JP2023138264A - Resin composition for non-restriction type damping material, damping material, and damping laminate - Google Patents

Resin composition for non-restriction type damping material, damping material, and damping laminate Download PDF

Info

Publication number
JP2023138264A
JP2023138264A JP2022154893A JP2022154893A JP2023138264A JP 2023138264 A JP2023138264 A JP 2023138264A JP 2022154893 A JP2022154893 A JP 2022154893A JP 2022154893 A JP2022154893 A JP 2022154893A JP 2023138264 A JP2023138264 A JP 2023138264A
Authority
JP
Japan
Prior art keywords
resin composition
damping material
vibration damping
damping
resin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2022154893A
Other languages
Japanese (ja)
Inventor
茂 小笠原
Shigeru Ogasawara
直弥 竹内
Naoya Takeuchi
ゆり子 伊藤
Yuriko Ito
大地 前田
Daichi Maeda
光宏 中尾
Mitsuhiro Nakao
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sekisui Chemical Co Ltd
Original Assignee
Sekisui Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sekisui Chemical Co Ltd filed Critical Sekisui Chemical Co Ltd
Publication of JP2023138264A publication Critical patent/JP2023138264A/en
Pending legal-status Critical Current

Links

Landscapes

  • Vibration Prevention Devices (AREA)
  • Laminated Bodies (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

To provide a resin composition for a non-restriction type damping material which exhibits high damping properties by being used in a non-restriction type damping material, a damping material, and a damping laminate.SOLUTION: A resin composition for a non-restriction type damping material contains a chlorine-containing thermoplastic resin, chlorinated paraffin, and an inorganic filler, wherein the value of relaxation modulus G" under a condition of giving a maximum value of a loss tangent tanδ in a master curve at a reference temperature of 20°C, which is measured in a frequency dispersion mode of a shear type dynamic viscoelasticity apparatus, is 1×107 or more. A damping material contains the resin composition for the non-restriction type damping material, and a damping laminate 1 includes a base material 10, and a damping resin layer 12 containing the resin composition for the non-restriction type damping material.SELECTED DRAWING: None

Description

本発明は、非拘束型制振材用の樹脂組成物、制振材料、及び制振性積層体に関する。 The present invention relates to a resin composition, a damping material, and a damping laminate for non-restrictive damping materials.

従来から、制振材や遮音部材は、住宅、自動車、飛行機、船舶等の乗り物、OA製品筐体、家電製品等の筐体、配管等の輸送設備など、様々な分野において発生する振動、騒音を遮断、吸収させるために使用されている。制振材としては粘弾性を利用し、振動を効率よく熱に変換して吸収するような高分子材料を用いたものが用いられている。高分子材料の粘弾性を利用した制振材としては、粘弾性層を振動源に積層し、さらに振動源と接していない面に、金属等の弾性率の高い拘束層を積層した拘束型制振材がある。 Conventionally, vibration damping materials and sound insulation materials have been used to reduce vibrations and noise generated in various fields such as houses, automobiles, airplanes, ships, and other vehicles, OA product housings, home appliance housings, and transportation equipment such as piping. It is used to block and absorb The damping material used is a polymeric material that utilizes viscoelasticity to efficiently convert and absorb vibrations into heat. As a vibration damping material that utilizes the viscoelasticity of a polymer material, a restraining type material is used, in which a viscoelastic layer is laminated on the vibration source, and a restraining layer with a high elastic modulus such as metal is further laminated on the surface not in contact with the vibration source. There is a swinging material.

拘束型制振材は、粘弾性層が基材(振動源)と拘束層との間で大きくせん断変形するため、高い損失正接を有する樹脂組成物を用いることで、高い制振性を得ることができる。例えば、特許文献1には、損失正接が3を超える制振材料、及び、この制振材料の作製に用いられる制振材料用樹脂組成物が記載されている。 In constrained vibration damping materials, the viscoelastic layer undergoes large shear deformation between the base material (vibration source) and the constraint layer, so high damping properties can be obtained by using a resin composition with a high loss tangent. I can do it. For example, Patent Document 1 describes a vibration damping material having a loss tangent exceeding 3 and a resin composition for a vibration damping material used for producing this damping material.

特許第3306415号Patent No. 3306415

拘束型制振材は、拘束層を有するため表面が曲面の対象物に対しては適応範囲が限られていた。そこで、施工面や曲面への追従性の点で、粘弾性層を振動源に積層するだけの非拘束制振材が用いられている。また、車両等においてはロボットによる吹付等が可能であることから非拘束型制振材が主に用いられている。 Since restraint-type damping materials have a restraint layer, their applicability to objects with curved surfaces is limited. Therefore, from the viewpoint of conformability to construction surfaces and curved surfaces, non-restrictive damping materials are used in which a viscoelastic layer is simply laminated on the vibration source. Furthermore, in vehicles and the like, non-restrictive damping materials are mainly used because they can be sprayed by robots.

本発明は上記のことに鑑み、非拘束型制振材に用いることで、高い制振性を示す非拘束型制振材用の樹脂組成物、制振材料、及び制振性積層体を提供することにある。 In view of the above, the present invention provides a resin composition, a damping material, and a damping laminate for an unrestrained vibration damping material that exhibits high vibration damping properties when used in an unrestrained vibration damping material. It's about doing.

