition, a paste PVC composition sol and foam were prepared using the obtained paste PVC, and the complex viscosity, number of craters, surface smoothness, and low shear viscosity were evaluated. The complex viscosity was 8,500 Pa·s, and the number of craters was 100/m 2 or more, indicating that craters were likely to occur. The surface of the foam was rough due to craters and had poor smoothness. The evaluation results are shown in Table 2.

比較例4
シードラテックス(a)を塩化ビニルモノマー100重量部に対し4.4重量部添加する代わりに、シードラテックス(b)を塩化ビニルモノマー100重量部に対し2.9重量部添加し、シードラテックス(c)の添加量を塩化ビニルモノマー100重量部に対し7.5重量部としたこと以外は、実施例1と同様の方法により、塩化ビニル樹脂ラテックス、ペースト塩ビを得た。
Comparative example 4
Instead of adding 4.4 parts by weight of seed latex (a) to 100 parts by weight of vinyl chloride monomer, 2.9 parts by weight of seed latex (b) was added to 100 parts by weight of vinyl chloride monomer. ) was added in an amount of 7.5 parts by weight per 100 parts by weight of vinyl chloride monomer, to obtain vinyl chloride resin latex and paste PVC in the same manner as in Example 1.

得られた塩化ビニル樹脂ラテックス中の塩化ビニル樹脂は、粒子径0.5μmを超えて5μm以下の大粒子群の累積重量頻度が77.0wt%、最頻径が1.84μmで、0.5μm以下の小粒子群の累積重量頻度が23.0wt%、最頻径が0.21μmであった。得られたペースト塩ビは、平均重合度が720、嵩比重が0.5g/ccであった。また、得られたペースト塩ビを用いてペースト塩ビ組成物ゾル、発泡体を作製し、複素粘度、クレーター数、表面平滑性および低せん断粘度を評価した。複素粘度は8800Pa・sで、クレーター数は100個/m以上であり、クレーターが発生しやすいものであった。発泡体の表面はクレーターにより荒れ、平滑性が劣るものであった。評価結果を表2に示す。 The vinyl chloride resin in the obtained vinyl chloride resin latex has a cumulative weight frequency of 77.0 wt% of large particles with a particle size of more than 0.5 μm and 5 μm or less, and a mode diameter of 1.84 μm, and a diameter of 0.5 μm. The cumulative weight frequency of the following small particle groups was 23.0 wt%, and the mode diameter was 0.21 μm. The obtained paste PVC had an average degree of polymerization of 720 and a bulk specific gravity of 0.5 g/cc. In addition, a paste PVC composition sol and foam were prepared using the obtained paste PVC, and the complex viscosity, number of craters, surface smoothness, and low shear viscosity were evaluated. The complex viscosity was 8800 Pa·s, the number of craters was 100/m 2 or more, and craters were likely to occur. The surface of the foam was rough due to craters and had poor smoothness. The evaluation results are shown in Table 2.

比較例5
シードラテックス(a)の添加量を塩化ビニルモノマー100重量部に対し6.1重量部、シードラテックス(c)の添加量を塩化ビニルモノマー100重量部に対し15.0重量部としたこと以外は、実施例1と同様の方法により、塩化ビニル樹脂ラテックス、ペースト塩ビを得た。
Comparative example 5
Except that the amount of seed latex (a) added was 6.1 parts by weight per 100 parts by weight of vinyl chloride monomer, and the amount of seed latex (c) added was 15.0 parts by weight per 100 parts by weight of vinyl chloride monomer. By the same method as in Example 1, vinyl chloride resin latex and paste vinyl chloride were obtained.

