JP2023135694A - Method for producing divinyl-substituted aromatic compound - Google Patents

Method for producing divinyl-substituted aromatic compound Download PDF

Info

Publication number
JP2023135694A
JP2023135694A JP2022040902A JP2022040902A JP2023135694A JP 2023135694 A JP2023135694 A JP 2023135694A JP 2022040902 A JP2022040902 A JP 2022040902A JP 2022040902 A JP2022040902 A JP 2022040902A JP 2023135694 A JP2023135694 A JP 2023135694A
Authority
JP
Japan
Prior art keywords
formula
compound represented
reaction
substituted aromatic
divinyl
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2022040902A
Other languages
Japanese (ja)
Inventor
和浩 上原
Kazuhiro Uehara
大輔 油野
Daisuke Yuno
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
DAINICHI CHEM KK
Original Assignee
DAINICHI CHEM KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by DAINICHI CHEM KK filed Critical DAINICHI CHEM KK
Priority to JP2022040902A priority Critical patent/JP2023135694A/en
Publication of JP2023135694A publication Critical patent/JP2023135694A/en
Pending legal-status Critical Current

Links

Landscapes

  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

To provide a method for producing a divinyl-substituted aromatic compound safely and inexpensively, with a short induction period, using Grignard reaction.SOLUTION: The present invention provides a method for producing a divinyl-substituted aromatic compound represented by the formula (4), using a product of formula (3), resulting from the reaction between the metal Mg and a vinyl-substituted aromatic halide in the presence of a compound of formula (1): R1-Mg-X1.SELECTED DRAWING: None

Description

本開示は、グリニヤ反応を利用したジビニル置換芳香族化合物の製造方法に関する。 The present disclosure relates to a method for producing a divinyl-substituted aromatic compound using a Grignard reaction.

非特許文献1には、金属マグネシウムを含むテトラヒドロフラン溶液に、ビニルベンジルクロリドを滴下するとグリニヤ試薬が生成し、生成したグリニヤ試薬のホモカップリング反応により、ビス(ビニルフェニル)エタンが得られることが記載されている。 Non-Patent Document 1 describes that when vinylbenzyl chloride is dropped into a tetrahydrofuran solution containing metallic magnesium, a Grignard reagent is generated, and bis(vinylphenyl)ethane is obtained through a homocoupling reaction of the generated Grignard reagent. has been done.

しかし、金属マグネシウムからグリニヤ試薬を生成する反応は、系内に水が存在すると進行しないことが知られている。また、金属マグネシウムは表面が不働態皮膜で覆われているため、金属マグネシウムが活性化され、グリニヤ試薬を生成する反応が開始するまでに時間(誘導期間)を要することが知られている。そして、反応が開始すると、反応は急激に進行して多量に発熱する場合があり、危険を伴うことも問題であった。 However, it is known that the reaction that produces a Grignard reagent from metallic magnesium does not proceed if water is present in the system. Furthermore, since the surface of metallic magnesium is covered with a passive film, it is known that it takes time (induction period) for metallic magnesium to be activated and for the reaction that produces the Grignard reagent to start. Once the reaction starts, the reaction may proceed rapidly and generate a large amount of heat, which is also a problem.

前記誘導期間を短縮する方法として、窒素雰囲気下で金属マグネシウムを粉砕する方法や、ヨウ素、ヨウ化メチル、臭化エチル、1,2-ジブロモエタンなどを添加する方法が知られている。しかし、これらの方法はコストが嵩むことや、再現性が低い観点から、工業化には適さなかった。 Known methods for shortening the induction period include pulverizing magnesium metal in a nitrogen atmosphere and adding iodine, methyl iodide, ethyl bromide, 1,2-dibromoethane, and the like. However, these methods were not suitable for industrialization due to high cost and low reproducibility.

W.-H.Li,et al. Journal of Polymer Science: Part A: Polymer Chemistry, Vol.32, 2023-2027(1994)W.-H.Li,et al. Journal of Polymer Science: Part A: Polymer Chemistry, Vol.32, 2023-2027(1994)

従って、本開示の目的は、グリニヤ反応を用いて、短い誘導期間で、安全且つ安価にジビニル置換芳香族化合物を製造する方法を提供することにある。 Therefore, an object of the present disclosure is to provide a method for safely and inexpensively producing divinyl-substituted aromatic compounds in a short induction period using the Grignard reaction.