本発明者らは、上記課題を解決するため、鋭意検討を重ねた。その結果、塩素含有熱可塑性樹脂と、塩素化パラフィンと、無機フィラーを含み、せん断型動的粘弾性装置の周波数分散モードにより測定された、20℃におけるマスターカーブにおいて、損失正接tanδの極大値を与える周波数における緩和弾性率G′′の値を1×10以上とする事で高い損失係数を得られる事を見出し、本発明に到達した。
すなわち、本発明は、以下の[1]~[9]を提供するものである。
[1]塩素含有熱可塑性樹脂と、塩素化パラフィンと、無機フィラーとを含む非拘束型制振材用の樹脂組成物であって、せん断型動的粘弾性装置の周波数分散モードにより測定された、基準温度が20℃のマスターカーブにおいて、損失正接tanδの極大値を与える周波数における緩和弾性率G′′の値が1×10以上である非拘束型制振材用の樹脂組成物。
[2]前記マスターカーブにおける前記損失正接tanδの極大値を与える周波数が0.5Hz以上200Hz以下である[1]に記載の非拘束型制振材用の樹脂組成物。
[3]前記塩素含有熱可塑性樹脂100重量部に対する、前記塩素化パラフィンの総量が、1000重量部以上5000重量部未満である[1]又は[2]に記載の非拘束型制振材用の樹脂組成物。
[4]前記無機フィラーが、鱗片状である[1]から[3]のいずれかに記載の非拘束型制振材用の樹脂組成物。
[5]前記無機フィラーが、マイカである[1]から[4]のいずれかに記載の非拘束型制振材用の樹脂組成物。
[6]前記無機フィラーのアスペクト比が10以上である[1]から[5]のいずれかに記載の非拘束型制振材用の樹脂組成物。
[7][1]から[6]のいずれかに記載の非拘束型制振材用の樹脂組成物を含む制振材料。
[8]基材と、前記基材の少なくとも一方の面に配置され、[1]から[6]のいずれかに記載の非拘束型制振材用の樹脂組成物を含む制振性樹脂層と、を備える制振性積層体。
[9]前記基材は、金属を含む[8]に記載の制振性積層体。
The present inventors have made extensive studies to solve the above problems. As a result, the maximum value of the loss tangent tan δ was determined in the master curve at 20°C, which contained a chlorine-containing thermoplastic resin, chlorinated paraffin, and inorganic filler, and was measured in the frequency dispersion mode of a shear-type dynamic viscoelasticity device. We have discovered that a high loss coefficient can be obtained by setting the value of the relaxation modulus G'' at a given frequency to 1×10 7 or more, and have arrived at the present invention.
That is, the present invention provides the following [1] to [9].
[1] A resin composition for an unconstrained vibration damping material containing a chlorine-containing thermoplastic resin, a chlorinated paraffin, and an inorganic filler, which was measured by the frequency dispersion mode of a shear-type dynamic viscoelasticity device. A resin composition for an unconstrained vibration damping material, which has a relaxation modulus G'' of 1×10 7 or more at a frequency that gives a maximum value of loss tangent tan δ in a master curve with a reference temperature of 20°C.
[2] The resin composition for an unrestricted vibration damping material according to [1], wherein the frequency that gives the maximum value of the loss tangent tan δ in the master curve is 0.5 Hz or more and 200 Hz or less.
[3] The total amount of the chlorinated paraffin based on 100 parts by weight of the chlorine-containing thermoplastic resin is 1,000 parts by weight or more and less than 5,000 parts by weight for a non-constrained vibration damping material according to [1] or [2]. Resin composition.
[4] The resin composition for an unrestricted vibration damping material according to any one of [1] to [3], wherein the inorganic filler is in the form of scales.
[5] The resin composition for a non-constrained vibration damping material according to any one of [1] to [4], wherein the inorganic filler is mica.
[6] The resin composition for an unrestricted vibration damping material according to any one of [1] to [5], wherein the inorganic filler has an aspect ratio of 10 or more.
[7] A vibration damping material comprising the resin composition for an unrestricted vibration damping material according to any one of [1] to [6].
[8] A base material, and a vibration damping resin layer disposed on at least one surface of the base material and comprising the resin composition for an unrestricted vibration damping material according to any one of [1] to [6]. A damping laminate comprising:
[9] The damping laminate according to [8], wherein the base material includes metal.

本発明によれば、非拘束型制振材に用いることで、高い制振性を示す非拘束型制振材用の樹脂組成物、制振材料、及び制振性積層体を提供することができる。 According to the present invention, it is possible to provide a resin composition, a damping material, and a damping laminate for an unrestrained vibration damping material that exhibits high vibration damping properties when used in an unrestrained vibration damping material. can.

本発明の実施形態に係る制振性積層体を示す断面図である。FIG. 1 is a sectional view showing a damping laminate according to an embodiment of the present invention.

以下、本発明の非拘束型制振材用の樹脂組成物、制振材料、及び制振性積層体の実施の形態について詳細に説明するが、以下の説明は、本発明の実施形態の一例であり、本発明はこれらの内容に限定されない。また、本明細書において、数値範囲を表す「~」はその前後の数値を含む範囲を意味する。 Hereinafter, embodiments of a resin composition for a non-restrictive damping material, a damping material, and a damping laminate of the present invention will be described in detail, but the following description is an example of an embodiment of the present invention. However, the present invention is not limited to these contents. In addition, in this specification, "~" representing a numerical range means a range that includes the numerical values before and after that range.

[非拘束型制振材用の樹脂組成物]
本発明の非拘束型制振材用の樹脂組成物(以下、「制振材用の樹脂組成物」ということがある。)は、塩素含有熱可塑性樹脂と、塩素化パラフィンと、無機フィラーとを含む非拘束型制振材用の樹脂組成物であって、せん断型動的粘弾性装置の周波数分散分散モードにより測定された、室温に相当する20℃相当のマスターカーブにおいて、損失正接tanδの極大値を与える周波数における緩和弾性率G′′の値が1×10以上である。
[Resin composition for non-constrained vibration damping material]
The resin composition for non-restrictive vibration damping materials of the present invention (hereinafter sometimes referred to as "resin composition for vibration damping materials") comprises a chlorine-containing thermoplastic resin, chlorinated paraffin, and an inorganic filler. A resin composition for an unconstrained vibration damping material containing a loss tangent tan δ in a master curve equivalent to 20°C corresponding to room temperature measured by a frequency dispersion dispersion mode of a shear type dynamic viscoelastic device. The value of the relaxation modulus G'' at the frequency that gives the maximum value is 1×10 7 or more.

(塩素含有熱可塑性樹脂)
本発明で用いられる塩素含有熱可塑性樹脂は、熱可塑性樹脂を構成する元素として塩素を含むものである。塩素含有熱可塑性樹脂は、特に限定されないが、塩素原子を含有させたことによる効果を有効に発揮させるためには、塩素以外の構成元素との重量の差が大きいほうが好ましい。塩素含有熱可塑性樹脂としては、炭素、水素及び塩素から構成される樹脂が好ましく、具体的には、塩化ビニル系樹脂、塩化ビニル系樹脂と塩化ビニリデン系樹脂の共重合体、塩素化ポリエチレン系樹脂、塩素化塩化ビニル系樹脂、塩化ビニル系樹脂と酢酸ビニル系樹脂の共重合体等が挙げられ、これらの中でも、塩素化ポリエチレン系樹脂がより好ましい。
(Chlorine-containing thermoplastic resin)
The chlorine-containing thermoplastic resin used in the present invention contains chlorine as an element constituting the thermoplastic resin. The chlorine-containing thermoplastic resin is not particularly limited, but in order to effectively exhibit the effect of containing chlorine atoms, it is preferable that the weight difference between the thermoplastic resin and the constituent elements other than chlorine is large. As the chlorine-containing thermoplastic resin, resins composed of carbon, hydrogen, and chlorine are preferable, and specifically, vinyl chloride resins, copolymers of vinyl chloride resins and vinylidene chloride resins, and chlorinated polyethylene resins are preferable. , chlorinated vinyl chloride resins, copolymers of vinyl chloride resins and vinyl acetate resins, etc. Among these, chlorinated polyethylene resins are more preferred.