得られた塩化ビニル樹脂ラテックス中の塩化ビニル樹脂は、粒子径0.5μmを超えて5μm以下の大粒子群の累積重量頻度が57.2wt%、最頻径が1.54μmで、0.5μm以下の小粒子群の累積重量頻度が42.8wt%、最頻径が0.21μmであった。得られたペースト塩ビは、平均重合度が720、嵩比重が0.53g/ccであった。また、得られたペースト塩ビを用いてペースト塩ビ組成物ゾル、発泡体を作製し、複素粘度、クレーター数、表面平滑性および低せん断粘度を評価した。低せん断粘度は3200mPa・sであり、粘度が高くハンドリング性に劣るものであった。評価結果を表2に示す。 The vinyl chloride resin in the obtained vinyl chloride resin latex has a cumulative weight frequency of 57.2 wt% of large particles with a particle size of more than 0.5 μm and 5 μm or less, a mode diameter of 1.54 μm, and a diameter of 0.5 μm. The cumulative weight frequency of the following small particle groups was 42.8 wt%, and the mode diameter was 0.21 μm. The obtained paste PVC had an average degree of polymerization of 720 and a bulk specific gravity of 0.53 g/cc. In addition, a paste PVC composition sol and foam were prepared using the obtained paste PVC, and the complex viscosity, number of craters, surface smoothness, and low shear viscosity were evaluated. The low shear viscosity was 3200 mPa·s, and the viscosity was high and the handling property was poor. The evaluation results are shown in Table 2.

実施例5
シードラテックス(c)の添加量を塩化ビニルモノマー100重量部に対し7.5重量部としたこと以外は、実施例2と同様の方法により、塩化ビニル樹脂ラテックス、ペースト塩ビを得た。
Example 5
A vinyl chloride resin latex and paste vinyl chloride were obtained in the same manner as in Example 2, except that the amount of seed latex (c) added was 7.5 parts by weight per 100 parts by weight of vinyl chloride monomer.

得られた塩化ビニル樹脂ラテックス中の塩化ビニル樹脂は、粒子径0.5μmを超えて5μm以下の大粒子群の累積重量頻度が88.2wt%、最頻径が1.70μmで、0.5μm以下の小粒子群の累積重量頻度が11.8wt%、最頻径が0.22μmであった。得られたペースト塩ビは、平均重合度が850、嵩比重が0.50g/ccであった。また、得られたペースト塩ビを用いてペースト塩ビ組成物ゾル、発泡体を作製し、複素粘度、クレーター数、表面平滑性、低せん断粘度および第一法線応力差を評価した。複素粘度は5600Pa・s、クレーターは発生せず、発泡体の表面は平滑であり、低せん断粘度は810mPa・s、第一法線応力差は15000Paと良好な値であった。また、コーティングの際にペースト塩ビ組成物ゾルの刃裏もれは見られなかった。評価結果を表3に示す。 The vinyl chloride resin in the obtained vinyl chloride resin latex has a cumulative weight frequency of 88.2 wt% of large particles with a particle diameter of more than 0.5 μm and 5 μm or less, and a mode diameter of 1.70 μm, and a particle size of 0.5 μm. The cumulative weight frequency of the following small particle groups was 11.8 wt%, and the mode diameter was 0.22 μm. The obtained paste PVC had an average degree of polymerization of 850 and a bulk specific gravity of 0.50 g/cc. In addition, a paste PVC composition sol and foam were prepared using the obtained paste PVC, and complex viscosity, number of craters, surface smoothness, low shear viscosity, and first normal stress difference were evaluated. The complex viscosity was 5,600 Pa·s, no craters were generated, the surface of the foam was smooth, the low shear viscosity was 810 mPa·s, and the first normal stress difference was 15,000 Pa, which were good values. Furthermore, no leakage of the paste PVC composition sol from the back of the blade was observed during coating. The evaluation results are shown in Table 3.

実施例6
シードラテックス(a)の添加量を塩化ビニルモノマー100重量部に対し3.9重量部、シードラテックス(c)の添加量を塩化ビニルモノマー100重量部に対し7.5重量部としたこと以外は、実施例1と同様の方法により、塩化ビニル樹脂ラテックス、ペースト塩ビを得た。
Example 6
Except that the amount of seed latex (a) added was 3.9 parts by weight per 100 parts by weight of vinyl chloride monomer, and the amount of seed latex (c) added was 7.5 parts by weight per 100 parts by weight of vinyl chloride monomer. By the same method as in Example 1, vinyl chloride resin latex and paste vinyl chloride were obtained.

