JP2023136491A - Planar line/waveguide converter - Google Patents

Planar line/waveguide converter Download PDF

Info

Publication number
JP2023136491A
JP2023136491A JP2022042202A JP2022042202A JP2023136491A JP 2023136491 A JP2023136491 A JP 2023136491A JP 2022042202 A JP2022042202 A JP 2022042202A JP 2022042202 A JP2022042202 A JP 2022042202A JP 2023136491 A JP2023136491 A JP 2023136491A
Authority
JP
Japan
Prior art keywords
substrate
conductor
waveguide
probe
back surface
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2022042202A
Other languages
Japanese (ja)
Inventor
卓 藤田
Taku Fujita
靖雄 齋藤
Yasuo Saito
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Anritsu Corp
Original Assignee
Anritsu Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Anritsu Corp filed Critical Anritsu Corp
Priority to JP2022042202A priority Critical patent/JP2023136491A/en
Publication of JP2023136491A publication Critical patent/JP2023136491A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Structure Of Printed Boards (AREA)

Abstract

To provide a planar line/waveguide converter that does not generate unnecessary propagation modes in a board while making the board width of a circuit portion and the board width of a probe part identical.SOLUTION: A planar line/waveguide converter includes at least one conductive via hole 14 that penetrates from the front surface to the back surface of a board 10 and electrically connects a front surface ground conductor 12 and a back surface ground conductor 13, a waveguide 50 in which the board 10 is inserted into a board insertion hole 54 provided in a side wall 53, and an edge 55 of the board insertion hole 54 is electrically connected to the back surface ground conductor 13, a probe 30 provided on the surface of the board 10, integrally formed with a line conductor 11, and extending into the inside of the waveguide 50, and an MMIC 40. The back surface ground conductor 13 is not provided in a region including directly below the probe 30 on the back surface of the board 10, and the conductive via hole 14 is arranged on at least one side of the line conductor 11 in the lateral direction.SELECTED DRAWING: Figure 2

Description

本発明は、平面線路・導波管変換器に関し、特に、マイクロストリップ線路やコプレーナ線路等からなる平面線路と導波管とを接続する平面線路・導波管変換器に関する。 The present invention relates to a planar line/waveguide converter, and particularly to a planar line/waveguide converter that connects a waveguide and a planar line such as a microstrip line or a coplanar line.

従来、誘電体基板に形成されたマイクロストリップ線路やコプレーナ線路などの平面線路で伝送される電気信号を、導波管で伝送される電磁波に変換する手段、又はその逆方向の変換を行う手段として、平面線路・導波管変換器が用いられている(例えば、特許文献1参照)。 Conventionally, it is used as a means of converting electrical signals transmitted on planar lines such as microstrip lines and coplanar lines formed on a dielectric substrate into electromagnetic waves transmitted in waveguides, or as a means of converting in the opposite direction. , a planar line/waveguide converter is used (for example, see Patent Document 1).

特許文献1に開示された基板用平面線路・導波管変換器61は、図13に示すように、誘電体基板62と、この誘電体基板62に設けられたコプレーナ線路63と、誘電体基板62の裏面に設けられた裏面接地導体64と、誘電体基板62に立設され且つ誘電体基板62側の端部開口部の縁部が裏面接地導体64に接続された導波管65と、中心導体66の端部を導波管65の内部へ延ばすことにより形成された導波管励振用アンテナ67とを備えて構成されている。さらに、この基板用平面線路・導波管変換器61は、誘電体基板62の厚み寸法を、誘電体内における波長のほぼ1/4程度に設定するように構成したものである。 As shown in FIG. 13, the substrate planar line/waveguide converter 61 disclosed in Patent Document 1 includes a dielectric substrate 62, a coplanar line 63 provided on the dielectric substrate 62, and a dielectric substrate. a back ground conductor 64 provided on the back surface of the waveguide 62; a waveguide 65 that is erected on the dielectric substrate 62 and whose edge of the end opening on the dielectric substrate 62 side is connected to the back ground conductor 64; The waveguide excitation antenna 67 is formed by extending the end of the center conductor 66 into the waveguide 65. Furthermore, this substrate planar line/waveguide converter 61 is configured such that the thickness of the dielectric substrate 62 is set to approximately 1/4 of the wavelength within the dielectric.

さらに、特許文献1には、誘電体基板62の左端部側にモノリシックマイクロ波集積回路(Microwave Monolithic Integrated Circuit:MMIC)等が接続されることが記載されている。 Further, Patent Document 1 describes that a monolithic microwave integrated circuit (MMIC) or the like is connected to the left end side of the dielectric substrate 62.

特開平11-261312号公報Japanese Patent Application Publication No. 11-261312

1つの基板上にMMIC内と平面線路と導波管変換部を構成しようとする場合、導波管の電磁界を誘起するプローブ部分(導波管励振用アンテナ67)の基板幅をMMICや平面線路などの回路部の基板幅に対して狭くしないと、プローブ部分の基板内に不要な伝搬モードが発生して、プローブから導波管に伝搬させることができる高周波信号の周波数帯域が狭くなる。これを防ぐためには、特許文献1に開示されているように、プローブ部分の基板幅を狭くして凸状に形成すればよい。しかしながら、MMICの幅は1mm程度の小さなサイズであるため、プローブ部分の基板幅を0.3mm~0.5mmくらいまで狭くすることになる。このような異形加工は、部品加工費を増加させるとともに、クラックを発生させて信頼性劣化の原因となるという課題があった。 When configuring the inside of an MMIC, a planar line, and a waveguide converter on one board, the board width of the probe part (waveguide excitation antenna 67) that induces the electromagnetic field of the waveguide should be changed between the MMIC and the planar line. If the width is not narrow relative to the substrate width of circuit parts such as lines, unnecessary propagation modes will occur within the substrate of the probe portion, and the frequency band of high-frequency signals that can be propagated from the probe to the waveguide will be narrowed. In order to prevent this, as disclosed in Patent Document 1, the substrate width of the probe portion may be narrowed to form a convex shape. However, since the width of the MMIC is small, about 1 mm, the substrate width of the probe portion has to be narrowed to about 0.3 mm to 0.5 mm. Such irregular shape machining has the problem of increasing parts machining costs and causing cracks to occur, causing reliability deterioration.

本発明は、このような従来の課題を解決するためになされたものであって、回路部の基板幅とプローブ部分の基板幅を同一にしつつ、基板内に不要な伝搬モードを発生させない平面線路・導波管変換器を提供することを目的とする。 The present invention has been made in order to solve such conventional problems, and provides a planar line that does not generate unnecessary propagation modes in the board while making the board width of the circuit part and the board width of the probe part the same.・The purpose is to provide a waveguide converter.

上記課題を解決するために、本発明に係る平面線路・導波管変換器は、基板と、前記基板の表面に設けられた線路導体と、前記基板の表面に設けられた少なくとも1つの表面接地導体と、前記基板の裏面に設けられた裏面接地導体と、前記基板の表面から裏面に貫通し、前記表面接地導体と前記裏面接地導体を電気的に接続する少なくとも1つの導通ビアホールと、側壁に設けられた基板挿入穴に前記基板が挿入され、前記基板挿入穴の縁部が前記裏面接地導体に電気的に接続される導波管と、前記基板の表面に設けられ、前記線路導体と一体形成され、前記導波管の内部に延伸するプローブと、前記基板の表面側に設けられ、前記線路導体と電気的に接続される信号電極と、前記裏面接地導体と電気的に接続される接地電極とを有するMMICと、を備え、前記基板の裏面における前記プローブの真下を含む領域には、前記裏面接地導体が設けられておらず、前記導通ビアホールは、前記線路導体の少なくとも横方向片側に配置される構成である。 In order to solve the above problems, a planar line/waveguide converter according to the present invention includes a substrate, a line conductor provided on the surface of the substrate, and at least one surface ground conductor provided on the surface of the substrate. a conductor, a back ground conductor provided on the back surface of the substrate, at least one conductive via hole penetrating from the front surface of the substrate to the back surface and electrically connecting the front surface ground conductor and the back surface ground conductor; The board is inserted into a provided board insertion hole, the edge of the board insertion hole is electrically connected to the back surface ground conductor, and the waveguide is provided on the surface of the board and is integrated with the line conductor. a probe that is formed and extends inside the waveguide; a signal electrode that is provided on the front side of the substrate and is electrically connected to the line conductor; and a ground that is electrically connected to the back surface ground conductor. an MMIC having an electrode, the back surface ground conductor is not provided in a region including directly below the probe on the back surface of the substrate, and the conductive via hole is provided on at least one side in the lateral direction of the line conductor. This is the configuration in which it is placed.

