JP2023132420A - Spot-welding device and spot-welding method - Google Patents

Spot-welding device and spot-welding method Download PDF

Info

Publication number
JP2023132420A
JP2023132420A JP2022037726A JP2022037726A JP2023132420A JP 2023132420 A JP2023132420 A JP 2023132420A JP 2022037726 A JP2022037726 A JP 2022037726A JP 2022037726 A JP2022037726 A JP 2022037726A JP 2023132420 A JP2023132420 A JP 2023132420A
Authority
JP
Japan
Prior art keywords
electrodes
control
pressurizing force
spot welding
force
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2022037726A
Other languages
Japanese (ja)
Inventor
吉史 曲田
Yoshifumi Magarida
勇気 江口
Yuki Eguchi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Motors Corp
Original Assignee
Mitsubishi Motors Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Motors Corp filed Critical Mitsubishi Motors Corp
Priority to JP2022037726A priority Critical patent/JP2023132420A/en
Publication of JP2023132420A publication Critical patent/JP2023132420A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Resistance Welding (AREA)

Abstract

To be able to reduce poor welding in spot-welding.SOLUTION: A spot-welding device 1 comprises a spot-welding gun 10 which has electrodes 11 and 12 arranged oppositely to each other and an electrode driving motor 13 for driving the electrodes 11 and 12, and a control device 40 that controls the spot-welding gun 10. The control device 40 has a welding pressure control part 43 that controls welding pressure that is applied by the electrodes 11 and 12 to a member to be welded by activating the electrode driving motor 13, and a position control part 44 that holds positions of the electrodes 11 and 12 at certain positions, which in a state where the electrodes 11 and 12 are in contact with the member, makes welding pressure rise up to preset first welding pressure by welding pressure control by the welding pressure control part 43, then holds the positions of the electrodes 11 and 12 at certain positions by position control by the position control part 44 after the welding pressure is risen to start power distribution, starts cooling a welding spot and switches the position control to the welding pressure control, and retains the welding pressure at second welding pressure in a cooling period of time, after the power distribution is finished.SELECTED DRAWING: Figure 2

Description

本件は、スポット溶接装置及びスポット溶接方法に関するものである。 This case relates to spot welding equipment and spot welding methods.

例えば車両の車体等の製造に用いられるスポット溶接では、一対の電極により溶接対象の部材を挟み込み電極に通電することで、接合する部材が溶融して溶接が行われる。このとき、電極によって部材を挟み込む加圧力を制御することが一般に行われている。また、スポット溶接を実施する際の電極の位置を制御する技術も開発されている。 For example, in spot welding used in manufacturing vehicle bodies, the members to be welded are sandwiched between a pair of electrodes, and the electrodes are energized to melt the members to be welded. At this time, it is common practice to control the pressure force with which the member is sandwiched between the electrodes. Furthermore, techniques for controlling the position of electrodes when performing spot welding have also been developed.

例えば特許文献1では、スポット溶接制御の開始時に、予め定められた加圧力を部材に印加する制御を実施し、次に、通電を開始した後も一対の電極位置が一定に維持されるように、加圧力制御から位置制御に切り替え、この位置制御をしつつ通電を行い、通電終了後は、位置制御をしつつワークを冷却している。 For example, in Patent Document 1, at the start of spot welding control, a predetermined pressing force is applied to the member, and then the position of the pair of electrodes is maintained constant even after energization is started. , the pressure control is switched to the position control, the current is applied while controlling the position, and after the energization is finished, the workpiece is cooled while controlling the position.

特開2018-034172号公報Japanese Patent Application Publication No. 2018-034172

しかしながら、特許文献1に記載の技術では、通電終了後は、電極位置が一定に維持された状態で部材を冷却するので、冷却時に、溶接対象の部材を挟み込む加圧力が不足するおそれがある。冷却時に加圧力が不足すると、溶接不良を招くおそれがある。これは、抵抗スポット溶接では通電,加熱中の溶融部分にガスが発生することに起因する。この溶融部分に発生したガスは、通電停止後の冷却開始から凝固に至るまでの間、溶接中心部に十分な加圧が加えられていればナゲット部に吸収されて消滅するが、加圧力が不十分だと、溶融部分が凝固した後にナゲット部にガスが残り、このガスがブローホールとなってしまい、これが溶接箇所の内部欠陥(溶接不良)となるおそれがある。 However, in the technique described in Patent Document 1, after the energization ends, the member is cooled while the electrode position is maintained constant, so there is a risk that the pressing force to sandwich the member to be welded is insufficient during cooling. Insufficient pressurizing force during cooling may lead to defective welding. This is due to the fact that gas is generated in the molten part during current application and heating in resistance spot welding. The gas generated in this molten part will be absorbed by the nugget and disappear if sufficient pressure is applied to the weld center from the start of cooling after the current is stopped to solidification, but if the applied pressure is If it is insufficient, gas will remain in the nugget after the molten part has solidified, and this gas will become a blowhole, which may cause internal defects (defects in welding) at the welding location.

本件は、上記のような課題を解決するために創案されたものであり、スポット溶接において溶接不良を低減できる、スポット溶接装置及びスポット溶接方法を提供することを目的の一つとする。なお、この目的に限らず、後述する「発明を実施するための形態」に示す各構成から導き出される作用効果であって、従来の技術では得られない作用効果を奏することも、本件の他の目的である。 The present invention was created to solve the above-mentioned problems, and one of the objects is to provide a spot welding device and a spot welding method that can reduce welding defects in spot welding. In addition, this purpose is not limited to this purpose, and it is also possible to achieve effects derived from each configuration shown in "Details for Carrying Out the Invention" that will be described later, which cannot be obtained with conventional techniques. It is a purpose.

開示のスポット溶接装置及びスポット溶接方法は、以下に開示する態様又は適用例として実現でき、上記の課題の少なくとも一部を解決する。
開示のスポット溶接装置は、互いに対向して配置された一対の電極、および前記一対の電極のうち少なくとも一方の電極を駆動する電極駆動モータを有するスポット溶接ガンと、前記スポット溶接ガンを制御する制御装置と、を備える。前記制御装置は、前記電極駆動モータを作動させて前記一対の電極が溶接対象の部材に加える加圧力を制御する加圧力制御部と、前記一対の電極の位置を一定位置に保持する位置制御部と、を有する。前記制御装置は、前記一対の電極が前記部材に接触した状態から、前記加圧力制御部による加圧力制御で前記加圧力を予め設定された第一加圧力まで上昇させ、前記加圧力が前記第一加圧力に到達したら、前記位置制御部による位置制御で前記一対の電極の位置を一定に保持して通電を開始すると共に設定時間後に通電を終了して、溶接箇所の冷却の開始と共に前記位置制御から前記加圧力制御への切り替えを行って前記冷却の期間中は前記加圧力を予め設定された第二加圧力に保持する。
The disclosed spot welding device and spot welding method can be realized as the embodiments or application examples disclosed below, and solve at least part of the above problems.
The disclosed spot welding apparatus includes a spot welding gun having a pair of electrodes arranged to face each other, an electrode drive motor that drives at least one of the pair of electrodes, and a control that controls the spot welding gun. A device. The control device includes a pressurizing force control unit that operates the electrode drive motor to control the pressurizing force that the pair of electrodes applies to the member to be welded, and a position control unit that maintains the position of the pair of electrodes at a constant position. and has. The control device increases the pressing force from a state in which the pair of electrodes are in contact with the member to a preset first pressing force by controlling the pressing force by the pressing force control unit, and increases the pressing force to a first pressing force that is set in advance. When a certain pressure is reached, the position of the pair of electrodes is held constant by the position control by the position control unit and energization is started, and the energization is stopped after a set time, and as cooling of the welding area starts, the pair of electrodes are held at the same position. The control is switched to the pressurizing force control, and the pressurizing force is maintained at a preset second pressurizing force during the cooling period.

