JP2023134119A - Surface coated cutting tool - Google Patents

Surface coated cutting tool Download PDF

Info

Publication number
JP2023134119A
JP2023134119A JP2022039477A JP2022039477A JP2023134119A JP 2023134119 A JP2023134119 A JP 2023134119A JP 2022039477 A JP2022039477 A JP 2022039477A JP 2022039477 A JP2022039477 A JP 2022039477A JP 2023134119 A JP2023134119 A JP 2023134119A
Authority
JP
Japan
Prior art keywords
coating layer
atomic
mass
sum
interface
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2022039477A
Other languages
Japanese (ja)
Inventor
匠 田澤
Takumi Tazawa
優貴 濱中
Yuki Hamanaka
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Materials Corp
Original Assignee
Mitsubishi Materials Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Materials Corp filed Critical Mitsubishi Materials Corp
Priority to JP2022039477A priority Critical patent/JP2023134119A/en
Publication of JP2023134119A publication Critical patent/JP2023134119A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Cutting Tools, Boring Holders, And Turrets (AREA)
  • Physical Vapour Deposition (AREA)

Abstract

To provide a coated tool of a TiCN cermet base body having superior abrasion resistance.SOLUTION: A base body includes a hard phase of TiCN and TiWMCN (M is one kind or more of Zr, Hf, V, Nb, Ta, Cr, Mo), and an average thickness from a boundary surface of a coated layer to an internal part of the base body exceeds 0.1 μm and is less than 10 μm. The base body includes a binding phase component enrichment region where (mass% of Co+mass% of Ni) is 1.4-6.0 times relative to the same sum of the internal part of the substrate. In the same region, a binding phase contacting the boundary surface contains 5-15 atomic% of W, (Co atomic%+Ni atomic%)/W atomic% is 0.9-9.0 and is 1.4 times or more relative to an atomic% of W in the binding phase at a position of 20 nm depth from the boundary surface, a W enrichment region with an average thickness of 1-10 nm is contained, and a sum λa of lengths by which a respective binding phase contacting the boundary surface is in contact with the coated layer, and a sum λb of lengths by which the hard phases respectively contacts the coated layer satisfy 0.10≤λa/(λa+λb)≤0.40.SELECTED DRAWING: Figure 1

Description

本発明は、表面被覆切削工具(以下、被覆工具ということがある)に関するものである。 The present invention relates to a surface-coated cutting tool (hereinafter sometimes referred to as a coated tool).

従来から、被覆工具は、例えば、炭化タングステン基超硬合金、炭窒化チタン基サーメット合金(以下、TiCNサーメットという)等を基体として被覆層を形成したものが知られている。
そして、この基体の組織、組成等を工夫することにより、基体自体の切削性能を向上させる提案がなされている。
Conventionally, coated tools have been known in which a coating layer is formed on a base material of, for example, tungsten carbide-based cemented carbide, titanium carbonitride-based cermet alloy (hereinafter referred to as TiCN cermet), or the like.
Proposals have been made to improve the cutting performance of the base itself by modifying the structure, composition, etc. of the base.

例えば、特許文献1には、支持具に接する支持具接触面は、被覆層により覆われていない焼結肌で構成され、かつその支持具接触面の最表面部には、Co、Niの1種または2種を主成分とする単一相からなる金属しみだし層が0.1μm以上5μm以下の厚さでかつ60面積%以上の表面占有率で形成されており、一方、逃げ面およびチップブレーカの表面には前記金属しみだし層が存在しないTiCNサーメットを基体とする被覆工具が記載され、該被覆工具は前記支持具接触面からの亀裂・破損の発生や進展を抑制できるとされている。 For example, in Patent Document 1, the support contact surface in contact with the support is composed of a sintered skin that is not covered with a coating layer, and the outermost surface of the support contact surface is coated with Co, Ni, etc. A metal exudation layer consisting of a single phase mainly composed of one or two species is formed with a thickness of 0.1 μm or more and 5 μm or less and a surface occupation rate of 60 area % or more, while the flank surface and chip It describes a coated tool based on TiCN cermet that does not have the metal exudation layer on the surface of the breaker, and it is said that the coated tool can suppress the occurrence and progression of cracks and damage from the support contact surface. .

また、例えば、特許文献2には、金属しみだし層が金属成分を20~90質量%含有しているTiCNサーメットを基体とする切削工具が記載され、該切削工具は耐摩耗性と耐欠損性に優れるとされている。 Further, for example, Patent Document 2 describes a cutting tool whose base material is TiCN cermet in which the metal exudation layer contains 20 to 90% by mass of metal components, and the cutting tool has wear resistance and chipping resistance. It is said to be excellent in

特開2012-245581号公報JP2012-245581A 特開平4-146006号公報Japanese Patent Application Publication No. 4-146006

本発明は、前記事情や前記提案を鑑みてなされたものであって、優れた耐摩耗性を有し、TiCNサーメットを基体とする表面被覆切削工具を提供することを目的とする。 The present invention was made in view of the above-mentioned circumstances and the above-mentioned proposals, and an object of the present invention is to provide a surface-coated cutting tool having excellent wear resistance and having TiCN cermet as a base material.