この構成により、本発明に係る平面線路・導波管変換器は、基板の表面から裏面に貫通する導通ビアホールが線路導体の少なくとも横方向片側に配置されることによって、プローブが形成された箇所の基板の幅をあたかも狭くしたかのような状態を作り出すことができる。これにより、本発明に係る平面線路・導波管変換器は、回路部とプローブを同一の基板に形成する場合であっても、回路部の基板の幅とプローブ部分の基板の幅を同一にしつつ、基板内での不要な伝搬モードの発生を抑制することができる。 With this configuration, in the planar line/waveguide converter according to the present invention, a conductive via hole penetrating from the front surface to the back side of the substrate is arranged on at least one side in the lateral direction of the line conductor, so that the probe is formed at the location where the probe is formed. It is possible to create a state as if the width of the board was narrowed. As a result, in the planar line/waveguide converter according to the present invention, even when the circuit section and the probe are formed on the same substrate, the width of the substrate of the circuit section and the width of the substrate of the probe section can be made the same. At the same time, generation of unnecessary propagation modes within the substrate can be suppressed.

すなわち、本発明に係る平面線路・導波管変換器は、プローブから導波管に伝搬させることができる高周波信号の周波数帯域を広く保つとともに、長方形のMMICと同一の基板加工とすることで部品加工費の増加や信頼性劣化を生じさせない。 In other words, the planar line/waveguide converter according to the present invention maintains a wide frequency band of high-frequency signals that can be propagated from the probe to the waveguide, and also has the same substrate processing as a rectangular MMIC, so that parts can be easily processed. No increase in processing costs or deterioration of reliability.

また、本発明に係る平面線路・導波管変換器は、前記基板の裏面に設けられた少なくとも1つの裏面導体と、前記基板の表面における前記裏面導体の真上を含む領域に設けられた少なくとも1つの表面導体と、前記基板の表面から裏面に貫通し、前記表面導体と前記裏面導体を電気的に接続する少なくとも1つの貫通ビアホールと、を更に備え、前記貫通ビアホールは、前記プローブの少なくとも横方向片側に配置される構成であってもよい。 Further, the planar line/waveguide converter according to the present invention includes at least one back conductor provided on the back surface of the substrate, and at least one back conductor provided in a region including directly above the back conductor on the front surface of the substrate. The substrate further includes one surface conductor and at least one through via hole that penetrates from the front surface to the back surface of the substrate and electrically connects the front surface conductor and the back surface conductor, and the through via hole is located at least on the side of the probe. It may be arranged on one side in the direction.

この構成により、本発明に係る平面線路・導波管変換器は、基板の表面から裏面に貫通する貫通ビアホールがプローブの少なくとも横方向片側に配置されることによって、プローブが形成された箇所の基板の幅をあたかも狭くしたかのような状態を作り出すことができる。これにより、本発明に係る平面線路・導波管変換器は、プローブの放射パターンを所望の形状に変更することができる。 With this configuration, in the planar line/waveguide converter according to the present invention, a through via hole penetrating from the front surface to the back surface of the substrate is arranged at least on one side in the lateral direction of the probe, so that the substrate at the location where the probe is formed is arranged. It is possible to create a state in which the width of the image appears to be narrower. Thereby, the planar line/waveguide converter according to the present invention can change the radiation pattern of the probe into a desired shape.

また、本発明に係る平面線路・導波管変換器は、少なくとも1つの前記表面接地導体と少なくとも1つの前記表面導体が一体化されているとともに、前記裏面接地導体と少なくとも1つの前記裏面導体が一体化されている構成であってもよい。 Further, in the planar line/waveguide converter according to the present invention, at least one of the surface ground conductors and at least one of the surface conductors are integrated, and the back surface ground conductor and at least one of the back surface conductors are integrated. An integrated configuration may also be used.

この構成により、本発明に係る平面線路・導波管変換器は、ビアホール間を電磁波が通過することを妨げて、プローブからの電磁波の放射方向を所望の方向に向けることができる。 With this configuration, the planar line/waveguide converter according to the present invention can prevent electromagnetic waves from passing between the via holes and direct the radiation direction of electromagnetic waves from the probe in a desired direction.

また、本発明に係る平面線路・導波管変換器は、基板と、前記基板の表面に設けられた線路導体と、前記基板の表面に設けられた少なくとも1つの表面接地導体と、前記基板の裏面に設けられた裏面接地導体と、前記基板の表面から裏面に貫通する貫通穴と、側壁に設けられた基板挿入穴に前記基板が挿入され、前記基板挿入穴の縁部が前記裏面接地導体に電気的に接続される導波管と、前記基板の表面に設けられ、前記線路導体と一体形成され、前記導波管の内部に延伸するプローブと、前記基板の表面側に設けられ、前記線路導体と電気的に接続される信号電極と、前記裏面接地導体と電気的に接続される接地電極とを有するMMICと、を備え、前記基板の裏面における前記プローブの真下を含む領域には、前記裏面接地導体が設けられておらず、前記貫通穴は、前記線路導体及び前記プローブの少なくとも横方向片側に配置される構成であってもよい。 Further, the planar line/waveguide converter according to the present invention includes a substrate, a line conductor provided on the surface of the substrate, at least one surface ground conductor provided on the surface of the substrate, and a surface ground conductor provided on the surface of the substrate. The board is inserted into a back ground conductor provided on the back surface, a through hole penetrating from the front surface of the board to the back surface, and a board insertion hole provided in the side wall, and the edge of the board insertion hole is connected to the back ground conductor. a waveguide electrically connected to the substrate, a probe provided on the surface of the substrate, integrally formed with the line conductor, and extending into the waveguide; an MMIC having a signal electrode electrically connected to a line conductor and a ground electrode electrically connected to the back surface ground conductor, and in a region including directly below the probe on the back surface of the substrate, The back surface ground conductor may not be provided, and the through hole may be arranged at least on one side in the lateral direction of the line conductor and the probe.

この構成により、本発明に係る平面線路・導波管変換器は、基板の表面から裏面に貫通する貫通穴が線路導体及びプローブの少なくとも横方向片側に配置されることによって、プローブが形成された箇所の基板の幅をあたかも狭くしたかのような状態を作り出すことができる。これにより、本発明に係る平面線路・導波管変換器は、回路部とプローブを同一の基板に形成する場合であっても、回路部の基板の幅とプローブ部分の基板の幅を同一にしつつ、基板内での不要な伝搬モードの発生を抑制することができる。 With this configuration, in the planar line/waveguide converter according to the present invention, the probe is formed by disposing a through hole penetrating from the front surface to the back surface of the substrate on at least one side in the lateral direction of the line conductor and the probe. It is possible to create a state as if the width of the board at a certain point had been narrowed. As a result, in the planar line/waveguide converter according to the present invention, even when the circuit section and the probe are formed on the same substrate, the width of the substrate of the circuit section and the width of the substrate of the probe section can be made the same. At the same time, generation of unnecessary propagation modes within the substrate can be suppressed.