開示のスポット溶接方法は、互いに対向して配置された一対の電極と、前記一対の電極のうち少なくとも一方の電極を駆動する電極駆動モータとを有するスポット溶接ガンを制御して、溶接対象の部材にスポット溶接をするスポット溶接方法であって、前記一対の電極が前記部材に接触した状態から、前記電極駆動モータを作動させて前記部材に加える加圧力を制御する加圧力制御において、前記加圧力を予め設定された第一加圧力まで上昇させ、前記加圧力が前記第一加圧力に到達したら、前記電極駆動モータを作動させて前記一方の電極の位置を制御する位置制御において、前記一対の電極の位置を一定に保持して通電を開始し、前記通電の開始から設定時間後に通電を終了して、溶接箇所の冷却の開始と共に前記位置制御から前記加圧力制御への切り替えを行って前記冷却の期間中は前記加圧力を予め設定された第二加圧力に保持する。 The disclosed spot welding method controls a spot welding gun having a pair of electrodes arranged to face each other and an electrode drive motor that drives at least one of the pair of electrodes to weld a member to be welded. The spot welding method performs spot welding on the member, and in the pressurizing force control in which the electrode drive motor is operated from a state where the pair of electrodes are in contact with the member to control the pressurizing force applied to the member, the pressurizing force is is increased to a preset first pressing force, and when the pressing force reaches the first pressing force, the electrode drive motor is actuated to control the position of the one electrode. The energization is started while the position of the electrode is kept constant, the energization is ended after a set time from the start of the energization, and the position control is switched to the pressurizing force control at the same time as cooling of the welding area is started. During the cooling period, the pressurizing force is maintained at a preset second pressurizing force.

開示のスポット溶接装置及びスポット溶接方法によれば、一対の電極の加圧力が第一加圧力に到達したら、一対の電極の位置を一定に保持して通電を実施するので、第一加圧力を高く設定しなくても、通電の経過と共に溶接対象の部材の膨張によって加圧力が増加していくことになる。これにより、通電中に必要で且つ過剰でない加圧力が得られ、加圧力不足も加圧力過剰も招きにくくなり、溶接品質を向上できる。
また、通電終了後は、溶接箇所の冷却の開始と共に加圧力制御へ切り替えるので、冷却に伴って部材の収縮が生じても部材に確実に加圧力を与えることができ、冷却時の加圧力不足に起因した溶接不良を抑制することができる。
According to the disclosed spot welding device and spot welding method, when the pressing force of the pair of electrodes reaches the first pressing force, the position of the pair of electrodes is held constant and energization is carried out, so that the first pressing force is reduced. Even if it is not set high, the pressing force will increase as the welding object expands as the current passes. As a result, a necessary but not excessive pressing force can be obtained during energization, and neither insufficient nor excessive pressing force is likely to occur, and welding quality can be improved.
In addition, after energization ends, the control switches to pressure force control at the same time as cooling of the welding point begins, so even if the component shrinks due to cooling, pressure can be applied reliably to the component, and if pressure is insufficient during cooling. Welding defects caused by this can be suppressed.

実施形態のスポット溶接装置を示す構成図である。FIG. 1 is a configuration diagram showing a spot welding device according to an embodiment. 図1のスポット溶接装置の制御系統を示すブロック図である。FIG. 2 is a block diagram showing a control system of the spot welding apparatus of FIG. 1. FIG. 図1のスポット溶接装置の制御を説明するフローチャート例である。2 is an example of a flowchart illustrating control of the spot welding apparatus of FIG. 1. FIG. 図1のスポット溶接装置の一対の電極と溶接対象の部材との関係を時系列的に示す模式的な断面図である。FIG. 2 is a schematic cross-sectional view chronologically showing the relationship between a pair of electrodes of the spot welding device of FIG. 1 and a member to be welded. 図1のスポット溶接装置の制御を説明するための電極の加圧力状態及び電極の通電状態を示すタイムチャートである。2 is a time chart showing a pressurizing force state of an electrode and an energization state of the electrode for explaining control of the spot welding apparatus of FIG. 1. FIG. 図1のスポット溶接装置の制御を説明するための部材の板厚変化を示すタイムチャートである。2 is a time chart showing changes in plate thickness of members for explaining control of the spot welding apparatus of FIG. 1. FIG.

図面を参照して、実施形態としてのスポット溶接装置及びスポット溶接方法について説明する。以下に示す実施形態はあくまでも例示に過ぎず、以下の実施形態で明示しない種々の変形や技術の適用を排除する意図はない。各実施形態の構成は、それらの趣旨を逸脱しない範囲で種々変形して実施することができる。また、必要に応じて取捨選択することができ、あるいは適宜組み合わせることができる。 A spot welding device and a spot welding method as embodiments will be described with reference to the drawings. The embodiments shown below are merely illustrative, and there is no intention to exclude the application of various modifications and techniques not specified in the embodiments below. The configuration of each embodiment can be modified and implemented in various ways without departing from the spirit thereof. Further, they can be selected or combined as necessary.

[1.装置構成]
本実施形態のスポット溶接装置1の全体構成を説明する。
図1,図2に示すように、スポット溶接装置1は、スポット溶接ガン10と、スポット溶接ガン10の位置及び姿勢を操作するロボット20と、スポット溶接ガン10の電極11への通電を制御する通電制御装置30(「溶接タイマー」ともいう)と、スポット溶接ガン10,ロボット20及び通電制御装置30を制御する制御装置40とを備えている。
[1. Device configuration]
The overall configuration of the spot welding device 1 of this embodiment will be explained.
As shown in FIGS. 1 and 2, the spot welding device 1 controls a spot welding gun 10, a robot 20 that operates the position and posture of the spot welding gun 10, and energization to the electrode 11 of the spot welding gun 10. It includes an energization control device 30 (also referred to as a "welding timer") and a control device 40 that controls the spot welding gun 10, the robot 20, and the energization control device 30.

なお、スポット溶接装置1は、例えば自動車用ボデーなどのスポット溶接を要する製品の製造ラインに複数配設された製造設備の中の一つであり、制御装置40は、上位の制御装置である工程制御盤50と信号ラインで接続されている。工程制御盤50は、製造ラインの各製造設備(本スポット溶接装置1を含む)に、それぞれの作動制御に必要な情報や起動指令情報を送る。また、各製造設備は、例えば工程完了情報などの自身の作動情報を送る。 Note that the spot welding device 1 is one of a plurality of manufacturing facilities installed in a manufacturing line for products that require spot welding, such as automobile bodies, and the control device 40 is a process control device that is a higher-level control device. It is connected to the control panel 50 by a signal line. The process control panel 50 sends information necessary for operation control and start-up command information to each manufacturing equipment (including the present spot welding apparatus 1) on the manufacturing line. Each manufacturing facility also sends its own operational information, such as process completion information.

スポット溶接ガン10は、一対の電極11,12と、一対の電極11,12のうち少なくとも一方の電極(ここでは、電極11とする)を駆動する電極駆動モータ13とを備えており、電極駆動モータ13で電極11を駆動することによって、一方の電極11を他方の電極12に対して移動させ接近及び離隔させることができる。本実施形態では、電極11を可動電極とし、電極12を固定電極としているが、これが逆でもよいし、電極11,12を共に可動電極にしてもよい。 The spot welding gun 10 includes a pair of electrodes 11 and 12, and an electrode drive motor 13 that drives at least one of the pair of electrodes 11 and 12 (here, referred to as electrode 11). By driving the electrodes 11 with the motor 13, one electrode 11 can be moved toward and away from the other electrode 12. In this embodiment, the electrode 11 is a movable electrode and the electrode 12 is a fixed electrode, but this may be reversed, or both the electrodes 11 and 12 may be movable electrodes.