本発明の実施形態に係る表面被覆切削工具は、
基体と該基体上に被覆層を有し、
前記基体は、TiCNおよびTiWMCN(Mは、Zr、Hf、V、Nb、Ta、Cr、Moの1種以上)を含む硬質相と、CoとNiの1種または2種を主成分とする結合相を有し、
前記基体は、前記被覆層の界面から前記基体の内部に向かって、その平均厚さが0.1μm超え、10μm以下であって、(Coの質量%+Niの質量%)が前記基体の内部の同質量%の和に対して1.4倍以上、6.0倍以下である結合相成分富化領域を有し、
前記結合相成分富化領域では、
前記界面に接する前記結合相が、Wを5原子%以上、15原子%以下含み、[(Co原子%+Ni原子%)/W原子%]が0.9以上、9.0以下であり、かつ、前記界面から深さ20nmの位置に存在する結合相中におけるWの原子%に対して1.4倍以上であり、その平均厚さが1nm以上10nm以下のW濃化領域を含み、さらに、前記界面に接する前記結合相のそれぞれが前記被覆層と接する長さの和λaと、前記硬質相のそれぞれが前記被覆層と接する長さの和λbが、0.10≦λa/(λa+λb)≦0.40である。
The surface-coated cutting tool according to the embodiment of the present invention includes:
It has a base and a coating layer on the base,
The substrate has a hard phase containing TiCN and TiWMCN (M is one or more of Zr, Hf, V, Nb, Ta, Cr, and Mo) and a bond mainly composed of one or two of Co and Ni. has a phase,
The base body has an average thickness of more than 0.1 μm and 10 μm or less from the interface of the coating layer toward the inside of the base body, and (mass % of Co + mass % of Ni) is within the interior of the base body. Having a binder phase component enriched region that is 1.4 times or more and 6.0 times or less with respect to the sum of the same mass %,
In the binder phase component enriched region,
The binder phase in contact with the interface contains W at 5 at % or more and 15 at % or less, and [(Co at % + Ni at %)/W at %] is 0.9 or more and 9.0 or less, and , including a W-enriched region that is 1.4 times or more atomic % of W in the binder phase existing at a depth of 20 nm from the interface, and has an average thickness of 1 nm or more and 10 nm or less, and The sum of lengths λa of each of the binder phases in contact with the interface with the coating layer and the sum λb of the lengths of each of the hard phases in contact with the coating layer are 0.10≦λa/(λa+λb)≦ It is 0.40.

前記表面被覆切削工具は、優れた耐摩耗性を有する。 The surface-coated cutting tool has excellent wear resistance.

本発明の実施形態に係る表面被覆切削工具の縦断面の模式図である。FIG. 1 is a schematic diagram of a longitudinal section of a surface-coated cutting tool according to an embodiment of the present invention.

本発明者は、TiCNサーメット基体において、焼結によって表面に生じる金属しみだし層について検討した。ここで、金属しみだし層とは、TiCN基サーメット製切削インサートを焼結で製造したとき、焼結体表面に、Ni、Co等の結合相の成分が滲み出ることがあり、この結合相の成分を主体とする金属層のことをいう。 The present inventor studied a metal exudation layer produced on the surface of a TiCN cermet substrate by sintering. Here, the metal exudation layer refers to the components of the binder phase such as Ni and Co that may ooze out onto the surface of the sintered body when a TiCN-based cermet cutting insert is manufactured by sintering. It refers to a metal layer mainly composed of components.

検討の結果、次の事項が判明した。
(1)前記特許文献1に記載された切削工具は、貫通穴の支持具接触面に金属しみだし層が存在するため同面からの亀裂、破損の発生や進展を抑制するものの、金属しみだし層が存在しない逃げ面やチップブレーカ部は靱性が低いこと。
(2)前記特許文献2に記載された切削工具は、金属しみだし層により靱性を有するものの、高速切削加工に供すると境界摩耗が発生して耐久性が劣ること、そして、金属しみだし層の上部に被覆層を形成すると被覆層の付着強度が低く、被覆層が剥離しやすいこと。
As a result of the review, the following items were found.
(1) The cutting tool described in Patent Document 1 has a metal seepage layer on the contact surface of the through-hole with the support, so although it suppresses the occurrence and progression of cracks and damage from the same surface, metal seepage does not occur. Flank surfaces and chip breaker areas where no layer exists have low toughness.
(2) Although the cutting tool described in Patent Document 2 has toughness due to the metal extrusion layer, boundary wear occurs when subjected to high-speed cutting processing, resulting in poor durability; If a coating layer is formed on top, the adhesion strength of the coating layer will be low and the coating layer will easily peel off.

すなわち、金属しみだし層の存在は耐欠損性を向上させるが、高速切削加工時の境界摩耗を抑制できず、また、被覆層との密着性が低く、耐久性の高い被覆工具を得ることができないことがわかった。 In other words, although the presence of a metal seeping layer improves fracture resistance, it cannot suppress boundary wear during high-speed cutting, and the adhesion with the coating layer is low, making it difficult to obtain a coated tool with high durability. I found out that I can't do it.

ここで、高速切削加工とは通常の切削加工よりも切削速度が30%以上早い切削加工をいい、例えば、鋼の切削加工において、2.0mm以下の切込み、0.5mm/rev.以下の送り、かつ、200m/min以上の切削速度の切削条件に該当するものをいう。 Here, high-speed cutting refers to cutting in which the cutting speed is 30% or more faster than normal cutting; for example, in steel cutting, the cutting speed is 2.0 mm or less, 0.5 mm/rev. This refers to cutting conditions that meet the following feed rates and cutting speeds of 200 m/min or more.

そこで、本発明者は、前述の目的を達成する被覆工具を得るべく、更に鋭意検討を行い、結合相の中に存在するWに着目した。
Wは、結合相の固溶強化のための添加、あるいは合金炭素量の調整のために添加する場合や、不可避不純物として意図せず混入する場合がある。いずれの場合においても、結合相に固溶しきれないWは、硬質相であるTiCNの周辺を取り囲みTiWMCNの形で中間層を形成する。また、Wの含有量が増すと、WがTiと比較して窒素との親和性が低いため、合金中窒素量が低下しやすくなり、TiCN基サーメットの耐境界摩耗性が低下するなどの問題点が発生する。そのため、高速切削時の寿命を向上させるためには、硬質相および結合相中にWが過剰に含まれている状態はあまり好ましいとはいえないことが判明した。
Therefore, in order to obtain a coated tool that achieves the above-mentioned objective, the present inventor conducted further intensive studies and focused on W present in the binder phase.
W may be added to strengthen the binder phase as a solid solution, or may be added to adjust the alloy carbon content, or may be unintentionally mixed as an unavoidable impurity. In either case, the W that cannot be solidly dissolved in the binder phase surrounds the hard phase TiCN to form an intermediate layer in the form of TiWMCN. Additionally, when the W content increases, W has a lower affinity for nitrogen than Ti, so the amount of nitrogen in the alloy tends to decrease, leading to problems such as a decrease in the notch wear resistance of TiCN-based cermets. A point occurs. Therefore, it has been found that in order to improve the life during high-speed cutting, a state in which W is excessively contained in the hard phase and the binder phase is not very desirable.