すなわち、本発明に係る平面線路・導波管変換器は、プローブから導波管に伝搬させることができる高周波信号の周波数帯域を広く保つとともに、長方形のMMICと同一の基板加工とすることで部品加工費の増加や信頼性劣化を生じさせない。 In other words, the planar line/waveguide converter according to the present invention maintains a wide frequency band of high-frequency signals that can be propagated from the probe to the waveguide, and also has the same substrate processing as a rectangular MMIC, so that parts can be easily processed. No increase in processing costs or deterioration of reliability.

また、本発明に係る平面線路・導波管変換器においては、前記導波管が方形導波管であってもよい。 Moreover, in the planar line/waveguide converter according to the present invention, the waveguide may be a rectangular waveguide.

本発明は、回路部の基板幅とプローブ部分の基板幅を同一にしつつ、基板内に不要な伝搬モードを発生させない平面線路・導波管変換器を提供するものである。 The present invention provides a planar line/waveguide converter that does not generate unnecessary propagation modes in the substrate while making the substrate width of the circuit section and the substrate width of the probe section the same.

本発明の第1の実施形態に係る平面線路・導波管変換器の構造を示す分解斜視図である。FIG. 1 is an exploded perspective view showing the structure of a planar line/waveguide converter according to a first embodiment of the present invention. 本発明の第1の実施形態に係る平面線路・導波管変換器の組立後の構造を示す斜視図である。FIG. 1 is a perspective view showing the structure of the planar line/waveguide converter after assembly according to the first embodiment of the present invention. 本発明の第1の実施形態に係る平面線路・導波管変換器の組立後の概略断面図と、基板の裏面側の構成を示す下面図である。FIG. 2 is a schematic cross-sectional view after assembly of the planar line/waveguide converter according to the first embodiment of the present invention, and a bottom view showing the configuration on the back side of the substrate. 本発明の第1の実施形態に係る平面線路・導波管変換器における基板の表面側の構成を示す上面図である。FIG. 2 is a top view showing the structure of the front surface side of the substrate in the planar line/waveguide converter according to the first embodiment of the present invention. (a)は基板に導通ビアホールが形成されていない場合の平面線路・導波管変換器の通過損失S21のシミュレーション結果を示すグラフであり、(b)は基板に導通ビアホールが形成されている場合の平面線路・導波管変換器の通過損失S21のシミュレーション結果を示すグラフである。(a) is a graph showing the simulation results of the passing loss S21 of the planar line/waveguide converter when no conductive via hole is formed in the substrate, and (b) is a graph showing the simulation result of the passing loss S21 in the case where the conductive via hole is formed in the substrate. 3 is a graph showing simulation results of the passage loss S21 of the planar line/waveguide converter in the case of FIG. 本発明の第1の実施形態に係る平面線路・導波管変換器の変形例1の概略断面図と、基板の裏面側の構成を示す下面図である。They are a schematic sectional view of Modification 1 of the planar line/waveguide converter according to the first embodiment of the present invention, and a bottom view showing the configuration on the back side of the substrate. 本発明の第1の実施形態に係る平面線路・導波管変換器の変形例2の概略断面図と、基板の裏面側の構成を示す下面図である。They are a schematic cross-sectional view of Modification 2 of the planar line/waveguide converter according to the first embodiment of the present invention, and a bottom view showing the configuration on the back side of the substrate. 本発明の第1の実施形態に係る平面線路・導波管変換器の変形例3の概略断面図と、基板の裏面側の構成を示す下面図である。They are a schematic sectional view of Modification 3 of the planar line/waveguide converter according to the first embodiment of the present invention, and a bottom view showing the configuration on the back side of the substrate. 本発明の第1の実施形態に係る平面線路・導波管変換器の変形例4の概略断面図と、基板の裏面側の構成を示す下面図である。They are a schematic cross-sectional view of modification 4 of the planar line/waveguide converter according to the first embodiment of the present invention, and a bottom view showing the configuration on the back side of the substrate. 本発明の第1の実施形態に係る平面線路・導波管変換器の変形例5の概略断面図と、基板の裏面側の構成を示す下面図である。They are a schematic sectional view of modification 5 of the planar line/waveguide converter according to the first embodiment of the present invention, and a bottom view showing the configuration on the back side of the substrate. 本発明の第2の実施形態に係る平面線路・導波管変換器の概略断面図である。FIG. 3 is a schematic cross-sectional view of a planar line/waveguide converter according to a second embodiment of the present invention. 本発明の他の実施形態に係る平面線路・導波管変換器の概略断面図である。FIG. 3 is a schematic cross-sectional view of a planar line/waveguide converter according to another embodiment of the present invention. 従来の基板用平面線路・導波管変換器の構成を示す分解斜視図である。FIG. 2 is an exploded perspective view showing the configuration of a conventional planar line/waveguide converter for substrates.

以下、本発明に係る平面線路・導波管変換器の実施形態について、図面を用いて説明する。本発明の平面線路・導波管変換器は、例えば100GHzを超えるような高周波信号をミリ波帯の電磁波に変換したり、あるいは逆に、ミリ波帯の電磁波を高周波信号に変換したりするためのものである。 DESCRIPTION OF EMBODIMENTS Hereinafter, embodiments of a planar line/waveguide converter according to the present invention will be described with reference to the drawings. The planar line/waveguide converter of the present invention is capable of converting a high frequency signal exceeding 100 GHz into a millimeter wave band electromagnetic wave, or conversely, converting a millimeter wave band electromagnetic wave into a high frequency signal. belongs to.

(第1の実施形態)
まず、本発明の第1の実施形態に係る平面線路・導波管変換器の構成について、図1~図4を参照しながら説明する。図1は、本実施形態の平面線路・導波管変換器の分解斜視図である。図2は、本実施形態の平面線路・導波管変換器の組立後の斜視図である。図3は、本実施形態の平面線路・導波管変換器の組立後の概略断面図と、基板の下面図である。図4は、本実施形態の平面線路・導波管変換器における基板の上面図である。
(First embodiment)
First, the configuration of a planar line/waveguide converter according to a first embodiment of the present invention will be described with reference to FIGS. 1 to 4. FIG. 1 is an exploded perspective view of the planar line/waveguide converter of this embodiment. FIG. 2 is a perspective view of the planar line/waveguide converter of this embodiment after assembly. FIG. 3 is a schematic cross-sectional view of the planar line/waveguide converter of this embodiment after assembly, and a bottom view of the substrate. FIG. 4 is a top view of the substrate in the planar line/waveguide converter of this embodiment.

図1~図4に示すように、平面線路・導波管変換器1は、基板10と、平面線路20と、プローブ30と、MMIC40と、導波管50と、を備える。平面線路20、プローブ30、及びMMIC40は、1つの基板10上に形成される。平面線路20とMMIC40は回路部を構成する。 As shown in FIGS. 1 to 4, the planar line/waveguide converter 1 includes a substrate 10, a planar line 20, a probe 30, an MMIC 40, and a waveguide 50. The planar line 20, probe 30, and MMIC 40 are formed on one substrate 10. The planar line 20 and MMIC 40 constitute a circuit section.

平面線路20は、基板10と、基板10の表面に設けられた線路導体11と、基板10の表面に設けられた少なくとも1つの表面接地導体12と、基板10の裏面に設けられた裏面接地導体13と、表面接地導体12と裏面接地導体13を電気的に接続する少なくとも1つの導通ビアホール14と、を含んでなる。なお、以降では、導通ビアホール14と後述する貫通ビアホール15とをまとめて、単にビアホール18とも記載する。 The planar line 20 includes a substrate 10, a line conductor 11 provided on the front surface of the substrate 10, at least one surface ground conductor 12 provided on the surface of the substrate 10, and a back surface ground conductor provided on the back surface of the substrate 10. 13, and at least one conductive via hole 14 for electrically connecting the front surface ground conductor 12 and the back surface ground conductor 13. Note that hereinafter, the conductive via hole 14 and the through via hole 15 described later will be collectively referred to as simply the via hole 18.