電極駆動モータ13には、電極駆動回路13Aが接続される。電極駆動回路13Aは、制御装置40からの指令信号に応じた電流を電極駆動モータ13に供給する。電極駆動モータ13は、供給電流を受けると電極11を駆動する。電極11,12が溶接対象の二枚の部材61,62(ワーク)を挟んだ状態で電極11を部材61側に駆動するときには、電極11,12から部材61,62へ加圧力Pが印加される。この加圧力Pは、電極駆動モータ13への供給電流の大きさを調整することで増減できる。 An electrode drive circuit 13A is connected to the electrode drive motor 13. The electrode drive circuit 13A supplies the electrode drive motor 13 with a current according to a command signal from the control device 40. The electrode drive motor 13 drives the electrode 11 upon receiving the supplied current. When driving the electrode 11 toward the member 61 with the electrodes 11 and 12 sandwiching the two members 61 and 62 (workpieces) to be welded, a pressing force P is applied from the electrodes 11 and 12 to the members 61 and 62. Ru. This pressing force P can be increased or decreased by adjusting the magnitude of the current supplied to the electrode drive motor 13.

また、スポット溶接ガン10には、電極駆動モータ13により駆動される電極11の位置(電極12に対する相対位置)を検出する電極位置センサ14(位置検出部)と、電極11,12による加圧力Pを検出する加圧力センサ15(加圧力検出部)とが付設される。 The spot welding gun 10 also includes an electrode position sensor 14 (position detection unit) that detects the position of the electrode 11 (relative position with respect to the electrode 12) driven by the electrode drive motor 13, and a pressurizing force P caused by the electrodes 11 and 12. A pressurizing force sensor 15 (pressing force detection section) for detecting the pressure is also attached.

また、図示は省略するが、スポット溶接ガン10の電極11,12の近傍には、溶接実施時に冷却液が供給されるようになっており、電極11,12の通電中及び通電後の冷却期間には、電極11,12及び部材61,62の溶接すべき箇所(溶接箇所)63に冷却液が供給される。冷却液は、電極11,12の通電中には、電極11,12及び部材61,62の溶接箇所の過昇温を抑制し、通電が停止された冷却期間には、電極11,12及び部材61,62の溶接箇所を常温付近まで冷却する。 Although not shown, a cooling liquid is supplied to the vicinity of the electrodes 11 and 12 of the spot welding gun 10 during welding, and a cooling liquid is supplied during and after the electrodes 11 and 12 are energized. A cooling liquid is supplied to the welding points 63 of the electrodes 11 and 12 and the members 61 and 62 to be welded. The cooling liquid suppresses excessive temperature rise at the welding points of the electrodes 11, 12 and the members 61, 62 while the electrodes 11, 12 are energized, and cools the electrodes 11, 12 and the members 61, 62 during the cooling period when the energization is stopped. Cool the welding points 61 and 62 to around room temperature.

通電制御装置30は、制御装置40からの指令信号に応じてスポット溶接ガン10の電極11,12間の通電の有無及び通電時の電圧を制御する。電極11,12間の通電に際し、印加電圧の値V(以下、「電圧V」という)を適正に管理すると共に通電時間を適正に管理することが、溶接品質を確保する上で必要である。このため、通電制御装置30にはタイマー31が付設されており、通電制御装置30は、タイマー31の情報に基づくタイミングで通電を実施する。通電制御装置30には電圧供給回路30Aが接続され、電圧供給回路30Aは通電制御装置30からの指令に応じた電圧Vを電極11,12間に印加する。 The energization control device 30 controls the presence or absence of energization between the electrodes 11 and 12 of the spot welding gun 10, and the voltage at the time of energization, in response to a command signal from the control device 40. When energizing between the electrodes 11 and 12, it is necessary to properly manage the applied voltage value V (hereinafter referred to as "voltage V") and the energization time to ensure welding quality. For this reason, the energization control device 30 is provided with a timer 31, and the energization control device 30 performs energization at a timing based on information from the timer 31. A voltage supply circuit 30A is connected to the energization control device 30, and the voltage supply circuit 30A applies a voltage V between the electrodes 11 and 12 according to a command from the energization control device 30.

ロボット20は、複数の関節部を有する多関節ロボットであり、各関節部を駆動するロボット駆動モータ21がそれぞれ設けられ、各ロボット駆動モータ21を作動させることで、スポット溶接ガン10の位置及び姿勢を操作する。各ロボット駆動モータ21には、ロボット駆動回路21Aが接続され、ロボット駆動回路21Aは、制御装置40からの指令信号に応じた電流をロボット駆動モータ21に供給する。各ロボット駆動モータ21は、供給電流の大きさに応じた駆動力で各関節部を駆動する。また、ロボット20の各関節部には、当該関節部の位置及び姿勢を検出するロボット位置センサ22(ロボット位置検出部)が付設される。
なお、図2では、電極駆動回路13A,ロボット駆動回路21A,電圧供給回路30Aを独立させて記載しているが、これらは対象となるスポット溶接ガン10,ロボット20,通電制御装置30に組み込まれていてもよく、別体でもよい。
The robot 20 is an articulated robot having a plurality of joints, and is provided with a robot drive motor 21 that drives each joint.By operating each robot drive motor 21, the position and posture of the spot welding gun 10 can be adjusted. operate. A robot drive circuit 21A is connected to each robot drive motor 21, and the robot drive circuit 21A supplies the robot drive motor 21 with a current according to a command signal from the control device 40. Each robot drive motor 21 drives each joint with a driving force depending on the magnitude of the supplied current. Furthermore, each joint of the robot 20 is provided with a robot position sensor 22 (robot position detection unit) that detects the position and orientation of the joint.
Note that although the electrode drive circuit 13A, robot drive circuit 21A, and voltage supply circuit 30A are shown independently in FIG. It may be separate or separate.

制御装置40は、ロボット20を制御するロボット制御部40A(ロボット制御装置)と、スポット溶接ガン10を制御するスポット溶接ガン制御部40B(スポット溶接ガン制御装置)と、を備える。制御装置40は、バスを介して互いに接続されたCPU(Central Processing Unit)、RAM(Random Access Memory)、およびROM(Read Only Memory)等を有する電子制御ユニットを有する。
なお、本実施形態では、一つのハードウェアである制御装置40に、ソフトウェアとしてのロボット制御部40A及びスポット溶接ガン制御部40Bを装備しているが、ロボット制御部40A及びスポット溶接ガン制御部40Bを別々のハードウェアで装備してもよい。
The control device 40 includes a robot control section 40A (robot control device) that controls the robot 20, and a spot welding gun control section 40B (spot welding gun control device) that controls the spot welding gun 10. The control device 40 includes an electronic control unit including a CPU (Central Processing Unit), a RAM (Random Access Memory), a ROM (Read Only Memory), and the like that are connected to each other via a bus.
In this embodiment, the control device 40, which is one piece of hardware, is equipped with a robot control section 40A and a spot welding gun control section 40B as software. may be equipped with separate hardware.

スポット溶接ガン制御部40Bは、電極駆動モータ13を制御する電極位置制御部41と、通電制御装置30を通じてスポット溶接ガン10の電極11,12間の通電状態を制御する通電制御部42とを備えている。 The spot welding gun control section 40B includes an electrode position control section 41 that controls the electrode drive motor 13, and an energization control section 42 that controls the energization state between the electrodes 11 and 12 of the spot welding gun 10 through the energization control device 30. ing.