本発明者らは上記課題を解決するため鋭意検討した結果、金属マグネシウムをビニル置換芳香族ハロゲン化物と反応させる系内に脂肪族グリニヤ試薬を添加すると、誘導期間が短縮化され、速やかにビニル置換芳香族グリニヤ試薬が得られること、得られたビニル置換芳香族グリニヤ試薬にビニル置換芳香族ハロゲン化物を反応させると、効率よくジビニル置換芳香族化合物が得られることを見いだした。本開示はこれらの知見に基づいて完成させたものである。 As a result of intensive studies to solve the above problems, the present inventors found that when an aliphatic Grignard reagent is added to the system in which metallic magnesium is reacted with a vinyl-substituted aromatic halide, the induction period is shortened and the vinyl-substituted aromatic halide is rapidly replaced. We have discovered that an aromatic Grignard reagent can be obtained and that a divinyl-substituted aromatic compound can be efficiently obtained by reacting the vinyl-substituted aromatic Grignard reagent with a vinyl-substituted aromatic halide. The present disclosure has been completed based on these findings.

すなわち、本開示は、下記工程1,2を含むジビニル置換芳香族化合物の製造方法を提供する。
工程1:下記式(1)
1-Mg-X1 (1)
(式中、R1は炭素数1~5のアルキル基を示し、X1はハロゲン原子を示す)
で表される化合物の存在下、下記式(2)

Figure 2023135694000001
(式中、R2は単結合又は炭素数1~5のアルキレン基を示し、X2はハロゲン原子を示す)
で表される化合物と金属マグネシウムを反応させて、下記式(3)
Figure 2023135694000002
(式中、R2、X2は前記に同じ)
で表される化合物を得る。
工程2:前記式(3)で表される化合物と下記式(2’)
Figure 2023135694000003
(式中、R3は単結合又は炭素数1~5のアルキレン基を示し、X3はハロゲン原子を示す)
で表される化合物を反応させて、下記式(4)
Figure 2023135694000004
(式中、R2、R3は前記に同じ)
で表されるジビニル置換芳香族化合物を得る。 That is, the present disclosure provides a method for producing a divinyl-substituted aromatic compound, which includes steps 1 and 2 below.
Step 1: Formula (1) below
R 1 -Mg-X 1 (1)
(In the formula, R 1 represents an alkyl group having 1 to 5 carbon atoms, and X 1 represents a halogen atom)
In the presence of a compound represented by the following formula (2)
Figure 2023135694000001
(In the formula, R 2 represents a single bond or an alkylene group having 1 to 5 carbon atoms, and X 2 represents a halogen atom)
By reacting the compound represented by the following formula (3) with metal magnesium,
Figure 2023135694000002
(In the formula, R 2 and X 2 are the same as above)
A compound represented by is obtained.
Step 2: Compound represented by the above formula (3) and the following formula (2')
Figure 2023135694000003
(In the formula, R 3 represents a single bond or an alkylene group having 1 to 5 carbon atoms, and X 3 represents a halogen atom)
By reacting the compound represented by the following formula (4)
Figure 2023135694000004
(In the formula, R 2 and R 3 are the same as above)
A divinyl-substituted aromatic compound represented by is obtained.

本開示は、また、工程1の反応を、金属マグネシウム1モルに対して前記式(1)で表される化合物が0.01~0.20モル存在する条件下で行う、前記ジビニル置換芳香族化合物の製造方法を提供する。 The present disclosure also provides that the divinyl substituted aromatic A method for producing a compound is provided.

本開示は、また、工程1の反応を10℃以下の温度条件下で行う、前記ジビニル置換芳香族化合物の製造方法を提供する。 The present disclosure also provides a method for producing the divinyl-substituted aromatic compound, wherein the reaction in Step 1 is carried out under a temperature condition of 10° C. or lower.