得られた塩化ビニル樹脂ラテックス中の塩化ビニル樹脂は、粒子径0.5μmを超えて5μm以下の大粒子群の累積重量頻度が85.4wt%、最頻径が1.73μmで、0.5μm以下の小粒子群の累積重量頻度が14.6wt%、最頻径が0.22μmであった。得られたペースト塩ビは、平均重合度が719、嵩比重が0.49g/ccであった。また、得られたペースト塩ビを用いてペースト塩ビ組成物ゾル、発泡体を作製し、複素粘度、クレーター数、表面平滑性、低せん断粘度および第一法線応力差を評価した。複素粘度は10600Pa・s、クレーターは発生せず、発泡体の表面は平滑であり、低せん断粘度は950mPa・s、第一法線応力差は14300Paと良好な値であった。また、コーティングの際にペースト塩ビ組成物ゾルの刃裏もれは見られなかった。評価結果を表3に示す。 The vinyl chloride resin in the obtained vinyl chloride resin latex has a cumulative weight frequency of 85.4 wt% of large particles with a particle diameter of more than 0.5 μm and 5 μm or less, and a mode diameter of 1.73 μm, and a diameter of 0.5 μm. The cumulative weight frequency of the following small particle groups was 14.6 wt%, and the mode diameter was 0.22 μm. The obtained paste PVC had an average degree of polymerization of 719 and a bulk specific gravity of 0.49 g/cc. In addition, a paste PVC composition sol and foam were prepared using the obtained paste PVC, and complex viscosity, number of craters, surface smoothness, low shear viscosity, and first normal stress difference were evaluated. The complex viscosity was 10,600 Pa·s, no craters were generated, the surface of the foam was smooth, the low shear viscosity was 950 mPa·s, and the first normal stress difference was 14,300 Pa, which were good values. Furthermore, no leakage of the paste PVC composition sol from the back of the blade was observed during coating. The evaluation results are shown in Table 3.

実施例7
シードラテックス(a)の添加量を塩化ビニルモノマー100重量部に対し5.0重量部、シードラテックス(c)の添加量を塩化ビニルモノマー100重量部に対し9.0重量部としたこと以外は、実施例1と同様の方法により、塩化ビニル樹脂ラテックス、ペースト塩ビを得た。
Example 7
Except that the amount of seed latex (a) added was 5.0 parts by weight per 100 parts by weight of vinyl chloride monomer, and the amount of seed latex (c) added was 9.0 parts by weight per 100 parts by weight of vinyl chloride monomer. By the same method as in Example 1, vinyl chloride resin latex and paste vinyl chloride were obtained.

得られた塩化ビニル樹脂ラテックス中の塩化ビニル樹脂は、粒子径0.5μmを超えて5μm以下の大粒子群の累積重量頻度が81.6wt%、最頻径が1.65μmで、0.5μm以下の小粒子群の累積重量頻度が18.4wt%、最頻径が0.20μmであった。得られたペースト塩ビは、平均重合度が759、嵩比重が0.51g/ccであった。また、得られたペースト塩ビを用いてペースト塩ビ組成物ゾル、発泡体を作製し、複素粘度、クレーター数、表面平滑性、低せん断粘度および第一法線応力差を評価した。複素粘度は13000Pa・s、クレーターは発生せず、発泡体の表面は平滑であり、低せん断粘度は1140mPa・s、第一法線応力差は12300Paと良好な値であった。また、コーティングの際にペースト塩ビ組成物ゾルの刃裏もれは見られなかった。評価結果を表3に示す。 The vinyl chloride resin in the obtained vinyl chloride resin latex has a cumulative weight frequency of 81.6 wt% of large particles with a particle size of more than 0.5 μm and 5 μm or less, and a mode diameter of 1.65 μm, which is 0.5 μm. The cumulative weight frequency of the following small particle groups was 18.4 wt%, and the mode diameter was 0.20 μm. The obtained paste PVC had an average degree of polymerization of 759 and a bulk specific gravity of 0.51 g/cc. In addition, a paste PVC composition sol and foam were prepared using the obtained paste PVC, and complex viscosity, number of craters, surface smoothness, low shear viscosity, and first normal stress difference were evaluated. The complex viscosity was 13,000 Pa·s, no craters were generated, the surface of the foam was smooth, the low shear viscosity was 1,140 mPa·s, and the first normal stress difference was 12,300 Pa, which were good values. Furthermore, no leakage of the paste PVC composition sol from the back of the blade was observed during coating. The evaluation results are shown in Table 3.