塩素含有熱可塑性樹脂の塩素化度(全樹脂成分中の塩素含有量)は、20~80重量%であることが好ましく、25~75重量%であることがより好ましく、30~70重量%であることがさらに好ましい。塩素含有熱可塑性樹脂の塩素化度が20重量%以上であると、塩素含有熱可塑性樹脂の結晶が成長し難くなり、大きな損失正接tanδを与える事から緩和弾性率G′′の値が大きくなり、制振性能が向上する。また、塩素化度が80重量%以下であると、分子間力が強くなりすぎず、同様に大きな損失正接tanδを与える事から緩和弾性率G′′の値が大きくなり、制振性能が向上する。 The degree of chlorination (chlorine content in all resin components) of the chlorine-containing thermoplastic resin is preferably 20 to 80% by weight, more preferably 25 to 75% by weight, and 30 to 70% by weight. It is even more preferable that there be. If the degree of chlorination of the chlorine-containing thermoplastic resin is 20% by weight or more, the crystals of the chlorine-containing thermoplastic resin will be difficult to grow, giving a large loss tangent tan δ, and the value of the relaxation modulus G'' will become large. , vibration damping performance is improved. In addition, when the degree of chlorination is 80% by weight or less, the intermolecular force does not become too strong, and it also gives a large loss tangent tan δ, so the value of the relaxation modulus G'' becomes large and the damping performance improves. do.

また、塩素含有熱可塑性樹脂には、塩素以外の置換基、例えば、シアノ基、水酸基、アセチル基、メチル基、エチル基、臭素、フッ素等が含まれていてもよい。このような塩素以外の置換基の割合は5重量%以下が好ましい。5重量%を越えると、制振性能が低下してしまう可能性がある。 Further, the chlorine-containing thermoplastic resin may contain substituents other than chlorine, such as a cyano group, a hydroxyl group, an acetyl group, a methyl group, an ethyl group, bromine, and fluorine. The proportion of such substituents other than chlorine is preferably 5% by weight or less. If it exceeds 5% by weight, vibration damping performance may deteriorate.

(塩素化パラフィン)
本発明で用いられる塩素化パラフィンは、特に限定されるものではないが、十分な制振性を得るため、塩素化度、及び、平均炭素数を以下の範囲とすることが好ましい。
本発明で用いられる塩素化パラフィンの塩素化度は、20~90重量%であることが好ましく、30~85重量%であることがより好ましく、40~80重量%であることがさらに好ましい。塩素化パラフィンの塩素化度が20重量%以上であると、塩素含有熱可塑性樹脂の結晶が成長し難くなる。また、塩素化度が90重量%以下であると、塩素含有熱可塑性樹脂の分子間力が強くなりすぎず、貯蔵弾性率G′が低くなる。従って、塩素化パラフィンの塩素化度を上記範囲とすることで、損失正接tanδの値が大きくなり、制振性能が向上する。
(chlorinated paraffin)
The chlorinated paraffin used in the present invention is not particularly limited, but in order to obtain sufficient vibration damping properties, the degree of chlorination and the average number of carbon atoms are preferably within the following ranges.
The degree of chlorination of the chlorinated paraffin used in the present invention is preferably 20 to 90% by weight, more preferably 30 to 85% by weight, and even more preferably 40 to 80% by weight. When the degree of chlorination of the chlorinated paraffin is 20% by weight or more, it becomes difficult for crystals of the chlorine-containing thermoplastic resin to grow. Further, when the degree of chlorination is 90% by weight or less, the intermolecular force of the chlorine-containing thermoplastic resin does not become too strong, and the storage modulus G' becomes low. Therefore, by setting the degree of chlorination of the chlorinated paraffin within the above range, the value of the loss tangent tan δ increases and the damping performance improves.

炭素数が13以下の塩素化パラフィンは平成30年に化審法の第一種特定化学物質に指定されているなど安全上の問題がある事から好ましくない。また炭素数が大きすぎると塩素化パラフィン添加により粘性を十分付与する事する事が出来ない。以上の事から本発明で用いられる塩素化パラフィンの平均炭素数は、14~50であることが好ましく、14~28であることがより好ましい。
また炭素数、塩素化度のより高い塩素化パラフィンは損失正接tanδの極大値を与える周波数(以下、「tanδピーク周波数」ともいう。)がより低くなる事から炭素数、塩素化度の異なる二種類以上の塩素化パラフィンを用い、それらの配合比によってtanδピーク周波数を制御する事が出来る。
Chlorinated paraffin with a carbon number of 13 or less is not desirable because it has safety problems, as it was designated as a Class 1 Specified Chemical Substance under the Chemical Substance Control Law in 2018. Furthermore, if the number of carbon atoms is too large, sufficient viscosity cannot be imparted by adding chlorinated paraffin. From the above, the average carbon number of the chlorinated paraffin used in the present invention is preferably 14 to 50, more preferably 14 to 28.
In addition, chlorinated paraffins with higher carbon numbers and chlorination degrees have a lower frequency that gives the maximum value of loss tangent tan δ (hereinafter also referred to as "tan δ peak frequency"). By using more than one type of chlorinated paraffin, the tan δ peak frequency can be controlled by adjusting their blending ratio.

本発明の制振材用の樹脂組成物に含まれる塩素化パラフィンの量は、塩素含有熱可塑性樹脂100重量部に対して1000重量部以上5000重量部未満であることが好ましく、1000重量部以上2500重量部未満であることがより好ましい。塩素化パラフィンの量が、塩素含有熱可塑性樹脂100重量部に対して1000重量部以上であると、大きな損失正接tanδを与えることが出来、制振性能が向上する。一方、塩素化パラフィンの量が塩素含有熱可塑性樹脂100重量部に対して5000重量部未満であると、得られる制振材料、及び制振性積層体を構成する制振性樹脂層の機械的強度が強くなり、形状を保持し易くなる。 The amount of chlorinated paraffin contained in the resin composition for vibration damping material of the present invention is preferably 1000 parts by weight or more and less than 5000 parts by weight, and 1000 parts by weight or more, based on 100 parts by weight of the chlorine-containing thermoplastic resin. More preferably, it is less than 2500 parts by weight. When the amount of chlorinated paraffin is 1000 parts by weight or more based on 100 parts by weight of the chlorine-containing thermoplastic resin, a large loss tangent tan δ can be provided, and vibration damping performance is improved. On the other hand, if the amount of chlorinated paraffin is less than 5,000 parts by weight based on 100 parts by weight of the chlorine-containing thermoplastic resin, the vibration damping material obtained and the vibration damping resin layer constituting the vibration damping laminate will have a mechanical Stronger and easier to hold shape.