本開示では、金属マグネシウムをビニル置換芳香族ハロゲン化物と反応させる系内にメチルマグネシウムクロリド等の脂肪族グリニヤ試薬を存在させる。そうすると、反応系内に水が存在した場合には、前記脂肪族グリニヤ試薬が水と反応することにより、水を系内から除去することができる。また、金属マグネシウムの表面を覆う不働態皮膜は、前記脂肪族グリニヤ試薬と反応することで除去される。これにより、金属マグネシウムは速やかに活性化されるので、温和な温度でも、ビニル置換芳香族ハロゲン化物と反応してビニル置換芳香族グリニヤ試薬を形成する。
従って、本開示のジビニル置換芳香族化合物の製造方法によれば、温和な条件下におけるグリニヤ反応により、速やかにジビニル置換芳香族化合物を製造することができる。
In the present disclosure, an aliphatic Grignard reagent, such as methylmagnesium chloride, is present in the system in which magnesium metal is reacted with a vinyl-substituted aromatic halide. Then, if water is present in the reaction system, the aliphatic Grignard reagent reacts with water, thereby making it possible to remove water from the system. Further, the passive film covering the surface of metallic magnesium is removed by reacting with the aliphatic Grignard reagent. As a result, the metallic magnesium is rapidly activated and reacts with the vinyl-substituted aromatic halide to form a vinyl-substituted aromatic Grignard reagent even at mild temperatures.
Therefore, according to the method for producing a divinyl-substituted aromatic compound of the present disclosure, a divinyl-substituted aromatic compound can be rapidly produced by a Grignard reaction under mild conditions.

[ジビニル置換芳香族化合物の製造方法]
本開示のジビニル置換芳香族化合物の製造方法は、下記工程1,2を含む。尚、前記製造方法は下記工程1,2以外の工程を含んでいてもよい。
[Method for producing divinyl-substituted aromatic compound]
The method for producing a divinyl-substituted aromatic compound of the present disclosure includes the following steps 1 and 2. Note that the manufacturing method may include steps other than steps 1 and 2 below.

(工程1)
工程1は、下記式(1)で表される化合物の存在下、下記式(2)で表される化合物と金属マグネシウム(Mg)を反応させて、下記式(3)で表される化合物を得る工程である。

Figure 2023135694000005
(Step 1)
Step 1 is to react a compound represented by the following formula (2) with metal magnesium (Mg) in the presence of a compound represented by the following formula (1) to form a compound represented by the following formula (3). This is the process of obtaining
Figure 2023135694000005

前記式中、R1は炭素数1~5のアルキル基を示し、R2は単結合又は炭素数1~5のアルキレン基を示す。X1、X2は同一又は異なってハロゲン原子を示す。 In the above formula, R 1 represents an alkyl group having 1 to 5 carbon atoms, and R 2 represents a single bond or an alkylene group having 1 to 5 carbon atoms. X 1 and X 2 are the same or different and represent a halogen atom.

前記R1における炭素数1~5のアルキル基としては、例えば、メチル基、エチル基、プロピル基、イソプロピル基、ブチル基、イソブチル基、s-ブチル基、t-ブチル基、ペンチル基等の直鎖状又は分岐鎖状アルキル基が挙げられる。 Examples of the alkyl group having 1 to 5 carbon atoms in R 1 include straight groups such as methyl group, ethyl group, propyl group, isopropyl group, butyl group, isobutyl group, s-butyl group, t-butyl group, and pentyl group. Examples include linear or branched alkyl groups.

前記R2における炭素数1~5のアルキレン基としては、例えば、メチレン基、メチルメチレン基、ジメチルメチレン基、エチレン基、プロピレン基、トリメチレン基等の直鎖状又は分岐鎖状のアルキレン基が挙げられる。 Examples of the alkylene group having 1 to 5 carbon atoms in R 2 include linear or branched alkylene groups such as a methylene group, a methylmethylene group, a dimethylmethylene group, an ethylene group, a propylene group, and a trimethylene group. It will be done.

前記X1、X2におけるハロゲン原子には、フッ素原子、塩素原子、臭素原子、ヨウ素原子が含まれる。 The halogen atoms in X 1 and X 2 include fluorine atoms, chlorine atoms, bromine atoms, and iodine atoms.

