JP2023135579A - Modified (meth)acrylic resin coating composition, laminated coating film, substrate with coating film, and method for producing the same - Google Patents

Modified (meth)acrylic resin coating composition, laminated coating film, substrate with coating film, and method for producing the same Download PDF

Info

Publication number
JP2023135579A
JP2023135579A JP2022087004A JP2022087004A JP2023135579A JP 2023135579 A JP2023135579 A JP 2023135579A JP 2022087004 A JP2022087004 A JP 2022087004A JP 2022087004 A JP2022087004 A JP 2022087004A JP 2023135579 A JP2023135579 A JP 2023135579A
Authority
JP
Japan
Prior art keywords
meth
modified
acrylic resin
mass
coating film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2022087004A
Other languages
Japanese (ja)
Other versions
JP7183461B1 (en
Inventor
真尚 児玉
Masanao Kodama
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Chugoku Marine Paints Ltd
Original Assignee
Chugoku Marine Paints Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chugoku Marine Paints Ltd filed Critical Chugoku Marine Paints Ltd
Application granted granted Critical
Publication of JP7183461B1 publication Critical patent/JP7183461B1/en
Priority to CN202310240719.1A priority Critical patent/CN116200092A/en
Publication of JP2023135579A publication Critical patent/JP2023135579A/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D151/00Coating compositions based on graft polymers in which the grafted component is obtained by reactions only involving carbon-to-carbon unsaturated bonds; Coating compositions based on derivatives of such polymers
    • C09D151/08Coating compositions based on graft polymers in which the grafted component is obtained by reactions only involving carbon-to-carbon unsaturated bonds; Coating compositions based on derivatives of such polymers grafted on to macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D1/00Processes for applying liquids or other fluent materials
    • B05D1/36Successively applying liquids or other fluent materials, e.g. without intermediate treatment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D7/00Processes, other than flocking, specially adapted for applying liquids or other fluent materials to particular surfaces or for applying particular liquids or other fluent materials
    • B05D7/14Processes, other than flocking, specially adapted for applying liquids or other fluent materials to particular surfaces or for applying particular liquids or other fluent materials to metal, e.g. car bodies
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D7/00Processes, other than flocking, specially adapted for applying liquids or other fluent materials to particular surfaces or for applying particular liquids or other fluent materials
    • B05D7/50Multilayers
    • B05D7/52Two layers
    • B05D7/54No clear coat specified
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F283/00Macromolecular compounds obtained by polymerising monomers on to polymers provided for in subclass C08G
    • C08F283/01Macromolecular compounds obtained by polymerising monomers on to polymers provided for in subclass C08G on to unsaturated polyesters
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D163/00Coating compositions based on epoxy resins; Coating compositions based on derivatives of epoxy resins
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D5/00Coating compositions, e.g. paints, varnishes or lacquers, characterised by their physical nature or the effects produced; Filling pastes
    • C09D5/08Anti-corrosive paints
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D7/00Features of coating compositions, not provided for in group C09D5/00; Processes for incorporating ingredients in coating compositions
    • C09D7/40Additives
    • C09D7/60Additives non-macromolecular
    • C09D7/63Additives non-macromolecular organic
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D2202/00Metallic substrate
    • B05D2202/10Metallic substrate based on Fe
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D2502/00Acrylic polymers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D2504/00Epoxy polymers

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Wood Science & Technology (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Paints Or Removers (AREA)
  • Application Of Or Painting With Fluid Materials (AREA)

Abstract

To provide a modified (meth)acrylic resin coating composition, capable of forming a coating film with an optimal balance of resistance to bubble bulging, yellowing, water whitening, and weathering.SOLUTION: A modified (meth)acrylic resin coating composition contains a modified (meth)acrylic resin (a) having an iodine value of less than 4 and a manganese-containing drying accelerator (b).SELECTED DRAWING: None

Description

本発明は、変性(メタ)アクリル樹脂系塗料組成物、積層塗膜、塗膜付き基材およびその製造方法に関する。 The present invention relates to a modified (meth)acrylic resin coating composition, a laminated coating film, a substrate with a coating film, and a method for producing the same.

従来、船舶、橋梁、タンク、プラント、海上ブイ、海中パイプライン等の(大型)鉄鋼構造物は、防食性等の各種機能を付与することを目的として、様々な仕様の積層塗膜で被覆されている。例えば、下塗りとしてエポキシ樹脂系防食塗料組成物を塗装した後、形成された防食塗膜上に、意匠性や耐候性等を高める目的で、上塗り塗料組成物が塗装される。 Traditionally, (large) steel structures such as ships, bridges, tanks, plants, offshore buoys, and underwater pipelines have been coated with laminated coatings of various specifications for the purpose of imparting various functions such as corrosion resistance. ing. For example, after applying an epoxy resin-based anticorrosive paint composition as an undercoat, a topcoat paint composition is applied onto the formed anticorrosive paint film for the purpose of improving design, weather resistance, and the like.

前記上塗り塗料組成物としては、2液反応硬化型の上塗り塗料組成物(例:アクリルウレタン樹脂系塗料組成物、フッ素ウレタン樹脂系塗料組成物)が用いられている。しかし、このような2液反応硬化型の上塗り塗料組成物は、塗料組成物自体が高価である上、主剤成分と硬化剤成分との混合を必要とするため、取扱いが煩雑である点、可使時間による制限がある等の作業性にも問題があり、前記大型鉄鋼構造物のような大面積の塗装には適さない場合がある。 As the top coating composition, a two-component reaction curing type top coating composition (eg, an acrylic urethane resin coating composition, a fluorine urethane resin coating composition) is used. However, such two-component reaction-curing top coat compositions are expensive, and require mixing of the main component and curing agent component, making them difficult to handle. There are also problems with workability, such as limitations due to usage time, and there are cases where it is not suitable for painting large areas such as the large steel structures mentioned above.

また、前記上塗り塗料組成物としては、安価に入手することができる上、主剤成分と硬化剤成分との混合による手間や、混合後の可使時間による制限がない、作業性に優れた1液型の上塗り塗料組成物、具体的には、(メタ)アクリル樹脂系塗料組成物等も知られている。 In addition, the above-mentioned top coating composition is a one-component composition that is inexpensive, has excellent workability, and is free from the labor involved in mixing the main component and curing agent component, and is not limited by pot life after mixing. Top coating compositions for molds, specifically (meth)acrylic resin coating compositions, are also known.

前記(メタ)アクリル樹脂系塗料組成物には、塗装時に発生した気泡が、形成した塗膜中に残存し、該塗膜が、例えば、夏季等の高温環境に曝された際に、膨張や融合拡大し、塗膜表面上にフクレが現れるといった問題があることが知られており、この問題を解決するために、特許文献1には、ヨウ素価が高いアクリル樹脂および乾燥促進剤を用いることを特徴とする(メタ)アクリル樹脂系塗料組成物が開示されている。 In the (meth)acrylic resin coating composition, air bubbles generated during coating remain in the formed coating film, and when the coating film is exposed to a high temperature environment such as in the summer, it may expand or It is known that there is a problem of fusion and expansion and blisters appearing on the surface of the coating film. In order to solve this problem, Patent Document 1 describes the use of an acrylic resin with a high iodine value and a drying accelerator. A (meth)acrylic resin coating composition is disclosed.

特開2018-44162号公報JP 2018-44162 Publication

例えば、特許文献1に記載のような(メタ)アクリル樹脂系塗料組成物には、該組成物を乾燥させるための乾燥促進剤(ドライヤー)が必須成分として使用されている。該乾燥促進剤としては、コバルト、ジルコニウム、カルシウム、バリウム等の金属塩などが一般的に使用されており、これらの中でも、コバルトドライヤーは、乾燥性能に優れるため、これまで主要な乾燥促進剤として用いられてきた。 For example, a (meth)acrylic resin coating composition as described in Patent Document 1 includes a drying accelerator (dryer) as an essential component for drying the composition. Metal salts such as cobalt, zirconium, calcium, and barium are commonly used as drying accelerators. Among these, cobalt dryers have been used as the main drying accelerator due to their excellent drying performance. has been used.

前述のように、特許文献1に記載のような(メタ)アクリル樹脂系塗料組成物には、乾燥促進剤が必須ではあるが、本発明者は、このような乾燥促進剤の使用により、得られる塗膜が黄変したり、得られる塗膜の耐水白化性や耐候性が低下することが分かった。 As mentioned above, a drying accelerator is essential for a (meth)acrylic resin coating composition as described in Patent Document 1, but the present inventors have discovered that the use of such a drying accelerator can provide benefits. It was found that the resulting paint film yellowed, and the water whitening resistance and weather resistance of the resulting paint film decreased.

本発明は、前記問題に鑑みてなされたものであり、耐気泡フクレ性、耐黄変性、耐水白化性および耐候性にバランスよく優れる塗膜を形成可能な変性(メタ)アクリル樹脂系塗料組成物を提供することを目的とする。 The present invention has been made in view of the above-mentioned problems, and provides a modified (meth)acrylic resin coating composition that can form a coating film that is excellent in a well-balanced manner in bubble resistance, yellowing resistance, water whitening resistance, and weather resistance. The purpose is to provide

本発明者は、前記課題を解決するために鋭意検討した結果、下記構成例によれば、前記課題を解決できることを見出し、本発明を完成した。
本発明の構成例は以下の通りである。
As a result of intensive studies to solve the above-mentioned problems, the present inventor found that the above-mentioned problems could be solved according to the following configuration example, and completed the present invention.
A configuration example of the present invention is as follows.

[1] ヨウ素価が4未満の変性(メタ)アクリル樹脂(a)およびマンガンを含有する乾燥促進剤(b)を含有する、変性(メタ)アクリル樹脂系塗料組成物。 [1] A modified (meth)acrylic resin coating composition containing a modified (meth)acrylic resin (a) having an iodine value of less than 4 and a drying accelerator (b) containing manganese.

[2] 前記乾燥促進剤(b)が脂肪酸マンガン塩である、[1]に記載の変性(メタ)アクリル樹脂系塗料組成物。 [2] The modified (meth)acrylic resin coating composition according to [1], wherein the drying accelerator (b) is a fatty acid manganese salt.

[3] さらに顔料を含有し、
前記変性(メタ)アクリル樹脂系塗料組成物中の顔料体積濃度(PVC)が15~45%である、
[1]または[2]に記載の変性(メタ)アクリル樹脂系塗料組成物。
[3] Further contains a pigment,
The pigment volume concentration (PVC) in the modified (meth)acrylic resin coating composition is 15 to 45%,
The modified (meth)acrylic resin coating composition according to [1] or [2].

[4] エポキシ樹脂系下塗り防食塗膜と、[1]~[3]のいずれかに記載の変性(メタ)アクリル樹脂系塗料組成物から形成された上塗り塗膜との積層塗膜。 [4] A laminated coating film comprising an epoxy resin undercoat anticorrosive coating film and a topcoat coating film formed from the modified (meth)acrylic resin coating composition according to any one of [1] to [3].

[5] [4]に記載の積層塗膜と基材とを含む塗膜付き基材。
[6] 前記基材が鉄鋼構造物である、[5]に記載の塗膜付き基材。
[5] A base material with a coating film, comprising the laminated coating film according to [4] and a base material.
[6] The coated base material according to [5], wherein the base material is a steel structure.

[7] 下記工程1および2を含む、塗膜付き基材の製造方法。
工程1:基材に、エポキシ樹脂系防食塗料組成物を塗装し、下塗り防食塗膜(A)を形成する工程
工程2:下塗り防食塗膜(A)上に、[1]~[3]のいずれかに記載の変性(メタ)アクリル樹脂系塗料組成物を塗装し、上塗り塗膜(B)を形成する工程
[7] A method for producing a coated base material, including the following steps 1 and 2.
Step 1: Step of coating the base material with an epoxy resin-based anticorrosive coating composition to form an undercoat anticorrosion coating (A) Step 2: Applying [1] to [3] on the undercoat anticorrosion coating (A). A step of applying any of the modified (meth)acrylic resin coating compositions to form a topcoat film (B).

本発明によれば、耐気泡フクレ性、耐黄変性、耐水白化性および耐候性にバランスよく優れる塗膜を形成可能な変性(メタ)アクリル樹脂系塗料組成物を提供することができる。
また、本発明によれば、形成する塗膜の厚みが厚くなった場合であっても、フクレが発生し難い塗膜を容易に形成することができる。
さらに、本発明によれば、安全性に優れる変性(メタ)アクリル樹脂系塗料組成物を提供することができ、皮張り防止剤を用いなくても皮張りしない変性(メタ)アクリル樹脂系塗料組成物を提供することができる。
According to the present invention, it is possible to provide a modified (meth)acrylic resin coating composition that can form a coating film that is excellent in a well-balanced manner in bubble blistering resistance, yellowing resistance, water whitening resistance, and weather resistance.
Further, according to the present invention, even if the thickness of the coating film to be formed is increased, a coating film that is less likely to cause blisters can be easily formed.
Further, according to the present invention, it is possible to provide a modified (meth)acrylic resin coating composition that is highly safe, and which does not form a skin even without using an anti-skinning agent. can provide things.

≪変性(メタ)アクリル樹脂系塗料組成物≫
本発明に係る変性(メタ)アクリル樹脂系塗料組成物(以下「本組成物」ともいう。)は、ヨウ素価が4未満の変性(メタ)アクリル樹脂(a)(以下単に「変性(メタ)アクリル樹脂(a)」ともいう。)およびマンガンを含有する乾燥促進剤(b)(以下単に「乾燥促進剤(b)」ともいう。)を含有する。
<<Modified (meth)acrylic resin coating composition>>
The modified (meth)acrylic resin coating composition (hereinafter also referred to as "this composition") according to the present invention is a modified (meth)acrylic resin (a) having an iodine value of less than 4 (hereinafter simply "modified (meth) acrylic resin (a)") and a drying accelerator (b) containing manganese (hereinafter also simply referred to as "drying accelerator (b)").

なお、本明細書において、「(メタ)アクリル」は、アクリルおよび/またはメタクリルのことを意味し、下記「(メタ)アクリレート」などの表現も同様のことを意味する。 In this specification, "(meth)acrylic" means acrylic and/or methacryl, and expressions such as "(meth)acrylate" below also mean the same thing.

本組成物は、本発明の効果がより発揮される等の点から、エポキシ樹脂系防食塗膜上に塗装される組成物であることが好ましく、鉄鋼構造物用、特に船舶用の組成物であることが好ましい。 The present composition is preferably a composition that is coated on an epoxy resin-based anticorrosive coating film in order to better exhibit the effects of the present invention, and is preferably a composition for use in steel structures, especially ships. It is preferable that there be.

本組成物は、1成分型の組成物でもよく、2成分以上型の組成物でもよいが、本組成物によれば、1成分型の組成物とすることができるため、1成分型の組成物であることが好ましい。該1成分型の組成物としては、1液型の組成物であることが好ましく、このような組成物は、主剤成分と硬化剤成分との混合を必要とせず、取扱いが容易であり、可使時間による制限がない点等の作業性に優れ、大型鉄鋼構造物のような大面積の塗装に適しているため望ましい。 The present composition may be a one-component type composition or a two- or more-component type composition, but according to the present composition, it can be a one-component type composition. It is preferable that it is a thing. The one-component type composition is preferably a one-component type composition, and such a composition does not require mixing of the main component and the curing agent component, is easy to handle, and is flexible. It is desirable because it has excellent workability, such as no restrictions on usage time, and is suitable for painting large areas such as large steel structures.

<変性(メタ)アクリル樹脂(a)>
前記変性(メタ)アクリル樹脂(a)は、ヨウ素価が前記範囲となるように、(メタ)アクリル化合物を用いて得られる樹脂であれば特に制限されない。
変性(メタ)アクリル樹脂(a)は、1種単独で用いてもよく、2種以上を用いてもよい。
<Modified (meth)acrylic resin (a)>
The modified (meth)acrylic resin (a) is not particularly limited as long as it is a resin obtained using a (meth)acrylic compound so that the iodine value falls within the above range.
The modified (meth)acrylic resin (a) may be used alone or in combination of two or more.