特に、電極位置制御部41は、電極駆動モータ13への供給電流を制御するが、このとき、電極11,12が部材61,62に加える加圧力Pを目標状態に制御する加圧力制御部43と、電極11の位置(電極11の電極12に対する相対位置)を目標状態に制御する位置制御部44とを備えている。 In particular, the electrode position control section 41 controls the current supplied to the electrode drive motor 13, and at this time, the press force control section 43 controls the press force P applied by the electrodes 11 and 12 to the members 61 and 62 to a target state. and a position control unit 44 that controls the position of the electrode 11 (the relative position of the electrode 11 with respect to the electrode 12) to a target state.

本実施形態の加圧力制御部43は、加圧力センサ15で検出された加圧力P(検出加圧力)に基づいて電極駆動モータ13を作動させて加圧力Pを制御する。また、本実施形態の位置制御部44は、電極位置力センサ14で検出された位置(検出位置)に基づいて電極駆動モータ13を作動させて電極11の位置を一定位置に保持する。つまり、本実施形態の加圧力制御部43は、加圧力センサ15で検出された加圧力Pを取得して、検出された加圧力Pが目標状態になるように電極駆動モータ13の電流をフィードバック制御する。また、本実施形態の位置制御部44は、電極位置センサ14で検出された電極11の位置情報を取得して、検出された位置が目標状態になるように電極駆動モータ13の電流をフィードバック制御する。 The pressurizing force control unit 43 of this embodiment controls the pressurizing force P by operating the electrode drive motor 13 based on the pressurizing force P detected by the pressurizing force sensor 15 (detected pressurizing force). Further, the position control unit 44 of this embodiment operates the electrode drive motor 13 based on the position detected by the electrode position force sensor 14 (detected position) to maintain the position of the electrode 11 at a constant position. That is, the pressurizing force control unit 43 of this embodiment acquires the pressurizing force P detected by the pressurizing force sensor 15, and feeds back the current of the electrode drive motor 13 so that the detected pressurizing force P becomes the target state. Control. Further, the position control unit 44 of this embodiment acquires the position information of the electrode 11 detected by the electrode position sensor 14, and performs feedback control on the current of the electrode drive motor 13 so that the detected position is in the target state. do.

[2.制御構成]
次に、スポット溶接装置1によるスポット溶接の制御について説明する。
スポット溶接装置1は、工程制御盤50から起動指令情報を受けると、予め工程制御盤50から受信した作動制御情報に基づいてロボット20を作動して、スポット溶接ガン10の位置及び姿勢を所定の状態にセットする。これにより、一対の電極11,12は、溶接箇所63を挟んだ所定の位置に、互いに離隔した状態で対向する。この時点では、スポット溶接ガン10の電極駆動モータ13は停止状態とし、電極11,12も通電停止状態とする。この後、スポット溶接ガン制御部40Bがスポット溶接ガン10の制御を行う。
[2. Control configuration]
Next, control of spot welding by the spot welding device 1 will be explained.
When the spot welding device 1 receives startup command information from the process control panel 50, it operates the robot 20 based on the operation control information received from the process control panel 50 in advance to adjust the position and orientation of the spot welding gun 10 to a predetermined position. Set to state. As a result, the pair of electrodes 11 and 12 face each other at predetermined positions with the welding location 63 in between, while being separated from each other. At this point, the electrode drive motor 13 of the spot welding gun 10 is in a stopped state, and the electrodes 11 and 12 are also in a non-energized state. Thereafter, the spot welding gun control section 40B controls the spot welding gun 10.

スポット溶接ガン制御部40Bによるスポット溶接ガン10の制御に本件の装置及び方法の特徴がある。この制御について、図3のフローチャート、及び、図4(a)~(j)の時系列的な図を参照して説明する。
はじめに、電極11,12は、図4(a)に示すように部材61,62から離隔した状態にある。
The device and method of the present invention are characterized by the control of the spot welding gun 10 by the spot welding gun control section 40B. This control will be explained with reference to the flowchart of FIG. 3 and the time-series diagrams of FIGS. 4(a) to (j).
First, the electrodes 11 and 12 are in a state separated from the members 61 and 62, as shown in FIG. 4(a).

図3に示すように、まず、準備段階として、電極11と電極12とが部材61,62に共に接触する状態〔図4(b)参照〕まで、電極11,12を駆動する(ステップS10)。なお、電極12の駆動には、ロボット20を適宜用いる。例えば、ロボット20を作動させ固定側の電極12の先端を部材62の表面に接触させ、これと共に(或いは、これに次いで)、電極駆動モータ13を作動させて電極11を移動し、電極11の先端を部材61の表面に接触させる。この時の電極11の駆動の制御は、位置制御部44による位置制御を用いることができる。なお、電極11,12が部材61,62に接触すると、加圧力センサ15が反応するので、加圧力センサ15の検出信号により接触を判定できる。 As shown in FIG. 3, first, as a preparation step, the electrodes 11 and 12 are driven until the electrodes 11 and 12 are in contact with the members 61 and 62 (see FIG. 4B) (step S10). . Note that the robot 20 is appropriately used to drive the electrode 12. For example, the robot 20 is actuated to bring the tip of the fixed electrode 12 into contact with the surface of the member 62, and at the same time (or subsequently) the electrode drive motor 13 is actuated to move the electrode 11. The tip is brought into contact with the surface of the member 61. To control the drive of the electrode 11 at this time, position control by the position control section 44 can be used. Note that when the electrodes 11 and 12 come into contact with the members 61 and 62, the pressurizing force sensor 15 reacts, so that contact can be determined based on the detection signal of the pressurizing force sensor 15.

電極11,12が部材61,62に接触したら、位置制御部44による位置制御から加圧力制御部43による加圧力制御に切り替える(ステップS20)。この加圧力制御では、電極11,12による加圧力Pを予め設定された第一加圧力P1まで上昇させる(ステップS30)。なお、第一加圧力P1は、通電による部材61,62の膨張を考慮して設定される。これについては後述する。 When the electrodes 11 and 12 come into contact with the members 61 and 62, the position control by the position control unit 44 is switched to the pressure control by the pressure force control unit 43 (step S20). In this pressurizing force control, the pressurizing force P by the electrodes 11 and 12 is increased to a preset first pressurizing force P1 (step S30). Note that the first pressurizing force P1 is set in consideration of expansion of the members 61 and 62 due to energization. This will be discussed later.

加圧力Pが第一加圧力P1まで上昇したら、次に、加圧力制御部43による加圧力制御から位置制御部44による位置制御に切り替える〔ステップS40,図4(c)参照〕。この位置制御では、加圧力Pが第一加圧力P1となった電極11,12の位置を、その位置で一定となるように制御する(ステップS50)。 When the pressurizing force P rises to the first pressurizing force P1, next, the pressurizing force control by the pressurizing force controller 43 is switched to the position control by the position controller 44 [step S40, see FIG. 4(c)]. In this position control, the positions of the electrodes 11 and 12 where the pressing force P becomes the first pressing force P1 are controlled so as to remain constant at that position (step S50).

位置制御の開始後に、電極11,12の通電を開始する〔図4(d)参照〕。この通電は、予め設定された電圧V1(目標電圧)の電圧を電極11,12間に印加し、予め設定された所定時間(設定時間)だけ印加し続ける(ステップS60)。この通電により、溶接箇所63は固体から液体に変態し、膨張しつつナゲット64が形成されていく〔図4(e)~(f)参照〕。 After starting the position control, energization of the electrodes 11 and 12 is started [see FIG. 4(d)]. In this energization, a preset voltage V1 (target voltage) is applied between the electrodes 11 and 12, and continues to be applied for a preset predetermined time (set time) (step S60). By this energization, the welding point 63 transforms from solid to liquid, and expands to form a nugget 64 [see FIGS. 4(e) to 4(f)].