式(2)で表される化合物は、式(2)中のベンゼン環にビニル基が1つ結合している。ビニル基の結合位置は、R2-X2基の、オルト位、メタ位、又はパラ位である。なかでもパラ位が好ましい。また、前記ベンゼン環はビニル基以外にも他の置換基を有していてもよい。他の置換基としては、例えば、C1-5アルキル基、C6-10アリール基、C7-12アラルキル基、ヒドロキシル基、C1-5アルコキシ基、C6-10アリールオキシ基、C7-12アラルキルオキシ基、C1-5アシルオキシ基等が挙げられる。また、前記ベンゼン環には、芳香族性又は非芳香属性の炭化水素環や、芳香族性又は非芳香属性の複素環が縮合していてもよい。 In the compound represented by formula (2), one vinyl group is bonded to the benzene ring in formula (2). The bonding position of the vinyl group is the ortho position, meta position, or para position of the R 2 -X 2 group. Among these, the para position is preferred. Furthermore, the benzene ring may have other substituents in addition to the vinyl group. Other substituents include, for example, a C 1-5 alkyl group, a C 6-10 aryl group, a C 7-12 aralkyl group, a hydroxyl group, a C 1-5 alkoxy group, a C 6-10 aryloxy group, a C 7 -12 aralkyloxy group, C 1-5 acyloxy group and the like. Furthermore, an aromatic or non-aromatic hydrocarbon ring or an aromatic or non-aromatic heterocycle may be fused to the benzene ring.

式(1)で表される化合物の使用量は、金属マグネシウム1モルに対して、例えば0.01~0.20モル、好ましくは0.01~0.10モル、特に好ましくは0.03~0.07モルである。式(1)で表される化合物を前記範囲で使用すると、金属マグネシウムが速やかに活性化され、式(2)で表される化合物との反応が速やかに進行する。系内に存在する式(1)で表される化合物の量が前記範囲を下回ると、系内に水分が存在する場合は、式(2)で表される化合物と金属マグネシウムの反応の進行が抑制される傾向がある。また、系内に存在する式(1)で表される化合物の量が前記範囲を上回ると、副生物が増加する傾向がある。 The amount of the compound represented by formula (1) to be used is, for example, 0.01 to 0.20 mol, preferably 0.01 to 0.10 mol, particularly preferably 0.03 to 0.10 mol, per 1 mol of metal magnesium. It is 0.07 mol. When the compound represented by formula (1) is used within the above range, magnesium metal is rapidly activated and the reaction with the compound represented by formula (2) proceeds rapidly. If the amount of the compound represented by formula (1) present in the system is below the above range, the reaction between the compound represented by formula (2) and magnesium metal will slow down if water is present in the system. It tends to be suppressed. Furthermore, when the amount of the compound represented by formula (1) present in the system exceeds the above range, by-products tend to increase.

式(2)で表される化合物の使用量は、金属マグネシウム1モルに対して、例えば0.90~1.10モル、好ましくは1.00~1.05モルである。 The amount of the compound represented by formula (2) to be used is, for example, 0.90 to 1.10 mol, preferably 1.00 to 1.05 mol, per 1 mol of magnesium metal.

前記反応は溶媒の存在下で行うことができる。前記溶媒としては、例えば、ジエチルエーテル、ジイソプロピルエーテル、ジブチルエーテル、テトラヒドロフラン、ジオキサン、1,2-ジメトキシエタン、シクロペンチルメチルエーテル等のエーテル系溶媒が挙げられる。これらは1種を単独で、又は2種以上を組み合わせて使用することができる。 The reaction can be carried out in the presence of a solvent. Examples of the solvent include ether solvents such as diethyl ether, diisopropyl ether, dibutyl ether, tetrahydrofuran, dioxane, 1,2-dimethoxyethane, and cyclopentyl methyl ether. These can be used alone or in combination of two or more.

前記溶媒は水分の含有量が低いことが好ましく、水分含有量は、溶媒全量の例えば0.1重量%以下、好ましくは0.05重量%以下である。 The solvent preferably has a low water content, and the water content is, for example, 0.1% by weight or less, preferably 0.05% by weight or less, based on the total amount of the solvent.

前記溶媒の使用量としては、式(2)で表される化合物と金属マグネシウムの総量に対して、例えば2.5~3.5重量倍程度である。溶媒の使用量が上記範囲を上回ると反応成分の濃度が低くなり、反応速度が低下する傾向がある。 The amount of the solvent used is, for example, about 2.5 to 3.5 times the total amount of the compound represented by formula (2) and magnesium metal. When the amount of solvent used exceeds the above range, the concentration of the reaction components tends to be low and the reaction rate tends to decrease.

反応雰囲気としては反応を阻害しない限り特に限定されず、例えば、窒素雰囲気、アルゴン雰囲気等の何れであってもよい。 The reaction atmosphere is not particularly limited as long as it does not inhibit the reaction, and may be, for example, a nitrogen atmosphere, an argon atmosphere, or the like.