変性(メタ)アクリル樹脂(a)は、酸化重合可能な酸化重合性基を有する、酸化重合型変性(メタ)アクリル系樹脂であることが好ましい。
酸化重合型変性(メタ)アクリル系樹脂を用いることで、酸化重合することによる架橋構造を形成することができるため、酸化重合しない従来のアクリル樹脂を含有する組成物から得られる塗膜よりも強靭性に優れ、結果として耐気泡フクレ性に優れると考えられる。
前記酸化重合型変性(メタ)アクリル系樹脂の好適例としては、アルキド樹脂変性(メタ)アクリル系樹脂、脂肪酸変性(メタ)アクリル系樹脂が挙げられ、アルキド樹脂変性(メタ)アクリル系樹脂が特に好ましい。
The modified (meth)acrylic resin (a) is preferably an oxidatively polymerizable modified (meth)acrylic resin having an oxidatively polymerizable group that can undergo oxidative polymerization.
By using an oxidative polymerization type modified (meth)acrylic resin, it is possible to form a crosslinked structure through oxidative polymerization, which makes the coating film stronger than that obtained from a composition containing a conventional acrylic resin that does not undergo oxidative polymerization. As a result, it is considered to have excellent bubble and blistering resistance.
Suitable examples of the oxidation-polymerized modified (meth)acrylic resin include alkyd resin-modified (meth)acrylic resin and fatty acid-modified (meth)acrylic resin, with alkyd resin-modified (meth)acrylic resin being particularly preferred. preferable.

変性(メタ)アクリル樹脂(a)は、下記式[I]で表される構成単位を有さない樹脂であることが好ましい。 The modified (meth)acrylic resin (a) is preferably a resin that does not have a structural unit represented by the following formula [I].

Figure 2023135579000001
(式中、R1は、水素原子または-O-R3(R3は、水素原子または炭素数1~4のアルキル基を表す。)を表し、R2は、水素原子または炭素数1~4のアルキル基を表す。)
Figure 2023135579000001
(In the formula, R1 represents a hydrogen atom or -O-R3 (R3 represents a hydrogen atom or an alkyl group having 1 to 4 carbon atoms), and R2 represents a hydrogen atom or an alkyl group having 1 to 4 carbon atoms. )

ヨウ素価とは、変性(メタ)アクリル樹脂(a)100gに対してヨウ素を作用させた場合、吸収されるヨウ素のg(グラム)数をいい、酸化重合反応による架橋に寄与する二重結合の度合いを示す。
変性(メタ)アクリル樹脂(a)のヨウ素価は、耐気泡フクレ性、耐黄変性、耐水白化性および耐候性にバランスよく優れる塗膜を得ることができる等の点から、4未満であり、好ましくは0.1以上4未満、より好ましくは1以上4未満である。
前記ヨウ素価が4以上であると、得られる塗膜の耐候性が低下する傾向にあり、また、得られる組成物が皮張りしやすくなるため、皮張り防止剤を使用しなければいけなくなる傾向にある。
Iodine value refers to the number of grams (grams) of iodine absorbed when 100 g of modified (meth)acrylic resin (a) is treated with iodine. Indicates degree.
The iodine value of the modified (meth)acrylic resin (a) is less than 4, since it is possible to obtain a coating film that is excellent in a well-balanced manner in bubble blistering resistance, yellowing resistance, water whitening resistance, and weather resistance. Preferably it is 0.1 or more and less than 4, more preferably 1 or more and less than 4.
When the iodine value is 4 or more, the weather resistance of the resulting coating film tends to decrease, and the resulting composition tends to become skin-like, making it necessary to use a skin-preventing agent. It is in.

変性(メタ)アクリル樹脂(a)のゲルパーミエーションクロマトグラフィー(GPC)法により測定される標準ポリスチレン換算の重量平均分子量(Mw)は、耐気泡フクレ性に優れる塗膜を容易に得ることができる等の点から、好ましくは20,000~250,000、より好ましくは25,000~200,000である。 The weight average molecular weight (Mw) of the modified (meth)acrylic resin (a) measured by the gel permeation chromatography (GPC) method in terms of standard polystyrene makes it possible to easily obtain a coating film with excellent blistering resistance. From these points of view, it is preferably 20,000 to 250,000, more preferably 25,000 to 200,000.

変性(メタ)アクリル樹脂(a)の酸価は、樹脂に含まれるカルボキシ基数に依存して変動することから、変性(メタ)アクリル樹脂(a)のカルボキシ基(COOH基)がどの程度存在するかを示す指標となる。
ここで、変性(メタ)アクリル樹脂(a)のCOOH基は、基材表面のOH基や下塗り防食塗膜中のエポキシ樹脂由来のOH基と水素結合等することで、被塗物との付着性に影響すると考えられる。ただし、変性(メタ)アクリル樹脂(a)中にカルボキシ基が過剰に存在する場合、得られる塗膜の耐水性を低下させる可能性がある。これらの観点などから、変性(メタ)アクリル樹脂(a)の酸価は、好ましくは0.5~10mgKOH/gである。
The acid value of the modified (meth)acrylic resin (a) varies depending on the number of carboxy groups contained in the resin, so it is important to know how many carboxy groups (COOH groups) are present in the modified (meth)acrylic resin (a). It serves as an indicator of whether
Here, the COOH group of the modified (meth)acrylic resin (a) forms a hydrogen bond with the OH group on the surface of the base material and the OH group derived from the epoxy resin in the undercoat anticorrosion coating, thereby preventing adhesion to the coated object. It is thought that it affects sex. However, if the modified (meth)acrylic resin (a) contains an excess of carboxyl groups, the water resistance of the resulting coating film may be reduced. From these viewpoints, the acid value of the modified (meth)acrylic resin (a) is preferably 0.5 to 10 mgKOH/g.

塗工性に優れる本組成物が得られる等の点から、変性(メタ)アクリル樹脂(a)は、該樹脂の50%キシレンまたはトルエン溶液における粘度(25℃、mPa・s)が、好ましくは300~15,000、より好ましくは500~12,000である。 In order to obtain the present composition with excellent coating properties, the modified (meth)acrylic resin (a) preferably has a viscosity (25° C., mPa·s) in a 50% xylene or toluene solution of the resin. 300 to 15,000, more preferably 500 to 12,000.

前記変性(メタ)アクリル樹脂(a)の内、下記不飽和モノマー由来の構造単位のガラス転移温度(Tg、理論値)は、硬度、耐汚染性、耐クラック性およびインターバル付着性にバランスよく優れる塗膜を容易に得ることができる等の点から、好ましくは20~70℃、より好ましくは25~50℃である。 In the modified (meth)acrylic resin (a), the glass transition temperature (Tg, theoretical value) of the structural unit derived from the following unsaturated monomer is excellent in hardness, stain resistance, crack resistance, and interval adhesion in a well-balanced manner. The temperature is preferably 20 to 70°C, more preferably 25 to 50°C, from the viewpoint of easily obtaining a coating film.

前記Tgは、Fox T.G.,Bull.Am.Physics Soc.1,3,第123頁(1956)に記載の、下記Foxの式により近似的に算出することができる。 The Tg is Fox T. G. , Bull. Am. Physics Soc. 1, 3, p. 123 (1956), it can be approximately calculated using the following Fox formula.

Figure 2023135579000002
[式中、Xnは、変性(メタ)アクリル樹脂(a)の合成に用いる下記不飽和モノマーの合計100質量%に対する不飽和モノマーnの質量分率(質量%/100)であり、Tgnは、該モノマーnのホモポリマーのガラス転移温度(ケルビン)である。]
Figure 2023135579000002
[In the formula, X n is the mass fraction (mass%/100) of the unsaturated monomer n with respect to the total 100 mass% of the following unsaturated monomers used for the synthesis of the modified (meth)acrylic resin (a), and Tg n is the glass transition temperature (in Kelvin) of the homopolymer of monomer n. ]

Tgnは、例えば、Polymer Handbook 2nd Edition,J.Wiley & Sons,New York(1975)に記載の値を参考にできる。このハンドブックによれば、例えば、ポリスチレンのTgは373Kであり、ポリ(メチルメタクリレート)のTgは378Kであり、ポリ(ブチルメタクリレート)のTgは297Kであり、ポリメタクリル酸2-ヒドロキシルエチルのTgは328Kであり、ポリメタクリル酸のTgは458Kである。 Tg n is, for example, as described in Polymer Handbook 2nd Edition, J. The values described in Wiley & Sons, New York (1975) can be referred to. According to this handbook, for example, the Tg of polystyrene is 373K, the Tg of poly(methyl methacrylate) is 378K, the Tg of poly(butyl methacrylate) is 297K, and the Tg of poly2-hydroxylethyl methacrylate is 328K, and the Tg of polymethacrylic acid is 458K.

変性(メタ)アクリル樹脂(a)の含有量は、耐気泡フクレ性、耐黄変性、耐水白化性および耐候性にバランスよく優れる塗膜を容易に得ることができる等の点から、本組成物の固形分100質量%に対し、好ましくは20~60質量%、より好ましくは30~50質量%である。 The content of the modified (meth)acrylic resin (a) is determined from the viewpoint that it is possible to easily obtain a coating film that is excellent in bubble resistance, yellowing resistance, water whitening resistance, and weather resistance in a well-balanced manner. It is preferably 20 to 60% by mass, more preferably 30 to 50% by mass based on 100% by mass of solid content.

なお、本明細書における「本組成物の固形分」とは、JIS K 5601-1-2の規格(加熱温度:125℃、加熱時間:60分)に従って測定された本組成物の加熱残分を意味し、通常は、変性(メタ)アクリル樹脂(a)、乾燥促進剤(b)等の塗膜形成主要成分、および、下記その他の成分中の固体成分からなる。 In addition, the "solid content of this composition" in this specification refers to the heating residue of this composition measured according to the standard of JIS K 5601-1-2 (heating temperature: 125 ° C., heating time: 60 minutes). It usually consists of main coating film-forming components such as a modified (meth)acrylic resin (a) and a drying accelerator (b), as well as solid components among the other components listed below.

・アルキド樹脂変性(メタ)アクリル系樹脂
前記アルキド樹脂変性(メタ)アクリル系樹脂は、例えば、(メタ)アクリル化合物とアルキド樹脂とを用いて合成することができる。
具体的には、アルキド樹脂に溶剤を加え、これに(メタ)アクリル化合物を含む不飽和モノマーおよび重合開始剤を所定量加えて、80~150℃で3~10時間程度反応させることにより合成することができる。
- Alkyd resin-modified (meth)acrylic resin The alkyd resin-modified (meth)acrylic resin can be synthesized using, for example, a (meth)acrylic compound and an alkyd resin.
Specifically, it is synthesized by adding a solvent to an alkyd resin, adding a predetermined amount of an unsaturated monomer containing a (meth)acrylic compound and a polymerization initiator, and reacting at 80 to 150°C for about 3 to 10 hours. be able to.

前記アルキド樹脂は、従来公知の方法で得ることができるが、(半)乾性油または(半)乾性油脂肪酸と、酸成分と、多価アルコール成分とを重縮合させて得られる樹脂であることが好ましい。 The alkyd resin can be obtained by a conventionally known method, but it is a resin obtained by polycondensing a (semi-)drying oil or a (semi-)drying oil fatty acid, an acid component, and a polyhydric alcohol component. is preferred.

前記(半)乾性油としては、例えば、魚油、脱水ヒマシ油、サフラワー油、アマニ油、大豆油、ゴマ油、ケシ油、エノ油、麻実油、ブドウ核油、トウモロコシ油、トール油、ヒマワリ油、綿実油、クルミ油、ゴム種油が挙げられ、(半)乾性油脂肪酸としては、例えば、魚油脂肪酸、脱水ヒマシ油脂肪酸、サフラワー油脂肪酸、アマニ油脂肪酸、大豆油脂肪酸、ゴマ油脂肪酸、ケシ油脂肪酸、エノ油脂肪酸、麻実油脂肪酸、ブドウ核油脂肪酸、トウモロコシ油脂肪酸、トール油脂肪酸、ヒマワリ油脂肪酸、綿実油脂肪酸、クルミ油脂肪酸、ゴム種油脂肪酸が挙げられる。これらは、単独でまたは2種以上を使用することができる。 Examples of the (semi-)drying oil include fish oil, dehydrated castor oil, safflower oil, linseed oil, soybean oil, sesame oil, poppy oil, eno oil, hempseed oil, grape kernel oil, corn oil, tall oil, and sunflower oil. , cottonseed oil, walnut oil, rubber seed oil; (semi-)drying oil fatty acids include, for example, fish oil fatty acids, dehydrated castor oil fatty acids, safflower oil fatty acids, linseed oil fatty acids, soybean oil fatty acids, sesame oil fatty acids, poppy oil fatty acids. Fatty acids include eno oil fatty acids, hempseed oil fatty acids, grape kernel oil fatty acids, corn oil fatty acids, tall oil fatty acids, sunflower oil fatty acids, cottonseed oil fatty acids, walnut oil fatty acids, and rubber seed oil fatty acids. These can be used alone or in combination of two or more.

前記(半)乾性油および(半)乾性油脂肪酸の使用量としては、得られる変性(メタ)アクリル樹脂(a)を用いた場合、耐気泡フクレ性、耐黄変性、耐水白化性および耐候性にバランスよく優れる塗膜を容易に得ることができる等の点から、アルキド樹脂を合成する際のモノマー成分100質量%に対し、好ましくは20~70質量%、より好ましくは30~60質量%である。 The amounts of the (semi-)drying oil and (semi-)drying oil fatty acid to be used are such that when the resulting modified (meth)acrylic resin (a) is used, it has the following properties: blistering resistance, yellowing resistance, water whitening resistance, and weather resistance. From the viewpoint that it is possible to easily obtain a coating film that is excellent in a well-balanced manner, it is preferably 20 to 70% by mass, more preferably 30 to 60% by mass, based on 100% by mass of the monomer component when synthesizing the alkyd resin. be.

前記酸成分としては、例えば、無水フタル酸、イソフタル酸、テレフタル酸、無水マレイン酸、無水トリメリット酸、アジピン酸、安息香酸、ロジン、コハク酸が挙げられる。これらは、単独でまたは2種以上を使用することができる。 Examples of the acid component include phthalic anhydride, isophthalic acid, terephthalic acid, maleic anhydride, trimellitic anhydride, adipic acid, benzoic acid, rosin, and succinic acid. These can be used alone or in combination of two or more.

前記酸成分の使用量としては、本組成物の性能に大きく影響しないため、特に制限されないが、アルキド樹脂を合成する際のモノマー成分100質量%に対し、好ましくは10~50質量%、より好ましくは20~40質量%である。 The amount of the acid component to be used is not particularly limited as it does not significantly affect the performance of the present composition, but it is preferably 10 to 50% by mass, more preferably 10 to 50% by mass, based on 100% by mass of the monomer component when synthesizing the alkyd resin. is 20 to 40% by mass.

前記多価アルコール成分としては、例えば、エチレングリコール、ジエチレングリコール、プロピレングリコール、1,4-ブタンジオール、ネオペンチルグリコール、3-メチルペンタンジオール、1,4-ヘキサンジオール、1,6-ヘキサンジオールなどの二価アルコール、グリセリン、トリメチロールエタン、トリメチロールプロパン、ペンタエリスリトールなどの三価以上のアルコールが挙げられる。これらは、単独でまたは2種以上を使用することができる。 Examples of the polyhydric alcohol component include ethylene glycol, diethylene glycol, propylene glycol, 1,4-butanediol, neopentyl glycol, 3-methylpentanediol, 1,4-hexanediol, and 1,6-hexanediol. Examples include dihydric alcohols, trihydric or higher alcohols such as glycerin, trimethylolethane, trimethylolpropane, and pentaerythritol. These can be used alone or in combination of two or more.

前記多価アルコール成分の使用量としては、本組成物の性能に大きく影響しないため、特に制限されないが、アルキド樹脂を合成する際のモノマー成分100質量%に対し、好ましくは10~50質量%、より好ましくは20~40質量%である。 The amount of the polyhydric alcohol component to be used is not particularly limited since it does not significantly affect the performance of the present composition, but it is preferably 10 to 50% by mass, based on 100% by mass of the monomer component when synthesizing the alkyd resin. More preferably 20 to 40% by mass.