(無機フィラー)
本発明の制振材用の樹脂組成物は、無機フィラーを含有する。無機フィラーは、制振材用の樹脂組成物にある程度の硬さを付与するために用いられる。
本発明に用いられる無機フィラーとしては、例えば、タルク、マイカ、シリカ、ガラスビーズ、黒鉛、アルミナ、酸化チタン、ワラストナイト、硫酸バリウム、炭酸カルシウム、ガラスファイバー、セルロースファイバー、カーボンファイバー、カーボンナノチューブ、カーボンナノコイルなどが挙げられ、これらの中でもマイカを用いることが好ましい。
(Inorganic filler)
The resin composition for vibration damping material of the present invention contains an inorganic filler. Inorganic fillers are used to impart a certain degree of hardness to resin compositions for vibration damping materials.
Inorganic fillers used in the present invention include, for example, talc, mica, silica, glass beads, graphite, alumina, titanium oxide, wollastonite, barium sulfate, calcium carbonate, glass fiber, cellulose fiber, carbon fiber, carbon nanotubes, Examples include carbon nanocoils, and among these, it is preferable to use mica.

本発明の制振材用の樹脂組成物に含まれる無機フィラーの量は、塩素含有熱可塑性樹脂100重量部に対して500~5000重量部が好ましく、1000~2500重量部がより好ましい。無機フィラーの量が、塩素含有熱可塑性樹脂100重量部に対して500重量部以上であると貯蔵弾性率G′を低くすることで制振性を向上させることができ、5000重量部以下であると基材に対しての塗布を容易に行うことができる。 The amount of inorganic filler contained in the resin composition for damping material of the present invention is preferably 500 to 5000 parts by weight, more preferably 1000 to 2500 parts by weight, based on 100 parts by weight of the chlorine-containing thermoplastic resin. When the amount of the inorganic filler is 500 parts by weight or more based on 100 parts by weight of the chlorine-containing thermoplastic resin, vibration damping properties can be improved by lowering the storage modulus G', and when the amount is 5000 parts by weight or less. It can be easily applied to the base material.

本発明に用いられる無機フィラーの形状は、特に限定されないが、鱗片状の板状フィラーであることが好ましい。
また、鱗片状の板状フィラーのアスペクト比は、10以上であることが好ましい。無機フィラーのアスペクト比は、無機フィラーの最大寸法(長径)及び最小寸法(短径)を測定し、最大寸法(長径)を最小寸法(短径)で除した値(長径/短径)をアスペクト比とする。無機フィラーのアスペクト比は、複数の無機フィラーの平均アスペクト比であることが好ましく、任意に選択した50個の各無機フィラーを電子顕微鏡又は光学顕微鏡にて観察し、各無機フィラーの長径/短径の平均値を算出することにより求めることができる。なお、鱗片状の無機フィラーの場合は、無機フィラーの厚みが短径となる。
Although the shape of the inorganic filler used in the present invention is not particularly limited, it is preferably a scaly plate-like filler.
Moreover, it is preferable that the aspect ratio of the scale-like plate-like filler is 10 or more. The aspect ratio of an inorganic filler is calculated by measuring the maximum dimension (long axis) and minimum dimension (breadth axis) of the inorganic filler, and dividing the maximum dimension (long axis) by the minimum dimension (short axis) (long axis/breadth axis). Take the ratio. The aspect ratio of the inorganic filler is preferably the average aspect ratio of a plurality of inorganic fillers, and each of the 50 arbitrarily selected inorganic fillers is observed with an electron microscope or an optical microscope, and the major axis/minor axis of each inorganic filler is determined. It can be determined by calculating the average value of . In addition, in the case of a scale-like inorganic filler, the thickness of the inorganic filler becomes the short axis.

(その他添加成分)
本発明の制振材用の樹脂組成物は、本発明の目的が損なわれない範囲で、必要に応じてその他の添加成分を含有させることができる。その他の添加成分としては、制振材料に粘着性を付与するためロジン系化合物等を含有させることができる。ロジン系化合物は、ロジン金属塩、ロジンエステル等が使用できる。
(Other additive ingredients)
The resin composition for a vibration damping material of the present invention may contain other additive components as necessary within a range that does not impair the object of the present invention. As other additive components, a rosin compound or the like may be included in order to impart adhesiveness to the vibration damping material. As the rosin compound, rosin metal salts, rosin esters, etc. can be used.

また、制振材用の樹脂組成物の成形の際の熱安定剤として、錫系安定剤を含有させることができる。錫系安定剤は、特に限定されず、ジアルキル錫マレート、ジアルキル錫ビス(モノアルキルマレート)、ジブチル錫マレートポリマー、ジアルキル錫ラウレート、ジアルキル錫メルカプト、ジアルキル錫ビス(メルカプト脂肪酸エステル)、ジアルキル錫サルファイド、ジオクチル錫マレートポリマー等が挙げられる。これらは単独で用いられてもよく、2種以上が併用されてもよい。 Furthermore, a tin-based stabilizer can be included as a thermal stabilizer during molding of the resin composition for vibration damping material. The tin-based stabilizer is not particularly limited, and includes dialkyltin malate, dialkyltin bis(monoalkylmalate), dibutyltin maleate polymer, dialkyltin laurate, dialkyltin mercapto, dialkyltin bis(mercapto fatty acid ester), dialkyltin Examples include sulfide and dioctyltin malate polymers. These may be used alone or in combination of two or more.

また、その他必要に応じて、可塑剤、充填材、滑剤、収縮防止剤、結晶核剤、着色剤(顔料、染料等)、紫外線吸収剤、酸化防止剤、老化防止剤、補強剤、難燃助剤、帯電防止剤、界面活性剤、加硫剤、及び表面処理剤などを含有させることができる。 In addition, as necessary, plasticizers, fillers, lubricants, anti-shrinkage agents, crystal nucleating agents, colorants (pigments, dyes, etc.), ultraviolet absorbers, antioxidants, anti-aging agents, reinforcing agents, flame retardants, etc. Auxiliary agents, antistatic agents, surfactants, vulcanizing agents, surface treatment agents, and the like can be included.