前記反応を溶媒の存在下で行う場合、まず、加熱・撹拌等を行って、溶媒に、金属マグネシウムと式(1)で表される化合物を溶解させ、その後、式(2)で表される化合物を添加することが好ましい。 When the reaction is carried out in the presence of a solvent, first, heating, stirring, etc. are performed to dissolve metallic magnesium and the compound represented by formula (1) in the solvent, and then the compound represented by formula (2) is dissolved in the solvent. Preferably, the compound is added.

そして、式(2)で表される化合物と金属マグネシウムの反応温度は、例えば20℃以下(例えば0~20℃)であり、好ましくは15℃以下、特に好ましくは10℃以下である。工程1の反応は発熱反応であるが、本開示の製造方法では、式(1)で表される化合物を使用して金属マグネシウムの活性化するため、低温で反応を開始することができる。また、発熱量を抑制することができ、安全に反応を進めることができる。 The reaction temperature between the compound represented by formula (2) and magnesium metal is, for example, 20°C or lower (eg, 0 to 20°C), preferably 15°C or lower, particularly preferably 10°C or lower. Although the reaction in step 1 is an exothermic reaction, in the production method of the present disclosure, the compound represented by formula (1) is used to activate magnesium metal, so the reaction can be started at a low temperature. Moreover, the amount of heat generated can be suppressed, and the reaction can proceed safely.

反応時間は、例えば0.5~20時間程度である。 The reaction time is, for example, about 0.5 to 20 hours.

反応はバッチ式、セミバッチ式、連続式等の何れの方法でも行うことができる。反応の終了時は、GC分析等により、式(2)で表される化合物の残存量を確認することにより判断することができる。この反応終了後、反応生成物である式(3)で表される化合物には、一般的な分離精製処理(例えば、沈殿、洗浄、濾過等)を施してもよい。また、式(3)で表される化合物を分離精製せず、引き続き、工程2の反応を行ってもよい。すなわち、ワンポットで工程1,2の反応を行ってもよい。 The reaction can be carried out by any method such as a batch method, a semi-batch method, or a continuous method. The completion of the reaction can be determined by checking the remaining amount of the compound represented by formula (2) by GC analysis or the like. After completion of this reaction, the reaction product, the compound represented by formula (3), may be subjected to general separation and purification treatments (eg, precipitation, washing, filtration, etc.). Alternatively, the reaction in step 2 may be performed subsequently without separating and purifying the compound represented by formula (3). That is, the reactions in steps 1 and 2 may be performed in one pot.

(工程2)
工程2は、工程1で得られた式(3)で表される化合物と下記式(2’)表される化合物を反応(カップリング反応)させて、下記式(4)で表されるジビニル置換芳香族化合物を得る工程である。

Figure 2023135694000006
(Step 2)
Step 2 is a reaction (coupling reaction) between the compound represented by formula (3) obtained in step 1 and the compound represented by formula (2') below to form divinyl represented by formula (4) below. This is a process for obtaining a substituted aromatic compound.
Figure 2023135694000006

前記式中、R2、R3は同一又は異なって、単結合又は炭素数1~5のアルキレン基を示す。X2、X3は同一又は異なって、ハロゲン原子を示す。尚、R2、X2は前記に同じである。 In the above formula, R 2 and R 3 are the same or different and represent a single bond or an alkylene group having 1 to 5 carbon atoms. X 2 and X 3 are the same or different and represent a halogen atom. Incidentally, R 2 and X 2 are the same as described above.

前記R3における炭素数1~5のアルキレン基としては、前記R2における炭素数1~5のアルキレン基と同様の例が挙げられる。 Examples of the alkylene group having 1 to 5 carbon atoms in R 3 include the same examples as the alkylene group having 1 to 5 carbon atoms in R 2 .

前記X3におけるハロゲン原子としては、前記X1、X2におけるハロゲン原子と同様の例が挙げられる。 Examples of the halogen atom in the above X 3 include the same examples as the halogen atoms in the above X 1 and X 2 .

式(2’)で表される化合物は、式(2)で表される化合物と同じ化合物であってもよく、異なる化合物であってもよい。製造しようとするジビニル置換芳香族化合物に応じて適宜選択することができる。 The compound represented by formula (2') may be the same compound as the compound represented by formula (2), or may be a different compound. It can be appropriately selected depending on the divinyl-substituted aromatic compound to be produced.