基板10は、例えばGaAs(ガリウム・砒素)などからなる半導体基板、アルミナ基板、樹脂製の基板、又は石英ガラス基板などの基板である。基板10の厚さは、例えば0.05mm~0.1mm程度である。 The substrate 10 is, for example, a semiconductor substrate made of GaAs (gallium arsenic), an alumina substrate, a resin substrate, or a quartz glass substrate. The thickness of the substrate 10 is, for example, about 0.05 mm to 0.1 mm.

導通ビアホール14は、基板10の表面から裏面に貫通するように、基板10をドリルやレーザ等で穴開けすることによって形成される。導通ビアホール14の穴の断面形状は、円、楕円、正方形、又は長方形などの任意の形状であってよい。導通ビアホール14は、その内壁面に金や銅などの導電性材料が蒸着されるか、あるいは、導電性材料が埋め込まれることにより、表面接地導体12と裏面接地導体13を導通させるようになっている。 The conductive via hole 14 is formed by drilling a hole in the substrate 10 with a drill, laser, etc. so as to penetrate from the front surface to the back surface of the substrate 10. The cross-sectional shape of the conductive via hole 14 may be any shape such as a circle, an ellipse, a square, or a rectangle. The conductive via hole 14 has its inner wall surface deposited with a conductive material such as gold or copper, or is embedded with a conductive material so that the surface ground conductor 12 and the back surface ground conductor 13 are electrically connected to each other. There is.

線路導体11、表面接地導体12、裏面接地導体13、及びプローブ30は、導通ビアホール14用の穴が形成された基板10にマスクパターンを形成し、スパッタリングにより金又は銅などの高周波信号伝送用として適した金属の薄膜を基板10に蒸着することで形成される。このとき同時に導通ビアホール14用の穴の内壁にも金属の薄膜が蒸着されるとよい。また、表面接地導体12及び裏面接地導体13は、少なくとも高周波グランド(RFグランド)であればよく、バイアス電圧が印加される構成となっていてもよい。 The line conductor 11, the front ground conductor 12, the back ground conductor 13, and the probe 30 are formed by forming a mask pattern on the substrate 10 in which holes for the conductive via holes 14 are formed, and sputtering gold or copper for high frequency signal transmission. It is formed by depositing a thin film of a suitable metal onto the substrate 10. At this time, it is preferable that a metal thin film is simultaneously deposited on the inner wall of the conductive via hole 14. Further, the front surface ground conductor 12 and the back surface ground conductor 13 may be at least a high frequency ground (RF ground), and may be configured to be applied with a bias voltage.

基板10に導通ビアホール14を設けることで、導通ビアホール14の金属部分による電磁波の遮蔽効果により、プローブ30が形成された箇所の基板10の幅をあたかも狭くしたかのような状態を作り出すことができる。 By providing the conductive via hole 14 in the substrate 10, the electromagnetic wave shielding effect of the metal portion of the conductive via hole 14 makes it possible to create a state in which the width of the substrate 10 at the location where the probe 30 is formed appears to be narrowed. .

図1~図3に示すように、表面接地導体12は、例えば導通ビアホール14のランド部として基板10上に設けられる。この場合、平面線路20は、マイクロストリップ線路構造を成す。あるいは、図4に示すように、表面接地導体12は、線路導体11の横方向両側に所定の距離を隔てて形成されたグランドパターンとして基板10上に設けられていてもよい。この場合、平面線路20は、いわゆるグランデッドコプレーナ線路構造を成す。なお、平面線路20は、マイクロストリップ線路やグランデッドコプレーナ線路に限定されず、他の構成の線路であってもよい。 As shown in FIGS. 1 to 3, the surface ground conductor 12 is provided on the substrate 10, for example, as a land portion of a conductive via hole 14. As shown in FIGS. In this case, the planar line 20 has a microstrip line structure. Alternatively, as shown in FIG. 4, the surface ground conductor 12 may be provided on the substrate 10 as a ground pattern formed on both sides of the line conductor 11 at a predetermined distance. In this case, the planar line 20 has a so-called grounded coplanar line structure. Note that the planar line 20 is not limited to a microstrip line or a grounded coplanar line, and may be a line having another configuration.

導波管50は、開口部51の形状が方形であり、開口部51と反対側が反射壁52により閉じられた方形導波管である。例えば、導波管50は、断面寸法が2.032mm×1.016mmであり、WR-8帯域(90GHz~140GHz)を通過帯域とするWR-8方形導波管であってもよい。 The waveguide 50 is a rectangular waveguide with an opening 51 having a rectangular shape and a side opposite to the opening 51 being closed by a reflecting wall 52 . For example, the waveguide 50 may be a WR-8 rectangular waveguide with cross-sectional dimensions of 2.032 mm x 1.016 mm and a pass band of the WR-8 band (90 GHz to 140 GHz).

基板10は、導波管50の側壁53に設けられた基板挿入穴54に挿入されて装着されるようになっている。この状態で、導波管50は、基板挿入穴54の縁部55を介して、裏面接地導体13に電気的に接続される。縁部55と裏面接地導体13との電気的な接続は、例えば、裏面接地導体13の端部が、導電性の接着剤により縁部55に貼り付けられることによって実現できる。なお、線路導体11及びプローブ30と導波管50とが電気的に接続されないように、基板挿入穴54と基板10の表面との間には、基板10の基板厚程度の隙間が設けられている。例えば、基板挿入穴54は、導波管50の側壁53の中央付近の高さの位置に形成される。 The substrate 10 is inserted into and attached to a substrate insertion hole 54 provided in a side wall 53 of the waveguide 50. In this state, the waveguide 50 is electrically connected to the back ground conductor 13 via the edge 55 of the board insertion hole 54. The electrical connection between the edge 55 and the back ground conductor 13 can be achieved, for example, by pasting the end of the back ground conductor 13 to the edge 55 with a conductive adhesive. Note that a gap approximately equal to the thickness of the substrate 10 is provided between the substrate insertion hole 54 and the surface of the substrate 10 so that the line conductor 11 and the probe 30 are not electrically connected to the waveguide 50. There is. For example, the substrate insertion hole 54 is formed at a height near the center of the side wall 53 of the waveguide 50.

MMIC40は、電解効果トランジスタ(FET:Field effect transistor)などの半導体部品を含む集積回路であり、例えば増幅器、周波数変換器として機能する。MMIC40の幅は、例えば1mm~1.5mm程度である。 The MMIC 40 is an integrated circuit including semiconductor components such as field effect transistors (FETs), and functions as, for example, an amplifier or a frequency converter. The width of the MMIC 40 is, for example, about 1 mm to 1.5 mm.

例えば、図3に示すように、MMIC40は、基板10の表面側に設けられ、線路導体11と電気的に接続される信号電極41と、裏面接地導体13と電気的に接続される接地電極42と、を有する。MMIC40の信号電極41は、例えばボンディングワイヤによって、線路導体11に電気的に接続される。また、MMIC40の接地電極42は、例えばボンディングワイヤやビアホールなどを介した層間接続によって、表面接地導体12及び裏面接地導体13に電気的に接続される。 For example, as shown in FIG. 3, the MMIC 40 includes a signal electrode 41 provided on the front side of the substrate 10 and electrically connected to the line conductor 11, and a ground electrode 42 electrically connected to the back ground conductor 13. and has. The signal electrode 41 of the MMIC 40 is electrically connected to the line conductor 11 by, for example, a bonding wire. Further, the ground electrode 42 of the MMIC 40 is electrically connected to the front ground conductor 12 and the back ground conductor 13 by interlayer connection via bonding wires, via holes, etc., for example.

プローブ30は、基板10の表面に設けられ、線路導体11と一体形成され、導波管50の内部に延伸するストリップ導体である。プローブ30は、導波管50を励振するアンテナとして機能する。このため、図3の下段に示すように、基板10の裏面のプローブ30の真下を含む領域には、裏面接地導体13が設けられていない。 The probe 30 is a strip conductor provided on the surface of the substrate 10, integrally formed with the line conductor 11, and extending into the inside of the waveguide 50. The probe 30 functions as an antenna that excites the waveguide 50. Therefore, as shown in the lower part of FIG. 3, the back surface ground conductor 13 is not provided in the region of the back surface of the substrate 10 including directly below the probes 30.