(制振材用の樹脂組成物の物性値)
〔緩和弾性率〕
本発明の制振材用の樹脂組成物は、せん断型動的粘弾性装置の周波数分散モードにより測定された、基準温度が20℃のマスターカーブにおいて、損失正接tanδの極大値を与える周波数における緩和弾性率G′′の値が1×10以上である。損失係数は制振材用の樹脂組成物の緩和弾性率G′′と相関がある事が知られている事から、損失正接tanδの極大値を与える周波数における緩和弾性率G′′を1×10以上とすることで、本発明の制振材用の樹脂組成物は、優れた制振性を発揮することができる。緩和弾性率G′′は、2×10Pa以上であることが好ましい。上限値については、特に制限はないが、基材の弾性率に対してあまり高すぎると振動による変形が抑制されるため、通常5×1010Pa以下であることが好ましい。
(Physical property values of resin composition for vibration damping material)
[Relaxation modulus]
The resin composition for a vibration damping material of the present invention exhibits relaxation at a frequency that gives the maximum value of loss tangent tan δ in a master curve with a reference temperature of 20°C, as measured by the frequency dispersion mode of a shear type dynamic viscoelasticity device. The value of elastic modulus G'' is 1×10 7 or more. Since it is known that the loss coefficient has a correlation with the relaxation modulus G'' of the resin composition for damping materials, the relaxation modulus G'' at the frequency that gives the maximum value of the loss tangent tan δ is 1× By setting it as 10 <7> or more, the resin composition for vibration damping materials of this invention can exhibit the outstanding vibration damping property. The relaxation modulus G'' is preferably 2×10 7 Pa or more. There is no particular restriction on the upper limit, but if it is too high relative to the elastic modulus of the base material, deformation due to vibration will be suppressed, so it is usually preferably 5×10 10 Pa or less.

〔損失正接tanδの極大値を与える周波数〕
本発明者らは、本発明の非拘束型制振材用の樹脂組成物において、損失係数の極大値を持つ周波数が、粘弾性の周波数分散のマスターカーブにおけるtanδピーク周波数の約100倍の周波数である事を見出した。
このことから、本発明の制振材用の樹脂組成物は、せん断型動的粘弾性装置の周波数分散モードにより測定された、基準温度が20℃のマスターカーブにおける損失正接tanδの極大値を与える周波数(tanδピーク周波数)を0.5Hz以上200Hz以下の範囲内とすることが好ましく、tanδピーク周波数を0.5Hz以上100Hz以下の範囲内とすることがより好ましい。上記範囲とすることで、損失係数の極大値をtanδピーク周波数の100倍の周波数である50Hz以上20000Hz以下の間、より好ましくは、50Hz以上10000Hz以下の間に与える事が出来きる。損失係数の極大値を上記範囲とすることで、本発明の制振材用の樹脂組成物は、優れた制振性を発揮することができる。なお、マスターカーブを得る方法としてはWLF式によりシフトファクターを決めても良いし、測定装置の制御プログラム等でカーブフィッテングにより求めてもよい。
[Frequency that gives the maximum value of loss tangent tanδ]
The present inventors have discovered that in the resin composition for an unconstrained damping material of the present invention, the frequency at which the loss coefficient has a maximum value is about 100 times the tan δ peak frequency in the master curve of the frequency dispersion of viscoelasticity. I found that.
From this, the resin composition for damping material of the present invention gives the maximum value of the loss tangent tan δ in the master curve at a reference temperature of 20°C, as measured by the frequency dispersion mode of the shear type dynamic viscoelasticity device. The frequency (tan δ peak frequency) is preferably within the range of 0.5 Hz or more and 200 Hz or less, and more preferably the tan δ peak frequency is within the range of 0.5 Hz or more and 100 Hz or less. By setting it within the above range, it is possible to provide the maximum value of the loss coefficient between 50 Hz and 20,000 Hz, which is a frequency 100 times the tan δ peak frequency, and more preferably between 50 Hz and 10,000 Hz. By setting the maximum value of the loss coefficient within the above range, the resin composition for a vibration damping material of the present invention can exhibit excellent vibration damping properties. As a method for obtaining the master curve, the shift factor may be determined by the WLF equation, or may be obtained by curve fitting using a control program of the measuring device.

[制振材料]
本発明の制振材料は、上記の制振材用の樹脂組成物を賦形することにより得られる。制振材料の形状は特に限定されず、シート状、板状、棒状、ブロック状であってもよいが、シート状である制振シートが好ましい。なお、「シート」とは、厚みに基づく厳密な意味に拘泥されるものではなく、通常「フィルム」と呼ばれる薄手のものや、「プレート」と呼ばれる厚手のものも含むものとする。制振シートの厚みは特に限定されるものではないが、薄すぎると制振効果が小さくなる可能性があり、厚すぎると振動の発生源等に施工する際の取扱いが不便になる可能性があり、0.05~50mmが好ましい。
[Vibration damping material]
The damping material of the present invention can be obtained by shaping the above resin composition for damping material. The shape of the damping material is not particularly limited, and may be sheet-like, plate-like, rod-like, or block-like, but a sheet-like damping sheet is preferred. Note that the term "sheet" is not limited to a strict meaning based on thickness, and includes thin sheets usually called "films" and thick sheets called "plates." The thickness of the vibration damping sheet is not particularly limited, but if it is too thin, the damping effect may be reduced, and if it is too thick, it may be inconvenient to handle when applied to the source of vibration. Yes, preferably 0.05 to 50 mm.

[制振性積層体]
次に、本発明の実施形態に係る制振性積層体について説明する。図1は、本発明の実施形態に係る制振性積層体を示す断面図である。
図1に示すように、本発明の実施形態に係る制振性積層体1は、基材10と、基材10の一方の面に配置された制振性樹脂層12を有する。制振性樹脂層12は、上記制振材用の樹脂組成物を含んで構成される。
[Vibration damping laminate]
Next, a damping laminate according to an embodiment of the present invention will be described. FIG. 1 is a sectional view showing a damping laminate according to an embodiment of the present invention.
As shown in FIG. 1, a damping laminate 1 according to an embodiment of the present invention includes a base material 10 and a damping resin layer 12 disposed on one surface of the base material 10. The vibration damping resin layer 12 is configured to include the resin composition for the vibration damping material.

制振性積層体1の厚みは任意であってよいが、薄すぎると十分な制振性を得ることができず、厚すぎると重量が重くなり施工性が悪くなるので、1mm~50mmであることが好ましく、2mm~40mmであることがより好ましく、3mm~30mmであることがさらに好ましい。 The thickness of the vibration-damping laminate 1 may be arbitrary, but if it is too thin, it will not be possible to obtain sufficient vibration-damping properties, and if it is too thick, it will be heavy and workability will be poor, so it is 1 mm to 50 mm. It is preferably from 2 mm to 40 mm, and even more preferably from 3 mm to 30 mm.