変性(メタ)アクリル樹脂(a)を合成する際に用いるアルキド樹脂の使用量は、得られる変性(メタ)アクリル樹脂(a)を用いた場合、耐気泡フクレ性、耐黄変性、耐水白化性および耐候性にバランスよく優れる塗膜を容易に得ることができる等の点から、変性(メタ)アクリル樹脂(a)100質量%中の(半)乾性油および(半)乾性油脂肪酸由来の構造単位の含有量が、好ましくは0.1~25質量%、より好ましくは0.5~10質量%となる量である。 The amount of alkyd resin used when synthesizing the modified (meth)acrylic resin (a) is determined by the amount of blistering resistance, yellowing resistance, and water whitening resistance when using the obtained modified (meth)acrylic resin (a). The structure derived from (semi-)drying oil and (semi-)drying oil fatty acid in 100% by mass of modified (meth)acrylic resin (a), because it is possible to easily obtain a coating film with good balance and excellent weather resistance. The content of the units is preferably 0.1 to 25% by mass, more preferably 0.5 to 10% by mass.

前記不飽和モノマーとしては、(メタ)アクリル化合物を用いれば特に制限されず、(メタ)アクリル化合物と共に、(メタ)アクリル化合物以外の他の不飽和モノマーを用いてもよい。 The unsaturated monomer is not particularly limited as long as a (meth)acrylic compound is used, and other unsaturated monomers other than the (meth)acrylic compound may be used together with the (meth)acrylic compound.

前記(メタ)アクリル化合物としては、例えば、メチル(メタ)アクリレート、エチル(メタ)アクリレート、n-またはiso-プロピル(メタ)アクリレート、n-、iso-またはtert-ブチル(メタ)アクリレート、ヘキシル(メタ)アクリレート、2-エチルヘキシル(メタ)アクリレート、n-オクチル(メタ)アクリレート、n-ノニル(メタ)アクリレート、イソノニル(メタ)アクリレート、トリデシル(メタ)アクリレート、ラウリル(メタ)アクリレート、ステアリル(メタ)アクリレート等の(メタ)アクリル酸アルキルエステル、シクロヘキシル(メタ)アクリレート、フェニル(メタ)アクリレート、ベンジル(メタ)アクリレート、イソボルニル(メタ)アクリレート、グリシジル(メタ)アクリレート、ジシクロペンタニル(メタ)アクリレート、テトラヒドロフルフリル(メタ)アクリレート、アリル(メタ)アクリレート等の脂環,芳香環,複素環またはビニル基含有(メタ)アクリル酸エステル、2-ヒドロキシエチル(メタ)アクリレート、2-ヒドロキシプロピル(メタ)アクリレート、2-ヒドロキシブチル(メタ)アクリレート等の水酸基含有(メタ)アクリル酸エステル、2-ヒドロキシエチル(メタ)アクリレートと、エチレンオキサイド、プロピレンオキサイド、γ-ブチロラクトンまたはε-カプロラクトン等との付加物、グリセロール(メタ)アクリレート等の複数の水酸基を含有する(メタ)アクリル酸エステル、2-メトキシエチル(メタ)アクリレート、2-エトキシエチル(メタ)アクリレート、3-メトキシブチル(メタ)アクリレート、m-またはp-メトキシフェニル(メタ)アクリレート、o-、m-またはp-メトキシフェニルエチル(メタ)アクリレート、フェノキシエチル(メタ)アクリレート、2-ジシクロペンテノキシエチル(メタ)アクリレート等のアルコキシ基含有(メタ)アクリル酸エステル、ジメチルアミノエチル(メタ)アクリレート、ジエチルアミノエチル(メタ)アクリレート、ジメチルアミノプロピル(メタ)アクリレート、ジメチルアミノブチル(メタ)アクリレート、ジブチルアミノエチル(メタ)アクリレート、ジメチルアミノエチル(メタ)アクリルアミド、ジメチルアミノプロピル(メタ)アクリルアミド等の第三級アミノ基および(メタ)アクリロイル基含有モノマー、(メタ)アクリルアミド、ブチルアミノエチル(メタ)アクリレート等の第一級または第二級アミノ基および(メタ)アクリロイル基含有モノマー、アクリロニトリル、メタクリロニトリル、(メタ)アクリル酸が挙げられる。これらは、単独でまたは2種以上を使用することができる。 Examples of the (meth)acrylic compound include methyl (meth)acrylate, ethyl (meth)acrylate, n- or iso-propyl (meth)acrylate, n-, iso- or tert-butyl (meth)acrylate, hexyl ( meth)acrylate, 2-ethylhexyl(meth)acrylate, n-octyl(meth)acrylate, n-nonyl(meth)acrylate, isononyl(meth)acrylate, tridecyl(meth)acrylate, lauryl(meth)acrylate, stearyl(meth)acrylate (meth)acrylic acid alkyl esters such as acrylate, cyclohexyl (meth)acrylate, phenyl (meth)acrylate, benzyl (meth)acrylate, isobornyl (meth)acrylate, glycidyl (meth)acrylate, dicyclopentanyl (meth)acrylate, Alicyclic, aromatic, heterocyclic or vinyl group-containing (meth)acrylic acid esters such as tetrahydrofurfuryl (meth)acrylate, allyl (meth)acrylate, 2-hydroxyethyl (meth)acrylate, 2-hydroxypropyl (meth)acrylate Acrylate, hydroxyl group-containing (meth)acrylic acid ester such as 2-hydroxybutyl (meth)acrylate, adduct of 2-hydroxyethyl (meth)acrylate with ethylene oxide, propylene oxide, γ-butyrolactone or ε-caprolactone, etc. (meth)acrylic acid ester containing multiple hydroxyl groups such as glycerol (meth)acrylate, 2-methoxyethyl (meth)acrylate, 2-ethoxyethyl (meth)acrylate, 3-methoxybutyl (meth)acrylate, m- or Alkoxy group-containing (such as p-methoxyphenyl (meth)acrylate, o-, m- or p-methoxyphenylethyl (meth)acrylate, phenoxyethyl (meth)acrylate, 2-dicyclopentenoxyethyl (meth)acrylate, etc. meth)acrylic acid ester, dimethylaminoethyl (meth)acrylate, diethylaminoethyl (meth)acrylate, dimethylaminopropyl (meth)acrylate, dimethylaminobutyl (meth)acrylate, dibutylaminoethyl (meth)acrylate, dimethylaminoethyl (meth)acrylate ) Tertiary amino group- and (meth)acryloyl group-containing monomers such as acrylamide and dimethylaminopropyl (meth)acrylamide; primary or secondary amino groups such as (meth)acrylamide and butylaminoethyl (meth)acrylate; Examples include (meth)acryloyl group-containing monomers, acrylonitrile, methacrylonitrile, and (meth)acrylic acid. These can be used alone or in combination of two or more.

前記他の不飽和モノマーとしては、例えば、ビニルピロリドン、ビニルピリジン等の複素環族系塩基性モノマー、スチレン、ビニルトルエン、α-メチルスチレン、酢酸ビニル、プロピオン酸ビニル等のビニル系モノマー、クロトン酸、マレイン酸、フマル酸、イタコン酸等の一塩基酸または二塩基酸モノマー、マレイン酸モノメチル、マレイン酸モノエチル、イタコン酸モノメチル、イタコン酸モノエチル等の二塩基酸モノマーのモノエステルが挙げられる。これらは、単独でまたは2種以上を使用することができる。 Examples of the other unsaturated monomers include heterocyclic basic monomers such as vinylpyrrolidone and vinylpyridine, vinyl monomers such as styrene, vinyltoluene, α-methylstyrene, vinyl acetate, and vinyl propionate, and crotonic acid. , monoesters of monobasic or dibasic acid monomers such as maleic acid, fumaric acid, and itaconic acid, and dibasic acid monomers such as monomethyl maleate, monoethyl maleate, monomethyl itaconate, and monoethyl itaconate. These can be used alone or in combination of two or more.

前記(メタ)アクリル化合物の使用量としては、得られる変性(メタ)アクリル樹脂(a)を用いた場合、耐気泡フクレ性に優れる塗膜を容易に得ることができる等の点から、前記不飽和モノマー100質量%に対し、好ましくは10~100質量%、より好ましくは20~90質量%、さらに好ましくは30~80質量%である。 The amount of the (meth)acrylic compound to be used is determined from the viewpoint that when the obtained modified (meth)acrylic resin (a) is used, a coating film with excellent bubble blistering resistance can be easily obtained. The amount is preferably 10 to 100% by weight, more preferably 20 to 90% by weight, and even more preferably 30 to 80% by weight, based on 100% by weight of the saturated monomer.

前記不飽和モノマーとしては、得られる変性(メタ)アクリル樹脂(a)を用いた場合、顔料分散性に優れる本組成物が得られ、また、被塗物、特に下塗り防食塗膜に対する付着性に優れる塗膜が得られる傾向にあることから、2-ヒドロキシエチルメタクリレートまたはメタクリル酸を含むこと、特にこれらの併用が好ましい。 When the obtained modified (meth)acrylic resin (a) is used as the unsaturated monomer, the present composition has excellent pigment dispersibility, and also has good adhesion to the object to be coated, especially the undercoat anticorrosion coating. It is preferable to include 2-hydroxyethyl methacrylate or methacrylic acid, and especially to use these in combination, since an excellent coating film tends to be obtained.

前記不飽和モノマーとして、2-ヒドロキシエチルメタクリレートを用いる場合には、変性(メタ)アクリル樹脂(a)100質量%に対し、2-ヒドロキシエチルメタクリレート由来の構造単位の含有量は、防食性(例:耐水性)に優れる塗膜を容易に得ることができる等の点から、好ましくは2質量%以上であり、好ましくは20質量%以下である。
また、前記不飽和モノマーとして、メタクリル酸を用いる場合には、変性(メタ)アクリル樹脂(a)100質量%に対する、メタクリル酸由来の構造単位の含有量は、防食性(例:耐水性)に優れる塗膜を容易に得ることができる等の点から、好ましくは0.5質量%以上であり、好ましくは10質量%以下である。
When 2-hydroxyethyl methacrylate is used as the unsaturated monomer, the content of the structural unit derived from 2-hydroxyethyl methacrylate with respect to 100% by mass of the modified (meth)acrylic resin (a) is such that the content of structural units derived from 2-hydroxyethyl methacrylate has a corrosion resistance (e.g. The content is preferably 2% by mass or more, and preferably 20% by mass or less, from the viewpoint of easily obtaining a coating film having excellent water resistance).
In addition, when methacrylic acid is used as the unsaturated monomer, the content of structural units derived from methacrylic acid with respect to 100% by mass of the modified (meth)acrylic resin (a) is determined by From the viewpoint of being able to easily obtain an excellent coating film, the content is preferably 0.5% by mass or more, and preferably 10% by mass or less.

前記不飽和モノマーとしては、得られる変性(メタ)アクリル樹脂(a)を用いた場合、硬度に優れる塗膜を容易に得ることができる傾向にあることから、スチレンを含むことが好ましい。この場合、スチレン由来の構造単位の含有量は、変性(メタ)アクリル樹脂(a)100質量%に対し、好ましくは10~60質量%、より好ましくは15~50質量%である。 The unsaturated monomer preferably contains styrene because when the resulting modified (meth)acrylic resin (a) is used, a coating film with excellent hardness tends to be easily obtained. In this case, the content of the structural unit derived from styrene is preferably 10 to 60% by mass, more preferably 15 to 50% by mass, based on 100% by mass of the modified (meth)acrylic resin (a).

・脂肪酸変性(メタ)アクリル系樹脂
前記脂肪酸変性(メタ)アクリル系樹脂は、例えば、前記不飽和モノマーと、脂肪酸変性重合性不飽和モノマーとを用い、従来公知の方法で合成することができる。
-Fatty acid-modified (meth)acrylic resin The fatty acid-modified (meth)acrylic resin can be synthesized by a conventionally known method using, for example, the unsaturated monomer and a fatty acid-modified polymerizable unsaturated monomer.

前記脂肪酸変性重合性不飽和モノマーとしては、例えば、エポキシ基または水酸基を有する重合性不飽和モノマーと、(半)乾性油脂肪酸とを反応させることにより得られるモノマーが挙げられる。
該反応の条件としては、例えば、重合禁止剤の存在下に、140~170℃で6時間~15時間程度反応させる等の条件が挙げられる。
Examples of the fatty acid-modified polymerizable unsaturated monomer include monomers obtained by reacting a polymerizable unsaturated monomer having an epoxy group or a hydroxyl group with a (semi-)drying oil fatty acid.
Conditions for the reaction include, for example, conditions such as allowing the reaction to occur at 140 to 170° C. for approximately 6 to 15 hours in the presence of a polymerization inhibitor.

前記エポキシ基を有する重合性不飽和モノマーとしては、例えば、グリシジル(メタ)アクリレート、β-メチルグリシジル(メタ)アクリレート、3,4-エポキシシクロヘキシルメチル(メタ)アクリレート、3,4-エポキシシクロヘキシルエチル(メタ)アクリレート、3,4-エポキシシクロヘキシルプロピル(メタ)アクリレート、アリルグリシジルエーテルが挙げられる。これらは、単独でまたは2種以上を使用することができる。 Examples of the polymerizable unsaturated monomer having an epoxy group include glycidyl (meth)acrylate, β-methylglycidyl (meth)acrylate, 3,4-epoxycyclohexylmethyl (meth)acrylate, and 3,4-epoxycyclohexylethyl ( Examples include meth)acrylate, 3,4-epoxycyclohexylpropyl(meth)acrylate, and allyl glycidyl ether. These can be used alone or in combination of two or more.

前記水酸基を有する重合性不飽和モノマーとしては、例えば、前記(複数の)水酸基含有(メタ)アクリル酸エステルと同様の化合物が挙げられる。これらは、単独でまたは2種以上を使用することができる。 Examples of the polymerizable unsaturated monomer having a hydroxyl group include the same compounds as the (plural) hydroxyl group-containing (meth)acrylic esters. These can be used alone or in combination of two or more.

脂肪酸変性重合性不飽和モノマーの使用量は、得られる変性(メタ)アクリル樹脂(a)を用いた場合、耐気泡フクレ性、耐黄変性、耐水白化性および耐候性にバランスよく優れる塗膜を容易に得ることができる等の点から、変性(メタ)アクリル樹脂(a)100質量%中の(半)乾性油脂肪酸由来の構造単位の含有量が、好ましくは2~25質量%、より好ましくは3~10質量%となる量である。 The amount of the fatty acid-modified polymerizable unsaturated monomer to be used is such that when the obtained modified (meth)acrylic resin (a) is used, a coating film that is well-balanced and excellent in bubble blistering resistance, yellowing resistance, water whitening resistance, and weather resistance is determined. The content of structural units derived from (semi-)drying oil fatty acids in 100% by mass of the modified (meth)acrylic resin (a) is preferably 2 to 25% by mass, more preferably from the viewpoint of being easily obtainable. is an amount of 3 to 10% by mass.

また、変性(メタ)アクリル樹脂(a)は、前記不飽和モノマーを用いて(メタ)アクリル系樹脂を得た後、該樹脂に酸化重合性基を導入した樹脂であってもよい。
該酸化重合性基としては、例えば、(半)乾性油脂肪酸由来の基、ジシクロペンタジエンオキシアルキル基、アリル基が挙げられる。
Furthermore, the modified (meth)acrylic resin (a) may be a resin obtained by obtaining a (meth)acrylic resin using the unsaturated monomer and then introducing an oxidatively polymerizable group into the resin.
Examples of the oxidatively polymerizable group include a group derived from a (semi-)drying oil fatty acid, a dicyclopentadieneoxyalkyl group, and an allyl group.