図2及び図3に示すように、基板10が導波管50の基板挿入穴54に装着された状態で、プローブ30が導波管50内、平面線路20が基板挿入穴54の縁部55上と導波管50外、MMIC40が導波管50外に配置されるようになっている。 As shown in FIGS. 2 and 3, with the substrate 10 attached to the substrate insertion hole 54 of the waveguide 50, the probe 30 is inside the waveguide 50, and the planar line 20 is attached to the edge 55 of the substrate insertion hole 54. The MMIC 40 is arranged above and outside the waveguide 50 .

プローブ30の長さLは、平面線路・導波管変換器1で使用する周波数帯域の基板10上での波長λsの1/4程度である。ここで、基板10上での波長とは、基板10の誘電性による波長短縮効果を考慮に入れた実効的な波長を意味している。なお、プローブ30の先端から基板10の端までの距離は、可能な限り小さくすることが望ましい。また、プローブ30の幅は、平面線路20とインピーダンス整合を取れる幅であることが望ましい。 The length L of the probe 30 is approximately 1/4 of the wavelength λs on the substrate 10 in the frequency band used in the planar line/waveguide converter 1. Here, the wavelength on the substrate 10 means an effective wavelength that takes into account the wavelength shortening effect due to the dielectric properties of the substrate 10. Note that it is desirable that the distance from the tip of the probe 30 to the end of the substrate 10 be as small as possible. Further, it is desirable that the width of the probe 30 is such that impedance matching can be achieved with the planar line 20.

また、プローブ30の幅方向の中心位置から導波管50の反射壁52までの距離BS(バックショート長)は、基板10の誘電性による波長短縮効果を考慮に入れた実効的な管内波長λgの1/4程度であればよい。 Further, the distance BS (back short length) from the center position of the probe 30 in the width direction to the reflecting wall 52 of the waveguide 50 is the effective guide wavelength λg taking into account the wavelength shortening effect due to the dielectric property of the substrate 10. It is sufficient if it is about 1/4 of that.

上記の構成により、MMIC40から送信された高周波信号は、平面線路20を伝送され、導波管50内のプローブ30から放射されて、導波管50の中を伝搬していく。逆に、導波管50の開口部51に入力された電磁波は、導波管50の中を伝搬して、プローブ30で受け取られ、平面線路20を伝送され、MMIC40で受信される。 With the above configuration, the high frequency signal transmitted from the MMIC 40 is transmitted through the planar line 20, radiated from the probe 30 within the waveguide 50, and propagated within the waveguide 50. Conversely, the electromagnetic wave input into the opening 51 of the waveguide 50 propagates through the waveguide 50, is received by the probe 30, is transmitted through the planar line 20, and is received by the MMIC 40.

図5(a)は、基板10に導通ビアホール14が形成されていない(導通ビアホールなしの)平面線路・導波管変換器の通過損失S21のシミュレーション結果を示すグラフである。一方、図5(b)は、基板10に導通ビアホール14が形成されている(導通ビアホールありの)本実施形態の平面線路・導波管変換器1の通過損失S21のシミュレーション結果を示すグラフである。 FIG. 5A is a graph showing a simulation result of the passage loss S21 of a planar line/waveguide converter in which the conductive via hole 14 is not formed in the substrate 10 (no conductive via hole). On the other hand, FIG. 5(b) is a graph showing the simulation results of the passing loss S21 of the planar line/waveguide converter 1 of this embodiment in which the conductive via hole 14 is formed in the substrate 10 (with the conductive via hole). It is.

シミュレーション条件は以下のとおりである。
・基板の比誘電率:8.5
・基板のサイズ:幅1mm、長さ0.835mm、厚さ0.1mm
・線路導体及びプローブの幅:0.06mm
・線路導体及びプローブの金属種類:金
・線路導体及びプローブの厚さ:0.003mm
・導通ビアホールの個数:2(導通ビアホールありの場合)
・ビアホールの直径:0.1mm(導通ビアホールありの場合)
・導通ビアホールの中心位置:基板端から幅方向、長さ方向ともに0.15mm内側(導通ビアホールありの場合)
・導通ビアホールの中心位置から線路導体までの距離:0.35mm(導通ビアホールありの場合)
The simulation conditions are as follows.
- Substrate dielectric constant: 8.5
・Size of board: width 1mm, length 0.835mm, thickness 0.1mm
・Width of line conductor and probe: 0.06mm
・Metal type of line conductor and probe: Gold ・Thickness of line conductor and probe: 0.003mm
・Number of conductive via holes: 2 (if there is a conductive via hole)
・Via hole diameter: 0.1mm (with conductive via hole)
・Center position of conductive via hole: 0.15 mm inside from the edge of the board in both the width and length directions (if there is a conductive via hole)
・Distance from the center position of the conductive via hole to the line conductor: 0.35mm (if there is a conductive via hole)

図5(a)に示すように、導通ビアホールなしの構成では、通過損失S21は、115GHzまで1dB以下であった。これに対して、図5(b)に示すように、本実施形態における導通ビアホールありの構成では、通過損失S21は、135GHzまで1dB以下の低損失を実現できる。これは、基板10に導通ビアホール14を設けたことで、基板10内で不要な伝搬モードが発生することを防ぐことができたためと考えられる。 As shown in FIG. 5(a), in the configuration without conductive via holes, the transmission loss S21 was 1 dB or less up to 115 GHz. On the other hand, as shown in FIG. 5(b), in the configuration with conductive via holes in this embodiment, the transmission loss S21 can be as low as 1 dB or less up to 135 GHz. This is considered to be because the provision of the conductive via hole 14 in the substrate 10 made it possible to prevent unnecessary propagation modes from occurring within the substrate 10.

なお、図3には、線路導体11の横方向両側に導通ビアホール14を1つずつ配置した構成例を示したが、図6に示すように線路導体11の横方向片側に導通ビアホール14を1つ配置した構成とすることで、基板10内で不要な伝搬モードが発生することを防ぐようにしてもよい。 Although FIG. 3 shows a configuration example in which one conductive via hole 14 is arranged on each side of the line conductor 11 in the horizontal direction, as shown in FIG. By arranging two of them, unnecessary propagation modes may be prevented from occurring within the substrate 10.

また、図7に示すように、本実施形態の平面線路・導波管変換器1は、表面接地導体12及び裏面接地導体13と接続されていない少なくとも1つの貫通ビアホール15が、基板10の表面から裏面に貫通する構成であってもよい。貫通ビアホール15は、基板10の裏面における裏面接地導体13が形成されていない領域に設けられた少なくとも1つの裏面導体16と、基板10の表面における裏面導体16の真上を含む領域に設けられた少なくとも1つの表面導体17と、を電気的に接続するようになっている。 Further, as shown in FIG. 7, in the planar line/waveguide converter 1 of this embodiment, at least one through via hole 15 that is not connected to the front surface ground conductor 12 and the back surface ground conductor 13 is located on the surface of the substrate 10. It may be configured to penetrate from the top to the back surface. The through via hole 15 is provided in an area including at least one back conductor 16 provided in an area on the back surface of the substrate 10 where the back surface ground conductor 13 is not formed, and a region directly above the back surface conductor 16 on the front surface of the substrate 10. At least one surface conductor 17 is electrically connected.

貫通ビアホール15は、既に述べた導通ビアホール14と同様の方法で形成することができる。基板10に貫通ビアホール15を設けることで、貫通ビアホール15の金属部分による電磁波の遮蔽効果により、プローブ30が形成された箇所の基板10の幅をあたかも狭くしたかのような状態を作り出すことができる。 The through via hole 15 can be formed in the same manner as the conductive via hole 14 described above. By providing the through-via hole 15 in the substrate 10, it is possible to create a state in which the width of the substrate 10 at the location where the probe 30 is formed appears to be narrowed due to the electromagnetic wave shielding effect of the metal part of the through-via hole 15. .