実施例8
シードラテックス(a)の添加量を塩化ビニルモノマー100重量部に対し5.3重量部、シードラテックス(c)の添加量を塩化ビニルモノマー100重量部に対し9.0重量部としたこと以外は、実施例1と同様の方法により、塩化ビニル樹脂ラテックス、ペースト塩ビを得た。
Example 8
Except that the amount of seed latex (a) added was 5.3 parts by weight per 100 parts by weight of vinyl chloride monomer, and the amount of seed latex (c) added was 9.0 parts by weight per 100 parts by weight of vinyl chloride monomer. By the same method as in Example 1, vinyl chloride resin latex and paste vinyl chloride were obtained.

得られた塩化ビニル樹脂ラテックス中の塩化ビニル樹脂は、粒子径0.5μmを超えて5μm以下の大粒子群の累積重量頻度が83.7wt%、最頻径が1.58μmで、0.5μm以下の小粒子群の累積重量頻度が16.3wt%、最頻径が0.21μmであった。得られたペースト塩ビは、平均重合度が730、嵩比重が0.50g/ccであった。また、得られたペースト塩ビを用いてペースト塩ビ組成物ゾル、発泡体を作製し、複素粘度、クレーター数、表面平滑性、低せん断粘度および第一法線応力差を評価した。複素粘度は12800Pa・s、クレーターは発生せず、発泡体の表面は平滑であり、低せん断粘度は1100mPa・s、第一法線応力差は11200Paと良好な値であった。また、コーティングの際にペースト塩ビ組成物ゾルの刃裏もれは見られなかった。評価結果を表3に示す。 The vinyl chloride resin in the obtained vinyl chloride resin latex has a cumulative weight frequency of 83.7 wt% of large particles with a particle size of more than 0.5 μm and 5 μm or less, and a mode diameter of 1.58 μm, and a particle size of 0.5 μm. The cumulative weight frequency of the following small particle groups was 16.3 wt%, and the mode diameter was 0.21 μm. The obtained paste PVC had an average degree of polymerization of 730 and a bulk specific gravity of 0.50 g/cc. In addition, a paste PVC composition sol and foam were prepared using the obtained paste PVC, and complex viscosity, number of craters, surface smoothness, low shear viscosity, and first normal stress difference were evaluated. The complex viscosity was 12,800 Pa·s, no craters were generated, the surface of the foam was smooth, the low shear viscosity was 1,100 mPa·s, and the first normal stress difference was 11,200 Pa, which were good values. Furthermore, no leakage of the paste PVC composition sol from the back of the blade was observed during coating. The evaluation results are shown in Table 3.

比較例6
比較例1により得られたペースト塩ビを用いてペースト塩ビ組成物ゾルを作製し、第一法線応力差を評価した。第一法線応力差は22100Paであり、コーティングの際にペースト塩ビ組成物ゾルの刃裏もれが観察された。評価結果を表4に示す。
Comparative example 6
A paste PVC composition sol was prepared using the paste PVC obtained in Comparative Example 1, and the first normal stress difference was evaluated. The first normal stress difference was 22,100 Pa, and leakage of the paste PVC composition sol from the back of the blade was observed during coating. The evaluation results are shown in Table 4.

比較例7
比較例2により得られたペースト塩ビを用いてペースト塩ビ組成物ゾルを作製し、第一法線応力差を評価した。第一法線応力差は25400Paであり、コーティングの際にペースト塩ビ組成物ゾルの刃裏もれが観察された。評価結果を表4に示す。
Comparative example 7
A paste PVC composition sol was prepared using the paste PVC obtained in Comparative Example 2, and the first normal stress difference was evaluated. The first normal stress difference was 25,400 Pa, and leakage of the paste PVC composition sol from the back of the blade was observed during coating. The evaluation results are shown in Table 4.