前記式(2’)で表される化合物の使用量は、式(3)で表される化合物1モルに対して、例えば0.9~1.1モル、好ましくは0.95~1.05モルである。 The amount of the compound represented by formula (2') to be used is, for example, 0.9 to 1.1 mol, preferably 0.95 to 1.05 mol, per 1 mol of the compound represented by formula (3). It is a mole.

前記反応は溶媒の存在下で行うことができる。前記溶媒としては、例えば、ジエチルエーテル、ジイソプロピルエーテル、ジブチルエーテル、テトラヒドロフラン、ジオキサン、1,2-ジメトキシエタン、シクロペンチルメチルエーテル等のエーテル系溶媒が挙げられる。これらは1種を単独で、又は2種以上を組み合わせて使用することができる。 The reaction can be carried out in the presence of a solvent. Examples of the solvent include ether solvents such as diethyl ether, diisopropyl ether, dibutyl ether, tetrahydrofuran, dioxane, 1,2-dimethoxyethane, and cyclopentyl methyl ether. These can be used alone or in combination of two or more.

前記溶媒は水分の含有量が低いことが好ましく、水分含有量は、溶媒全量の例えば0.1重量%以下、好ましくは0.05重量%以下である。 The solvent preferably has a low water content, and the water content is, for example, 0.1% by weight or less, preferably 0.05% by weight or less, based on the total amount of the solvent.

前記溶媒の使用量としては、式(2’)で表される化合物と式(3)で表される化合物の総量に対して、例えば2.5~3.5重量倍程度である。溶媒の使用量が上記範囲を上回ると反応成分の濃度が低くなり、反応速度が低下する傾向がある。 The amount of the solvent used is, for example, about 2.5 to 3.5 times the total amount of the compound represented by formula (2') and the compound represented by formula (3). When the amount of solvent used exceeds the above range, the concentration of the reaction components tends to be low and the reaction rate tends to decrease.

反応雰囲気としては反応を阻害しない限り特に限定されず、例えば、窒素雰囲気、アルゴン雰囲気等の何れであってもよい。 The reaction atmosphere is not particularly limited as long as it does not inhibit the reaction, and may be, for example, a nitrogen atmosphere, an argon atmosphere, or the like.

反応温度は、例えば20℃以下(例えば0~20℃)であり、好ましくは15℃以下、特に好ましくは10℃以下である。 The reaction temperature is, for example, 20°C or lower (for example, 0 to 20°C), preferably 15°C or lower, particularly preferably 10°C or lower.

反応時間は、例えば0.5~20時間程度である。 The reaction time is, for example, about 0.5 to 20 hours.

反応はバッチ式、セミバッチ式、連続式等の何れの方法でも行うことができる。この反応終了後、反応生成物である式(4)で表されるジビニル置換芳香族化合物は、一般的な、沈殿、洗浄、濾過により分離精製できる。 The reaction can be carried out by any method such as a batch method, a semi-batch method, or a continuous method. After completion of this reaction, the divinyl-substituted aromatic compound represented by formula (4), which is a reaction product, can be separated and purified by conventional precipitation, washing, and filtration.

このようにして得られるジビニル置換芳香族化合物は、例えば、低誘電率絶縁層の形成材料として有用である。また、前記ジビニル置換芳香族化合物を用いて得られる絶縁層を備える電子部品は、誘電損失が小さく高周波特性に優れる。 The divinyl-substituted aromatic compound thus obtained is useful, for example, as a material for forming a low dielectric constant insulating layer. Further, electronic components including an insulating layer obtained using the divinyl-substituted aromatic compound have low dielectric loss and excellent high frequency characteristics.

以上、本開示の各構成及びそれらの組み合わせ等は一例であって、本開示の主旨から逸脱しない範囲において、適宜、構成の付加、省略、置換、及び変更が可能である。 The above configurations and combinations thereof of the present disclosure are merely examples, and additions, omissions, substitutions, and changes to the configurations can be made as appropriate without departing from the gist of the present disclosure.

以下、実施例により本開示をより具体的に説明するが、本開示はこれらの実施例により限定されるものではなく、特許請求の範囲の記載によってのみ限定される。 Hereinafter, the present disclosure will be described in more detail with reference to Examples, but the present disclosure is not limited by these Examples, but only by the description of the claims.