また、図8に示すように、貫通ビアホール15をプローブ30の横方向片側の反射壁52側に配置することで、プローブ30の放射パターンを導波管50の開口部51に向かって広がるように変更し、導波管50を励振する際の損失を減らすことができる。さらに、貫通ビアホール15をプローブ30の横方向片側の反射壁52側に配置することで、導波管50の開口部51と反射壁52までの距離が組み立てによってずれても、プローブ30の感度への影響を少なくすることができる。 Furthermore, as shown in FIG. 8, by arranging the through via hole 15 on the reflecting wall 52 side on one side of the probe 30 in the lateral direction, the radiation pattern of the probe 30 is spread toward the opening 51 of the waveguide 50. The loss when exciting the waveguide 50 can be reduced by changing the waveguide. Furthermore, by arranging the through via hole 15 on the side of the reflecting wall 52 on one side of the probe 30 in the lateral direction, even if the distance between the opening 51 of the waveguide 50 and the reflecting wall 52 deviates due to assembly, the sensitivity of the probe 30 remains unchanged. The impact of this can be reduced.

また、図9に示すように、プローブ30の横方向片側又は横方向両側において、少なくとも1つの表面接地導体12と少なくとも1つの表面導体17が一体化されていてもよい。さらに、少なくとも1つの裏面接地導体13と少なくとも1つの裏面導体16が一体化されていてもよい。このような構成により、ビアホール18間を電磁波が通過することを妨げて、プローブ30からの電磁波の放射方向を所望の方向に向けることができる。 Further, as shown in FIG. 9, at least one surface ground conductor 12 and at least one surface conductor 17 may be integrated on one side or both sides of the probe 30 in the lateral direction. Furthermore, at least one back ground conductor 13 and at least one back conductor 16 may be integrated. With such a configuration, it is possible to prevent electromagnetic waves from passing between the via holes 18 and direct the radiation direction of the electromagnetic waves from the probe 30 in a desired direction.

また、図10に示すように、互いに電気的に接続された導通ビアホール14及び貫通ビアホール15と、導通ビアホール14と電気的に接続されない貫通ビアホール15とが混在していてもよい。 Further, as shown in FIG. 10, the conductive via hole 14 and the through via hole 15 that are electrically connected to each other and the through via hole 15 that is not electrically connected to the conductive via hole 14 may coexist.

隣り合うビアホール18の間隔は、穴加工の精度や基板10の強度などによる製造上の限界から、例えばビアホール18の直径の2倍程度に設定される。また、ビアホール18と線路導体11又はプローブ30までの距離は、例えばビアホール18の直径の2倍程度に設定してもよい。また、ビアホール18の直径は、例えば基板10の基板厚と同一に設定してもよい。なお、ビアホール18の個数は任意である。 The interval between adjacent via holes 18 is set to, for example, about twice the diameter of the via holes 18 due to manufacturing limitations such as the accuracy of hole processing and the strength of the substrate 10. Further, the distance between the via hole 18 and the line conductor 11 or the probe 30 may be set to, for example, about twice the diameter of the via hole 18. Further, the diameter of the via hole 18 may be set to be the same as the thickness of the substrate 10, for example. Note that the number of via holes 18 is arbitrary.

以上説明したように、本実施形態に係る平面線路・導波管変換器1は、基板10の表面から裏面に貫通する導通ビアホール14が線路導体11の少なくとも横方向片側に配置されることによって、プローブ30が形成された箇所の基板10の幅をあたかも狭くしたかのような状態を作り出すことができる。これにより、平面線路・導波管変換器1は、回路部とプローブ30を同一の基板10に形成する場合であっても、回路部の基板10の幅とプローブ部分の基板10の幅を同一にしつつ、基板10内での不要な伝搬モードの発生を抑制することができる。 As explained above, in the planar line/waveguide converter 1 according to the present embodiment, the conductive via hole 14 penetrating from the front surface to the back surface of the substrate 10 is arranged on at least one side in the lateral direction of the line conductor 11. It is possible to create a state as if the width of the substrate 10 at the location where the probe 30 is formed is narrowed. As a result, in the planar line/waveguide converter 1, even when the circuit section and the probe 30 are formed on the same substrate 10, the width of the substrate 10 of the circuit section and the width of the substrate 10 of the probe section are the same. At the same time, it is possible to suppress the generation of unnecessary propagation modes within the substrate 10.

すなわち、本実施形態に係る平面線路・導波管変換器1は、プローブ30から導波管50に伝搬させることができる高周波信号の周波数帯域を広く保つとともに、長方形のMMIC40と同一の基板加工とすることで部品加工費の増加や信頼性劣化を生じさせない。 That is, the planar line/waveguide converter 1 according to the present embodiment maintains a wide frequency band of high-frequency signals that can be propagated from the probe 30 to the waveguide 50, and uses the same substrate processing as the rectangular MMIC 40. This prevents increases in parts processing costs and reliability deterioration.

また、本実施形態に係る平面線路・導波管変換器1は、基板10の表面から裏面に貫通する貫通ビアホール15がプローブ30の少なくとも横方向片側に配置されることによって、プローブ30が形成された箇所の基板10の幅をあたかも狭くしたかのような状態を作り出すことができる。これにより、平面線路・導波管変換器1は、プローブ30の放射パターンを所望の形状に変更することができる。 Further, in the planar line/waveguide converter 1 according to the present embodiment, the probe 30 is formed by disposing the through via hole 15 that penetrates from the front surface to the back surface of the substrate 10 on at least one side of the probe 30 in the lateral direction. It is possible to create a state as if the width of the substrate 10 at the location where the width was narrowed. Thereby, the planar line/waveguide converter 1 can change the radiation pattern of the probe 30 into a desired shape.

また、本実施形態に係る平面線路・導波管変換器1は、少なくとも1つの表面接地導体12と少なくとも1つの表面導体17が一体化されるとともに、裏面接地導体13と少なくとも1つの裏面導体16が一体化されることによって、ビアホール18間を電磁波が通過することを妨げて、プローブ30からの電磁波の放射方向を所望の方向に向けることができる。 Further, in the planar line/waveguide converter 1 according to the present embodiment, at least one front surface ground conductor 12 and at least one front surface conductor 17 are integrated, and a back surface ground conductor 13 and at least one back surface conductor 16 are integrated. By being integrated, it is possible to prevent electromagnetic waves from passing between the via holes 18 and direct the radiation direction of electromagnetic waves from the probe 30 in a desired direction.

(第2の実施形態)
続いて、本発明の第2の実施形態に係る平面線路・導波管変換器2について、図面を参照しながら説明する。なお、第1の実施形態と同様の構成及び動作については適宜説明を省略する。
(Second embodiment)
Next, a planar line/waveguide converter 2 according to a second embodiment of the present invention will be described with reference to the drawings. Note that descriptions of configurations and operations similar to those of the first embodiment will be omitted as appropriate.

第1の実施形態の平面線路・導波管変換器1は、基板10にビアホール18を設けた構成であったが、本実施形態の平面線路・導波管変換器2は、ビアホールの代わりに、基板10の表面から裏面に貫通する貫通穴19を設けた構成である。 The planar line/waveguide converter 1 of the first embodiment had a configuration in which a via hole 18 was provided in the substrate 10, but the planar line/waveguide converter 2 of this embodiment has a via hole instead of a via hole. , a through hole 19 penetrating from the front surface to the back surface of the substrate 10 is provided.

なお、基板10、線路導体11、表面接地導体12、裏面接地導体13、プローブ30、MMIC40、及び導波管50の構成については、第1の実施形態の構成と同様である。 Note that the configurations of the substrate 10, line conductor 11, front surface ground conductor 12, back surface ground conductor 13, probe 30, MMIC 40, and waveguide 50 are the same as those of the first embodiment.