また、本発明者は被覆層と基体との界面から基体内部に向かって、(Coの質量%+Niの質量%)で表されるCoとNiの質量%の和が、基体内部のCoとNiの質量%の和に比して、所定の値である領域(結合相成分富化領域)を有し、
そして、この領域の結合相部分と被覆層の界面において、Coの原子%とNiの原子%の和とWの原子%の比、すなわち、[(Coの原子%+Niの原子%)/Wの原子%]が所定の範囲にあり、かつ前記界面から深さ20nmの位置に存在する結合相中におけるWの原子%に対して1.4倍以上であるW濃化領域が存在すると、
被覆層と基体の密着力が向上し、耐摩耗性の低下を最小限に抑えることができるという知見を得た。
In addition, the present inventor has determined that from the interface between the coating layer and the substrate toward the inside of the substrate, the sum of the mass % of Co and Ni expressed as (mass % of Co + mass % of Ni) is has a region (bond phase component enriched region) that is a predetermined value compared to the sum of mass %,
Then, at the interface between the binder phase part and the coating layer in this region, the ratio of the sum of Co atomic % and Ni atomic % to the W atomic %, that is, [(Co atomic % + Ni atomic %)/W atomic %] is within a predetermined range, and there is a W enriched region that is 1.4 times or more of the atomic % of W in the binder phase existing at a depth of 20 nm from the interface,
It was found that the adhesion between the coating layer and the substrate is improved, and the decrease in wear resistance can be minimized.

以下では、本発明の実施形態に係る被覆工具についてより詳細に説明する。
なお、本明細書および特許請求の範囲において、数値範囲を「L~M」(L、Mは共に数値)で表現するとき、「L以上、M以下」と同義であって、その範囲は上限値(M)および下限値(L)を含んでおり、上限値(M)のみに単位が記載されているときは、下限値の単位も同じである。
Below, a coated tool according to an embodiment of the present invention will be explained in more detail.
In this specification and claims, when a numerical range is expressed as "L to M" (L and M are both numerical values), it is synonymous with "L or more, M or less", and the range is the upper limit. It includes a value (M) and a lower limit value (L), and when a unit is written only for the upper limit value (M), the unit for the lower limit value is also the same.

図1に、本発明の一実施形態に係る被覆工具の断面図(基体の表面の微小な凹凸を無視して基体の表面を水平面と扱いこの面に垂直な断面)を模式的に示す。この図1から明らかなように、この実施形態に係る被覆工具は、基体(1)上に被覆層(2)を有している。そして、基体(1)は、基体内部(3)、結合相成分富化領域(4)を有し、結合相成分富化領域(4)において、基体(1)と被覆層(2)の界面(6)の近傍にW濃化領域(5)を有している。以下、順にこれらを説明する。 FIG. 1 schematically shows a cross-sectional view of a coated tool according to an embodiment of the present invention (a cross section perpendicular to the surface of the base, which is treated as a horizontal plane, ignoring minute irregularities on the surface of the base). As is clear from FIG. 1, the coated tool according to this embodiment has a coating layer (2) on a base (1). The substrate (1) has an interior of the substrate (3), a binder phase component enriched region (4), and an interface between the substrate (1) and the coating layer (2) in the binder phase component enriched region (4). There is a W-enriched region (5) in the vicinity of (6). These will be explained in order below.

1.基体
基体は、TiCNおよびTiWMCN(Mは、Zr、Hf、V、Nb、Ta、Cr、Moの1種以上)を含む硬質相と、CoおよびNiを含む結合相を有することが好ましい。
TiCN質量とTiWMCN質量との比は特段の制約がないが、W濃化領域を確実に得るために、基体内部(被覆層の界面から内側に向かって垂直方向の距離400μmの位置における)のWの濃度が5質量%~25質量%となるように配合することが好ましい。
1. Substrate The substrate preferably has a hard phase containing TiCN and TiWMCN (M is one or more of Zr, Hf, V, Nb, Ta, Cr, and Mo) and a binder phase containing Co and Ni.
There is no particular restriction on the ratio of TiCN mass to TiWMCN mass, but in order to ensure a W-enriched region, W inside the substrate (at a vertical distance of 400 μm inward from the interface of the coating layer) is It is preferable to mix so that the concentration of is 5% by mass to 25% by mass.

結合相は、Coの原子数がCoとNiの原子数の和に占める割合、Co/(Co+Ni)が0.4以上であることが好ましい。なお、この割合は、1.0(全てがCo)であってもよい。
ここで、結合相とは、fcc構造を有し、相を構成する全ての成分に対して、CoとNiの合計が50原子%以上を占めているものである。
結合相には、硬質相の成分であるTi、W、M、C、N、その他不可避的不純物を含んでいてもよい。これらが結合相中に存在するときは、結合層に固溶した状態であると推定される。
In the bonded phase, it is preferable that the ratio of the number of Co atoms to the sum of the numbers of Co and Ni atoms, Co/(Co+Ni), is 0.4 or more. Note that this ratio may be 1.0 (all Co).
Here, the bonded phase has an fcc structure, and the total of Co and Ni accounts for 50 atomic % or more of all components constituting the phase.
The binder phase may contain Ti, W, M, C, N, and other unavoidable impurities that are components of the hard phase. When these are present in the binder phase, they are presumed to be in a solid solution state in the binder layer.