通電を終了したら、位置制御部44による位置制御から加圧力制御部43による加圧力制御に切り替える〔ステップS70,図4(g)参照〕。この加圧力制御では、電極11,12による加圧力Pを予め設定された第二加圧力P2に調整して保持する〔ステップS80,図4(h)参照〕。電極11,12の通電を終了すると溶接箇所63が冷却液で冷却されるが、加圧力Pを第二加圧力P2に保持する制御は、この冷却期間が終了するまで続行される。なお、第二加圧力P2は、第一加圧力P1とは異なる値とするが、第一加圧力P1と同等でもよい。ただし、第二加圧力P2は、第一加圧力P1以上であることが好ましい。これは、冷却期間中の溶接箇所63の収縮により生じるおそれのある加圧力不足をより確実に回避するためである。 When the energization is finished, the position control by the position control section 44 is switched to the pressure control by the pressure control section 43 [step S70, see FIG. 4(g)]. In this pressurizing force control, the pressurizing force P by the electrodes 11 and 12 is adjusted to and held at a preset second pressurizing force P2 [see step S80, FIG. 4(h)]. When the energization of the electrodes 11 and 12 ends, the welding location 63 is cooled by the cooling liquid, but the control to maintain the pressurizing force P at the second pressurizing force P2 is continued until this cooling period ends. Note that the second pressing force P2 has a value different from the first pressing force P1, but may be equal to the first pressing force P1. However, it is preferable that the second pressing force P2 is greater than or equal to the first pressing force P1. This is to more reliably avoid insufficient pressurizing force that may occur due to contraction of the welding location 63 during the cooling period.

冷却期間が終了したら、加圧力制御によって、加圧力Pを第二加圧力P2から0まで減少させる〔ステップS90,図4(i)参照〕。
加圧力Pが0になったら、位置制御によって、図4(j)に示すように、電極11と電極12とを部材61,62から離隔させる(ステップS100)。これにより、ロボット20は、スポット溶接ガン10を退避或いは別の溶接箇所に移動することができる。
When the cooling period ends, the pressurizing force P is reduced from the second pressurizing force P2 to 0 by the pressurizing force control (see step S90, FIG. 4(i)).
When the pressing force P becomes 0, the electrode 11 and the electrode 12 are separated from the members 61 and 62 by position control as shown in FIG. 4(j) (step S100). Thereby, the robot 20 can evacuate the spot welding gun 10 or move it to another welding location.

ここで、スポット溶接装置1の制御を、図4(a)~(j)の時系列的な図、及び、図5のタイムチャートを用いてさらに説明する。なお、図5のタイムチャートの横軸は時間であり、縦軸は本件の装置及び方法による加圧力P及び電圧Vである。また、実線L1は加圧力Pの推移を示し、破線L2は電圧Vの推移を示す。
まず、時刻T0で、一対の電極11,12は溶接箇所63を挟んだ所定の位置に、互いに離隔した状態で対向している〔図4(a)参照〕。このときには、電極11,12による加圧力Pは0であり、電極11,12間の電圧Vも0(通電停止)である。
Here, the control of the spot welding apparatus 1 will be further explained using the time series diagrams of FIGS. 4(a) to 4(j) and the time chart of FIG. 5. Note that the horizontal axis of the time chart in FIG. 5 is time, and the vertical axis is the pressing force P and voltage V by the apparatus and method of the present invention. Moreover, the solid line L1 shows the change in the pressing force P, and the broken line L2 shows the change in the voltage V.
First, at time T0, the pair of electrodes 11 and 12 face each other at a predetermined position with the welding location 63 in between and are spaced apart from each other [see FIG. 4(a)]. At this time, the pressing force P by the electrodes 11 and 12 is 0, and the voltage V between the electrodes 11 and 12 is also 0 (current is stopped).

一対の電極11,12を溶接箇所63に接近させていくと、時刻Tsで電極11,12が溶接箇所63に接触する〔図4(b)参照〕。このときも、電極11,12による加圧力Pは0であり、電極11,12間の電圧Vも0(通電停止)である。 As the pair of electrodes 11, 12 approaches the welding location 63, the electrodes 11, 12 come into contact with the welding location 63 at time Ts [see FIG. 4(b)]. Also at this time, the pressing force P by the electrodes 11 and 12 is 0, and the voltage V between the electrodes 11 and 12 is also 0 (current is stopped).

この後、電極11,12による加圧力Pを第一加圧力P1まで増大させていき、時刻T1で、加圧力Pが第一加圧力P1に到達する〔図4(c)参照〕。この加圧力Pが第一加圧力P1の状態で、加圧力制御から位置制御に切り替え、電極11,12の位置を一定位置に制御(保持)する。この位置制御が開始された後の時刻T2で、電極11,12への電圧印加を開始する。これにより、電極11,12の電圧Vは目標電圧V1となる〔図4(d)参照〕。 Thereafter, the pressurizing force P by the electrodes 11 and 12 is increased to the first pressurizing force P1, and at time T1, the pressurizing force P reaches the first pressurizing force P1 [see FIG. 4(c)]. With this pressing force P being the first pressing force P1, pressing force control is switched to position control, and the positions of the electrodes 11 and 12 are controlled (maintained) at a constant position. At time T2 after this position control is started, voltage application to the electrodes 11 and 12 is started. As a result, the voltage V of the electrodes 11 and 12 becomes the target voltage V1 [see FIG. 4(d)].

電極11,12に電圧が印加されると、溶接箇所63は固体から液体に変態し、膨張しつつナゲット64が形成されていく〔図4(e)~(f)参照〕。なお、図4(e)は、電極11,12への通電(電圧印加)開始からΔT1時間が経過した状態を示し、図4(f)は、電極11,12への通電開始からΔT2時間(ΔT2>ΔT1)が経過した状態を示す。図示するように、形成されたナゲット64は次第に増大し、溶着が進行する。 When a voltage is applied to the electrodes 11 and 12, the welding location 63 transforms from solid to liquid, and expands to form a nugget 64 [see FIGS. 4(e) to 4(f)]. Note that FIG. 4(e) shows a state in which ΔT1 hour has elapsed since the start of energization (voltage application) to the electrodes 11 and 12, and FIG. ΔT2>ΔT1) has elapsed. As shown in the figure, the formed nugget 64 gradually increases in size and welding progresses.

図5に示す加圧力Pの曲線のように、電極11,12の位置を一定に制御するので、溶接箇所63の膨張に応じて、加圧力Pは第一加圧力P1よりも高くなる。ただし、この加圧力Pの曲線は一例であり、溶接条件によって様々な態様を取るものと考えられるが、少なくとも加圧力Pは第一加圧力P1よりも高くなると考えられる。 Since the positions of the electrodes 11 and 12 are controlled to be constant as shown in the curve of the pressurizing force P shown in FIG. 5, the pressurizing force P becomes higher than the first pressurizing force P1 according to the expansion of the welding location 63. However, this curve of the pressurizing force P is an example, and various forms may be assumed depending on the welding conditions, but it is considered that at least the pressurizing force P is higher than the first pressurizing force P1.