図11に示すように、貫通穴19は、例えば、線路導体11及びプローブ30の横方向両側又は横方向片側に形成される。貫通穴19は、基板10を貫通するように基板10をドリルやレーザ等で穴開けすることによって形成される。貫通穴19の断面形状は、円、楕円、正方形、又は長方形などの任意の形状であってよい。第1の実施形態におけるビアホール18とは異なり、貫通穴19は導電性を有していない。 As shown in FIG. 11, the through holes 19 are formed, for example, on both sides or one side of the line conductor 11 and the probe 30 in the lateral direction. The through hole 19 is formed by drilling a hole through the substrate 10 using a drill, laser, or the like. The cross-sectional shape of the through hole 19 may be any shape such as a circle, an ellipse, a square, or a rectangle. Unlike the via hole 18 in the first embodiment, the through hole 19 does not have electrical conductivity.

基板10に貫通穴19を設けることで、基板10の比誘電率ε(例えば10程度)よりも比誘電率εの低い空気層(εがほぼ1)が基板10内の線路導体11及びプローブ30の横方向に形成される。このように基板10内の誘電率に差を設けることにより、プローブ30の横方向には電磁波が広がりにくくなって、プローブ30が形成された箇所の基板10の幅をあたかも狭くしたかのような状態を作り出すことができる。これにより、不要な伝搬モードによる不要な方向への電磁波の広がりを抑えることができる。 By providing the through hole 19 in the substrate 10, an air layer having a dielectric constant ε r lower than the dielectric constant ε r (for example, about 10) of the substrate 10 (ε r is approximately 1) is formed in the line conductor 11 in the substrate 10 . and are formed in the lateral direction of the probe 30. By providing a difference in dielectric constant within the substrate 10 in this way, it becomes difficult for electromagnetic waves to spread in the lateral direction of the probe 30, and the width of the substrate 10 where the probe 30 is formed is made narrower. can create a state. This makes it possible to suppress the spread of electromagnetic waves in unnecessary directions due to unnecessary propagation modes.

貫通穴19の直径は、例えば基板10の基板厚と同一に設定することができる。隣り合う貫通穴19の間隔は、平面線路・導波管変換器2で使用する周波数帯域の基板10上での波長λsの1/4以下が好ましく、例えば1/8としてもよい。あるいは、隣り合う貫通穴19の間隔は、穴加工の精度や基板10の強度などによる製造上の限界から、例えば貫通穴19の直径の2倍程度としてもよい。また、貫通穴19と線路導体11又はプローブ30までの距離は、例えば貫通穴19の直径の2倍程度に設定してもよい。 The diameter of the through hole 19 can be set to be the same as the thickness of the substrate 10, for example. The interval between adjacent through holes 19 is preferably 1/4 or less of the wavelength λs on the substrate 10 in the frequency band used in the planar line/waveguide converter 2, and may be, for example, 1/8. Alternatively, the interval between adjacent through holes 19 may be, for example, approximately twice the diameter of the through holes 19 due to manufacturing limitations such as the accuracy of hole processing and the strength of the substrate 10. Further, the distance between the through hole 19 and the line conductor 11 or the probe 30 may be set to, for example, about twice the diameter of the through hole 19.

図11には、線路導体11及びプローブ30の横方向両側に2列ずつ貫通穴19が配置された例を示したが、線路導体11及びプローブ30と貫通穴19の間隔を近くすることで、線路導体11及びプローブ30の横方向両側に3列以上の貫通穴19が配置された構成としてもよい。 Although FIG. 11 shows an example in which two rows of through holes 19 are arranged on both sides of the line conductor 11 and the probe 30 in the lateral direction, by making the distance between the line conductor 11 and the probe 30 and the through holes 19 close, A configuration may be adopted in which three or more rows of through holes 19 are arranged on both sides of the line conductor 11 and the probe 30 in the lateral direction.

また、上記の説明では貫通穴19の大きさを基板10の基板厚と同一としたが、貫通穴19の大きさを基板10の基板厚よりも大きくすることで、基板10内に誘電率の低いエリアをより広く設けて、不要な伝搬モードの広がりを更に防ぐように構成してもよい。 In addition, in the above description, the size of the through hole 19 is the same as the thickness of the substrate 10, but by making the size of the through hole 19 larger than the thickness of the substrate 10, a dielectric constant is created in the substrate 10. The low area may be provided wider to further prevent unnecessary spread of propagation modes.

以上説明したように、本実施形態に係る平面線路・導波管変換器2は、基板10の表面から裏面に貫通する貫通穴19が線路導体11及びプローブ30の少なくとも横方向片側に配置されることによって、プローブ30が形成された箇所の基板10の幅をあたかも狭くしたかのような状態を作り出すことができる。これにより、平面線路・導波管変換器2は、回路部とプローブ30を同一の基板10に形成する場合であっても、回路部の基板10の幅とプローブ部分の基板10の幅を同一にしつつ、基板10内での不要な伝搬モードの発生を抑制することができる。 As described above, in the planar line/waveguide converter 2 according to the present embodiment, the through hole 19 penetrating from the front surface to the back surface of the substrate 10 is arranged at least on one side in the lateral direction of the line conductor 11 and the probe 30. By doing so, it is possible to create a state as if the width of the substrate 10 at the location where the probe 30 is formed is narrowed. As a result, in the planar line/waveguide converter 2, even when the circuit section and the probe 30 are formed on the same substrate 10, the width of the substrate 10 of the circuit section and the width of the substrate 10 of the probe section are the same. At the same time, it is possible to suppress the generation of unnecessary propagation modes within the substrate 10.

すなわち、本実施形態に係る平面線路・導波管変換器2は、プローブ30から導波管50に伝搬させることができる高周波信号の周波数帯域を広く保つとともに、長方形のMMIC40と同一の基板加工とすることで部品加工費の増加や信頼性劣化を生じさせない。 That is, the planar line/waveguide converter 2 according to this embodiment maintains a wide frequency band of high-frequency signals that can be propagated from the probe 30 to the waveguide 50, and uses the same substrate processing as the rectangular MMIC 40. This prevents increases in parts processing costs and reliability deterioration.

(他の実施形態)
第1の実施形態及び第2の実施形態の説明では、MMIC40、平面線路20、及びプローブ30が1つの基板10上に形成されるとしたが、図12に示すように、平面線路・導波管変換器1,2は、平面線路20とプローブ30が形成された基板10に、MMIC40のチップを後から実装した構成であってもよい。
(Other embodiments)
In the description of the first embodiment and the second embodiment, it is assumed that the MMIC 40, the planar line 20, and the probe 30 are formed on one substrate 10, but as shown in FIG. The tube converters 1 and 2 may have a structure in which a MMIC 40 chip is later mounted on a substrate 10 on which a planar line 20 and a probe 30 are formed.