比較例8
比較例4により得られたペースト塩ビを用いてペースト塩ビ組成物ゾルを作製し、第一法線応力差を評価した。第一法線応力差は20200Paであり、コーティングの際にペースト塩ビ組成物ゾルの刃裏もれが観察された。評価結果を表4に示す。
Comparative example 8
A paste PVC composition sol was prepared using the paste PVC obtained in Comparative Example 4, and the first normal stress difference was evaluated. The first normal stress difference was 20,200 Pa, and leakage of the paste PVC composition sol from the back of the blade was observed during coating. The evaluation results are shown in Table 4.

本発明のペースト塩ビは、基材上にコーティングしシートを作成する際にクレーターが形成せず、発泡時には表面平滑性に優れる発泡体を得ることが可能で、特に発泡壁紙等の建築資材として優れた特性を有するものであり、その産業上の利用価値は高いものである。 The paste PVC of the present invention does not form craters when it is coated on a base material to create a sheet, and when foamed, it is possible to obtain a foam with excellent surface smoothness, making it particularly suitable as a building material such as foamed wallpaper. It has such characteristics that its industrial utility value is high.

Claims (12)

粒子径0.5μmを超えて5μm以下の大粒子群の塩化ビニル系樹脂と0.5μm以下の小粒子群の塩化ビニル系樹脂を含むペースト塩化ビニル系樹脂であって、下記(1)~(3)の特性を満足することを特徴とするペースト加工用塩化ビニル系樹脂。
(1)平均重合度が700~1000。
(2)粒子径分布測定における該大粒子群の累積重量頻度が60~90wt%かつ該小粒子群の累積重量頻度が10~40wt%。
(3)該大粒子群の分布の最頻径が1.55~1.80μm、該小粒子群の分布の最頻径が0.15~0.45μm。
A paste vinyl chloride resin containing a vinyl chloride resin with a large particle group with a particle size of more than 0.5 μm and 5 μm or less, and a vinyl chloride resin with a small particle group with a particle size of 0.5 μm or less, comprising the following (1) to ( A vinyl chloride resin for paste processing, characterized by satisfying the characteristics of 3).
(1) Average degree of polymerization is 700 to 1000.
(2) The cumulative weight frequency of the large particle group in particle size distribution measurement is 60 to 90 wt%, and the cumulative weight frequency of the small particle group is 10 to 40 wt%.
(3) The mode diameter of the distribution of the large particle group is 1.55 to 1.80 μm, and the mode diameter of the distribution of the small particle group is 0.15 to 0.45 μm.
前記(2)が、(2’)粒子径分布測定における該大粒子群の累積重量頻度が60~80wt%かつ該小粒子群の累積重量頻度が20~40wt%、であることを特徴とする請求項1に記載のペースト加工用塩化ビニル系樹脂。 The above (2) is characterized in that the cumulative weight frequency of the large particle group in (2') particle size distribution measurement is 60 to 80 wt% and the cumulative weight frequency of the small particle group is 20 to 40 wt%. The vinyl chloride resin for paste processing according to claim 1. 更に、(4)該ペースト加工用塩化ビニル系樹脂100重量部に対し、フタル酸ジイソノニル60重量部、液状安定剤3.0重量部を配合しペースト加工用塩化ビニル系樹脂組成物ゾルとし、粘弾性測定装置にて昇温速度10℃/分で昇温した際の98℃における複素粘度が10000Pa・s以上、であることをも満足することを特徴とする請求項1又は2に記載のペースト加工用塩化ビニル系樹脂。 Furthermore, (4) 60 parts by weight of diisononyl phthalate and 3.0 parts by weight of a liquid stabilizer are blended with 100 parts by weight of the vinyl chloride resin for paste processing to form a sol of the vinyl chloride resin composition for paste processing, and a viscous The paste according to claim 1 or 2, characterized in that the paste also satisfies a complex viscosity of 10,000 Pa·s or more at 98°C when heated at a temperature increase rate of 10°C/min using an elasticity measuring device. Vinyl chloride resin for processing. 更に、(5)嵩比重が0.40~0.60g/cc、であることをも満足することを特徴とする請求項1又は2に記載のペースト加工用塩化ビニル系樹脂。 The vinyl chloride resin for paste processing according to claim 1 or 2, further satisfying (5) a bulk specific gravity of 0.40 to 0.60 g/cc. 前記(2)が、(2’’)粒子径分布測定における該大粒子群の累積重量頻度が80~90wt%かつ該小粒子群の累積重量頻度が10~20wt%、であることを特徴とする請求項1に記載のペースト加工用塩化ビニル系樹脂。 