このような電極11,12への通電が所定時間行われた時刻T3で、電極11,12への通電を終了する。これと共に、電極11,12を位置制御から加圧力制御に切り替えて、電極11,12による加圧力Pを予め設定された第二加圧力P2に調整して保持する〔図4(g)参照〕。 At time T3 when the electrodes 11 and 12 have been energized for a predetermined period of time, the energization of the electrodes 11 and 12 is terminated. At the same time, the electrodes 11 and 12 are switched from position control to pressure force control to adjust and hold the pressure P by the electrodes 11 and 12 at a preset second pressure P2 [see FIG. 4(g)] .

通電が終了すると、溶接箇所63の冷却が行われるため、溶接箇所63は、温度低下により収縮していく。このとき、溶接箇所63には、電極11,12による第二加圧力P2に調整された加圧力Pが加えられているので、冷却期間中は、溶接箇所63の収縮に応じて電極11,12間は接近していく〔図4(h)参照〕。 When the energization ends, the welding location 63 is cooled, so the welding location 63 contracts due to a decrease in temperature. At this time, since the pressure P adjusted to the second pressure P2 by the electrodes 11 and 12 is applied to the welding location 63, during the cooling period, the electrodes 11 and 12 are applied as the welding location 63 contracts. The distance between them becomes closer [see Figure 4(h)].

時刻T4で冷却期間が終了すると〔図4(i)参照〕、加圧力制御によって加圧力Pを第二加圧力P2から0まで減少させ、時点Teで加圧力Pが0になったら、電極11と電極12とを部材61,62から離隔させる〔図4(j)参照〕。
なお、図5において、時刻Tsと時刻T1との間の加圧力増加の期間、時刻T1と時刻T2との間の位置制御開始から通電開始までの期間、及び、時刻T4と時刻Teとの間の加圧力減少の期間を、便宜上大きく示しているが、これらの期間は実際には極めて微小な時間である。
When the cooling period ends at time T4 [see FIG. 4(i)], the pressurizing force P is decreased from the second pressurizing force P2 to 0 by pressurizing force control, and when the pressurizing force P becomes 0 at time Te, the electrode 11 and the electrode 12 are separated from the members 61 and 62 [see FIG. 4(j)].
In addition, in FIG. 5, the period of increase in pressurizing force between time Ts and time T1, the period from the start of position control to the start of energization between time T1 and time T2, and the period between time T4 and time Te Although the periods during which the pressing force is reduced are shown in a large size for convenience, these periods are actually extremely small periods of time.

次に、図6のタイムチャートを参照して、溶接中の部材61,62の板厚tの推移を説明する。なお、図6のタイムチャートの横軸は、図5のタイムチャートの横軸と対応する時間であり、縦軸は部材61,62の板厚(部材61,62を合わせた板厚)の推定推移である。また、実線L3は本件の装置及び方法による板厚tの推移を示し、破線L4は電極11,12を部材61,62に加圧力Pを与えずに接触させて通電した場合の板厚tの推移を示し、点線L5は電極11,12の通電期間に、加圧力Pを一定にする加圧力制御を実施した場合の板厚tの推移を示す。この場合の加圧力制御では、一定とする目標加圧力を第一加圧力P1よりも十分に大きく設定し、加圧力不足を招かないようにしている。 Next, with reference to the time chart of FIG. 6, the transition of the plate thickness t of the members 61 and 62 during welding will be described. The horizontal axis of the time chart in FIG. 6 is the time corresponding to the horizontal axis of the time chart in FIG. 5, and the vertical axis is the estimated thickness of the members 61 and 62 (the combined thickness of the members 61 and 62). This is a transition. Further, the solid line L3 shows the change in the plate thickness t according to the device and method of the present invention, and the broken line L4 shows the plate thickness t when the electrodes 11 and 12 are brought into contact with the members 61 and 62 without applying pressure P and energized. A dotted line L5 indicates a change in the plate thickness t when pressure control is performed to keep the pressure P constant during the period when the electrodes 11 and 12 are energized. In the pressurizing force control in this case, the target pressurizing force to be kept constant is set to be sufficiently larger than the first pressurizing force P1, so as not to cause insufficient pressurizing force.

破線L4で示すように、電極11,12に加圧力Pを与えずに電極11,12を通電した場合、部材61,62は、電極11,12の通電(時刻T2~T3)により加熱されて膨張し、その後の冷却期間(時刻T3~T4)で収縮して元の厚さとなる。 As shown by the broken line L4, when the electrodes 11 and 12 are energized without applying pressure P to the electrodes 11 and 12, the members 61 and 62 are heated by the energization of the electrodes 11 and 12 (time T2 to T3). It expands and then contracts during the subsequent cooling period (times T3 to T4) to return to its original thickness.

一方、実線L3で示すように、本件の装置及び方法により、電極11,12の通電期間(時刻T2~T3)では、電極11,12間の距離を一定とする位置制御を行い、その後の冷却期間(時刻T3~T4)では、電極11,12による加圧力Pを一定とする加圧力制御を行う。この場合は、図6に実線L3で示すように、通電期間中は板厚tの変化はないが、その後の冷却期間では、部材61,62の収縮に伴って板厚tが減少する。 On the other hand, as shown by the solid line L3, according to the apparatus and method of the present invention, during the energization period (time T2 to T3) of the electrodes 11 and 12, position control is performed to keep the distance between the electrodes 11 and 12 constant, and the subsequent cooling During the period (times T3 to T4), pressure control is performed to keep the pressure P exerted by the electrodes 11 and 12 constant. In this case, as shown by the solid line L3 in FIG. 6, the plate thickness t does not change during the energization period, but during the subsequent cooling period, the plate thickness t decreases as the members 61 and 62 contract.

また、点線L5で示すように、通電期間及び冷却期間に、加圧力Pを一定にする加圧力制御を実施した場合には、通電期間中にも部材61,62の収縮が生じ、冷却期間中にも部材61,62の収縮が生じ、結果として、溶接箇所63の板厚は大きく減少する。 Furthermore, as shown by the dotted line L5, when pressure control is performed to keep the pressure P constant during the energization period and the cooling period, the members 61 and 62 contract even during the energization period, and during the cooling period. The members 61 and 62 also shrink, and as a result, the plate thickness at the welding location 63 is greatly reduced.

[3.作用,効果]
(1)上述したスポット溶接装置及びスポット溶接方法では、制御装置40は、加圧力制御部43と位置制御部44とを有し、一対の電極11,12が部材61,62に接触した状態から電極11,12の加圧力Pを第一加圧力P1まで上昇させ、加圧力Pを第一加圧力P1で位置制御に切り替えて一対の電極11,12の位置を一定に保持する。このため、第一加圧力P1を大きく設定しなくても、通電中に必要な大きさの加圧力Pを確保でき、通電中に加圧力不足を招き難くなる。
[3. action, effect]
(1) In the spot welding device and spot welding method described above, the control device 40 has a pressurizing force control section 43 and a position control section 44, and from the state where the pair of electrodes 11 and 12 are in contact with the members 61 and 62, The pressurizing force P of the electrodes 11, 12 is increased to the first pressurizing force P1, and the pressurizing force P is switched to position control using the first pressurizing force P1 to maintain the position of the pair of electrodes 11, 12 constant. Therefore, even if the first pressurizing force P1 is not set large, a necessary pressurizing force P can be secured during energization, and insufficient pressurizing force is unlikely to occur during energizing.

例えば、通電中に一定の加圧力に制御する場合、加圧力不足を招かないように、一定とする目標加圧力を十分に大きな値に設定することになり、通電中に部材61,62の溶接箇所63の板厚減少を招くおそれや、加圧力過剰によりスパッタが発生するおそれが高まる。この点、本件の装置及び方法によれば、こうした板厚減少やスパッタの発生を抑制することができる。 For example, when controlling the pressurizing force to a constant value while energizing, the constant target pressurizing force must be set to a sufficiently large value so as not to cause insufficient pressurizing force. There is an increased risk that the plate thickness at the portion 63 will be reduced, and that spatter will occur due to excessive pressure. In this regard, according to the apparatus and method of the present invention, such reduction in plate thickness and occurrence of spatter can be suppressed.