また、硬質相とは、相を構成する全ての成分に対して、Ti、W、M、C、Nの合計が50原子%以上を占めているものである。
硬質相には、結合相の成分であるCo、Ni、その他不可避的不純物を含んでいてもよい。
Moreover, the hard phase is one in which the total of Ti, W, M, C, and N occupies 50 atomic % or more of all the components constituting the phase.
The hard phase may contain Co, Ni, and other unavoidable impurities that are components of the binder phase.

2.結合相成分富化領域
被覆層の界面から基体の内部に向かって、
その平均厚さが0.1μm超え、10μm以下であって、
(Coの質量%+Niの質量%)が基体の内部の同質量%の和に対して1.4倍以上、6.0倍以下である結合相成分富化領域を有することが好ましい。
2. Binding phase component enriched region From the interface of the coating layer to the inside of the substrate,
The average thickness is more than 0.1 μm and less than 10 μm,
It is preferable to have a binder phase component enriched region in which (mass % of Co+mass % of Ni) is 1.4 times or more and 6.0 times or less the sum of the same mass % inside the substrate.

結合相成分富化領域の平均厚さを前記範囲とする理由は、結合相成分富化領域が存在する(平均厚さが0.1μm超え)ことにより亀裂進展抑制がなされるが、一方で、平均厚さが10μmを超えると、基体表面の耐塑性変形性が低下し切削性能が低下するためである。 The reason why the average thickness of the binder phase component enriched region is set to the above range is that crack growth is suppressed by the presence of the binder phase component enriched region (average thickness exceeding 0.1 μm), but on the other hand, This is because when the average thickness exceeds 10 μm, the plastic deformation resistance of the base surface decreases, resulting in a decrease in cutting performance.

結合相成分富化領域において、(Coの質量%+Niの質量%)が基体の内部における同質量%の和に対して1.4倍以上、6.0倍以下が好ましい理由は、1.4倍未満では耐欠損性に対して十分な効果を得られず、一方、6.0倍を超えると表面硬さが低下してしまい、被覆工具の切削性能が低下するためである。 In the binder phase component enriched region, (mass % of Co+mass % of Ni) is preferably 1.4 times or more and 6.0 times or less with respect to the sum of the same mass % inside the substrate. This is because if it is less than 6.0 times, a sufficient effect on fracture resistance cannot be obtained, whereas if it exceeds 6.0 times, the surface hardness will decrease and the cutting performance of the coated tool will deteriorate.

ここで、特許請求の範囲および明細書において、層の平均厚さを論じるときは、次のように測定した厚さの平均値をいう。
まず、基体表面と被覆層との界面を次のように定義する。
1)基体表面の微小な凹凸を無視し水平と扱った面に垂直な断面(縦断面ということがある)において、この垂直方向に基体と被覆層に対してライン分析を行う。
Here, in the claims and specification, when discussing the average thickness of a layer, it refers to the average value of the thicknesses measured as follows.
First, the interface between the substrate surface and the coating layer is defined as follows.
1) Line analysis is performed on the substrate and the coating layer in the vertical direction on a cross section (sometimes referred to as a vertical cross section) perpendicular to a plane that is treated as horizontal, ignoring minute irregularities on the surface of the substrate.

2)ライン分析の結果、被覆層のみに含まれる成分、例えば、Alを25原子%以上検出した点を基体と被覆層の界面点とする。
3)この界面点を結びその平均を直線で近似し、界面とする。そして、
この界面に垂直な方向を、前記平均厚さを測定する方向と定める。
2) As a result of the line analysis, a point where 25 atomic % or more of a component contained only in the coating layer, such as Al, is detected is determined as an interface point between the substrate and the coating layer.
3) Connect these interface points and approximate the average with a straight line to define the interface. and,
The direction perpendicular to this interface is determined as the direction in which the average thickness is measured.

CoおよびNiの含有量は、SEM-EDSを用いて測定する。前述の界面から前述の垂直方向の距離を測定深さとし、測定深さ15μmまでの領域および測定深さ400μm領域(CoおよびNiの含有量でいう基体の内部と扱う)で測定を行う。 The contents of Co and Ni are measured using SEM-EDS. The distance in the vertical direction from the interface is defined as the measurement depth, and measurements are performed in a region up to a measurement depth of 15 μm and a measurement depth region of 400 μm (treated as the inside of the substrate in terms of Co and Ni contents).

測定深さ15μmまでの領域では、界面に対して平行に20μm、垂直方向に0.2μm長方形の測定領域(この測定領域には結合相と硬質相の少なくとも一方が含まれる)を設定し、長方形の短辺(長さ0.2μm)の中心を測定深さ位置とし、測定深さ3.0μmまでは0.1μm間隔で、それを超える深さでは0.5μm間隔で、界面から15μm基体に内部に入った領域まで測定を行う。基体の内部では、界面に平行に20μm、垂直方向に15μmの長方形の測定領域を設定し、長方形の短辺(長さ20μm)の中心を測定深さ位置として測定する。 For regions up to a measurement depth of 15 μm, a rectangular measurement region of 20 μm parallel to the interface and 0.2 μm perpendicular to the interface is set (this measurement region contains at least one of the bonded phase and the hard phase). The center of the short side (length 0.2 μm) is the measurement depth position, and the measurement depth is 15 μm from the interface to the substrate at 0.1 μm intervals up to a measurement depth of 3.0 μm, and at 0.5 μm intervals beyond that. Measure the area inside. Inside the base, a rectangular measurement area of 20 μm in parallel to the interface and 15 μm in the vertical direction is set, and the center of the short side (20 μm in length) of the rectangle is measured as the measurement depth position.