例えば、(半)乾性油脂肪酸由来の基を(メタ)アクリル系樹脂に導入するには、不飽和モノマーとしてエポキシ基または水酸基を有する不飽和モノマーを用い、得られた(メタ)アクリル系樹脂中のエポキシ基または水酸基に(半)乾性油脂肪酸を付加させればよい。 For example, in order to introduce a group derived from a (semi)drying oil fatty acid into a (meth)acrylic resin, an unsaturated monomer having an epoxy group or a hydroxyl group is used as the unsaturated monomer, and in the resulting (meth)acrylic resin, A (semi-)drying oil fatty acid may be added to the epoxy group or hydroxyl group of.

前記酸化重合性基の導入量は、得られる変性(メタ)アクリル樹脂(a)を用いた場合、耐気泡フクレ性、耐黄変性、耐水白化性および耐候性にバランスよく優れる塗膜を容易に得ることができる等の点から、変性(メタ)アクリル樹脂(a)100質量%中の酸化重合性基の含有量が、好ましくは0.1~25質量%、より好ましくは1~10質量%となる量である。 The amount of the oxidation-polymerizable group introduced is such that when the obtained modified (meth)acrylic resin (a) is used, a coating film that is excellent in a well-balanced manner in bubble resistance, yellowing resistance, water whitening resistance, and weather resistance can be easily formed. The content of oxidatively polymerizable groups in 100% by mass of the modified (meth)acrylic resin (a) is preferably 0.1 to 25% by mass, more preferably 1 to 10% by mass. This is the amount.

<乾燥促進剤(b)>
「乾燥促進剤」は、一般的に「ドライヤー」とも呼ばれる成分であり、コバルト、ジルコニウム、カルシウム、バリウム等の金属塩などが一般的に使用されており、これらの中でも、コバルトドライヤーは、乾燥性能に優れるため、これまで主要な乾燥促進剤として用いられてきた。
しかしながら、コバルトドライヤーは、ヒトに対する発がん性が疑われており、使用規制の対象物質となる可能性があるうえ、本発明者が鋭意検討したところ、乾燥促進剤(b)以外の公知の乾燥促進剤を用いた場合には、耐気泡フクレ性、耐黄変性、耐水白化性および耐候性にバランスよく優れる塗膜を得ることができないことが分かった。
一方、本組成物は、前記特定の変性(メタ)アクリル樹脂(a)と共に、マンガンを含有する乾燥促進剤(b)を含むため、安全性に優れる組成物となり、耐気泡フクレ性、耐黄変性、耐水白化性および耐候性にバランスよく優れる塗膜を得ることができる。
<Drying accelerator (b)>
"Drying accelerator" is a component commonly called "dryer", and metal salts such as cobalt, zirconium, calcium, barium, etc. are commonly used. Among these, cobalt dryer has the highest drying performance. Because of its excellent drying properties, it has been used as a major drying accelerator.
However, cobalt dryers are suspected of being carcinogenic to humans and may be subject to use regulations, and the inventor has conducted extensive research and found that cobalt dryers are not used as drying accelerators other than drying accelerator (b). It was found that when using such agents, it was not possible to obtain a coating film that was well-balanced and excellent in bubble resistance, yellowing resistance, water whitening resistance, and weather resistance.
On the other hand, since the present composition contains a manganese-containing drying accelerator (b) together with the specific modified (meth)acrylic resin (a), it is a composition with excellent safety, and has excellent bubble resistance and yellowing resistance. It is possible to obtain a coating film that is excellent in a well-balanced manner in modification, water whitening resistance, and weather resistance.

乾燥促進剤(b)としてはマンガンを含有する乾燥促進剤であれば特に限定されないが、酸化重合による架橋反応を促進する作用を有する物質であることが好ましく、具体的には、脂肪酸マンガン塩、マンガン酸化物、単体のマンガン等が挙げられる。
乾燥促進剤(b)は、1種単独で用いてもよく、2種以上を用いてもよい。
The drying accelerator (b) is not particularly limited as long as it contains manganese, but it is preferably a substance that has the effect of promoting crosslinking reaction by oxidative polymerization, and specifically, fatty acid manganese salt, Examples include manganese oxide and simple manganese.
The drying accelerator (b) may be used alone or in combination of two or more.

前記脂肪酸としては、例えば、オクチル酸、ナフテン酸、ネオデカン酸、イソノナン酸、酪酸、カプロン酸、カプリル酸、カプリン酸、ラウリン酸、ミリスチン酸、パルミチン酸、ステアリン酸、アラギン酸、ベヘン酸、リグノセリン酸、セロチン酸、モンタン酸、メリシン酸、トウハク酸、リンデル酸、ツズ酸、マッコウ酸、ミリストオレイン酸、ゾーマリン酸、ペトロセリン酸、オレイン酸、バクセン酸、ガドレイン酸、鯨油酸、エルシン酸、サメ油酸、桐油酸、アマニ油酸、リノール酸、ヒラゴ酸、エレオステアリン酸、プニカ酸、トリコサン酸、リノレン酸、モノクチ酸、パリナリン酸、アラキドン酸、イワシ油酸、ヒラガシラ酸、ニシン酸、大豆油脂肪酸、トール油脂肪酸が挙げられる。 Examples of the fatty acids include octylic acid, naphthenic acid, neodecanoic acid, isononanoic acid, butyric acid, caproic acid, caprylic acid, capric acid, lauric acid, myristic acid, palmitic acid, stearic acid, aragic acid, behenic acid, and lignoceric acid. , cerotic acid, montanic acid, melisic acid, tuccinic acid, lindelic acid, tuzunic acid, macconic acid, myristoleic acid, zomarinic acid, petroselic acid, oleic acid, vaccenic acid, gadoleic acid, whale oil acid, erucic acid, shark Oil acid, tung oil acid, linseed oil acid, linoleic acid, hirago acid, eleostearic acid, punic acid, tricosanoic acid, linolenic acid, monoctic acid, parinaric acid, arachidonic acid, sardine oil acid, hiragasira acid, nisic acid, large Examples include soybean oil fatty acids and tall oil fatty acids.

乾燥促進剤(b)としては、より耐気泡フクレ性に優れる塗膜を容易に得ることができる等の点から、脂肪酸マンガン塩が好ましく、特に、ネオデカン酸マンガン系化合物、オクチル酸マンガン系化合物、イソノナン酸マンガン系化合物およびナフテン酸マンガン系化合物が好ましく、より耐候性に優れる塗膜を容易に得ることができる等の点から、ネオデカン酸マンガン系化合物がより好ましい。 As the drying accelerator (b), fatty acid manganese salts are preferred from the viewpoint of easily obtaining a coating film with better bubble resistance, and in particular, manganese neodecanoate compounds, manganese octylate compounds, Manganese isononanoate compounds and manganese naphthenate compounds are preferred, and manganese neodecanoate compounds are more preferred since a coating film with better weather resistance can be easily obtained.

乾燥促進剤(b)の含有量は、塗膜の硬化性およびより耐気泡フクレ性に優れる塗膜を容易に得ることができる等の点から、変性(メタ)アクリル樹脂(a)100質量部に対し、好ましくは0.01~5質量部、より好ましくは0.01~1質量部である。 The content of the drying accelerator (b) is 100 parts by mass of the modified (meth)acrylic resin (a) from the viewpoint of easily obtaining a coating film with excellent curability and bubble blistering resistance. The amount is preferably 0.01 to 5 parts by weight, more preferably 0.01 to 1 part by weight.

<その他の成分>
本組成物は、変性(メタ)アクリル樹脂(a)および乾燥促進剤(b)を含有すれば特に制限されず、所望により、本発明の効果を損なわない範囲で、変性(メタ)アクリル樹脂(a)および乾燥促進剤(b)以外の、可塑剤、顔料、色分かれ防止剤、タレ止め剤(沈降防止剤)、消泡剤、溶剤等のその他の成分を用いてもよい。
これらその他の成分は、市販品を用いてもよい。
これらその他の成分は、それぞれ、1種単独で用いてもよく、2種以上を用いてもよい。
<Other ingredients>
The present composition is not particularly limited as long as it contains the modified (meth)acrylic resin (a) and the drying accelerator (b), and if desired, the modified (meth)acrylic resin ( In addition to a) and the drying accelerator (b), other components such as plasticizers, pigments, color separation inhibitors, anti-sagging agents (anti-settling agents), antifoaming agents, and solvents may be used.
Commercially available products may be used for these other components.
These other components may be used alone or in combination of two or more.

本組成物は、皮張り防止剤を用いてもよいが、本組成物は、該皮張り防止剤を用いなくても、皮張りが発生しないため、人体や環境への影響を考慮すると、皮張り防止剤を用いないことが好ましい。
なお、皮張り防止剤としては、オキシム系化合物やフェノール系化合物などの酸化防止剤が用いられる。このような皮張り防止剤の市販品としては、オキシム系化合物である「MEKオキシム」(宇部興産(株)製)等が挙げられる。
Although an anti-skinning agent may be used in the present composition, since the composition does not cause skinning even without the use of the anti-skinning agent, considering the impact on the human body and the environment, it is Preferably, no anti-tension agent is used.
Note that as the anti-skinning agent, an antioxidant such as an oxime compound or a phenol compound is used. Commercially available products of such anti-skinning agents include "MEK Oxime" (manufactured by Ube Industries, Ltd.), which is an oxime compound.

〈可塑剤〉
本組成物は、耐クラック性や耐水性の向上、被塗物、特に、下塗り塗膜との付着性を向上させることができる等の点から、可塑剤を含むことが好ましい。
可塑剤は、1種単独で用いてもよく、2種以上を用いてもよい。
<Plasticizer>
The present composition preferably contains a plasticizer from the viewpoints of improving crack resistance and water resistance, and improving adhesion to the object to be coated, especially the undercoat film.
The plasticizers may be used alone or in combination of two or more.

可塑剤としては特に限定されないが、例えば、塩素化パラフィン、フタル酸エステル、アジピン酸エステル、トリメリット酸エステル、リン酸エステル、クエン酸エステル、セバシン酸エステル、アゼライン酸エステル、マレイン酸エステル、安息香酸エステル、アクリル樹脂(但し、変性(メタ)アクリル樹脂(a)を除く)、ポリエステル樹脂、エポキシ樹脂が挙げられる。 Plasticizers are not particularly limited, but include, for example, chlorinated paraffins, phthalates, adipates, trimellitates, phosphates, citric esters, sebacic esters, azelaic esters, maleic esters, and benzoic acid. Examples include esters, acrylic resins (excluding modified (meth)acrylic resin (a)), polyester resins, and epoxy resins.

本組成物に可塑剤を配合する場合、その配合量は、被塗物、特に、下塗り塗膜との付着性に優れる塗膜を容易に得ることができる等の点から、本組成物中の固形分100質量%に対し、好ましくは0.5~10質量%である。 When a plasticizer is added to this composition, the amount of plasticizer added is determined from the viewpoint of easily obtaining a coating film with excellent adhesion to the object to be coated, especially the undercoat film. The amount is preferably 0.5 to 10% by weight based on 100% by weight of solid content.

〈顔料〉
顔料としては特に限定されないが、着色顔料、体質顔料、機能性顔料等が挙げられ、所望の物性に応じて適宜選択して使用すればよい。
顔料は、1種単独で用いてもよく、2種以上を用いてもよい。
<Pigment>
The pigment is not particularly limited, but may include coloring pigments, extender pigments, functional pigments, etc., and may be appropriately selected and used depending on desired physical properties.
The pigments may be used alone or in combination of two or more.

着色顔料の例としては、カーボンブラック、酸化チタン、酸化鉄、フタロシアニン、アゾ系化合物、縮合多環系化合物が挙げられる。
体質顔料の例としては、硫酸バリウム、(膠質)炭酸カルシウム、タルク、マイカ、シリカが挙げられる。
機能性顔料の例としては、導電顔料、蛍光顔料、アルミ顔料、ステンレス顔料が挙げられる。
Examples of colored pigments include carbon black, titanium oxide, iron oxide, phthalocyanine, azo compounds, and fused polycyclic compounds.
Examples of extender pigments include barium sulfate, (colloid) calcium carbonate, talc, mica, and silica.
Examples of functional pigments include conductive pigments, fluorescent pigments, aluminum pigments, and stainless steel pigments.

本組成物に顔料を配合する場合、本組成物中の顔料体積濃度(PVC)は、得られる塗膜の強靭性および光沢などにバランスよく優れる等の点から、好ましくは15~45%、より好ましくは18~40%、特に好ましくは20~38%である。
PVCが低すぎると、塗膜の耐気泡フクレ性が低下する傾向にあり、高すぎると、被塗物への付着性が低下する傾向にある。
When a pigment is blended into the present composition, the pigment volume concentration (PVC) in the present composition is preferably 15 to 45%, more preferably 15 to 45%, from the viewpoint of providing a well-balanced and excellent toughness and gloss of the resulting coating film. Preferably it is 18 to 40%, particularly preferably 20 to 38%.
If the PVC is too low, the bubble blistering resistance of the coating film tends to decrease, and if it is too high, the adhesion to the object to be coated tends to decrease.

なお、本明細書中のPVCとは、塗料組成物中の固形分の体積に対する、該塗料組成物中の顔料の合計の体積濃度を指し、具体的には下記式より求められる。
PVC(%)=塗料組成物中の顔料の合計の体積/塗料組成物中の固形分の体積×100
なお、PVCは、より具体的には、前記JIS K 5601-1-2に基づいて、塗料組成物の加熱残分の質量および真密度を測定し、さらに、該加熱残分より顔料を分離し、分離された顔料の質量および真密度を測定することで、算出することができる。
Note that PVC in this specification refers to the total volume concentration of pigments in the coating composition with respect to the volume of the solid content in the coating composition, and specifically, it is determined by the following formula.
PVC (%) = total volume of pigments in the paint composition/volume of solids in the paint composition x 100
For PVC, more specifically, the mass and true density of the heating residue of the coating composition are measured based on the above-mentioned JIS K 5601-1-2, and the pigment is further separated from the heating residue. , can be calculated by measuring the mass and true density of the separated pigment.

〈タレ止め剤(沈降防止剤)〉
タレ止め剤(沈降防止剤)としては特に制限されず、従来公知のタレ止め剤(沈降防止剤)を使用できる。
タレ止め剤(沈降防止剤)は、1種単独で用いてもよく、2種以上を用いてもよい。
<Anti-sagging agent (anti-settling agent)>
The anti-sagging agent (anti-settling agent) is not particularly limited, and conventionally known anti-sagging agents (anti-settling agent) can be used.
The anti-sagging agents (anti-settling agents) may be used alone or in combination of two or more.

タレ止め剤(沈降防止剤)としては、例えば、アマイドワックス系揺変剤、水添ヒマシ油系揺変剤、酸化ポリエチレン系揺変剤等の有機系揺変剤、ベントナイト等の粘土鉱物、合成微粉シリカ等の無機系揺変剤が挙げられ、アマイドワックス系揺変剤、酸化ポリエチレン系揺変剤、合成微粉シリカ、ベントナイト等の粘土鉱物が好ましい。 Examples of anti-sagging agents (settling prevention agents) include organic thixotropic agents such as amide wax-based thixotropic agents, hydrogenated castor oil-based thixotropic agents, oxidized polyethylene-based thixotropic agents, clay minerals such as bentonite, and synthetic thixotropic agents. Examples include inorganic thixotropic agents such as finely divided silica, and preferred are amide wax-based thixotropic agents, oxidized polyethylene-based thixotropic agents, synthetic finely divided silica, and clay minerals such as bentonite.

本組成物にタレ止め剤(沈降防止剤)を配合する場合、その配合量は、本組成物100質量%に対し、好ましくは0.1~10質量%である。 When an anti-sagging agent (anti-settling agent) is added to the composition, the amount thereof is preferably 0.1 to 10% by weight based on 100% by weight of the composition.