The above (2) is characterized in that (2'') the cumulative weight frequency of the large particle group in the particle size distribution measurement is 80 to 90 wt% and the cumulative weight frequency of the small particle group is 10 to 20 wt%. The vinyl chloride resin for paste processing according to claim 1. 更に、(4’)該ペースト加工用塩化ビニル系樹脂100重量部に対し、フタル酸ジイソノニル60重量部、液状安定剤3.0重量部を配合しペースト加工用塩化ビニル系樹脂組成物ゾルとし、粘弾性測定装置にて昇温速度10℃/分で昇温した際の98℃における複素粘度が5000Pa・s以上、であることをも満足することを特徴とする請求項5に記載のペースト加工用塩化ビニル系樹脂。 Furthermore, (4') 60 parts by weight of diisononyl phthalate and 3.0 parts by weight of a liquid stabilizer are blended with 100 parts by weight of the vinyl chloride resin for paste processing to prepare a vinyl chloride resin composition sol for paste processing, The paste processing according to claim 5, characterized in that the paste processing also satisfies that the complex viscosity at 98° C. is 5000 Pa·s or more when the temperature is raised at a heating rate of 10° C./min using a viscoelasticity measuring device. Vinyl chloride resin for use. 更に、(6)該ペースト加工用塩化ビニル系樹脂100重量部に対し、フタル酸ジイソノニル53重量部、炭酸カルシウム100重量部、酸化チタン10重量部、発泡剤3重量部、希釈剤10重量部、液状安定剤3重量部を配合しペースト加工用塩化ビニル系樹脂組成物ゾルとし、粘弾性測定装置にて測定した際のせん断速度4000sec-1における第一法線応力差が20000Pa以下であることをも満足することを特徴とする請求項5又は6に記載のペースト加工用塩化ビニル系樹脂。 Furthermore, (6) 53 parts by weight of diisononyl phthalate, 100 parts by weight of calcium carbonate, 10 parts by weight of titanium oxide, 3 parts by weight of a blowing agent, 10 parts by weight of a diluent, per 100 parts by weight of the vinyl chloride resin for paste processing. A vinyl chloride resin composition sol for paste processing is prepared by blending 3 parts by weight of a liquid stabilizer, and the first normal stress difference at a shear rate of 4000 sec -1 when measured with a viscoelasticity measuring device is 20000 Pa or less. The vinyl chloride resin for paste processing according to claim 5 or 6, which satisfies the following. 請求項1又は2のいずれかに記載のペースト加工用塩化ビニル系樹脂100重量部に対し、可塑剤20~200重量部を含有することを特徴とするペースト加工用塩化ビニル系樹脂組成物。 A vinyl chloride resin composition for paste processing, comprising 20 to 200 parts by weight of a plasticizer based on 100 parts by weight of the vinyl chloride resin for paste processing according to claim 1 or 2. ペースト加工用塩化ビニル系樹脂100重量部に対し、可塑剤20~200重量部、充填剤1~300重量部、発泡剤0.1~30重量部及び安定剤0.1~30重量部を含有するペースト加工用塩化ビニル系樹脂組成物ゾルであることを特徴とする請求項8に記載のペースト加工用塩化ビニル系樹脂組成物。 Contains 20 to 200 parts by weight of plasticizer, 1 to 300 parts by weight of filler, 0.1 to 30 parts by weight of blowing agent, and 0.1 to 30 parts by weight of stabilizer for 100 parts by weight of vinyl chloride resin for paste processing. The vinyl chloride resin composition for paste processing according to claim 8, which is a vinyl chloride resin composition sol for paste processing. 請求項5に記載のペースト加工用塩化ビニル系樹脂100重量部に対し、可塑剤20~200重量部を含有することを特徴とするペースト加工用塩化ビニル系樹脂組成物。 A vinyl chloride resin composition for paste processing, which contains 20 to 200 parts by weight of a plasticizer based on 100 parts by weight of the vinyl chloride resin for paste processing according to claim 5. 発泡壁紙用であることを特徴とする請求項8に記載のペースト加工用塩化ビニル系樹脂組成物。 The vinyl chloride resin composition for paste processing according to claim 8, which is used for foam wallpaper. 発泡壁紙用であることを特徴とする請求項10に記載のペースト加工用塩化ビニル系樹脂組成物。 The vinyl chloride resin composition for paste processing according to claim 10, which is used for foam wallpaper.
JP2023037038A 2022-03-21 2023-03-10 Vinyl chloride-based resin for paste processing, and vinyl chloride-based resin composition for paste processing containing the same Pending JP2023138913A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022044796 2022-03-21
JP2022044796 2022-03-21