(基材)
基材10は、高い弾性率を有する材料であれば、特に限定されない。基材10としては、例えば、鉛、鋼材(ステンレス鋼を含む)、銅、アルミニウム等の金属材料;コンクリート、石膏ボード、大理石、スレート、砂、ガラス等の無機材料などが挙げられる。これらは、単独で用いられてもよいし、2種類以上併用されてもよい。
(Base material)
The base material 10 is not particularly limited as long as it is a material having a high elastic modulus. Examples of the base material 10 include metal materials such as lead, steel (including stainless steel), copper, and aluminum; and inorganic materials such as concrete, gypsum board, marble, slate, sand, and glass. These may be used alone or in combination of two or more.

基材10の厚みは、任意であってよいが、薄すぎると十分な制振性を得ることができず、厚すぎると重量が重くなり施工性が悪くなるので、50μm~50mmであることが好ましく、100μm~40mmであることがより好ましく、200μm~30mmであることがさらに好ましい。 The thickness of the base material 10 may be arbitrary, but if it is too thin, it will not be possible to obtain sufficient vibration damping properties, and if it is too thick, it will be heavy and workability will be poor, so it is preferably between 50 μm and 50 mm. The thickness is preferably 100 μm to 40 mm, and even more preferably 200 μm to 30 mm.

(制振性樹脂層)
制振性樹脂層12は、上述した制振材用の樹脂組成物により形成される。制振性樹脂層12の形成方法は、特に限定されず、例えば押出成形法、カレンダー成形法、溶剤キャスト法等の一般的なシート成形方法であってよいが、共押出連続生産が可能なマルチマニホールド法又はフィードブロック法による押出成形法が、生産性の観点から好ましい。制振性樹脂層12は、基材10に制振材用の樹脂組成物を塗布して成型してもよく、制振材用の樹脂組成物を成型した後、基材10を配置してもよい。
(Vibration damping resin layer)
The damping resin layer 12 is formed from the resin composition for damping material described above. The method for forming the damping resin layer 12 is not particularly limited, and may be any general sheet forming method such as extrusion, calendaring, or solvent casting, but it may be a multi-layer method that allows continuous coextrusion production. An extrusion molding method using a manifold method or a feedblock method is preferred from the viewpoint of productivity. The damping resin layer 12 may be formed by applying a resin composition for damping material to the base material 10, or by disposing the base material 10 after molding the resin composition for damping material. Good too.

制振性樹脂層12の厚みは、基材10の厚みに対して0.5~5倍である事が好ましく、1~3倍である事が好ましい。制振性樹脂層12の厚みが上記範囲内であることで、制振性を発揮することができ、振動の吸収又は低減を良好に行うことができる。なお、制振性樹脂層12の厚みは、制振性積層体1内において全て同じである必要はなく、上記範囲内であれば制振性積層体1内において異なる厚みを有していてもよい。 The thickness of the damping resin layer 12 is preferably 0.5 to 5 times the thickness of the base material 10, and preferably 1 to 3 times the thickness of the base material 10. When the thickness of the damping resin layer 12 is within the above range, damping properties can be exhibited, and vibrations can be well absorbed or reduced. Note that the thickness of the damping resin layer 12 does not need to be the same within the damping laminate 1, and may have different thicknesses within the damping laminate 1 as long as it is within the above range. good.

なお、図1に示す実施形態の制振性積層体1は、基材10の一方の面にのみ制振性樹脂層12が配置されているが、本発明はこれに限定されず、基材10の両方の面に制振性樹脂層12が配置された構成としてもよい。 Although the damping laminate 1 of the embodiment shown in FIG. 1 has the damping resin layer 12 disposed only on one surface of the base material 10, the present invention is not limited to this. It is also possible to have a structure in which damping resin layers 12 are disposed on both surfaces of 10.

<制振性積層体の使用要領>
制振性積層体1の使用要領について説明する。制振性積層体1は、対象となる部材(以下「施工部材」という)に粘弾性樹脂を用いて貼着一体化させて用いられる。本発明の制振性積層体は、非拘束型制振材として用いられるため、施工部材と反対側の面が制振性樹脂層12とすることが好ましい。すなわち、基材10の一方の面に制振性樹脂層12が配置されている場合は、基材10と施工部材が貼り付けられて用いられる。基材10の両方の面に制振性樹脂層12が配置されている場合は、制振性樹脂層12と施工部材が貼り付けられて用いられる。施工部材としては、特に限定されず、例えば、自動車、鉄道、船舶及び航空機などの輸送機器の構成部材、建築物の構成部材(例えば、外壁部材、内装部材、天井部材など)、産業機械などの産業機器の構成部材、コンピューターなどのOA機器の構成部材、洗濯機、冷蔵庫などの家電製品の構成部材などが挙げられる。
<How to use vibration damping laminate>
How to use the damping laminate 1 will be explained. The damping laminate 1 is used by being attached and integrated with a target member (hereinafter referred to as "construction member") using a viscoelastic resin. Since the damping laminate of the present invention is used as a non-restrictive damping material, it is preferable that the damping resin layer 12 be on the surface opposite to the construction member. That is, when the damping resin layer 12 is arranged on one surface of the base material 10, the base material 10 and the construction member are attached and used. When the damping resin layer 12 is arranged on both surfaces of the base material 10, the damping resin layer 12 and the construction member are attached and used. Construction components are not particularly limited, and include, for example, components of transportation equipment such as automobiles, railways, ships, and aircraft, components of buildings (e.g., exterior wall members, interior components, ceiling members, etc.), industrial machinery, etc. Examples include components of industrial equipment, components of OA equipment such as computers, and components of home appliances such as washing machines and refrigerators.

以下、本発明を実施例に基づいてさらに詳しく説明するが、本発明はこれらの実施例によって限定されるものではない。
なお、実施例及び比較例においては、以下の材料及び測定方法を用いた。
Hereinafter, the present invention will be explained in more detail based on Examples, but the present invention is not limited by these Examples.
In addition, in the examples and comparative examples, the following materials and measurement methods were used.