〈消泡剤〉
消泡剤としては特に制限されず、従来公知の消泡剤を使用できる。
消泡剤は、1種単独で用いてもよく、2種以上を用いてもよい。
消泡剤としては、例えば、アクリル系(但し、変性(メタ)アクリル樹脂(a)を除く)、ビニルエーテル系、シリコーン系、ブタジエン系、オレフィン系、およびフッ素系の化合物が挙げられる。
本組成物に消泡剤を配合する場合、その配合量は、本組成物100質量%に対し、好ましくは0.01~5質量%である。
<Defoaming agent>
The antifoaming agent is not particularly limited, and conventionally known antifoaming agents can be used.
The antifoaming agents may be used alone or in combination of two or more.
Examples of antifoaming agents include acrylic (excluding modified (meth)acrylic resin (a)), vinyl ether, silicone, butadiene, olefin, and fluorine compounds.
When an antifoaming agent is added to the composition, the amount thereof is preferably 0.01 to 5% by weight based on 100% by weight of the composition.

〈溶剤〉
溶剤としては特に限定されないが、例えば、トルエン、キシレン、「イプゾール100」(出光興産(株)製)、「スワゾール1000」(丸善石油化学(株)製)、「ソルベッソ100」、「ソルベッソ150」(エクソンモービル社製)、「LAWS」(シェル社製)等の芳香族炭化水素系溶剤、エチレングリコールモノブチルエーテル(ブチルセロソルブ)、イソプロピルアルコール、n-ブタノール等のアルコール系溶剤、酢酸エチル、酢酸ブチル、酢酸イソブチル等のエステル系溶剤、n-ヘキサン、n-オクタン、2,2,2-トリメチルペンタン、イソオクタン、n-ノナン、シクロヘキサン、メチルシクロヘキサン等の脂肪族炭化水素系溶剤、メチルイソブチルケトン、メチルエチルケトン、メチルイソブチルケトン等のケトン系溶剤、ミネラルスピリット等の石油系溶剤が挙げられる。
<solvent>
The solvent is not particularly limited, but for example, toluene, xylene, "Ipsol 100" (manufactured by Idemitsu Kosan Co., Ltd.), "Swasol 1000" (manufactured by Maruzen Petrochemical Co., Ltd.), "Solvesso 100", "Solvesso 150" (manufactured by ExxonMobil), "LAWS" (manufactured by Shell), etc., aromatic hydrocarbon solvents, ethylene glycol monobutyl ether (butyl cellosolve), isopropyl alcohol, n-butanol, etc. alcohol solvents, ethyl acetate, butyl acetate, Ester solvents such as isobutyl acetate, aliphatic hydrocarbon solvents such as n-hexane, n-octane, 2,2,2-trimethylpentane, isooctane, n-nonane, cyclohexane, methylcyclohexane, methyl isobutyl ketone, methyl ethyl ketone, Examples include ketone solvents such as methyl isobutyl ketone and petroleum solvents such as mineral spirit.

≪積層塗膜≫
本発明に係る積層塗膜は、エポキシ樹脂系下塗り防食塗膜(A)と、本組成物から形成された上塗り塗膜(B)との積層塗膜である。
このような積層塗膜は、下記エポキシ塗料を用いて、下塗り防食塗膜(A)を形成し、該下塗り防食塗膜(A)上に本組成物を用いて上塗り塗膜(B)を形成することで製造することができるが、具体的には、基材に、エポキシ塗料を塗装し、塗装された該塗料を乾燥、硬化させて下塗り防食塗膜(A)を形成する工程、および、下塗り防食塗膜(A)上に、本組成物を塗装し、塗装された本組成物を乾燥、硬化させて上塗り塗膜(B)を形成する工程を含む方法により、製造することができる。後者の方法では、塗膜付き基材が製造される。
≪Laminated coating film≫
The laminated coating film according to the present invention is a laminated coating film of an epoxy resin base coat anticorrosive coating film (A) and a top coat coating film (B) formed from the present composition.
Such a laminated coating film is formed by forming an undercoat anticorrosion coating film (A) using the epoxy paint below, and forming a topcoat coating film (B) using the present composition on the undercoat anticorrosion coating film (A). Specifically, the step of coating a base material with an epoxy paint, drying and curing the painted paint to form an undercoat anticorrosion coating film (A), and It can be produced by a method including the steps of coating the present composition on the undercoat anticorrosion coating (A), drying and curing the coated composition to form the topcoat coating (B). In the latter method, a coated substrate is produced.

前記基材としては特に限定されないが、その素材としては、例えば、鉄鋼、アルミニウム、FRP(繊維強化プラスチック)が挙げられる。前記基材としては、特に、本発明の効果がより発揮される等の点から、(大型)鉄鋼構造物であることが好ましく、具体的には、船舶、橋梁、タンク、プラント、海上ブイ、海中パイプライン等が挙げられる。特に、客船、貨物船、タンカーなどの船体(船舶)の外表面(特に船舶の外舷部、水線部、デッキ、上部構造部等の部位)には、耐気泡フクレ性、耐黄変性、耐水白化性や、耐候性などが求められるため、該外表面に本組成物を用いると、本発明の効果がより発揮され好ましい。 The base material is not particularly limited, but examples of the material include steel, aluminum, and FRP (fiber reinforced plastic). In particular, the base material is preferably a (large) steel structure, from the viewpoint that the effects of the present invention are more effectively exhibited, and specifically, ships, bridges, tanks, plants, marine buoys, etc. Examples include underwater pipelines. In particular, the outer surfaces of hulls (vessels) such as passenger ships, cargo ships, and tankers (particularly areas such as the outer side, waterline, deck, and superstructure of ships) have anti-bubble, anti-yellowing, Since water whitening resistance, weather resistance, etc. are required, it is preferable to use the present composition on the outer surface because the effects of the present invention can be more effectively exhibited.

なお、下記エポキシ塗料を塗装する前に、必要により基材の表面処理を行ってもよく、具体的には、塗装予定の基材表面に既に発生・付着している錆、油脂、水分、塵埃などの基材表面の付着物を清掃・除去してもよく、また、基材の材質に応じてシーラー、バインダー、プライマー等を予め塗布してもよい。
すなわち、前記基材としては、シーラー、バインダー、プライマー等で塗装された基材も含まれる。
In addition, before applying the epoxy paint below, the surface of the base material may be treated if necessary. Specifically, rust, oil, moisture, dust, etc. that have already occurred or adhered to the surface of the base material to be painted can be treated. The deposits on the surface of the base material may be cleaned and removed, or a sealer, binder, primer, etc. may be applied in advance depending on the material of the base material.
That is, the base material includes a base material coated with a sealer, a binder, a primer, or the like.

下記エポキシ塗料や本組成物の塗装方法としては、特に制限されず、スプレー塗装、ハケ塗り、ローラー塗りなど従来公知の方法が利用できる。これらの中でも、大型(大面積)の基材を容易に塗装できる等の点から、スプレー塗装が好ましい。
塗装の際には、必要に応じて各種溶剤にて希釈してから塗装してもよい。該溶剤としては、相溶性や乾燥性のよいものであれば制限なく、例えば、前記その他の成分の欄に例示した溶剤を使用することができる。なお、この段落以外の本明細書の記載は、希釈する前の本組成物やエポキシ塗料等に関する。
The method of applying the epoxy paint or this composition described below is not particularly limited, and conventionally known methods such as spray painting, brush painting, and roller painting can be used. Among these, spray coating is preferred because it can easily coat large (large area) substrates.
When painting, it may be diluted with various solvents as necessary before painting. The solvent is not limited as long as it has good compatibility and drying properties, and for example, the solvents exemplified in the column of other components can be used. Note that the descriptions in this specification other than this paragraph relate to the present composition, epoxy paint, etc. before dilution.

なお、所望の用途や塗装現場の状況等にもよるが、下塗り防食塗膜(A)を形成してから、一定期間(インターバル)を空けて、本組成物を塗装してもよい。 Although it depends on the desired use and the situation at the painting site, the present composition may be applied after a certain period of time (interval) after forming the undercoat anticorrosive coating (A).

下記エポキシ塗料や本組成物を乾燥、硬化させる方法としては特に制限されず、硬化時間を短縮させるために5~60℃程度の加熱により乾燥、硬化させてもよいが、通常は、常温、大気下で1~14日程度放置することで、塗装したエポキシ塗料や本組成物を乾燥、硬化させる。 The method for drying and curing the following epoxy paint and this composition is not particularly limited, and may be dried and cured by heating at about 5 to 60°C to shorten the curing time, but usually at room temperature or in the atmosphere. The applied epoxy paint or this composition is allowed to dry and harden by leaving it for about 1 to 14 days.

前記下塗り防食塗膜(A)の厚さは特に制限ないが、通常は50~500μm、好ましくは100~350μmである。
このような膜厚の塗膜を形成する際は、1回の塗装で、前記所望の厚みの塗膜を形成してもよいし、2回(必要によりそれ以上)の塗装で、前記所望の厚みの塗膜を形成してもよい。
The thickness of the undercoat anticorrosive coating (A) is not particularly limited, but is usually 50 to 500 μm, preferably 100 to 350 μm.
When forming a coating film with such a thickness, the coating film with the desired thickness may be formed with one coating, or the coating with the desired thickness may be formed with two coatings (or more if necessary). A thick coating film may be formed.

また、前記上塗り塗膜(B)の厚さも特に制限ないが、通常は20~350μm、好ましくは30~150μmである。 The thickness of the top coat (B) is also not particularly limited, but is usually 20 to 350 μm, preferably 30 to 150 μm.

<エポキシ樹脂系防食塗膜>
前記下塗り防食塗膜(A)は、エポキシ樹脂系防食塗料組成物(「エポキシ塗料」ともいう。)から形成される塗膜である。該エポキシ塗料としては特に制限されず、従来公知のエポキシ樹脂系防食塗料組成物を用いることができるが、該塗料から形成される下塗り防食塗膜(A)の防食性および基材との密着性等の点から、下記エポキシ樹脂(p)およびエポキシ樹脂用硬化剤(q)を含有することが好ましい。
<Epoxy resin anti-corrosion coating>
The undercoat anticorrosive coating film (A) is a coating film formed from an epoxy resin-based anticorrosive coating composition (also referred to as "epoxy paint"). The epoxy paint is not particularly limited, and conventionally known epoxy resin-based anticorrosive paint compositions can be used, but the corrosion resistance and adhesion to the base material of the undercoat anticorrosive film (A) formed from the paint are From these points, it is preferable to contain the following epoxy resin (p) and curing agent for epoxy resin (q).

〈エポキシ樹脂(p)〉
前記エポキシ樹脂(p)としては、特に制限されないが、分子内に2個以上のエポキシ基を有するポリマーまたはオリゴマー、およびそのエポキシ基が開環反応したポリマーまたはオリゴマー等が挙げられる。このようなエポキシ樹脂としては、例えば、グリシジルエーテル型エポキシ樹脂、グリシジルエステル型エポキシ樹脂、グリシジルアミン型エポキシ樹脂、ビスフェノール型エポキシ樹脂、フェノールノボラック型エポキシ樹脂、クレゾール型エポキシ樹脂、ジシクロペンタジエン型エポキシ樹脂、脂肪族型エポキシ樹脂、脂環族型エポキシ樹脂、脂肪酸変性エポキシ樹脂が挙げられる。
エポキシ樹脂(p)は、1種単独で用いてもよく、2種以上を用いてもよい。
<Epoxy resin (p)>
The epoxy resin (p) is not particularly limited, but includes polymers or oligomers having two or more epoxy groups in the molecule, and polymers or oligomers in which the epoxy groups undergo a ring-opening reaction. Examples of such epoxy resins include glycidyl ether type epoxy resins, glycidyl ester type epoxy resins, glycidylamine type epoxy resins, bisphenol type epoxy resins, phenol novolak type epoxy resins, cresol type epoxy resins, and dicyclopentadiene type epoxy resins. , aliphatic epoxy resins, alicyclic epoxy resins, and fatty acid-modified epoxy resins.
The epoxy resin (p) may be used alone or in combination of two or more.

これらの中でも、防食性および基材との密着性に優れる塗膜を容易に形成できる等の点から、ビスフェノール型エポキシ樹脂であることが好ましく、ビスフェノールA型、ビスフェノールAD型およびビスフェノールF型のエポキシ樹脂から選択される1種以上であることがより好ましく、ビスフェノールA型エポキシ樹脂であることが特に好ましい。 Among these, bisphenol-type epoxy resins are preferred because they can easily form coating films with excellent corrosion resistance and adhesion to substrates, and bisphenol-A, bisphenol-AD, and bisphenol-F epoxy resins are preferred. More preferably, it is one or more selected from resins, and particularly preferably bisphenol A type epoxy resin.

エポキシ樹脂(p)の重量平均分子量およびエポキシ当量は、得られるエポキシ塗料の塗装硬化条件(例:常乾塗装または焼付け塗装等)などにもより、一概に決定されないが、そのGPC法により測定した重量平均分子量は、通常350~20,000であり、エポキシ当量は、通常150~1,000である。 The weight average molecular weight and epoxy equivalent of the epoxy resin (p) cannot be absolutely determined depending on the coating curing conditions of the obtained epoxy paint (e.g. air-drying painting or baking painting, etc.), but they were determined by the GPC method. The weight average molecular weight is usually 350 to 20,000, and the epoxy equivalent is usually 150 to 1,000.

前記エポキシ樹脂(p)の含有量は、防食性に優れる塗膜を容易に得ることができる等の点から、溶剤等を含むエポキシ塗料100質量%に対し、通常10~60質量%、好ましくは20~50質量%であり、また、エポキシ塗料の固形分100質量%に対し、通常10~70質量%、好ましくは20~60質量%である。 The content of the epoxy resin (p) is usually 10 to 60% by mass, preferably 100% by mass, based on 100% by mass of the epoxy paint containing a solvent etc., from the viewpoint of easily obtaining a coating film with excellent corrosion resistance. The amount is usually 10 to 70% by weight, preferably 20 to 60% by weight, based on 100% by weight of the solid content of the epoxy paint.

〈エポキシ樹脂用硬化剤(q)〉
エポキシ樹脂用硬化剤(q)としては特に制限されないが、具体的には、アミン硬化剤および酸無水物系硬化剤が挙げられ、アミン硬化剤が好ましい。
アミン硬化剤としては、例えば、脂肪族系アミン硬化剤、脂環族系アミン硬化剤、芳香族系アミン硬化剤、複素環系アミン硬化剤、ポリエーテルジアミン等のその他のアミン硬化剤、これらアミン硬化剤の変性物(例:ポリアミド、ポリアミドアミン[ポリアミド樹脂]、エポキシ化合物とのアミンアダクト、マンニッヒ化合物[例:マンニッヒ変性ポリアミドアミン]、マイケル付加物、ケチミン、アルジミン、フェナルカミン)が挙げられる。
該アミン硬化剤の具体例としては、例えば、特開2018-44162号公報に記載の硬化剤が挙げられる。
硬化剤(q)は、1種単独で用いてもよく、2種以上を用いてもよい。
<Curing agent for epoxy resin (q)>
The curing agent (q) for epoxy resin is not particularly limited, but specifically includes amine curing agents and acid anhydride curing agents, with amine curing agents being preferred.
Examples of the amine curing agent include aliphatic amine curing agents, alicyclic amine curing agents, aromatic amine curing agents, heterocyclic amine curing agents, other amine curing agents such as polyether diamine, and these amines. Examples include modified products of curing agents (e.g. polyamides, polyamidoamines [polyamide resins], amine adducts with epoxy compounds, Mannich compounds [e.g. Mannich-modified polyamideamines], Michael adducts, ketimines, aldimines, phenalkamines).
Specific examples of the amine curing agent include, for example, the curing agent described in JP 2018-44162A.
The curing agent (q) may be used alone or in combination of two or more.

前記アミン硬化剤の活性水素当量は、防食性に優れる下塗り防食塗膜(A)が得られる等の点から、好ましくは50~1,000、より好ましくは80~400である。 The active hydrogen equivalent of the amine curing agent is preferably 50 to 1,000, more preferably 80 to 400, from the viewpoint of obtaining an anticorrosive undercoat coating (A) with excellent corrosion resistance.