結合相富化層の平均厚さは、前記測定結果を基に算出する。測定深さ15μmまでの測定領域におけるCoおよびNiの占める質量割合、すなわち、(Coの質量%+Niの質量%)を、深さごと(前述の測定間隔ごと)に前記のように測定した基体の内部におけるCoおよびNiの占める質量割合で割る。それにより、測定深さ15μmまでの測定領域における深さ方向における基体の内部のCoおよびNiの占める質量割合に対する比率を算出することができる。このとき、1.4~6.0倍の範囲となっている領域の厚みを結合相富化層の平均厚みとする。 The average thickness of the binder phase enriched layer is calculated based on the measurement results. The mass proportion occupied by Co and Ni in the measurement region up to a measurement depth of 15 μm, that is, (mass% of Co + mass% of Ni) of the substrate measured as described above for each depth (for each measurement interval described above). Divide by the mass percentage occupied by Co and Ni inside. Thereby, it is possible to calculate the ratio to the mass percentage occupied by Co and Ni inside the base in the depth direction in the measurement region up to a measurement depth of 15 μm. At this time, the thickness of the region in the range of 1.4 to 6.0 times is defined as the average thickness of the binder phase enriched layer.

2.W濃化領域
結合相成分富化領域であって、界面に接する結合相が、Wを5原子%以上、15原子%以下含み、かつ前記界面から深さ20nmの点におけるWの原子%に対して1.4倍以上のW濃度を有し、かつ[(Coの原子%+Niの原子%)/Wの原子%]が0.9以上、9.0以下であるW濃化領域を有することが好ましい。
W濃化領域の平均厚さは、1nm以上10nm以下が好ましく、2nm以上、4nm以下がより好ましい。
2. W enriched region A binder phase component enriched region in which the binder phase in contact with the interface contains W at 5 atomic % or more and 15 atomic % or less, and with respect to the W atomic % at a point at a depth of 20 nm from the interface. have a W concentration of 1.4 times or more, and have a W enriched region where [(atomic % of Co + atomic % of Ni)/atomic % of W] is 0.9 or more and 9.0 or less. is preferred.
The average thickness of the W-enriched region is preferably 1 nm or more and 10 nm or less, more preferably 2 nm or more and 4 nm or less.

理由は定かではないが、この平均厚さを有するW濃化領域が存在することにより、被覆層と基体との密着性が向上し、耐欠損性と耐摩耗性が確保される。 Although the reason is not clear, the presence of the W-enriched region having this average thickness improves the adhesion between the coating layer and the substrate, ensuring chipping resistance and abrasion resistance.

W濃化領域の存在は、TEM-EDSのライン分析によりその存在を確認し、厚さを測定する。任意の結合相と被覆層が接している部分(接点)について、接線に対して垂直方向に5本のTEM-EDSライン分析を実施する。W濃化領域はWを5原子%以上、15原子%以下含み、かつ、前記接点から基材側に20nmの位置の結合相中におけるWの原子%に対して1.4倍以上のW濃度を有し、かつ、(Coの原子%+Niの原子%)/Wの原子%が0.9以上、9.0以下である部分とし、分析ライン上でこの条件を満たす範囲をW濃化領域の厚みとする。 The presence of the W enriched region is confirmed by TEM-EDS line analysis, and the thickness is measured. Five TEM-EDS line analyzes are performed in a direction perpendicular to the tangent line for a portion (contact point) where any binder phase and coating layer are in contact with each other. The W enriched region contains W at 5 atomic % or more and 15 atomic % or less, and the W concentration is 1.4 times or more the atomic % of W in the bonding phase at a position 20 nm from the contact point to the base material side. and the atomic % of (Co atomic % + Ni atomic %)/W is 0.9 or more and 9.0 or less, and the range that satisfies this condition on the analysis line is defined as the W-enriched region. The thickness shall be .

3.硬質相と結合相のそれぞれが被覆層と接する長さの和の比
結合相のそれぞれが被覆層と接する長さの和λaと、硬質相のそれぞれが被覆層と接する長さの和λbが、0.10≦λa/(λa+λb)≦0.40であることが好ましい。
その理由は、λa/(λa+λb)が0.10未満では、結合相成分富化領域による亀裂進展抑制を十分に得られず、また、被覆層とW濃化領域の接触面積が少ないため、W濃化領域による基体と被覆層の密着力向上の恩恵を十分に得られず、一方、λa/(λa+λb)が0.40超えでは、被覆層と基体界面における結合相の割合が高くなり、その結果、被覆層に応力が負荷された際に生じる結合相の塑性変形割合が大きくなり、被覆層の基体からの剥離が生じやすくなるためである。
3. The ratio of the sum of the lengths of each of the hard phase and the bonding phase in contact with the coating layer The sum of the lengths of each of the bonding phases in contact with the coating layer λa and the sum of the lengths of each of the hard phases in contact with the coating layer λb are: It is preferable that 0.10≦λa/(λa+λb)≦0.40.
The reason for this is that when λa/(λa+λb) is less than 0.10, crack growth cannot be sufficiently suppressed by the binder phase component-enriched region, and the contact area between the coating layer and the W-enriched region is small. On the other hand, when λa/(λa+λb) exceeds 0.40, the ratio of the binder phase at the interface between the coating layer and the substrate increases, and the As a result, the rate of plastic deformation of the binder phase that occurs when stress is applied to the coating layer increases, making it easier for the coating layer to peel off from the base.