実施例1
(工程1-1)
窒素置換したフラスコに、金属マグネシウム1.19モルとテトラヒドロフラン(水分含有量:0.05重量%)1270mLを仕込み、ここにメチルマグネシウムクロリド0.06モルを添加して、66.0℃で30分間撹拌した。撹拌終了後の反応液温度は66.3℃であった。
Example 1
(Step 1-1)
In a flask purged with nitrogen, 1.19 mol of magnesium metal and 1270 mL of tetrahydrofuran (water content: 0.05% by weight) were charged, 0.06 mol of methylmagnesium chloride was added thereto, and the mixture was heated at 66.0°C for 30 minutes. Stirred. The temperature of the reaction solution after stirring was 66.3°C.

(工程1-2)
その後、前記フラスコ内に4-ビニルベンジルクロリド1.20モルを滴下し、7℃で撹拌した。撹拌開始後5分でフラスコ内温度が上昇し始め、撹拌開始から10分で反応液をサンプリングし、アセトンを加えて、GCで分析したところ、4-ビニルベンジルクロリドのピークは観測されず、グリニヤ試薬の生成を示すピークが観測された。
(Step 1-2)
Thereafter, 1.20 mol of 4-vinylbenzyl chloride was added dropwise into the flask and stirred at 7°C. The temperature inside the flask started to rise 5 minutes after the start of stirring, and when the reaction solution was sampled 10 minutes after the start of stirring, acetone was added, and it was analyzed by GC, no peak of 4-vinylbenzyl chloride was observed. A peak indicating the production of the reagent was observed.

(工程2)
その後、更に、前記フラスコ内に4-ビニルベンジルクロリド1.20モルを滴下し、8℃で撹拌した。その結果、1,2-ビス(p-ビニルフェニル)エタンが得られた(収率:100%)。
(Step 2)
Thereafter, 1.20 mol of 4-vinylbenzyl chloride was further added dropwise into the flask and stirred at 8°C. As a result, 1,2-bis(p-vinylphenyl)ethane was obtained (yield: 100%).

比較例1
(工程1-1)
メチルマグネシウムクロリドに代えて1,2-ジブロモエタン0.004モルを使用した以外は実施例1と同様に行った。
(工程1-2)
フラスコ内温度が25℃で反応が開始した。そして、フラスコ内温度は57℃まで上昇して反応が終了した。
(工程2)
実施例1と同様に行った。その結果、1,2-ビス(p-ビニルフェニル)エタンが得られた(収率:93%)。
Comparative example 1
(Step 1-1)
The same procedure as in Example 1 was carried out except that 0.004 mol of 1,2-dibromoethane was used in place of methylmagnesium chloride.
(Step 1-2)
The reaction started when the temperature inside the flask reached 25°C. Then, the temperature inside the flask rose to 57°C, and the reaction was completed.
(Step 2)
The same procedure as in Example 1 was carried out. As a result, 1,2-bis(p-vinylphenyl)ethane was obtained (yield: 93%).

比較例2
窒素置換したフラスコに、メチルマグネシウムクロリド0.039モルとテトラヒドロフラン22mLを仕込み、4-ビニルベンジルクロリド0.039モルを滴下し、5℃で180分間撹拌した。
しかし、1,2-ビス(p-ビニルフェニル)エタンは得られなかった。
Comparative example 2
A flask purged with nitrogen was charged with 0.039 mol of methylmagnesium chloride and 22 mL of tetrahydrofuran, 0.039 mol of 4-vinylbenzyl chloride was added dropwise, and the mixture was stirred at 5° C. for 180 minutes.
However, 1,2-bis(p-vinylphenyl)ethane was not obtained.

Claims (3)