エポキシ塗料は、硬化剤(q)としてアミン硬化剤を用いる場合、当量比(硬化剤の使用量/活性水素当量)/(エポキシ樹脂の使用量/エポキシ当量)が、好ましくは0.20~0.9、より好ましくは0.25~0.75となるような量で用いる。 When an amine curing agent is used as the curing agent (q) in the epoxy paint, the equivalent ratio (amount of curing agent used/active hydrogen equivalent)/(amount of epoxy resin used/epoxy equivalent) is preferably 0.20 to 0. .9, more preferably 0.25 to 0.75.

酸無水物系硬化剤としては、例えば、無水フタル酸、テトラヒドロ無水フタル酸、メチルテトラヒドロ無水フタル酸、3,6-エンドメチレンテトラヒドロ無水フタル酸、ヘキサクロロエンドメチレンテトラヒドロ無水フタル酸、メチル-3,6-エンドメチレンテトラヒドロ無水フタル酸が挙げられる。 Examples of acid anhydride curing agents include phthalic anhydride, tetrahydrophthalic anhydride, methyltetrahydrophthalic anhydride, 3,6-endomethylenetetrahydrophthalic anhydride, hexachloroendomethylenetetrahydrophthalic anhydride, and methyl-3,6-endomethylenetetrahydrophthalic anhydride. - Endomethylenetetrahydrophthalic anhydride.

〈添加剤〉
エポキシ塗料は、エポキシ樹脂(p)および硬化剤(q)以外に、硬化促進剤、顔料、タレ止め剤(沈降防止剤)、消泡剤および溶剤等の添加剤を含んでいてもよく、価格および得られる塗膜の基材への密着性の観点から、顔料を含有することが好ましい。
該添加剤としては、前記その他の成分の欄に記載の成分と同様の成分を用いることができる。
これら添加剤は、それぞれ、1種単独で用いてもよく、2種以上を用いてもよい。
<Additive>
In addition to the epoxy resin (p) and the curing agent (q), the epoxy paint may contain additives such as a curing accelerator, pigment, anti-sagging agent (anti-settling agent), antifoaming agent, and solvent. Also, from the viewpoint of adhesion of the obtained coating film to the substrate, it is preferable to contain a pigment.
As the additive, the same components as those described in the column of other components may be used.
These additives may be used alone or in combination of two or more.

ISO3233に準拠して測定されるエポキシ塗料の固形分の容積率(VS)は、好ましくは50~100%、より好ましくは55~90%、特に好ましくは60~85%である。 The volume fraction (VS) of the solid content of the epoxy paint, measured according to ISO 3233, is preferably 50 to 100%, more preferably 55 to 90%, particularly preferably 60 to 85%.

以下、本発明について実施例を挙げてさらに具体的に説明するが、本発明はこれらによって限定されない。 EXAMPLES Hereinafter, the present invention will be described in more detail with reference to Examples, but the present invention is not limited thereto.

以下に記載の試験方法で、得られた樹脂の重量平均分子量(Mw)、酸価(mgKOH/g)およびヨウ素価(固形分換算値)を測定し、変性(メタ)アクリル樹脂溶液中の固形分(質量%)を測定した。 The weight average molecular weight (Mw), acid value (mgKOH/g) and iodine value (solid content equivalent value) of the obtained resin were measured using the test method described below, and the solid content in the modified (meth)acrylic resin solution was measured. (% by mass) was measured.

<重量平均分子量(Mw)>
重量平均分子量は、GPC法により、装置(東ソー(株)製、HLC-8220GPC)、カラム(SuperH2000+SuperH4000(東ソー(株)製、内径各6mm/長さ各15cm))、カラム温度(40℃)、溶離液(テトラヒドロフラン)、流速(0.50mL/min.)、検出器(RI)、標準物質(ポリスチレン)の条件にて測定した。
<Weight average molecular weight (Mw)>
The weight average molecular weight was determined by the GPC method using an apparatus (manufactured by Tosoh Corporation, HLC-8220GPC), columns (SuperH2000+SuperH4000 (manufactured by Tosoh Corporation, inner diameter 6 mm each/length 15 cm each)), column temperature (40 ° C.), Measurement was performed under the following conditions: eluent (tetrahydrofuran), flow rate (0.50 mL/min.), detector (RI), and standard substance (polystyrene).

<固形分>
変性(メタ)アクリル樹脂溶液を108℃の熱風乾燥機中で3時間乾燥した後の加熱残分(「固形分」と同義)を計測し、以下の式から算出した。
固形分(質量%)=(前記加熱残分の質量/加熱前の樹脂溶液の質量)×100(%)
<Solid content>
After drying the modified (meth)acrylic resin solution in a hot air dryer at 108° C. for 3 hours, the heating residue (synonymous with “solid content”) was measured and calculated from the following formula.
Solid content (mass%) = (mass of the heated residue/mass of the resin solution before heating) x 100 (%)

<酸価>
コニカルビーカーに樹脂1~5gを正確に秤量し、トルエン/エタノール=7/3(体積比)混合溶液を30~50ml加えて該樹脂を溶かし、指示薬としてフェノールフタレイン-エタノール溶液を2滴加え、N/10水酸化カリウム-エタノール溶液で滴定した。液の赤みが30秒間消えなくなったときを滴定の終点とし、酸価は次式によって計算した。
酸価=(B×f×5.61)/S
(B:水酸化カリウム-エタノール溶液の使用量(ml)、f:水酸化カリウム-エタノール溶液のファクター、S:樹脂の質量(g))
<Acid value>
Accurately weigh 1 to 5 g of resin in a conical beaker, add 30 to 50 ml of toluene/ethanol = 7/3 (volume ratio) mixed solution to dissolve the resin, add 2 drops of phenolphthalein-ethanol solution as an indicator, Titration was performed with N/10 potassium hydroxide-ethanol solution. The end point of the titration was when the redness of the liquid did not disappear for 30 seconds, and the acid value was calculated using the following formula.
Acid value=(B×f×5.61)/S
(B: Amount of potassium hydroxide-ethanol solution used (ml), f: Factor of potassium hydroxide-ethanol solution, S: Mass of resin (g))

<ヨウ素価>
共栓付きフラスコに、樹脂0.2~5gを正確に秤量し、四塩化炭素10mlを加えて該樹脂を溶解し、さらにウィイス液25mlを正確に加えた。栓をしたのち、30分間常温で暗所に置いた。次に、10W/V%ヨウ化カリウム水溶液20mlおよび水100mlを加えて振り混ぜた。得られた液をN/10チオ硫酸ナトリウム水溶液で滴定し、溶液が微黄色になった後、デンプン溶液を数滴加え、よく振り混ぜながら滴定を続け、デンプンによる青色が消失した時を終点とすることで本試験を行った。なお前記本試験と並行して、樹脂を用いない以外は本試験と同様の空試験を行った。
ヨウ素価は、次式によって計算した。算出したヨウ素価と前記固形分とから、固形分換算におけるヨウ素価を算出した。
ヨウ素価=((A-B)×f×1.269)/S
(A:空試験のN/10チオ硫酸ナトリウム水溶液使用量(ml)、B:本試験のN/10チオ硫酸ナトリウム水溶液使用量(ml)、f:N/10チオ硫酸ナトリウム水溶液のファクター、S:樹脂の質量(g))
<Iodine value>
0.2 to 5 g of resin was accurately weighed into a flask with a stopper, 10 ml of carbon tetrachloride was added to dissolve the resin, and 25 ml of Wies' solution was further added accurately. After capping, the container was left in a dark place at room temperature for 30 minutes. Next, 20 ml of a 10 W/V% potassium iodide aqueous solution and 100 ml of water were added and mixed by shaking. Titrate the resulting solution with an N/10 aqueous sodium thiosulfate solution, and after the solution turns slightly yellow, add a few drops of starch solution and continue the titration while shaking well. The end point is when the blue color due to starch disappears. This test was conducted by doing this. In parallel with the main test, a blank test similar to the main test was conducted except that no resin was used.
The iodine value was calculated using the following formula. The iodine value in terms of solid content was calculated from the calculated iodine value and the solid content.
Iodine value = ((AB) x f x 1.269)/S
(A: Amount of N/10 sodium thiosulfate aqueous solution used in blank test (ml), B: Amount of N/10 sodium thiosulfate aqueous solution used in main test (ml), f: Factor of N/10 sodium thiosulfate aqueous solution, S : Mass of resin (g))

[合成例1]アルキド樹脂溶液(K1)の合成
反応器内に大豆油脂肪酸311.55質量部と、無水フタル酸230.70質量部と、グリセリン82.05質量部と、ペンタエリスリトール98.55質量部と、安息香酸27.15質量部と、還流溶剤としてキシレン22.50質量部とを仕込んだ。
窒素気流下で、得られた混合液を220℃まで昇温し、3時間保温した後冷却し、その後キシレン650.80質量部を加えてアルキド樹脂溶液(K1)を調製した。
アルキド樹脂溶液(K1)中の固形分は50.0質量%であった。また、アルキド樹脂溶液(K1)中のアルキド樹脂のMwは16,000であり、酸価は6.4mgKOH/gであった。
[Synthesis Example 1] Synthesis of alkyd resin solution (K1) In a reactor, 311.55 parts by mass of soybean oil fatty acid, 230.70 parts by mass of phthalic anhydride, 82.05 parts by mass of glycerin, and 98.55 parts by mass of pentaerythritol. Parts by mass, 27.15 parts by mass of benzoic acid, and 22.50 parts by mass of xylene as a refluxing solvent were charged.
The temperature of the resulting mixed solution was raised to 220° C. under a nitrogen stream, kept at the temperature for 3 hours, and then cooled. Thereafter, 650.80 parts by mass of xylene was added to prepare an alkyd resin solution (K1).
The solid content in the alkyd resin solution (K1) was 50.0% by mass. Furthermore, the Mw of the alkyd resin in the alkyd resin solution (K1) was 16,000, and the acid value was 6.4 mgKOH/g.

[製造例1]変性(メタ)アクリル樹脂溶液(a1)の調製
反応器内に、前記で得られたアルキド樹脂溶液(K1)10.00質量部(固形分換算で5.00質量部)と、溶剤としてキシレン52.67質量部およびトルエン9.00質量部とを仕込み、混合液を得た。窒素気流下で、前記混合液を125℃(反応温度)まで昇温させた後、モノマー成分の混合液(スチレン:38.00質量部、メタクリル酸メチル(MMA):18.00質量部、n-ブチルアクリレート(BA):29.50質量部、2-ヒドロキシエチルメタクリレート(2-HEMA):8.45質量部、および、メタクリル酸(MAA):1.05質量部)95質量部と、開始剤(t-ブチルパーオキシベンゾエート)1.00質量部との混合液を、125℃を維持しながら3時間かけて滴下した。滴下後、同温度(125℃)で1時間保温した後、t-ブチルパーオキシベンゾエート0.3質量部を加えた。2時間保温した後、冷却し、キシレン33.33質量部を加えて変性(メタ)アクリル樹脂溶液(a1)を調製した。
変性(メタ)アクリル樹脂溶液(a1)中の固形分は50.0質量%であった。また、変性(メタ)アクリル樹脂溶液(a1)中の変性(メタ)アクリル樹脂のMwは34,000であり、酸価は3.9mgKOH/gであり、ヨウ素価(固形分換算値)は2.8であった。
[Production Example 1] Preparation of modified (meth)acrylic resin solution (a1) In a reactor, 10.00 parts by mass (5.00 parts by mass in terms of solid content) of the alkyd resin solution (K1) obtained above and , 52.67 parts by mass of xylene and 9.00 parts by mass of toluene were charged as a solvent to obtain a mixed solution. After heating the mixture to 125° C. (reaction temperature) under a nitrogen stream, a mixture of monomer components (styrene: 38.00 parts by mass, methyl methacrylate (MMA): 18.00 parts by mass, n -Butyl acrylate (BA): 29.50 parts by mass, 2-hydroxyethyl methacrylate (2-HEMA): 8.45 parts by mass, and methacrylic acid (MAA): 1.05 parts by mass) 95 parts by mass, and starting A mixed solution with 1.00 parts by mass of agent (t-butyl peroxybenzoate) was added dropwise over 3 hours while maintaining the temperature at 125°C. After the dropwise addition, the mixture was kept at the same temperature (125°C) for 1 hour, and then 0.3 parts by mass of t-butyl peroxybenzoate was added. After keeping the temperature for 2 hours, it was cooled and 33.33 parts by mass of xylene was added to prepare a modified (meth)acrylic resin solution (a1).
The solid content in the modified (meth)acrylic resin solution (a1) was 50.0% by mass. Furthermore, the Mw of the modified (meth)acrylic resin in the modified (meth)acrylic resin solution (a1) is 34,000, the acid value is 3.9 mgKOH/g, and the iodine value (solid content equivalent value) is 2. It was .8.

[製造例2]変性(メタ)アクリル樹脂溶液(a2)の調製
反応器内に、前記で得られたアルキド樹脂溶液(K1)3.40質量部(固形分換算で1.70質量部)と、溶剤としてキシレン55.99質量部およびトルエン9.00質量部とを仕込み、混合液を得た。窒素気流下で、前記混合液を125℃(反応温度)まで昇温させた後、モノマー成分の混合液(スチレン:39.32質量部、メタクリル酸メチル(MMA):18.00質量部、n-ブチルアクリレート(BA):31.15質量部、2-ヒドロキシエチルメタクリレート(2-HEMA):8.69質量部、および、メタクリル酸(MAA):1.14質量部)98.30質量部と、開始剤(t-ブチルパーオキシベンゾエート)1.66質量部との混合液を、125℃を維持しながら3時間かけて滴下した。滴下後、同温度(125℃)で1時間保温した後、t-ブチルパーオキシベンゾエート0.3質量部を加えた。2時間保温した後、冷却し、キシレン35.23質量部を加えて変性(メタ)アクリル樹脂溶液(a2)を調製した。
変性(メタ)アクリル樹脂溶液(a2)中の固形分は50.1質量%であった。また、変性(メタ)アクリル樹脂溶液(a2)中の変性(メタ)アクリル樹脂のMwは25,711であり、酸価は4.7mgKOH/gであり、ヨウ素価(固形分換算値)は1.0であった。
[Production Example 2] Preparation of modified (meth)acrylic resin solution (a2) In a reactor, 3.40 parts by mass (1.70 parts by mass in terms of solid content) of the alkyd resin solution (K1) obtained above and , 55.99 parts by mass of xylene and 9.00 parts by mass of toluene were charged as a solvent to obtain a mixed solution. After heating the mixture to 125°C (reaction temperature) under a nitrogen stream, a mixture of monomer components (styrene: 39.32 parts by mass, methyl methacrylate (MMA): 18.00 parts by mass, n -Butyl acrylate (BA): 31.15 parts by mass, 2-hydroxyethyl methacrylate (2-HEMA): 8.69 parts by mass, and methacrylic acid (MAA): 1.14 parts by mass) 98.30 parts by mass. , and 1.66 parts by mass of an initiator (t-butyl peroxybenzoate) was added dropwise over 3 hours while maintaining the temperature at 125°C. After the dropwise addition, the mixture was kept at the same temperature (125°C) for 1 hour, and then 0.3 parts by mass of t-butyl peroxybenzoate was added. After keeping the temperature for 2 hours, it was cooled and 35.23 parts by mass of xylene was added to prepare a modified (meth)acrylic resin solution (a2).
The solid content in the modified (meth)acrylic resin solution (a2) was 50.1% by mass. Furthermore, the Mw of the modified (meth)acrylic resin in the modified (meth)acrylic resin solution (a2) is 25,711, the acid value is 4.7 mgKOH/g, and the iodine value (solid content equivalent value) is 1. It was .0.