λaおよびλbの測定は、界面を二次元的に断面観察し、被覆層と硬質相の接する長さの和、被覆層と結合相の接する長さの和を測定する。例えばSEM像またはSEM-EDS像と画像処理ソフト(例えば、Image-J)を用いる。界面を適切な倍率(例えば、15000倍)で観察し、画像ソフトを用いてλaとλbを算出し、λa/(λa+λb)を求める。 To measure λa and λb, the interface is two-dimensionally observed in cross section, and the sum of the lengths of contact between the coating layer and the hard phase and the sum of the lengths of contact between the coating layer and the binder phase are measured. For example, a SEM image or SEM-EDS image and image processing software (eg, Image-J) are used. Observe the interface at an appropriate magnification (for example, 15,000 times), calculate λa and λb using image software, and obtain λa/(λa+λb).

4.被覆層
本実施形態の被覆層は、公知の被覆層であれば制約がない。例えば、AlとTiとSiの複合窒化物層およびAlとCrの複合窒化物層の交互積層、または単層のAlとTiとSiの複合窒化物層、AlとCrの複合窒化物層、AlとTiの複合窒化物層が使用できる。これら窒化物層の成膜手段は、PVD法を用いることが好ましい。
4. Coating Layer The coating layer of this embodiment is not limited as long as it is a known coating layer. For example, a composite nitride layer of Al, Ti, and Si and a composite nitride layer of Al and Cr are laminated alternately, a single layer of a composite nitride layer of Al, Ti, and Si, a composite nitride layer of Al and Cr, or a composite nitride layer of Al and Cr. A composite nitride layer of Ti and Ti can be used. It is preferable to use the PVD method as a means for forming these nitride layers.

5.製造方法
本実施形態に係る表面被覆工具の製造方法は、例えば、原料粉末の1つとしてWCを用いて作製したチタン基サーメット製の基体に対し、ボンバード処理した後にAIP装置を用いて被覆層形成する方法がある。
5. Manufacturing method The method for manufacturing the surface-coated tool according to the present embodiment includes, for example, forming a coating layer using an AIP device after bombarding a titanium-based cermet substrate made using WC as one of the raw material powders. There is a way to do it.

次に、実施例について説明するが、本発明は以下の実施例に限定されるものではない。 Next, examples will be described, but the present invention is not limited to the following examples.

原料粉末として、TiCN粉末、TiC粉末、TiN粉末、ZrC粉末、NbC粉末、WC粉末、MoC粉末、Co粉末、および、Ni粉末を用意し、これら原料粉末を表1に示すAとBの2種の配合組成に配合した。原料粉末には、それぞれ微量の不可避的不純物が含まれていた。 TiCN powder, TiC powder, TiN powder, ZrC powder, NbC powder, WC powder, Mo 2 C powder, Co powder, and Ni powder were prepared as raw material powders, and these raw material powders were mixed into A and B shown in Table 1. It was blended into two types of formulation compositions. Each of the raw material powders contained trace amounts of unavoidable impurities.

さらに、この2種の配合物にそれぞれワックスを加えてアルコール中で11時間アトライタ混合し、乾燥させた後、プレスしてそれぞれ成形体を得た。これらの成形体を脱脂し、1200℃まで500Paの減圧下の窒素雰囲気で昇温し、さらに、1400℃まで真空で昇温し、その後、1500℃まで1000Pa減圧下の窒素雰囲気で昇温し、そのまま、1時間保持し、引き続いて、1450℃まで100Paのアルゴン雰囲気で4℃/minの速度で冷却を行い、その後、常温まで急冷した。得られた焼結体の研削加工および、刃先へホーニングの付与を行い、ISO規格CNMG120408-FPのインサート形状を有する基体A~Dを製造した。 Further, wax was added to each of these two types of blends, mixed in an attritor for 11 hours in alcohol, dried, and then pressed to obtain molded bodies. These molded bodies were degreased, heated to 1200°C in a nitrogen atmosphere under a reduced pressure of 500 Pa, further heated to 1400°C in a vacuum, then heated to 1500°C in a nitrogen atmosphere under a reduced pressure of 1000 Pa, The sample was kept as it was for 1 hour, and then cooled to 1450° C. in an argon atmosphere of 100 Pa at a rate of 4° C./min, and then rapidly cooled to room temperature. The obtained sintered body was ground and the cutting edge was honed to produce substrates A to D having insert shapes conforming to ISO standard CNMG120408-FP.

ついで、この基体A、Bに対して、直流(DC)スパッタリング蒸着源をもつAIP装置を用いて、被覆層を形成すべく、これらをアセトン中で超音波洗浄し、乾燥した状態で、AIP装置内の回転テーブル上の中心軸から半径方向に所定距離離れた位置に外周部にそって装着した。また、カソード電極(蒸発源)として、Ti-Alターゲット、Ti-Al-X(X=Si、Nb)ターゲット、Al-Crターゲットを被覆層の組成に応じて配置した。 Next, these substrates A and B are ultrasonically cleaned in acetone in order to form a coating layer using an AIP apparatus having a direct current (DC) sputtering deposition source. It was mounted along the outer periphery at a predetermined distance in the radial direction from the central axis on the inner rotary table. Further, as a cathode electrode (evaporation source), a Ti--Al target, a Ti--Al--X (X=Si, Nb) target, and an Al--Cr target were arranged according to the composition of the coating layer.

基体と被覆層の界面にW濃化領域を形成させるため、バイアス-130V~-200Vで、時間30~120分でボンバード処理を行った。前記ボンバード処理は、AIP装置内を排気して10-2Pa以下の真空に保持しながら、ヒーターで装置内を400~1000℃に加熱した後、0.1~2.0PaのArガス雰囲気に設定し、前記回転テーブル上で自転しながら回転する基体に直流バイアス電圧を印加し、アルゴンイオンによって処理を行った。 In order to form a W-enriched region at the interface between the substrate and the coating layer, bombardment treatment was performed at a bias of -130 V to -200 V for 30 to 120 minutes. The bombardment process is performed by heating the inside of the AIP device to 400 to 1000° C. with a heater while evacuating the inside of the AIP device and maintaining a vacuum of 10 −2 Pa or less, and then placing it in an Ar gas atmosphere of 0.1 to 2.0 Pa. A DC bias voltage was applied to the substrate rotating while rotating on the rotary table, and treatment was performed with argon ions.