[塩素含有熱可塑性樹脂]
塩素含有熱可塑性樹脂として塩素化ポリエチレン(昭和電工社製、品番「SDM―451B」、(塩素含有量45重量%))を用いた。
[塩素化パラフィン]
塩素化パラフィンとして、商品名「トヨパラックスA50」(東ソー社製(平均炭素数25、塩素含有量50重量%))、商品名「エンパラ70」(味の素ファインテクノ社製(平均炭素数26、塩素素含有量71.5重量%))を単体あるいは組み合わせて用いた。
[粘着付与剤]
粘着付与剤としてはロジンエステル(荒川化学工業社製、品番「KE-359」)を用いた。
[安定剤]
安定剤としては錫系の安定剤(日東化成社製、品番「TVS#8570」)を用いた。
[無機フィラー]
無機フィラーとしては表1に記載のものを用いた。
[Chlorine-containing thermoplastic resin]
Chlorinated polyethylene (manufactured by Showa Denko K.K., product number "SDM-451B", (chlorine content: 45% by weight)) was used as the chlorine-containing thermoplastic resin.
[Chlorinated paraffin]
As chlorinated paraffin, the product name "Toyoparax A50" (manufactured by Tosoh Corporation (average carbon number 25, chlorine content 50%)), the product name "Empara 70" (manufactured by Ajinomoto Fine Techno Co., Ltd. (average carbon number 26, chlorine content 50%)), (content: 71.5% by weight)) were used alone or in combination.
[Tackifier]
As the tackifier, rosin ester (manufactured by Arakawa Chemical Industry Co., Ltd., product number "KE-359") was used.
[Stabilizer]
As the stabilizer, a tin-based stabilizer (manufactured by Nitto Kasei Co., Ltd., product number "TVS #8570") was used.
[Inorganic filler]
The inorganic fillers listed in Table 1 were used.

[樹脂組成物]
表2及び表3に示された配合比に従ってPE製のカップ中に各材料を秤量して140℃でロール機で混錬して実施例1~10及び比較例1、2の制振材用の樹脂組成物を得た。
[Resin composition]
Each material was weighed in a PE cup according to the compounding ratio shown in Tables 2 and 3, and kneaded in a roll machine at 140°C to form damping materials for Examples 1 to 10 and Comparative Examples 1 and 2. A resin composition was obtained.

[測定方法]
(粘弾性評価)
実施例1~10及び比較例1、2の制振材用の樹脂組成物を、表面を離型処理したポリエチレンテレフタレートの間に挟み、熱プレスによって1.5mm厚のシート状樹脂組成物に成型した。このシート状樹脂組成物の貯蔵弾性率(G′)、緩和弾性率(G′′)及び損失正接(tanδ)を、粘弾性測定器(Acton Paar社製 MCR102)を用いて、温度10℃、20℃、30℃で周波数1~100Hz、ひずみ0.05%の条件で測定した。これを20℃に対する測定結果を基準に、連続したカーブを得られるように10℃、30℃に対する測定結果の時間軸をシフトさせる事で基準温度20℃のマスターカーブを得た。
当該マスターカーブにおいて損失正接(tanδ)が極大となる周波数を求め、その周波数における貯蔵弾性率(G′)、緩和弾性率(G′′)、及び損失正接(tanδ)の極大値を求めた。
[Measuring method]
(Viscoelastic evaluation)
The resin compositions for vibration damping materials of Examples 1 to 10 and Comparative Examples 1 and 2 were sandwiched between polyethylene terephthalate whose surfaces had been subjected to mold release treatment, and molded into a sheet-like resin composition with a thickness of 1.5 mm by hot pressing. did. The storage modulus (G'), relaxation modulus (G''), and loss tangent (tan δ) of this sheet-like resin composition were measured at a temperature of 10°C using a viscoelasticity meter (MCR102 manufactured by Acton Paar). Measurements were made at 20°C and 30°C, at a frequency of 1 to 100Hz, and at a strain of 0.05%. Based on the measurement results for 20°C, a master curve for the reference temperature of 20°C was obtained by shifting the time axis of the measurement results for 10°C and 30°C so as to obtain a continuous curve.
The frequency at which the loss tangent (tan δ) becomes maximum in the master curve was determined, and the maximum values of the storage modulus (G'), relaxation modulus (G''), and loss tangent (tan δ) at that frequency were determined.

(損失係数測定)
70℃に加熱した幅10mm、長さ250mm、厚み1.5mmの鋼板(Fe基材)またはアルミ板(AL基材)の上に同型のシート状樹脂組成物をのせ、離型紙を介して手で軽く押さえて損失係数評価用試験片を作製した。これを、JIS K7391に基づいて、中央加振法により1次共振周波数から5次共振周波数における損失係数を算出した。
(loss factor measurement)
A sheet-like resin composition of the same type was placed on a steel plate (Fe base material) or aluminum plate (AL base material) with a width of 10 mm, a length of 250 mm, and a thickness of 1.5 mm that had been heated to 70°C, and was then heated by hand through a release paper. A test piece for evaluating the loss factor was prepared by pressing it lightly. Based on JIS K7391, the loss coefficient was calculated from the first-order resonance frequency to the fifth-order resonance frequency using the central vibration method.

表2の記載から明らかなように、実施例1から実施例8の制振材用の樹脂組成物から得られた損失係数評価用試験片(制振積層体)は、損失正接tanδの極大値を与える周波数での緩和弾性率G′′の値が1×10以上であり、比較例1、2の制振材用の樹脂組成物から得られた損失係数評価用試験片と比較して高い損失係数を示しており、良好な制振性を示した。
特に鱗片状フィラーを用いた実施例1~5はより高い損失係数を示した。
As is clear from the description in Table 2, the loss coefficient evaluation test pieces (damping laminates) obtained from the resin compositions for damping materials of Examples 1 to 8 have a maximum loss tangent tan δ. The value of relaxation modulus G'' at the frequency giving It showed a high loss coefficient and good vibration damping properties.
In particular, Examples 1 to 5 using scale-like fillers showed higher loss coefficients.

表3の記載に示されたように、炭素数、塩素化度の異なる塩素化パラフィンを組み合わせた場合、それぞれの塩素化パラフィンの配合比によって樹脂組成物の損失正接tanδの極大値を与える周波数を制御する事が出来、損失正接tanδの極大値を与える周波数の約100倍の周波数(実施例9の一次共振、実施例10の二次共振、実施例11の四次共振)における損失係数が極大となる事が示された。この事から損失正接tanδの極大値を与える周波数が0.5Hz以上200Hz以下であれば50Hzから20000Hzの可聴域の範囲に損失係数の極大があり、制振材として望ましいことが確認できた。 As shown in Table 3, when chlorinated paraffins with different carbon numbers and degrees of chlorination are combined, the frequency that gives the maximum value of the loss tangent tan δ of the resin composition can be determined depending on the blending ratio of each chlorinated paraffin. The loss coefficient is maximum at a frequency that is approximately 100 times the frequency that gives the maximum value of the loss tangent tan δ (first-order resonance in Example 9, second-order resonance in Example 10, and fourth-order resonance in Example 11). It was shown that From this, it was confirmed that if the frequency that gives the maximum value of the loss tangent tan δ is 0.5 Hz or more and 200 Hz or less, the maximum loss coefficient is in the audible range from 50 Hz to 20,000 Hz, and it is desirable as a damping material.

