JP2023131841A - Thickness measurement device for serial packaging bag - Google Patents

Thickness measurement device for serial packaging bag Download PDF

Info

Publication number
JP2023131841A
JP2023131841A JP2022036819A JP2022036819A JP2023131841A JP 2023131841 A JP2023131841 A JP 2023131841A JP 2022036819 A JP2022036819 A JP 2022036819A JP 2022036819 A JP2022036819 A JP 2022036819A JP 2023131841 A JP2023131841 A JP 2023131841A
Authority
JP
Japan
Prior art keywords
bag
thickness
detection
pack
light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2022036819A
Other languages
Japanese (ja)
Inventor
博久 山本
Hirohisa Yamamoto
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kawashima Packaging Machinery Ltd
Original Assignee
Kawashima Packaging Machinery Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawashima Packaging Machinery Ltd filed Critical Kawashima Packaging Machinery Ltd
Priority to JP2022036819A priority Critical patent/JP2023131841A/en
Publication of JP2023131841A publication Critical patent/JP2023131841A/en
Pending legal-status Critical Current

Links

Images

Abstract

To provide a thickness measurement device for a serial packaging bag which is advantageous in accurately measuring a thickness of a bag body of the serial packaging bag.SOLUTION: An optical detection unit 34 detects a tip of a serial packaging bag 10 and a perforation 16 in a conveyance direction and determines a timing of a detection operation of each bag body 12 by a thickness detection unit 32 based on this detection result, the length of a bag body 12 along the conveyance direction, and a conveyance speed. The thickness detection unit 32 can detect a thickness at a longitudinal center of each bag body 12 even if a phenomenon occurs that the serial packaging bag 10 bends at a seal part 14, so that it is advantageous in accurately measuring the thickness of the bag body 12 of the serial packaging bag 10.SELECTED DRAWING: Figure 2

Description

本発明は、連包袋の厚さ測定装置に関する。 The present invention relates to an apparatus for measuring the thickness of continuous packaging bags.

連包袋は、製品が収容された複数の袋体がシール部を介して接続されて構成されたものである。
連包袋は、製袋充填包装機によって製品が袋体に収容されて製造されたのち、製袋充填包装機から排出シュートを介して排出コンベヤに搬送され、次いで、第1の搬送コンベヤに搬送されこの第1搬送コンベヤでの搬送中にウエイトチェッカにより重量が計測され、次いで、第1搬送コンベヤから厚さ測定装置が設置された第2の搬送コンベヤに搬送されることで各袋体の厚さが計測される。
この場合、各コンベヤにおいて、連包袋は、複数の袋体が接続された長さ方向に搬送される。
特許文献1には、第2搬送コンベヤ上において、連包袋の搬送方向の先頭を検出し、上記搬送速度と各袋体の長さとに基づいて、袋体の厚さを測定する測定タイミングを決定する技術が提案されている。
A continuous packaging bag is constructed by connecting a plurality of bags each containing a product through a seal.
Continuous packaging bags are manufactured by storing the product in a bag body using a bag-forming-filling-sealing machine, and then transported from the bag-forming-filling-sealing machine to a discharge conveyor via a discharge chute, and then transported to a first transport conveyor. The weight of each bag is measured by a weight checker while being transported on the first transport conveyor, and then the thickness of each bag is measured by being transported from the first transport conveyor to a second transport conveyor equipped with a thickness measuring device. is measured.
In this case, on each conveyor, the continuous packaging bag is conveyed in the length direction in which a plurality of bags are connected.
Patent Document 1 discloses a method for detecting the leading edge of a multi-pack bag in the conveying direction on a second conveyor, and setting a measurement timing for measuring the thickness of the bag based on the conveying speed and the length of each bag. Techniques for determining this have been proposed.

特開2021-123398号公報JP 2021-123398 Publication

ところで、連包袋は、ほぼ鉛直方向に延在する排出シュートからほぼ水平方向に延在する排出コンベヤに向かって自重により排出されることから、排出された連包袋が排出コンベヤ上でシール部を境目にして折れ曲がるといったジャムと呼ばれる現象が発生しやすい。
また、ウエイトチェッカによる計測を精度良く行なうために第1搬送コンベヤの搬送速度は排出コンベヤの搬送速度よりも低速となることが多い。そのため、連包袋が排出コンベヤから第1搬送コンベヤに移動した時点で搬送速度が急に低下することによっても上記と同様に連包袋がシール部を境目にして折れ曲がるといった現象が発生しやすい。
このような折れ曲がりが生じると、折れ曲がりが生じていない場合に比較して、搬送方向における連包袋の先端に対する各袋体の位置関係が一定とならず、ばらついてしまう。
そのため、上記従来技術のように、連包袋の搬送方向の先頭を検出し、上記搬送速度と各袋体の長さとに基づいて、袋体の厚さを測定する測定タイミングを決定したのでは、各袋体に対する測定タイミングが最適とならず、袋体の中央から外れた箇所の厚さを測定してしまい、厚さの測定精度が低下するおそれがある。
本発明は前記事情に鑑み案出されたものである。本発明の目的は、連包袋の袋体の厚さを精度良く測定する上で有利な連包袋の厚さ測定装置を提供することにある。
By the way, the multi-pack bags are discharged by their own weight from the discharge chute extending in the vertical direction toward the discharge conveyor extending in the substantially horizontal direction. A phenomenon called jamming, where the sheet bends at the boundary, is likely to occur.
Further, in order to accurately measure the weight using the weight checker, the conveyance speed of the first conveyor is often lower than the conveyance speed of the discharge conveyor. Therefore, even if the conveyance speed suddenly decreases when the multi-pack bag moves from the discharge conveyor to the first transport conveyor, the same phenomenon as described above in which the multi-pack bag bends at the sealing part is likely to occur.
When such bending occurs, the positional relationship of each bag body with respect to the tip of the multi-pack bag in the transport direction is not constant and varies, compared to a case where no bending occurs.
Therefore, as in the prior art described above, the leading edge of the multi-pack bag in the transport direction is detected, and the measurement timing for measuring the thickness of the bag is determined based on the transport speed and the length of each bag. However, the measurement timing for each bag may not be optimal, and the thickness may be measured at a location away from the center of the bag, resulting in a decrease in thickness measurement accuracy.
The present invention has been devised in view of the above circumstances. SUMMARY OF THE INVENTION An object of the present invention is to provide a multi-pack bag thickness measuring device that is advantageous in accurately measuring the thickness of a multi-pack bag body.