ついで、AIP装置内に反応ガスとして窒素ガスを導入し、窒素ガスの圧力を1.0~5.0Paの範囲内の所定の反応雰囲気に調整し、回転テーブル上にて自転する基体に対し、カソード電極である被覆層成膜用のTi-Alターゲット、Ti-Al-Xターゲット、Al-Crターゲットと対応するアノード電極との間に表2に示す80~200Aの範囲内の所定の電流を流してアーク放電を発生させ、基体に、表3にて示される被覆層を蒸着形成し、実施例工具1~5を作製した。 Next, nitrogen gas is introduced as a reaction gas into the AIP apparatus, the pressure of the nitrogen gas is adjusted to a predetermined reaction atmosphere within the range of 1.0 to 5.0 Pa, and the substrate is rotated on a rotary table. A predetermined current within the range of 80 to 200 A shown in Table 2 is applied between the Ti-Al target, Ti-Al-X target, or Al-Cr target for forming the coating layer, which is the cathode electrode, and the corresponding anode electrode. The coating layers shown in Table 3 were formed on the base by vapor deposition, thereby producing Example Tools 1 to 5.

一方、比較のため、表1に示す配合組成にて前記と同様に配合し、前記と同様の装置を用いて基体C、Dを作製し、前記と同様の装置を用いてボンバード処理を実施し、ついで表2に示す条件で各被膜を蒸着形成し、表3に示す比較例工具1~2を作製した。 On the other hand, for comparison, the compositions shown in Table 1 were mixed in the same manner as above, substrates C and D were prepared using the same equipment as above, and bombardment was performed using the same equipment as above. Then, each film was deposited under the conditions shown in Table 2 to produce Comparative Example Tools 1 and 2 shown in Table 3.

基体の結合相富化層の平均厚さ、W濃化層の平均厚さ、および、λa/(λa+λb)は前述の方法によって測定した。W濃化層の平均厚さ測定時の前述の界面点の間隔は10nmで測定点数は5点であった。 The average thickness of the binder phase enriched layer, the average thickness of the W enriched layer, and λa/(λa+λb) of the substrate were measured by the method described above. When measuring the average thickness of the W-enriched layer, the interval between the aforementioned interface points was 10 nm, and the number of measurement points was 5.

被覆層の平均組成および平均厚さは、前記で作製した実施例工具1~5および比較例工具1~2の基体の表面に垂直な被覆層縦断面(基体に垂直な断面)について、基体の表面に平行な方向の幅が10μmであり、被覆層の厚み領域がすべて含まれるように設定された視野について、走査型電子顕微鏡(SEM)、透過型電子顕微鏡(TEM)、および、エネルギー分散型X線分光法(EDS)を用いた断面観察により求めた。 The average composition and average thickness of the coating layer are determined based on the vertical cross section of the coating layer (cross section perpendicular to the substrate) perpendicular to the surface of the substrate of Example Tools 1 to 5 and Comparative Example Tools 1 to 2 prepared above. The width in the direction parallel to the surface was 10 μm, and the field of view was set to include the entire thickness region of the coating layer using a scanning electron microscope (SEM), a transmission electron microscope (TEM), and an energy dispersive type. It was determined by cross-sectional observation using X-ray spectroscopy (EDS).

具体的には、平均厚さは観察断面を5000倍に拡大して、基体の表面に平行な方向に1μmの間隔で5点の厚さを求めて被覆層平均厚さを算出した。被覆層の平均組成については、被覆層断面の5点において、平均厚さの30%~80%の長さを1辺にもつ正方形領域にてEDSを用い分析を行い、各成分の含有割合を測定し、その値を平均して求めた。 Specifically, the average thickness of the coating layer was calculated by enlarging the observed cross section 5000 times and determining the thickness at five points at intervals of 1 μm in a direction parallel to the surface of the substrate. The average composition of the coating layer was analyzed using EDS at five points on the cross section of the coating layer, in a square area with one side having a length of 30% to 80% of the average thickness, and the content ratio of each component was determined. The values were measured and averaged.

Figure 2023134119000002
Figure 2023134119000002

Figure 2023134119000003
Figure 2023134119000003

Figure 2023134119000004
Figure 2023134119000004

次に、実施例工具1~5、比較例工具1~2をいずれもDCLNL2525M12のバイトにクランプした状態で、以下に示す条件にて、湿式外径旋削による切削試験を実施した。 Next, a cutting test by wet outer diameter turning was conducted under the conditions shown below with Example Tools 1 to 5 and Comparative Example Tools 1 to 2 all clamped to a DCLNL2525M12 bit.

被削材:SNCM439
切削速度:350m/min
切込み:0.5mm
送り:0.1mm/rev.
切削開始後20分を経過した時点での逃げ面摩耗量を測定した。20分を経過する前に逃げ面摩耗量が0.2mmを超えた場合は、この摩耗量になるまでの時間を寿命として測定した。結果を表4に示す。
Work material: SNCM439
Cutting speed: 350m/min
Depth of cut: 0.5mm
Feed: 0.1mm/rev.
The amount of flank wear was measured 20 minutes after the start of cutting. If the amount of flank wear exceeded 0.2 mm before 20 minutes had elapsed, the time until this amount of wear was reached was measured as the life. The results are shown in Table 4.

Figure 2023134119000005
Figure 2023134119000005

表4から明らかなように、実施例工具1~5は、いずれも摩耗量が少なく優れた耐摩耗性を示し、長寿命であった。これに対し、比較例1~2は、いずれも摩耗量が多く短時間で寿命に至った。 As is clear from Table 4, all of the example tools 1 to 5 exhibited excellent wear resistance with little wear and long life. On the other hand, Comparative Examples 1 and 2 all had a large amount of wear and reached the end of their service life in a short period of time.