1,2 平面線路・導波管変換器
10 基板
11 線路導体
12 表面接地導体
13 裏面接地導体
14 導通ビアホール
15 貫通ビアホール
16 裏面導体
17 表面導体
18 ビアホール
19 貫通穴
20 平面線路
30 プローブ
40 MMIC
41 信号電極
42 接地電極
50 導波管
51 開口部
52 反射壁
53 側壁
54 基板挿入穴
55 縁部
1, 2 Planar line/waveguide converter 10 Substrate 11 Line conductor 12 Surface ground conductor 13 Back ground conductor 14 Conductive via hole 15 Through via hole 16 Back conductor 17 Surface conductor 18 Via hole 19 Through hole 20 Planar line 30 Probe 40 MMIC
41 Signal electrode 42 Ground electrode 50 Waveguide 51 Opening 52 Reflection wall 53 Side wall 54 Board insertion hole 55 Edge

Claims (5)

基板(10)と、
前記基板の表面に設けられた線路導体(11)と、
前記基板の表面に設けられた少なくとも1つの表面接地導体(12)と、
前記基板の裏面に設けられた裏面接地導体(13)と、
前記基板の表面から裏面に貫通し、前記表面接地導体と前記裏面接地導体を電気的に接続する少なくとも1つの導通ビアホール(14)と、
側壁(53)に設けられた基板挿入穴(54)に前記基板が挿入され、前記基板挿入穴の縁部(55)が前記裏面接地導体に電気的に接続される導波管(50)と、
前記基板の表面に設けられ、前記線路導体と一体形成され、前記導波管の内部に延伸するプローブ(30)と、
前記基板の表面側に設けられ、前記線路導体と電気的に接続される信号電極(41)と、前記裏面接地導体と電気的に接続される接地電極(42)とを有するMMIC(40)と、を備え、
前記基板の裏面における前記プローブの真下を含む領域には、前記裏面接地導体が設けられておらず、
前記導通ビアホールは、前記線路導体の少なくとも横方向片側に配置されることを特徴とする平面線路・導波管変換器。
a substrate (10);
a line conductor (11) provided on the surface of the substrate;
at least one surface ground conductor (12) provided on the surface of the substrate;
a back surface ground conductor (13) provided on the back surface of the substrate;
at least one conductive via hole (14) penetrating the substrate from the front surface to the back surface and electrically connecting the front surface ground conductor and the back surface ground conductor;
a waveguide (50) in which the substrate is inserted into a substrate insertion hole (54) provided in a side wall (53), and an edge (55) of the substrate insertion hole is electrically connected to the back ground conductor; ,
a probe (30) provided on the surface of the substrate, integrally formed with the line conductor, and extending into the inside of the waveguide;
an MMIC (40) provided on the front side of the substrate and having a signal electrode (41) electrically connected to the line conductor and a ground electrode (42) electrically connected to the back surface ground conductor; , comprising;
The back surface ground conductor is not provided in a region including directly below the probe on the back surface of the substrate,
A planar line/waveguide converter, wherein the conductive via hole is disposed on at least one side of the line conductor in the lateral direction.
前記基板の裏面に設けられた少なくとも1つの裏面導体(16)と、
前記基板の表面における前記裏面導体の真上を含む領域に設けられた少なくとも1つの表面導体(17)と、
前記基板の表面から裏面に貫通し、前記表面導体と前記裏面導体を電気的に接続する少なくとも1つの貫通ビアホール(15)と、を更に備え、
前記貫通ビアホールは、前記プローブの少なくとも横方向片側に配置されることを特徴とする請求項1に記載の平面線路・導波管変換器。
at least one back conductor (16) provided on the back surface of the substrate;
at least one surface conductor (17) provided in a region including directly above the back conductor on the front surface of the substrate;
further comprising at least one through via hole (15) penetrating from the front surface to the back surface of the substrate and electrically connecting the front surface conductor and the back surface conductor,
The planar line/waveguide converter according to claim 1, wherein the through via hole is arranged on at least one side of the probe in the lateral direction.
少なくとも1つの前記表面接地導体と少なくとも1つの前記表面導体が一体化されているとともに、前記裏面接地導体と少なくとも1つの前記裏面導体が一体化されていることを特徴とする請求項2に記載の平面線路・導波管変換器。 3. The at least one surface ground conductor and at least one surface conductor are integrated, and the back surface ground conductor and at least one back surface conductor are integrated. Planar line/waveguide converter. 基板(10)と、
前記基板の表面に設けられた線路導体(11)と、
前記基板の表面に設けられた少なくとも1つの表面接地導体(12)と、
前記基板の裏面に設けられた裏面接地導体(13)と、
前記基板の表面から裏面に貫通する貫通穴(19)と、
側壁(53)に設けられた基板挿入穴(54)に前記基板が挿入され、前記基板挿入穴の縁部(55)が前記裏面接地導体に電気的に接続される導波管(50)と、
前記基板の表面に設けられ、前記線路導体と一体形成され、前記導波管の内部に延伸するプローブ(30)と、
前記基板の表面側に設けられ、前記線路導体と電気的に接続される信号電極(41)と、前記裏面接地導体と電気的に接続される接地電極(42)とを有するMMIC(40)と、を備え、
前記基板の裏面における前記プローブの真下を含む領域には、前記裏面接地導体が設けられておらず、
前記貫通穴は、前記線路導体及び前記プローブの少なくとも横方向片側に配置されることを特徴とする平面線路・導波管変換器。
a substrate (10);
a line conductor (11) provided on the surface of the substrate;
at least one surface ground conductor (12) provided on the surface of the substrate;
a back surface ground conductor (13) provided on the back surface of the substrate;
a through hole (19) penetrating from the front surface to the back surface of the substrate;
a waveguide (50) in which the substrate is inserted into a substrate insertion hole (54) provided in a side wall (53), and an edge (55) of the substrate insertion hole is electrically connected to the back ground conductor; ,
a probe (30) provided on the surface of the substrate, integrally formed with the line conductor, and extending into the inside of the waveguide;
an MMIC (40) provided on the front side of the substrate and having a signal electrode (41) electrically connected to the line conductor and a ground electrode (42) electrically connected to the back surface ground conductor; , comprising;
The back surface ground conductor is not provided in a region including directly below the probe on the back surface of the substrate,
A planar line/waveguide converter, wherein the through hole is arranged on at least one side of the line conductor and the probe in the lateral direction.
前記導波管が方形導波管であることを特徴とする請求項1から請求項4のいずれかに記載の平面線路・導波管変換器。 5. The planar line/waveguide converter according to claim 4, wherein the waveguide is a rectangular waveguide.
JP2022042202A 2022-03-17 2022-03-17 Planar line/waveguide converter Pending JP2023136491A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2022042202A JP2023136491A (en) 2022-03-17 2022-03-17 Planar line/waveguide converter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2022042202A JP2023136491A (en) 2022-03-17 2022-03-17 Planar line/waveguide converter

Publications (1)

Publication Number Publication Date
JP2023136491A true JP2023136491A (en) 2023-09-29

Family

ID=88145764

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2022042202A Pending JP2023136491A (en) 2022-03-17 2022-03-17 Planar line/waveguide converter

Country Status (1)

Country Link
JP (1) JP2023136491A (en)

Similar Documents

Publication Publication Date Title
JP3241139B2 (en) Film carrier signal transmission line
JP3068575B2 (en) Millimeter wave LTCC package
JP5147826B2 (en) Apparatus and method for constructing and packaging a waveguide-to-planar transmission line converter for millimeter wave applications
US7479841B2 (en) Transmission line to waveguide interconnect and method of forming same including a heat spreader
JP4584193B2 (en) Waveguide connection structure
JP5765174B2 (en) Electronic equipment
EP1077502A2 (en) MMIC-to-waveguide RF transition and associated method
US8035994B2 (en) High frequency storing case and high frequency module
JP2005051331A (en) Coupling structure between microstrip line and dielectric waveguide
JP2000101311A (en) Transformer for microstrip line-to-waveguide
JP3067675B2 (en) Planar dielectric integrated circuit
KR980012120A (en) High Frequency Semiconductor Device
JP2023136491A (en) Planar line/waveguide converter
KR100265463B1 (en) Planar dielectric integrated circuit
JP3619396B2 (en) High frequency wiring board and connection structure
JP2005051330A (en) Connection structure between dielectric waveguide line and high frequency transmission line, high frequency circuit board employing the same, and high frequency element mount package
US20220407204A1 (en) Microwave system and apparatus
JP3008939B1 (en) High frequency circuit board
JP2003174305A (en) Transmission line and transmitter-receiver
JPH05199019A (en) High frequency circuit package
WO2024009339A1 (en) Microstrip line-waveguide converter
JP2024064356A (en) Microwave circuit
JP6964824B2 (en) Converter and antenna device
JP2000174515A (en) Coplanar waveguide - waveguide converter
JP2005130406A (en) Waveguide member, waveguide, and high frequency module

Legal Events

Date Code Title Description
RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20221007

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20221012