下記工程1,2を含むジビニル置換芳香族化合物の製造方法。
工程1:下記式(1)
1-Mg-X1 (1)
(式中、R1は炭素数1~5のアルキル基を示し、X1はハロゲン原子を示す)
で表される化合物の存在下、下記式(2)
Figure 2023135694000007
(式中、R2は単結合又は炭素数1~5のアルキレン基を示し、X2はハロゲン原子を示す)
で表される化合物と金属マグネシウムを反応させて、下記式(3)
Figure 2023135694000008
(式中、R2、X2は前記に同じ)
で表される化合物を得る。
工程2:前記式(3)で表される化合物と下記式(2’)
Figure 2023135694000009
(式中、R3は単結合又は炭素数1~5のアルキレン基を示し、X3はハロゲン原子を示す)
で表される化合物を反応させて、下記式(4)
Figure 2023135694000010
(式中、R2、R3は前記に同じ)
で表されるジビニル置換芳香族化合物を得る。
A method for producing a divinyl-substituted aromatic compound comprising the following steps 1 and 2.
Step 1: Formula (1) below
R 1 -Mg-X 1 (1)
(In the formula, R 1 represents an alkyl group having 1 to 5 carbon atoms, and X 1 represents a halogen atom)
In the presence of a compound represented by the following formula (2)
Figure 2023135694000007
(In the formula, R 2 represents a single bond or an alkylene group having 1 to 5 carbon atoms, and X 2 represents a halogen atom)
By reacting the compound represented by the following formula (3) with metal magnesium,
Figure 2023135694000008
(In the formula, R 2 and X 2 are the same as above)
A compound represented by is obtained.
Step 2: Compound represented by the above formula (3) and the following formula (2')
Figure 2023135694000009
(In the formula, R 3 represents a single bond or an alkylene group having 1 to 5 carbon atoms, and X 3 represents a halogen atom)
By reacting the compound represented by the following formula (4)
Figure 2023135694000010
(In the formula, R 2 and R 3 are the same as above)
A divinyl-substituted aromatic compound represented by is obtained.
工程1の反応を、金属マグネシウム1モルに対して前記式(1)で表される化合物が0.01~0.20モル存在する条件下で行う、請求項1に記載のジビニル置換芳香族化合物の製造方法。 The divinyl-substituted aromatic compound according to claim 1, wherein the reaction in step 1 is carried out under conditions where 0.01 to 0.20 mol of the compound represented by the formula (1) is present per 1 mol of magnesium metal. manufacturing method. 工程1の反応を10℃以下の温度条件下で行う、請求項1又は2に記載のジビニル置換芳香族化合物の製造方法。 The method for producing a divinyl-substituted aromatic compound according to claim 1 or 2, wherein the reaction in step 1 is carried out at a temperature of 10° C. or lower.
JP2022040902A 2022-03-16 2022-03-16 Method for producing divinyl-substituted aromatic compound Pending JP2023135694A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2022040902A JP2023135694A (en) 2022-03-16 2022-03-16 Method for producing divinyl-substituted aromatic compound

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2022040902A JP2023135694A (en) 2022-03-16 2022-03-16 Method for producing divinyl-substituted aromatic compound

Publications (1)

Publication Number Publication Date
JP2023135694A true JP2023135694A (en) 2023-09-29

Family

ID=88145298

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2022040902A Pending JP2023135694A (en) 2022-03-16 2022-03-16 Method for producing divinyl-substituted aromatic compound

Country Status (1)

Country Link
JP (1) JP2023135694A (en)

Similar Documents

Publication Publication Date Title
Hart et al. Hydrozirconation. III. Stereospecific and regioselective functionalization of alkylacetylenes via vinylzirconium (IV) intermediates
JP7536905B2 (en) Process for preparing organotin compounds
RU2271356C2 (en) Vinylene carbonate mixture and method for its preparing
US2680758A (en) Dicyclopentadienylnickel and method
CN116888133A (en) Method for preparing organic tin compound
JP6812855B2 (en) Method for producing dialkylaminosilane
JPS6113449B2 (en)
JP2023135694A (en) Method for producing divinyl-substituted aromatic compound
JP2008266279A (en) Method for producing perfluoro-unsaturated hydrocarbon
JP5188393B2 (en) Synthesis of benzyl metal compounds
US5599892A (en) Preparation of polysilanes
JPS63250388A (en) Production of monoalkoxysilane compound
US3646087A (en) Preparation of aminophenyltrialkoxy silanes
JPH07701B2 (en) Method for producing polysilane
JP2006298922A (en) Method of producing unsaturated cyclic orthoester
JP6958468B2 (en) Method for producing a halosilane compound having a tertiary hydrocarbon group
JP2557382B2 (en) Method for producing metabrominated bifunol
JP5283984B2 (en) Process for producing transition metal compound
US3642867A (en) Process for the preparation of a 1 2-bis(4-carboalkoxyphenoxy)ethane
JP6439219B2 (en) Production method of fluorine-containing phenol
JPH04185642A (en) Production of polysilane
US3219682A (en) Method of producing cyclic ethyleneboronates
JP2007112788A (en) Oxetane compound
KR20030062591A (en) Novel Process for Preparation of Dialkoxy Trityl Halide
CN116444564A (en) Method for synthesizing triethyl-3, 3' -phosphinotripropionate and application thereof