1 基体
2 被覆層
3 基体内部
4 結合相成分富化領域
5 W濃化領域
1 Substrate 2 Covering layer 3 Substrate interior 4 Binding phase component enriched region 5 W enriched region

Claims (1)

基体と該基体上に被覆層を有する表面被覆切削工具であって、
前記基体は、TiCNおよびTiWMCN(Mは、Zr、Hf、V、Nb、Ta、Cr、Moの1種以上)を含む硬質相と、CoとNiの1種または2種を主成分とする結合相を有し、
前記基体は、前記被覆層の界面から前記基体の内部に向かって、その平均厚さが0.1μm超え、10μm以下であって、(Coの質量%+Niの質量%)が前記基体の内部の同質量%の和に対して1.4倍以上、6.0倍以下である結合相成分富化領域を有し、
前記結合相成分富化領域では、
前記界面に接する前記結合相が、Wを5原子%以上、15原子%以下含み、[(Co原子%+Ni原子%)/W原子%]が0.9以上、9.0以下であり、かつ、前記界面から深さ20nmの位置に存在する結合相中におけるWの原子%に対して1.4倍以上であり、その平均厚さが1nm以上10nm以下のW濃化領域を含み、さらに、前記界面に接する前記結合相のそれぞれが前記被覆層と接する長さの和λaと、前記硬質相のそれぞれが前記被覆層と接する長さの和λbが、0.10≦λa/(λa+λb)≦0.40である、
ことを特徴とする表面被覆切削工具。
A surface-coated cutting tool having a base and a coating layer on the base,
The substrate has a hard phase containing TiCN and TiWMCN (M is one or more of Zr, Hf, V, Nb, Ta, Cr, and Mo) and a bond mainly composed of one or two of Co and Ni. has a phase,
The base body has an average thickness of more than 0.1 μm and 10 μm or less from the interface of the coating layer toward the inside of the base body, and (mass % of Co + mass % of Ni) is within the interior of the base body. Having a binder phase component enriched region that is 1.4 times or more and 6.0 times or less with respect to the sum of the same mass %,
In the binder phase component enriched region,
The binder phase in contact with the interface contains W at 5 at % or more and 15 at % or less, and [(Co at % + Ni at %)/W at %] is 0.9 or more and 9.0 or less, and , including a W-enriched region that is 1.4 times or more atomic % of W in the binder phase existing at a depth of 20 nm from the interface, and has an average thickness of 1 nm or more and 10 nm or less, and The sum of the lengths λa of each of the bonding phases in contact with the interface with the coating layer and the sum λb of the lengths of each of the hard phases in contact with the coating layer are 0.10≦λa/(λa+λb)≦ It is 0.40,
A surface-coated cutting tool characterized by:
JP2022039477A 2022-03-14 2022-03-14 Surface coated cutting tool Pending JP2023134119A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2022039477A JP2023134119A (en) 2022-03-14 2022-03-14 Surface coated cutting tool

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2022039477A JP2023134119A (en) 2022-03-14 2022-03-14 Surface coated cutting tool

Publications (1)

Publication Number Publication Date
JP2023134119A true JP2023134119A (en) 2023-09-27

Family

ID=88143712

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2022039477A Pending JP2023134119A (en) 2022-03-14 2022-03-14 Surface coated cutting tool

Country Status (1)

Country Link
JP (1) JP2023134119A (en)

Similar Documents

Publication Publication Date Title
KR102326622B1 (en) Surface-coated cutting tool with excellent chipping resistance and wear resistance
EP2980046B1 (en) Method for manufacturing cubic boron nitride sintered body, and cubic boron nitride sintered body
KR20140138772A (en) Surface-coated cutting tool having therein hard coating layer capable of exhibiting excellent chipping resistance during high-speed intermittent cutting work
EP3446814A1 (en) Surface-coated cutting tool
JP2014210313A (en) Surface-coated cutting tool with hard coated layer exerting excellent chipping resistance
JP2017056497A (en) Surface coat cutting tool allowing hard coat layer to exhibit superior chipping resistance
EP3950190B1 (en) Cutting tool
JP2018094669A (en) Surface-coated cubic boron nitride sintered tool which satisfies both abrasion resistance and defect resistance
JP2021126738A (en) Surface-coated cutting tool exhibiting excellent chipping resistance and wear resistance in strong intermittent cutting
JP2016221672A (en) Surface-coated cutting tool having hard coating layer exerting excellent chipping resistance
JP2020151774A (en) Surface coated cutting tool superior in thermal crack resistance and chipping resistance
JP2023134119A (en) Surface coated cutting tool
WO2017038840A1 (en) Surface-coated cutting tool having rigid coating layer exhibiting excellent chipping resistance
EP3925720A1 (en) Hard coating cutting tool
WO2016190332A1 (en) Surface-coated cutting tool with rigid coating layer exhibiting excellent chipping resistance
JP7170964B2 (en) Cemented Carbide and Coated Cemented Carbide
JP2021088039A (en) Surface coating-cutting tool
JP4678582B2 (en) Cutting tool made of surface-coated cemented carbide that provides excellent wear resistance with a hard coating layer in high-speed cutting of hardened steel
JP4844879B2 (en) Surface coated cutting tool with excellent wear resistance with hard coating layer in high speed cutting of heat resistant alloy
JP2020132972A (en) Cemented carbide and cutting tool
JP2019118995A (en) Surface-coated cutting tool
JP2020132971A (en) Cemented carbide and cutting tool
JP7064659B1 (en) Cubic boron nitride sintered body and cutting tools containing it
WO2022208654A1 (en) Surface-coated cutting tool
JP2019118997A (en) Surface-coated cutting tool