さらに、溶接箇所63の冷却期間中は、加圧力Pが第二加圧力P2に保持されるので、冷却期間中に溶接箇所63の収縮により生じるおそれのある加圧力不足が回避され、溶接品質が確保される。つまり、抵抗スポット溶接では通電,加熱中の溶融部分にガスが発生し、発生したガスは、通電停止後の冷却開始から凝固に至るまでの間、溶接中心部に十分な加圧力が加えられていればナゲットに吸収されて消滅するが、加圧力が不十分だと、溶融部分が凝固した後にナゲット部にガスが残り、このガスがブローホールとなり、これが溶接箇所の内部欠陥(溶接不良)となるおそれがある。この点、本件の装置及び方法によれば、冷却期間中の加圧力不足が回避され、溶融部分に発生したガスはナゲット64に吸収されて消滅するため、溶接箇所63の内部欠陥の発生が抑制される。 Furthermore, during the cooling period of the welding point 63, the pressurizing force P is maintained at the second pressurizing force P2, so that insufficient pressurizing force that may occur due to contraction of the welding point 63 during the cooling period is avoided, and the welding quality is improved. Secured. In other words, in resistance spot welding, gas is generated in the molten part during energization and heating, and sufficient pressure is applied to the weld center from the start of cooling after energization to solidification. However, if the pressurizing force is insufficient, gas will remain in the nugget after the molten part solidifies, and this gas will form a blowhole, which can cause internal defects (defects in welding) at the welding location. There is a risk that In this regard, according to the apparatus and method of the present invention, insufficient pressurizing force during the cooling period is avoided, and the gas generated in the molten part is absorbed by the nugget 64 and disappears, so the occurrence of internal defects in the welding part 63 is suppressed. be done.

(2)また、本実施形態の制御装置40は、加圧力センサ15で検出された加圧力Pに基づいて電極駆動モータ13を作動させて加圧力Pを制御し、電極位置センサ14で検出された検出位置に基づいて電極11の位置を一定位置に保持する制御を行うので、加圧力制御及び位置制御をより正確に実施することができる。 (2) Furthermore, the control device 40 of the present embodiment operates the electrode drive motor 13 to control the pressing force P based on the pressing force P detected by the pressing force sensor 15, and controls the pressing force P detected by the electrode position sensor 14. Since the position of the electrode 11 is controlled to be maintained at a constant position based on the detected position, the pressing force control and position control can be performed more accurately.

(3)制御装置40は、通電の開始前の加圧力制御の準備段階で、位置制御部44による位置制御を用いて一対の電極11,12を部材61,62に接触させるので、一対の電極11,12を適正に部材61,62に接触させることができる。
(4)また、第二加圧力P2を、第一加圧力P1よりも大きく設定することで、冷却期間中の溶接箇所63の収縮により生じるおそれのある加圧力不足をより確実に回避することができ、加圧力不足に起因した溶接箇所63の内部欠陥の発生を一層抑制できる。
(3) Since the control device 40 brings the pair of electrodes 11 and 12 into contact with the members 61 and 62 using position control by the position control unit 44 in the preparation stage of pressurizing force control before the start of energization, the pair of electrodes 11 and 12 can be brought into proper contact with the members 61 and 62.
(4) Furthermore, by setting the second pressurizing force P2 to be larger than the first pressurizing force P1, it is possible to more reliably avoid a lack of pressurizing force that may occur due to contraction of the welding area 63 during the cooling period. This makes it possible to further suppress the occurrence of internal defects at the welding location 63 due to insufficient pressurizing force.

(5)制御装置40は、冷却期間が終了したら、加圧力制御から位置制御へ切り替えて、一対の電極11,12を部材61,62から離隔させるので、スポット溶接の終了工程を円滑に実施できる。
(6)第一加圧力P1は、通電による部材61,62の膨張を考慮して、低めに設定されるので、スパッタの発生を抑えることができ溶接品質を向上できる。
(5) When the cooling period ends, the control device 40 switches from pressure control to position control and separates the pair of electrodes 11 and 12 from the members 61 and 62, so that the spot welding completion process can be carried out smoothly. .
(6) Since the first pressurizing force P1 is set to be low considering the expansion of the members 61 and 62 due to energization, the generation of spatter can be suppressed and welding quality can be improved.

[4.変形例]
上述したスポット溶接装置1の構成及びスポット溶接方法は一例であって、上述したものに限られない。例えば、実施形態では、位置制御も加圧力制御も、センサ14,15によって検出された位置情報,加圧力情報に基づくフィードバック制御によって行っているが、フィードバック制御によらず、オープンループ制御で実施してもよい。
[4. Modified example]
The configuration of the spot welding device 1 and the spot welding method described above are merely examples, and are not limited to those described above. For example, in the embodiment, both the position control and the pressure control are performed by feedback control based on the position information and pressure information detected by the sensors 14 and 15, but they are not performed by feedback control but by open loop control. It's okay.

例えば、位置制御については、一対の電極11,12を所定状態に固定するロック機構を設ければ、一対の電極11,12を一定位置に制御できる。また、加圧力は電極駆動モータ13への供給電流に対応するので、電極駆動モータ13への供給電流を所定の加圧力Pが得られるように制御すればよい。 For example, regarding position control, if a locking mechanism is provided to fix the pair of electrodes 11, 12 in a predetermined state, the pair of electrodes 11, 12 can be controlled to a constant position. Furthermore, since the pressing force corresponds to the current supplied to the electrode drive motor 13, the current supplied to the electrode driving motor 13 may be controlled so that a predetermined pressing force P is obtained.

実施形態では、スポット溶接装置1が製品の製造ラインに複数配設された中の一つであり、制御装置40が上位の制御装置である工程制御盤50と信号ラインで接続される例を説明したが、スポット溶接装置1は、上位の制御装置なしに単独で溶接の制御をするようにしてもよい。 In the embodiment, an example will be described in which the spot welding device 1 is one of a plurality of spot welding devices installed in a product manufacturing line, and the control device 40 is connected to a process control panel 50, which is a higher-level control device, by a signal line. However, the spot welding device 1 may be configured to independently control welding without a higher-level control device.

1 スポット溶接装置
10 スポット溶接ガン
11,12 電極
13 電極駆動モータ
13A 電極駆動回路
14 電極位置センサ(位置検出部)
15 加圧力センサ(加圧力検出部)
40 制御装置
43 加圧力制御部
44 位置制御部
61,62 溶接対象の部材
63 溶接箇所
P 加圧力
P1 第一加圧力
P2 第二加圧力
1 Spot welding device 10 Spot welding gun 11, 12 Electrode 13 Electrode drive motor 13A Electrode drive circuit 14 Electrode position sensor (position detection section)
15 Pressure sensor (pressure force detection section)
40 Control device 43 Pressure force control section 44 Position control section 61, 62 Components to be welded 63 Welding location P Pressure force P1 First pressurization force P2 Second pressurization force

Claims (7)