[製造例3]変性(メタ)アクリル樹脂溶液(a3)の調製
反応器内に、前記で得られたアルキド樹脂溶液(K1)17.40質量部(固形分換算で8.70質量部)と、溶剤としてキシレン48.99質量部およびトルエン9.00質量部とを仕込み、混合液を得た。窒素気流下で、前記混合液を125℃(反応温度)まで昇温させた後、モノマー成分の混合液(スチレン:36.52質量部、メタクリル酸メチル(MMA):16.72質量部、n-ブチルアクリレート(BA):28.93質量部、2-ヒドロキシエチルメタクリレート(2-HEMA):8.07質量部、および、メタクリル酸(MAA):1.06質量部)91.30質量部と、開始剤(t-ブチルパーオキシベンゾエート)1.54質量部との混合液を、125℃を維持しながら3時間かけて滴下した。滴下後、同温度(125℃)で1時間保温した後、t-ブチルパーオキシベンゾエート0.3質量部を加えた。2時間保温した後、冷却し、キシレン35.15質量部を加えて変性(メタ)アクリル樹脂溶液(a3)を調製した。
変性(メタ)アクリル樹脂溶液(a3)中の固形分は49.8質量%であった。また、変性(メタ)アクリル樹脂溶液(a3)中の変性(メタ)アクリル樹脂のMwは35,042であり、酸価は4.7mgKOH/gであり、ヨウ素価(固形分換算値)は5.0であった。
[Production Example 3] Preparation of modified (meth)acrylic resin solution (a3) In a reactor, 17.40 parts by mass (8.70 parts by mass in terms of solid content) of the alkyd resin solution (K1) obtained above and 48.99 parts by mass of xylene and 9.00 parts by mass of toluene were charged as a solvent to obtain a mixed solution. After heating the mixture to 125°C (reaction temperature) under a nitrogen stream, a mixture of monomer components (styrene: 36.52 parts by mass, methyl methacrylate (MMA): 16.72 parts by mass, n -Butyl acrylate (BA): 28.93 parts by mass, 2-hydroxyethyl methacrylate (2-HEMA): 8.07 parts by mass, and methacrylic acid (MAA): 1.06 parts by mass) 91.30 parts by mass. , and 1.54 parts by mass of an initiator (t-butyl peroxybenzoate) was added dropwise over 3 hours while maintaining the temperature at 125°C. After the dropwise addition, the mixture was kept at the same temperature (125°C) for 1 hour, and then 0.3 parts by mass of t-butyl peroxybenzoate was added. After keeping the temperature for 2 hours, it was cooled and 35.15 parts by mass of xylene was added to prepare a modified (meth)acrylic resin solution (a3).
The solid content in the modified (meth)acrylic resin solution (a3) was 49.8% by mass. Furthermore, the Mw of the modified (meth)acrylic resin in the modified (meth)acrylic resin solution (a3) is 35,042, the acid value is 4.7 mgKOH/g, and the iodine value (solid content equivalent value) is 5. It was .0.

[製造例4]変性(メタ)アクリル樹脂溶液(a4)の調製
反応器内に、前記で得られたアルキド樹脂溶液(K1)35.00質量部(固形分換算で17.50質量部)と、溶剤としてキシレン40.19質量部およびトルエン9.00質量部とを仕込み、混合液を得た。窒素気流下で、前記混合液を125℃(反応温度)まで昇温させた後、モノマー成分の混合液(スチレン:33.00質量部、メタクリル酸メチル(MMA):15.33質量部、n-ブチルアクリレート(BA):26.30質量部、2-ヒドロキシエチルメタクリレート(2-HEMA):7.00質量部、および、メタクリル酸(MAA):0.87質量部)82.50質量部と、開始剤(t-ブチルパーオキシベンゾエート)1.39質量部との混合液を、125℃を維持しながら3時間かけて滴下した。滴下後、同温度(125℃)で1時間保温した後、t-ブチルパーオキシベンゾエート0.3質量部を加えた。2時間保温した後、冷却し、キシレン35.00質量部を加えて変性(メタ)アクリル樹脂溶液(a4)を調製した。
変性(メタ)アクリル樹脂溶液(a4)中の固形分は49.7質量%であった。また、変性(メタ)アクリル樹脂溶液(a4)中の変性(メタ)アクリル樹脂のMwは47,341であり、酸価は4.6mgKOH/gであり、ヨウ素価(固形分換算値)は10.0であった。
[Production Example 4] Preparation of modified (meth)acrylic resin solution (a4) In a reactor, 35.00 parts by mass (17.50 parts by mass in terms of solid content) of the alkyd resin solution (K1) obtained above and , 40.19 parts by mass of xylene and 9.00 parts by mass of toluene were charged as solvents to obtain a mixed solution. After heating the mixture to 125° C. (reaction temperature) under a nitrogen stream, a mixture of monomer components (styrene: 33.00 parts by mass, methyl methacrylate (MMA): 15.33 parts by mass, n -Butyl acrylate (BA): 26.30 parts by mass, 2-hydroxyethyl methacrylate (2-HEMA): 7.00 parts by mass, and methacrylic acid (MAA): 0.87 parts by mass) 82.50 parts by mass. , and 1.39 parts by mass of an initiator (t-butyl peroxybenzoate) was added dropwise over 3 hours while maintaining the temperature at 125°C. After the dropwise addition, the mixture was kept at the same temperature (125°C) for 1 hour, and then 0.3 parts by mass of t-butyl peroxybenzoate was added. After keeping the temperature for 2 hours, it was cooled and 35.00 parts by mass of xylene was added to prepare a modified (meth)acrylic resin solution (a4).
The solid content in the modified (meth)acrylic resin solution (a4) was 49.7% by mass. Furthermore, the Mw of the modified (meth)acrylic resin in the modified (meth)acrylic resin solution (a4) is 47,341, the acid value is 4.6 mgKOH/g, and the iodine value (solid content equivalent value) is 10. It was .0.

[実施例1]
容器に、変性(メタ)アクリル樹脂(a)として製造例1で調製した変性(メタ)アクリル樹脂溶液(a1)45.5質量部を添加した。次に、可塑剤1質量部を添加し、チタン白20質量部、膠質炭酸カルシウム3.5質量部、および、硫酸バリウム9.5質量部を添加した。次いで、n-ブタノール3.2質量部、ブチルセロソルブ2質量部、キシレン4.3質量部、および、「イプゾール 100」7.1質量部を添加した。
[Example 1]
45.5 parts by mass of the modified (meth)acrylic resin solution (a1) prepared in Production Example 1 was added to the container as the modified (meth)acrylic resin (a). Next, 1 part by mass of a plasticizer was added, 20 parts by mass of titanium white, 3.5 parts by mass of colloidal calcium carbonate, and 9.5 parts by mass of barium sulfate. Next, 3.2 parts by mass of n-butanol, 2 parts by mass of butyl cellosolve, 4.3 parts by mass of xylene, and 7.1 parts by mass of "Ipsol 100" were added.

その後、ガラスビーズGB605M(ポッターズ・バロティーニ(株)製)を添加し、ペイントシェーカー(浅田鉄工(株)製)を用いてこれらの配合成分を混合した。次いで、ガラスビーズを取り除き、炭酸カルシウム0.2質量部、タレ止め剤3質量部、消泡剤0.5質量部、および、乾燥促進剤(b)として、「Mnドライヤー1」0.2質量部を添加して、ディスパー「HOMODISPER MODEL 2.5」(プライミクス(株)製)で混合し、変性(メタ)アクリル樹脂系塗料組成物を調製した。 Thereafter, glass beads GB605M (manufactured by Potter's Ballotini Co., Ltd.) were added, and these ingredients were mixed using a paint shaker (manufactured by Asada Tekko Co., Ltd.). Next, the glass beads were removed, and 0.2 parts by mass of calcium carbonate, 3 parts by mass of anti-sagging agent, 0.5 parts by mass of antifoaming agent, and 0.2 parts by mass of "Mn Dryer 1" as drying accelerator (b) were added. % and mixed with a disper "HOMODISPER MODEL 2.5" (manufactured by Primix Co., Ltd.) to prepare a modified (meth)acrylic resin coating composition.

[実施例2~4、比較例1~3]
各成分の種類および配合量を表1に示すとおりに変更した以外は実施例1と同様にして、変性(メタ)アクリル樹脂系塗料組成物をそれぞれ調製した。なお、表1中の変性(メタ)アクリル樹脂溶液(a1)および(a2)の配合量(質量部)は溶液の値を示す。
実施例および比較例で用いた各成分の詳細を表3に示す。
[Examples 2 to 4, Comparative Examples 1 to 3]
Modified (meth)acrylic resin coating compositions were prepared in the same manner as in Example 1, except that the types and amounts of each component were changed as shown in Table 1. The amounts (parts by mass) of the modified (meth)acrylic resin solutions (a1) and (a2) in Table 1 indicate the values of the solutions.
Table 3 shows details of each component used in Examples and Comparative Examples.

<耐気泡フクレ性試験>
環境温度23℃の下、サンドブラスト鋼板(150mm×70mm×2.3mm、Sa2.5以上)上に、エアースプレー塗装機(W-77、アネスト岩田(株)製)を用い、下記エポキシ樹脂系防食塗料組成物(P1)をウェット膜厚約200μmで塗装した。温度23℃、湿度55%の環境条件下で1日乾燥後、エアレススプレー塗装機(Xフォース、Graco社製)を用い、得られたエポキシ樹脂系防食塗膜上に変性(メタ)アクリル樹脂系塗料組成物をウェット膜厚約400μmで塗装した。次いで、温度23℃、湿度55%の環境条件下で1日乾燥後、エアレススプレー塗装機(Xフォース)を用い、得られた変性(メタ)アクリル樹脂系塗膜上にさらに変性(メタ)アクリル樹脂系塗料組成物をウェット膜厚約400μmで塗装し、温度23℃、湿度55%の環境条件下で7日間乾燥させることで、耐気泡フクレ性試験用の塗装鋼板を作製した。
<Bubble blistering resistance test>
At an environmental temperature of 23°C, the following epoxy resin anti-corrosion coating was applied to a sandblasted steel plate (150mm x 70mm x 2.3mm, Sa2.5 or higher) using an air spray coating machine (W-77, manufactured by Anest Iwata Co., Ltd.). The coating composition (P1) was applied to a wet film thickness of about 200 μm. After drying for one day under the environmental conditions of a temperature of 23°C and a humidity of 55%, a modified (meth)acrylic resin was applied onto the resulting epoxy resin anticorrosive coating using an airless spray coating machine (X Force, manufactured by Graco). The coating composition was applied to a wet film thickness of about 400 μm. Next, after drying for one day under the environmental conditions of a temperature of 23°C and a humidity of 55%, a modified (meth)acrylic resin was further applied onto the resulting modified (meth)acrylic resin coating using an airless spray coating machine (X Force). A coated steel plate for the bubble blistering resistance test was prepared by applying a resin coating composition to a wet film thickness of about 400 μm and drying it for 7 days under environmental conditions of a temperature of 23° C. and a humidity of 55%.

得られた耐気泡フクレ性試験用の塗装鋼板を、温度70℃、湿度70%の恒温恒湿機中で4時間保持する工程と、その後の、温度23℃、湿度70%の恒温恒湿機中で4時間保持する工程(計8時間)とを1サイクルとして、14サイクル行った。
14サイクル後の耐気泡フクレ性試験用の塗装鋼板上の塗膜に、フクレがあるか無いかを目視により確認し、フクレが無い場合を○、フクレがある場合を×として評価した。結果を表1に示す。
A process of holding the obtained painted steel plate for the bubble-proof blistering test in a constant temperature and humidity chamber at a temperature of 70°C and a humidity of 70% for 4 hours, followed by a process of holding it in a constant temperature and humidity chamber at a temperature of 23°C and a humidity of 70%. A total of 14 cycles were performed, with one cycle consisting of a step of holding the sample in a container for 4 hours (8 hours in total).
After 14 cycles, the coating film on the painted steel plate for the bubble blistering resistance test was visually checked to see if there was any blistering, and the evaluation was rated as ○ if there was no blistering, and × if there was blistering. The results are shown in Table 1.

・エポキシ樹脂系防食塗料組成物(P1)
容器に、エポキシ樹脂「E-001-75X」(大竹明新化学(株)製、ビスフェノールA型エポキシ樹脂)5質量部、エポキシ樹脂「E-834-85X」(大竹明新化学(株)製、ビスフェノールA型エポキシ樹脂)23.7質量部を添加した。次に、顔料として、「R-5N」(堺化学工業(株)製、チタン白)3質量部、「MA-100」(三菱ケミカル(株)製、カーボンブラック)0.1質量部、「TTKタルク」(竹原化学工業(株)製)22質量部、および、「セラミックパウダーOF-T」(キンセイマテック(株)製、カリ長石)18質量部を添加した。さらに、添加剤として、「KBM-403」(信越化学工業(株)製、γ-グリシドキシプロピルトリメトキシシラン)0.3質量部、「DISPARON6650」(楠本化成(株)製、脂肪酸アマイドワックス)1質量部を添加した。次いで、溶剤として、「メトキシプロパノール」(ダイセル化学工業(株)製)4質量部、キシロール(大伸化学(株)製)7.9質量部、および、n-ブタノール(ダウ・ケミカル日本(株)製)1質量部を添加した。
その後、ガラスビーズGB605Mを添加し、ペイントシェーカー(浅田鉄工(株)製)を用いてこれらの配合成分を混合した。次いで、このガラスビーズを取り除き、エポキシ樹脂系防食塗料組成物(P1)の主剤成分を製造した。
・Epoxy resin anticorrosive paint composition (P1)
In a container, 5 parts by mass of epoxy resin "E-001-75X" (manufactured by Ohtake Meishin Chemical Co., Ltd., bisphenol A type epoxy resin) and 5 parts by mass of epoxy resin "E-834-85X" (manufactured by Ohtake Meishin Chemical Co., Ltd.) , bisphenol A type epoxy resin) was added. Next, as pigments, 3 parts by mass of "R-5N" (manufactured by Sakai Chemical Industry Co., Ltd., titanium white), 0.1 parts by mass of "MA-100" (manufactured by Mitsubishi Chemical Corporation, carbon black), " 22 parts by mass of "TTK Talc" (manufactured by Takehara Chemical Industry Co., Ltd.) and 18 parts by mass of "Ceramic Powder OF-T" (manufactured by Kinseimatec Co., Ltd., potassium feldspar) were added. Furthermore, as additives, 0.3 parts by mass of "KBM-403" (manufactured by Shin-Etsu Chemical Co., Ltd., γ-glycidoxypropyltrimethoxysilane), "DISPARON 6650" (manufactured by Kusumoto Kasei Co., Ltd., fatty acid amide wax) ) 1 part by mass was added. Next, as a solvent, 4 parts by mass of "methoxypropanol" (manufactured by Daicel Chemical Industries, Ltd.), 7.9 parts by mass of xylol (manufactured by Daishin Chemical Co., Ltd.), and n-butanol (manufactured by Dow Chemical Japan Co., Ltd.) were used. 1 part by mass (manufactured by ) was added.
Thereafter, glass beads GB605M were added, and these ingredients were mixed using a paint shaker (manufactured by Asada Tekko Co., Ltd.). Next, the glass beads were removed to produce a main component of an epoxy resin anticorrosive paint composition (P1).

主剤成分を製造したのとは別の容器に、アミン硬化剤として、「PA-66」(大竹明新化学(株)製、ポリアミドアミン)7.9質量部、「PA-290(A)」(大竹明新化学(株)製、ポリアミドアミン)3質量部、および、「カードライトNX-4918」(カードライト社製、変性脂肪族ポリアミン)3質量部を添加し、次に硬化促進剤として「アンカミンK-54」(エアープロダクツ社製、3級アミン)0.1質量部を添加し、ディスパー「HOMODISPER MODEL 2.5」で配合物を均一に混合して、エポキシ樹脂系防食塗料組成物(P1)の硬化剤成分を製造した。 In a separate container from the one in which the main ingredient was produced, 7.9 parts by mass of "PA-66" (manufactured by Ohtake Meishin Chemical Co., Ltd., polyamide amine) and "PA-290 (A)" were added as an amine curing agent. (manufactured by Ohtake Meishin Kagaku Co., Ltd., polyamide amine) and 3 parts by mass of "Cardrite NX-4918" (manufactured by Cardrite Co., Ltd., modified aliphatic polyamine) were added, and then as a curing accelerator, Add 0.1 part by mass of "Ankamin K-54" (manufactured by Air Products Co., Ltd., tertiary amine) and mix the mixture uniformly with a disper "HOMODISPER MODEL 2.5" to obtain an epoxy resin anticorrosive paint composition. A curing agent component (P1) was produced.