Publications (1)

Publication Number Publication Date
JP2023138913A true JP2023138913A (en) 2023-10-03

Family

ID=88204037

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2023037038A Pending JP2023138913A (en) 2022-03-21 2023-03-10 Vinyl chloride-based resin for paste processing, and vinyl chloride-based resin composition for paste processing containing the same

Country Status (1)

Country Link
JP (1) JP2023138913A (en)

Similar Documents

Publication Publication Date Title
US8691927B2 (en) Vinyl chloride resin with low viscosity for foaming application and method of preparing the same
JP7243310B2 (en) Vinyl chloride resin composite and vinyl chloride resin composition using the same
JP4036019B2 (en) Vinyl chloride resin latex, vinyl chloride resin for paste processing, its production method, vinyl chloride resin composition for paste processing and uses
JP2023138913A (en) Vinyl chloride-based resin for paste processing, and vinyl chloride-based resin composition for paste processing containing the same
JP2017105966A (en) Vinyl chloride-vinyl acetate copolymer composition particle and application thereof
JP4955845B2 (en) Vinyl chloride resin for paste and vinyl chloride resin composition for paste comprising the same
JP3973234B2 (en) Method for producing vinyl chloride resin for paste processing
CN108026210A (en) The preparation method of chlorovinyl polymer and chlorovinyl polymer prepared therefrom
JP4144322B2 (en) Method for producing vinyl chloride polymer for paste processing
JP7413767B2 (en) Vinyl chloride resin for paste processing and vinyl chloride resin composition for paste processing using the same
JP2015124317A (en) Vinyl chloride resin for paste processing and vinyl chloride resin composition for paste processing using the same
JP7413766B2 (en) Paste vinyl chloride resin
JP2022162603A (en) Paste vinyl chloride-based resin composition
JP4192508B2 (en) Method for producing vinyl chloride resin for paste processing
JP2015124316A (en) Vinyl chloride resin for paste processing and vinyl chloride resin composition for paste processing using the same
JP2021169568A (en) Vinyl chloride resin composition for pasting and applications thereof
JPH11140256A (en) Spherical vinyl chloride-based blended resin for paste processing, production thereof and vinyl chloride resin composition for paste processing containing the same
JP2006306963A (en) Vinyl chloride-based paste resin
JP2023113992A (en) paste vinyl chloride resin
JP2021138907A (en) Paste vinyl chloride resin particle
JP4122835B2 (en) Paste vinyl chloride resin, method for producing the same, and resin composition using the same
JP2009068024A (en) Process for production of vinyl chloride resin for paste
JP2022094381A (en) Paste vinyl chloride resin and foam
JP2021095559A (en) Paste vinyl chloride resin and method for producing the same
JP2005029621A (en) Polyvinyl chloride-based resin composition for paste-processing wall paper and vinyl wall paper comprising the same