互いに対向して配置された一対の電極、および前記一対の電極のうち少なくとも一方の電極を駆動する電極駆動モータを有するスポット溶接ガンと、
前記スポット溶接ガンを制御する制御装置と、を備え、
前記制御装置は、
前記電極駆動モータを作動させて前記一対の電極が溶接対象の部材に加える加圧力を制御する加圧力制御部と、
前記一対の電極の位置を一定位置に保持する位置制御部と、を有し、
前記一対の電極が前記部材に接触した状態から、前記加圧力制御部による加圧力制御で前記加圧力を予め設定された第一加圧力まで上昇させ、前記加圧力が前記第一加圧力に到達したら、前記位置制御部による位置制御で前記一対の電極の位置を一定に保持して通電を開始すると共に設定時間後に通電を終了して、溶接箇所の冷却の開始と共に前記位置制御から前記加圧力制御への切り替えを行って前記冷却の期間中は前記加圧力を予め設定された第二加圧力に保持する
ことを特徴とする、スポット溶接装置。
a spot welding gun having a pair of electrodes arranged opposite to each other, and an electrode drive motor that drives at least one of the pair of electrodes;
A control device that controls the spot welding gun,
The control device includes:
a pressurizing force control unit that operates the electrode drive motor to control the pressurizing force that the pair of electrodes applies to the member to be welded;
a position control unit that maintains the position of the pair of electrodes at a constant position,
From the state in which the pair of electrodes are in contact with the member, the pressing force is increased to a preset first pressing force by the pressing force control by the pressing force control unit, and the pressing force reaches the first pressing force. Then, the positions of the pair of electrodes are kept constant by the position control by the position control unit, and energization is started, and the energization is stopped after a set time, and as cooling of the welding area starts, the pressure is increased by the position control. A spot welding apparatus, characterized in that the pressurizing force is maintained at a preset second pressurizing force during the cooling period by switching to control.
前記制御装置は、
前記加圧力を検出する加圧力検出部と、
前記一方の電極の位置を検出する位置検出部と、を備え、
前記加圧力制御部は、前記加圧力検出部で検出された検出加圧力に基づいて前記電極駆動モータを作動させて前記加圧力を制御し、
前記位置制御部は、前記位置検出部で検出された検出位置に基づいて前記電極駆動モータを作動させて前記一方の電極の位置を前記一定位置に保持する
ことを特徴とする、請求項1に記載のスポット溶接装置。
The control device includes:
a pressurizing force detection section that detects the pressurizing force;
a position detection unit that detects the position of the one electrode,
The pressurizing force control unit controls the pressurizing force by operating the electrode drive motor based on the detected pressurizing force detected by the pressurizing force detecting unit,
The position control unit operates the electrode drive motor based on the detected position detected by the position detection unit to maintain the position of the one electrode at the constant position. Spot welding equipment as described.
前記制御装置は、前記通電の開始前の前記加圧力制御の準備段階で、前記位置制御部による位置制御で前記一対の電極を前記部材に接触させる
ことを特徴とする、請求項2に記載のスポット溶接装置。
The control device is characterized in that the pair of electrodes are brought into contact with the member by position control by the position control unit in a preparatory stage of the pressurizing force control before the start of the energization. Spot welding equipment.
前記第二加圧力は、前記第一加圧力よりも大きい
ことを特徴とする、請求項1~3の何れか一項に記載のスポット溶接装置。
The spot welding device according to any one of claims 1 to 3, wherein the second pressing force is larger than the first pressing force.
前記制御装置は、前記冷却の期間が終了したら、前記加圧力制御から前記位置制御へ切り替えて、前記一対の電極を前記部材から離隔させる
ことを特徴とする、請求項1~4の何れか一項に記載のスポット溶接装置。
Any one of claims 1 to 4, wherein the control device switches from the pressurizing force control to the position control to separate the pair of electrodes from the member when the cooling period ends. Spot welding equipment as described in Section.
前記第一加圧力は、前記通電による前記部材の膨張を考慮して設定される
ことを特徴とする、請求項1~5の何れか一項に記載のスポット溶接装置。
The spot welding device according to claim 1, wherein the first pressurizing force is set in consideration of expansion of the member due to the energization.
互いに対向して配置された一対の電極と、前記一対の電極のうち少なくとも一方の電極を駆動する電極駆動モータとを有するスポット溶接ガンを制御して、溶接対象の部材にスポット溶接をするスポット溶接方法であって、
前記一対の電極が前記部材に接触した状態から、前記電極駆動モータを作動させて前記部材に加える加圧力を制御する加圧力制御において、前記加圧力を予め設定された第一加圧力まで上昇させ、
前記加圧力が前記第一加圧力に到達したら、前記電極駆動モータを作動させて前記一方の電極の位置を制御する位置制御において、前記一対の電極の位置を一定に保持して通電を開始し、
前記通電の開始から設定時間後に通電を終了して、溶接箇所の冷却の開始と共に前記位置制御から前記加圧力制御への切り替えを行って前記冷却の期間中は前記加圧力を予め設定された第二加圧力に保持する
ことを特徴とする、スポット溶接方法。
Spot welding in which spot welding is performed on a member to be welded by controlling a spot welding gun that has a pair of electrodes arranged opposite to each other and an electrode drive motor that drives at least one of the pair of electrodes. A method,
In pressurizing force control in which the electrode drive motor is operated to control the pressurizing force applied to the member from a state in which the pair of electrodes are in contact with the member, the pressurizing force is increased to a preset first pressurizing force. ,
When the pressurizing force reaches the first pressurizing force, in position control that operates the electrode drive motor to control the position of the one electrode, the position of the pair of electrodes is held constant and energization is started. ,
The energization is ended after a set time has elapsed from the start of the energization, and at the same time as cooling of the welding area begins, the position control is switched to the pressure force control. A spot welding method characterized by holding at two pressures.
JP2022037726A 2022-03-11 2022-03-11 Spot-welding device and spot-welding method Pending JP2023132420A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2022037726A JP2023132420A (en) 2022-03-11 2022-03-11 Spot-welding device and spot-welding method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2022037726A JP2023132420A (en) 2022-03-11 2022-03-11 Spot-welding device and spot-welding method

Publications (1)

Publication Number Publication Date
JP2023132420A true JP2023132420A (en) 2023-09-22

Family

ID=88065129

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2022037726A Pending JP2023132420A (en) 2022-03-11 2022-03-11 Spot-welding device and spot-welding method

Country Status (1)

Country Link
JP (1) JP2023132420A (en)

Similar Documents

Publication Publication Date Title
CN111037079B (en) Method for testing quality in resistance welding of workpieces
JPH1058157A (en) Method and device for spot welding
JP2011110578A (en) Spot welding system
CN110238499B (en) Resistance spot welding method and resistance spot welding apparatus
US20190366410A1 (en) Forming system
JP3598683B2 (en) Optimal position control method of spot welding electrode
JP2000288743A (en) Controller for resistance welding equipment
JP2023132420A (en) Spot-welding device and spot-welding method
JP6339292B2 (en) Spot welding method and apparatus
JP3603564B2 (en) Welding control device for spot welding equipment
JP2007175740A (en) Electric current bonding process and apparatus
JP5417017B2 (en) Fastening member fixing method
JP3554830B2 (en) Control method and control device for electric servo type resistance welding device
JPH106025A (en) Press control method in welding gun
JP3733438B2 (en) Control method and control apparatus for electric servo resistance welding apparatus
JP2019147187A (en) Spot welding method
JPH10202371A (en) Spatter detecting method for welding gun and correcting method for welding condition
JPS63180384A (en) Inter-tip power control type control system for resistance welding
JPH07303973A (en) Device and method for controlling resistance welding machine
JP2001138061A (en) Resistance welding equipment whose welding current is decided by pressurizing force and method of welding
JP2019118921A (en) Welding device
CN115138935B (en) Welding device and control method for welding device
JP7058064B2 (en) Welding method
JP7158145B2 (en) welding equipment
JP7264967B2 (en) Electric heating device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20240229