前記主剤成分86質量部と前記硬化剤成分14質量部とを混合して、エポキシ樹脂系防食塗料組成物(P1)とした後、塗装した。なお、この際の当量比=(硬化剤の使用量/活性水素当量)/(エポキシ樹脂の使用量/エポキシ当量)は、0.49であり、エポキシ樹脂系防食塗料組成物(P1)の固形分の容積率(VS)は73%であった。 86 parts by mass of the main agent component and 14 parts by mass of the curing agent component were mixed to form an epoxy resin anticorrosive coating composition (P1), which was then coated. In this case, the equivalent ratio = (amount of curing agent used/active hydrogen equivalent)/(amount of epoxy resin used/epoxy equivalent) is 0.49, and the solid state of the epoxy resin anticorrosive coating composition (P1) The volume fraction (VS) was 73%.

<耐黄変性試験>
脱脂したブリキ板に、アプリケーター(隙間0.3mm)を用い、変性(メタ)アクリル樹脂系塗料組成物を塗装し、23℃で1週間乾燥させることで塗膜を形成した。形成した塗膜の色味b*を、コニカミノルタジャパン(株)製のSPECTROPHOTOMETER CM-3700A(光源:C、視野:2°)を用いて測定し、また、下記式から、b*増加率を算出した。結果を表1に示す。
b*増加率(%)=(各試験におけるb*-比較例3におけるb*)×100/比較例3におけるb*
<Yellowing resistance test>
A modified (meth)acrylic resin coating composition was applied to a degreased tin plate using an applicator (gap 0.3 mm) and dried at 23° C. for one week to form a coating film. The color b* of the formed coating film was measured using SPECTROPHOTOMETER CM-3700A (light source: C, field of view: 2°) manufactured by Konica Minolta Japan, and the b* increase rate was calculated from the following formula. Calculated. The results are shown in Table 1.
b*Increase rate (%) = (b* in each test - b* in Comparative Example 3) x 100/b* in Comparative Example 3

<耐候性試験>
脱脂したブリキ板に、アプリケーター(隙間0.3mm)を用い、変性(メタ)アクリル樹脂系塗料組成物を塗装し、23℃で1週間乾燥させることで塗膜を形成した。その後、形成した塗膜に、スーパーキセノンウェザーメーター(スガ試験機(株)製)を用いて、JIS K 5600-7-7に準拠して、光を350時間照射した。なお、放射照度は180W/m2とした。
BYK社製のmicro-TRI-glossを用い、形成した塗膜(光照射前の塗膜)の60°鏡面光沢(G1)と、光照射後の塗膜の60°鏡面光沢(G2)とを測定し、下記式から光沢保持率を算出した。結果を表1に示す。
光沢保持率(%)=(G2/G1)×100
また、コニカミノルタジャパン(株)製のSPECTROPHOTOMETER CM-3700A(光源:C、視野:2°)を用い、形成した塗膜(光照射前の塗膜)と、光照射後の塗膜の色差(ΔE)を測定した。結果を表1に示す。
<Weather resistance test>
A modified (meth)acrylic resin coating composition was applied to a degreased tin plate using an applicator (gap 0.3 mm) and dried at 23° C. for one week to form a coating film. Thereafter, the formed coating film was irradiated with light for 350 hours using a super xenon weather meter (manufactured by Suga Test Instruments Co., Ltd.) in accordance with JIS K 5600-7-7. Note that the irradiance was 180 W/m 2 .
The 60° specular gloss (G1) of the coating film formed using micro-TRI-gloss manufactured by BYK (the coating film before light irradiation) and the 60° specular gloss (G2) of the coating film after light irradiation. The gloss retention rate was calculated from the following formula. The results are shown in Table 1.
Gloss retention rate (%) = (G2/G1) x 100
In addition, using SPECTROPHOTOMETER CM-3700A (light source: C, field of view: 2°) manufactured by Konica Minolta Japan, Inc., the color difference between the formed coating film (coating film before light irradiation) and the coating film after light irradiation ( ΔE) was measured. The results are shown in Table 1.

Figure 2023135579000003
Figure 2023135579000003

[実施例5、6および比較例4~8]
各成分の種類および配合量を表2に示すとおりに変更した以外は実施例1と同様にして、変性(メタ)アクリル樹脂系塗料組成物をそれぞれ調製した。なお、表2中の変性(メタ)アクリル樹脂溶液(a1)~(a4)の配合量(質量部)は溶液の値を示す。
実施例および比較例で用いた各成分の詳細を表3に示す。
[Examples 5 and 6 and Comparative Examples 4 to 8]
Modified (meth)acrylic resin coating compositions were prepared in the same manner as in Example 1, except that the types and amounts of each component were changed as shown in Table 2. Note that the blending amounts (parts by mass) of the modified (meth)acrylic resin solutions (a1) to (a4) in Table 2 indicate the values of the solutions.
Table 3 shows details of each component used in Examples and Comparative Examples.

<耐気泡フクレ性試験および耐候性試験>
前記と同様にして、耐気泡フクレ性試験および耐候性試験(60°光沢保持率)を行った。結果を表2に示す。
<Bubble resistance test and weather resistance test>
A bubble resistance test and a weather resistance test (60° gloss retention) were conducted in the same manner as above. The results are shown in Table 2.

<耐水白化性試験>
脱脂したブリキ板に、アプリケーター(隙間0.3mm)を用い、変性(メタ)アクリル樹脂系塗料組成物を塗装し、23℃で1週間乾燥させることで塗膜を形成した。その後、形成した塗膜を、50℃の温水に3時間浸漬することで、塗膜を白化させた。
BYK社製のmicro-TRI-glossを用い、形成した塗膜(白化前の塗膜)の60°鏡面光沢(初期光沢、G3)と、白化後の塗膜の60°鏡面光沢(白化後光沢、G4)とを測定し、下記式から光沢保持率を算出した。結果を表2に示す。
光沢保持率(%)=(G4/G3)×100
また、コニカミノルタジャパン(株)製のSPECTROPHOTOMETER CM-3700A(光源:C、視野:2°)を用い、形成した塗膜(白化前の塗膜)と、白化後の塗膜の明度差(ΔL*)を測定した。結果を表2に示す。
<Water whitening resistance test>
A modified (meth)acrylic resin coating composition was applied to a degreased tin plate using an applicator (gap 0.3 mm) and dried at 23° C. for one week to form a coating film. Thereafter, the formed coating film was immersed in warm water at 50° C. for 3 hours to whiten the coating film.
60° specular gloss (initial gloss, G3) of the paint film formed using micro-TRI-gloss manufactured by BYK (paint film before whitening), and 60° specular gloss (gloss after whitening) of the paint film after whitening. , G4) were measured, and the gloss retention rate was calculated from the following formula. The results are shown in Table 2.
Gloss retention rate (%) = (G4/G3) x 100
In addition, using SPECTROPHOTOMETER CM-3700A (light source: C, field of view: 2°) manufactured by Konica Minolta Japan, Inc., the brightness difference (ΔL) between the formed coating film (paint film before whitening) and the coating film after whitening *) was measured. The results are shown in Table 2.

Figure 2023135579000004
Figure 2023135579000004

Figure 2023135579000005
Figure 2023135579000005

表1は、耐黄変性を確認するために、白色の組成物を用いた結果であり、表2は、耐水白化性を確認するために、黒色の組成物を用いた結果である。また、実施例1、3~4と対応する比較例1~2、実施例5と対応する比較例4~5とは、それぞれ、用いた乾燥促進剤中の金属含有量が同量となるように調整された組成物である。
ヨウ素価が4未満の変性(メタ)アクリル樹脂(a)およびマンガンを含有する乾燥促進剤(b)を用いることで、耐気泡フクレ性、耐黄変性、耐候性および耐水白化性に優れる塗膜を形成できる変性(メタ)アクリル樹脂系塗料組成物が得られた。
実施例で得られた変性(メタ)アクリル樹脂系塗料組成物は、ヨウ素価が4未満の変性(メタ)アクリル樹脂(a)を用いるため、有害な皮張り防止剤を用いなくても皮張りしないと考えられる。
Table 1 shows the results of using a white composition to confirm yellowing resistance, and Table 2 shows the results of using a black composition to confirm water whitening resistance. In addition, Comparative Examples 1 and 2 corresponding to Examples 1 and 3 and 4, and Comparative Examples 4 and 5 corresponding to Example 5, were designed so that the metal content in the drying accelerator used was the same. It is a composition adjusted to.
By using a modified (meth)acrylic resin (a) with an iodine value of less than 4 and a drying accelerator containing manganese (b), a coating film with excellent blistering resistance, yellowing resistance, weather resistance, and water whitening resistance A modified (meth)acrylic resin coating composition capable of forming the following was obtained.
Since the modified (meth)acrylic resin coating composition obtained in the example uses a modified (meth)acrylic resin (a) with an iodine value of less than 4, it can be coated without using a harmful anti-skinning agent. It is considered not to do so.

以上、実施例等を参照しながら本発明を説明してきたが、本発明は係る実施例により限定されるものではなく、例えば、特許請求の範囲に記載された本発明の要旨を逸脱しない範囲で設計変更は許容される。 Although the present invention has been described above with reference to Examples, the present invention is not limited to such Examples, and, for example, without departing from the gist of the present invention as described in the claims. Design changes are allowed.

Claims (7)

ヨウ素価が4未満の変性(メタ)アクリル樹脂(a)およびマンガンを含有する乾燥促進剤(b)を含有する、変性(メタ)アクリル樹脂系塗料組成物。 A modified (meth)acrylic resin coating composition containing a modified (meth)acrylic resin (a) having an iodine value of less than 4 and a drying accelerator (b) containing manganese. 前記乾燥促進剤(b)が脂肪酸マンガン塩である、請求項1に記載の変性(メタ)アクリル樹脂系塗料組成物。 The modified (meth)acrylic resin coating composition according to claim 1, wherein the drying accelerator (b) is a fatty acid manganese salt. さらに顔料を含有し、
前記変性(メタ)アクリル樹脂系塗料組成物中の顔料体積濃度(PVC)が15~45%である、
請求項1に記載の変性(メタ)アクリル樹脂系塗料組成物。
Furthermore, it contains pigment,
The pigment volume concentration (PVC) in the modified (meth)acrylic resin coating composition is 15 to 45%,
The modified (meth)acrylic resin coating composition according to claim 1.
エポキシ樹脂系下塗り防食塗膜と、請求項1~3のいずれか1項に記載の変性(メタ)アクリル樹脂系塗料組成物から形成された上塗り塗膜との積層塗膜。 A laminated coating film comprising an epoxy resin undercoat anticorrosive coating film and a topcoat coating formed from the modified (meth)acrylic resin coating composition according to any one of claims 1 to 3. 請求項4に記載の積層塗膜と基材とを含む塗膜付き基材。 A base material with a coating film, comprising the laminated coating film according to claim 4 and a base material. 前記基材が鉄鋼構造物である、請求項5に記載の塗膜付き基材。 The coated base material according to claim 5, wherein the base material is a steel structure. 下記工程1および2を含む、塗膜付き基材の製造方法。
工程1:基材に、エポキシ樹脂系防食塗料組成物を塗装し、下塗り防食塗膜(A)を形成する工程
工程2:下塗り防食塗膜(A)上に、請求項1~3のいずれか1項に記載の変性(メタ)アクリル樹脂系塗料組成物を塗装し、上塗り塗膜(B)を形成する工程
A method for producing a coated base material, including the following steps 1 and 2.
Step 1: A step of applying an epoxy resin-based anticorrosive coating composition to a base material to form an undercoat anticorrosion coating (A). Step 2: Applying any one of claims 1 to 3 on the undercoat anticorrosion coating (A). A step of coating the modified (meth)acrylic resin coating composition according to item 1 to form a topcoat film (B).
JP2022087004A 2022-03-15 2022-05-27 Modified (meth)acrylic resin coating composition, laminated coating film, substrate with coated film, and method for producing the same Active JP7183461B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202310240719.1A CN116200092A (en) 2022-03-15 2023-03-14 Coating composition, multilayer coating film, substrate with coating film, and method for producing same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022040348 2022-03-15
JP2022040348 2022-03-15

Publications (2)

Publication Number Publication Date
JP7183461B1 JP7183461B1 (en) 2022-12-05
JP2023135579A true JP2023135579A (en) 2023-09-28

Family

ID=84321864

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2022087004A Active JP7183461B1 (en) 2022-03-15 2022-05-27 Modified (meth)acrylic resin coating composition, laminated coating film, substrate with coated film, and method for producing the same

Country Status (2)

Country Link
JP (1) JP7183461B1 (en)
CN (1) CN116200092A (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000095917A (en) * 1998-09-25 2000-04-04 Nippon Carbide Ind Co Inc Non-aqueous resin composition and its paint composition
JP2001049102A (en) * 1999-06-03 2001-02-20 Dainippon Ink & Chem Inc Curing promoter and resin composition
WO2013084824A1 (en) * 2011-12-06 2013-06-13 Dic株式会社 Drier for paint and paint using same

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102008046075A1 (en) * 2008-09-08 2010-03-11 Evonik Röhm Gmbh (Meth) acrylate monomer, polymer and coating agent
JP6804008B1 (en) * 2020-08-31 2020-12-23 日本ペイント・インダストリアルコ−ティングス株式会社 Paint composition

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000095917A (en) * 1998-09-25 2000-04-04 Nippon Carbide Ind Co Inc Non-aqueous resin composition and its paint composition
JP2001049102A (en) * 1999-06-03 2001-02-20 Dainippon Ink & Chem Inc Curing promoter and resin composition
WO2013084824A1 (en) * 2011-12-06 2013-06-13 Dic株式会社 Drier for paint and paint using same

Also Published As

Publication number Publication date
CN116200092A (en) 2023-06-02
JP7183461B1 (en) 2022-12-05

Similar Documents

Publication Publication Date Title
JP6707123B2 (en) Anticorrosion coating composition, anticorrosion coating, base material with anticorrosion coating, and method for producing the same
JP5612442B2 (en) Epoxy resin coating composition
EP3222682B1 (en) Two-part anti-fouling paint composition, anti-fouling paint film, anti-fouling base member, and method for manufacturing anti-fouling base member
JP6106209B2 (en) Natural dry water-based paint composition
CN103980782B (en) Binary aqueous survives coating compositions together
WO2011118792A1 (en) Water-based coating composition and process for formation of coating film
JP2023027218A (en) Coating composition directly coated onto metal
CN103906577A (en) Method for forming multilayer coating film
KR101860988B1 (en) Water soluble anti-corrosive paint composition using acrylic modified epoxy ester resin
JP7028591B2 (en) Modified acrylic resin-based paint composition, laminated coating film, substrate with coating film and its manufacturing method
JP7183461B1 (en) Modified (meth)acrylic resin coating composition, laminated coating film, substrate with coated film, and method for producing the same
KR101553120B1 (en) A manufacturing method of a fatty acid and a silane coupling agent modified epoxy resin, and coating composition for ship containing the modified epoxy resin
JP6574095B2 (en) Acrylic paint and its coating film
JP2019019285A (en) Coating agent
JP7440642B2 (en) Epoxy resin anticorrosive paint composition, anticorrosive coating, laminated antifouling coating, antifouling base material, and method for producing the antifouling base material
JP7094973B2 (en) A method for manufacturing a water-based rust-preventive paint composition, a rust-preventive coating film, a base material with a rust-preventive coating film, and a base material with a rust-preventive coating film.
JP7011556B2 (en) Coating composition and method for forming a multi-layer coating film
NO802077L (en) UNDERWATER COATING.
JPH028789B2 (en)
JP2004231853A (en) Coating composition
JP5325379B2 (en) Coating composition and coating method
JP7253658B1 (en) paint composition
KR101869591B1 (en) Anticorrosive Coating Composition comprising unsaturated polyester and vinyl ester
KR20190103651A (en) Rust-resistant coating composition
JP2001335739A (en) Curable coating composition and cured coating film

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220527

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20220527

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220816

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220902

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20221025

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20221122

R150 Certificate of patent or registration of utility model

Ref document number: 7183461

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150