1:制振性積層体
10:基材
12:制振性樹脂層
1: Vibration damping laminate 10: Base material 12: Vibration damping resin layer

Claims (9)

塩素含有熱可塑性樹脂と、塩素化パラフィンと、無機フィラーとを含む非拘束型制振材用の樹脂組成物であって、
せん断型動的粘弾性装置の周波数分散モードにより測定された、基準温度が20℃のマスターカーブにおいて、損失正接tanδの極大値を与える周波数における緩和弾性率G′′の値が1×10以上である非拘束型制振材用の樹脂組成物。
A resin composition for an unrestricted vibration damping material comprising a chlorine-containing thermoplastic resin, a chlorinated paraffin, and an inorganic filler,
In a master curve with a reference temperature of 20°C, measured using the frequency dispersion mode of a shear-type dynamic viscoelasticity device, the value of the relaxation modulus G'' at the frequency that gives the maximum value of the loss tangent tan δ is 1 × 10 7 or more A resin composition for non-restrictive vibration damping material.
前記マスターカーブにおける前記損失正接tanδの極大値を与える周波数が0.5Hz以上200Hz以下である請求項1に記載の非拘束型制振材用の樹脂組成物。 The resin composition for an unconstrained vibration damping material according to claim 1, wherein a frequency giving a maximum value of the loss tangent tan δ in the master curve is 0.5 Hz or more and 200 Hz or less. 前記塩素含有熱可塑性樹脂100重量部に対する、前記塩素化パラフィンの総量が、1000重量部以上5000重量部未満である請求項1又は2に記載の非拘束型制振材用の樹脂組成物。 The resin composition for an unconstrained vibration damping material according to claim 1 or 2, wherein the total amount of the chlorinated paraffin based on 100 parts by weight of the chlorine-containing thermoplastic resin is 1000 parts by weight or more and less than 5000 parts by weight. 前記無機フィラーが、鱗片状である請求項1又は2に記載の非拘束型制振材用の樹脂組成物。 The resin composition for a non-constrained vibration damping material according to claim 1 or 2, wherein the inorganic filler is in the form of scales. 前記無機フィラーが、マイカである請求項1又は2に記載の非拘束型制振材用の樹脂組成物。 The resin composition for a non-restricted vibration damping material according to claim 1 or 2, wherein the inorganic filler is mica. 前記無機フィラーのアスペクト比が10以上である請求項1又は2に記載の非拘束型制振材用の樹脂組成物。 The resin composition for an unconstrained vibration damping material according to claim 1 or 2, wherein the inorganic filler has an aspect ratio of 10 or more. 請求項1又は2に記載の非拘束型制振材用の樹脂組成物を含む制振材料。 A vibration damping material comprising the resin composition for an unrestricted vibration damping material according to claim 1 or 2. 基材と、前記基材の少なくとも一方の面に配置され、請求項1又は2に記載の非拘束型制振材用の樹脂組成物を含む制振性樹脂層と、を備える制振性積層体。 A damping laminate comprising a base material and a damping resin layer disposed on at least one surface of the base material and containing the resin composition for an unconstrained damping material according to claim 1 or 2. body. 前記基材は、金属を含む請求項8に記載の制振性積層体。 The damping laminate according to claim 8, wherein the base material contains metal.
JP2022154893A 2022-03-16 2022-09-28 Resin composition for non-restriction type damping material, damping material, and damping laminate Pending JP2023138264A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022041184 2022-03-16
JP2022041184 2022-03-16

Publications (1)

Publication Number Publication Date
JP2023138264A true JP2023138264A (en) 2023-10-02

Family

ID=88197459

Family Applications (2)

Application Number Title Priority Date Filing Date
JP2022154894A Pending JP2023138265A (en) 2022-03-16 2022-09-28 Resin composition for non-restriction type damping material, damping material, and damping laminate
JP2022154893A Pending JP2023138264A (en) 2022-03-16 2022-09-28 Resin composition for non-restriction type damping material, damping material, and damping laminate

Family Applications Before (1)

Application Number Title Priority Date Filing Date
JP2022154894A Pending JP2023138265A (en) 2022-03-16 2022-09-28 Resin composition for non-restriction type damping material, damping material, and damping laminate

Country Status (1)

Country Link
JP (2) JP2023138265A (en)

Also Published As

Publication number Publication date
JP2023138265A (en) 2023-10-02

Similar Documents

Publication Publication Date Title
US20030109621A1 (en) Resin composition for vibration-damping material, vibration-damping material, and sound-insulating member
JP6769867B2 (en) Refractory resin composition
JP2023138264A (en) Resin composition for non-restriction type damping material, damping material, and damping laminate
TW200932826A (en) Damping material
Jamel et al. Mechanical properties and dimensional stability of rigid PVC foam composites filled with high aspect ratio phlogopite mica
KR20040036507A (en) Vibration-damping material composition
WO2017094266A1 (en) Composite material and method for improving damping property thereof
WO2008018444A1 (en) Vibration-damping material
JP4488703B2 (en) Damping material composition
JP6543161B2 (en) Heat conduction member, heat conduction member laminate and heat conduction member molded body
JP2016198950A (en) Resin laminated plate and resin laminated plate molding
WO2010114114A1 (en) Thermoplastic elastomer resin composition and vibration-absorbing object comprising same
JP2004263053A (en) Damping composition
EP0456473B1 (en) Polyvinyl chloride based resin composition
JP5801537B2 (en) Adhesive rubber sheet damping material
JP7124349B2 (en) Plate-shaped compact and composite member
JP2004162061A (en) Vibration-damping material composition
Andersons et al. Fracture toughness of PIR foams produced from renewable resources
JP5506314B2 (en) Damping composition, damping material and damping sheet
JP2013032452A (en) Damping composition
JP3664210B2 (en) High damping material composition
JP4953686B2 (en) Damping material
JP4796385B2 (en) Damping agent
JP6935427B2 (en) Polypropylene foam sheets and articles
JP3815106B2 (en) Vibration damping sheet manufacturing method