上述した目的を達成するため、本発明の一実施の形態は、製品が収容された複数の袋体がミシン目を有するシール部を介して接続されて構成された連包袋の厚さ測定装置であって、予め設定された搬送速度で前記連包袋を前記複数の袋体が接続された方向に搬送する搬送部と、前記搬送部を搬送される前記連包袋の前記複数の袋体の厚さをそれぞれ検出する厚さ検出部と、前記連包袋の搬送方向において前記厚さ検出部の上流側に設けられ、前記連包袋に対して検出光を照射すると共に前記連包袋を透過あるいは反射する前記検出光の強度を検出する光検出部と、前記検出光の強度に基づいて、前記搬送方向における前記連包袋の先端と、前記ミシン目とを検出すると共に、この検出結果と前記袋体の前記搬送方向に沿った長さと前記搬送速度とに基づいて前記厚さ検出部による前記各袋体の検出動作のタイミングを決定する制御部とを備えることを特徴とする。
また、本発明の一実施の形態は、前記厚さ検出部は、前記袋体の厚さ方向に昇降し前記袋体の上面を押圧可能に形成された移動体と、前記移動体を昇降させる電動モータと、前記制御部によって決定された前記タイミングに基づいて前記電動モータを制御し前記移動体を前記袋体の上面に押圧した際の前記電動モータのトルク負荷に基づいて前記移動体による前記袋体への押圧力を制御するモータ制御部と、前記電動モータの回転量に基づいて前記袋体の厚さを算出する厚さ算出部とを備えることを特徴とする。
また、本発明の一実施の形態は、前記光検出部は、前記検出光を照射する発光部と、前記連包袋を透過した前記検出光を検出する受光部とを備える透過型光電センサで構成されていることを特徴とする。
また、本発明の一実施の形態は、前記連包袋は、不透明な包装フィルムで形成されていることを特徴とする。
また、本発明の一実施の形態は、前記製品はスナック菓子であることを特徴とする。
In order to achieve the above-mentioned object, one embodiment of the present invention provides a device for measuring the thickness of a multi-pack bag, which is configured by connecting a plurality of bags housing products through a seal portion having perforations. a conveyance unit that conveys the continuous packaging bag in a direction in which the plurality of bag bodies are connected at a preset conveyance speed; and the plurality of bag bodies of the continuous packaging bag that are conveyed through the conveyance unit. a thickness detecting section that detects the thickness of the continuous packaging bag, and a thickness detection section that is provided upstream of the thickness detection section in the conveyance direction of the continuous packaging bag, and irradiates the continuous packaging bag with detection light and a light detection unit that detects the intensity of the detection light that is transmitted or reflected; and a photodetector that detects the tip of the multi-pack bag and the perforation in the transport direction based on the intensity of the detection light; The present invention is characterized by comprising a control section that determines the timing of the detection operation of each bag body by the thickness detection section based on the result, the length of the bag body along the conveyance direction, and the conveyance speed.
Further, in an embodiment of the present invention, the thickness detection section includes a movable body formed to be able to move up and down in the thickness direction of the bag body and press the upper surface of the bag body, and a movable body that moves up and down the movable body. an electric motor; and the electric motor is controlled based on the timing determined by the control unit, and the electric motor is controlled by the movable body based on the torque load of the electric motor when the movable body is pressed against the upper surface of the bag body. The present invention is characterized in that it includes a motor control section that controls the pressing force on the bag, and a thickness calculation section that calculates the thickness of the bag based on the amount of rotation of the electric motor.
Further, in an embodiment of the present invention, the photodetecting section is a transmission type photoelectric sensor including a light emitting section that irradiates the detection light and a light receiving section that detects the detection light that has passed through the continuous packaging bag. It is characterized by being configured.
Further, an embodiment of the present invention is characterized in that the multi-package bag is formed of an opaque packaging film.
Moreover, one embodiment of the present invention is characterized in that the product is a snack food.

本発明の一実施の形態によれば、光検出部によって搬送方向における連包袋の先端と、ミシン目とを検出すると共に、この検出結果と袋体の搬送方向に沿った長さと搬送速度とに基づいて厚さ検出部による各袋体の検出動作のタイミングを決定するようにした。
したがって、連包袋がシール部を境にして折れ曲がる現象が生じても厚さ検出部によって各袋体の長さ方向の中央における厚さを検出することができるため、連包袋の袋体の厚さを精度良く測定する上で有利となる。
また、移動体を袋体の上面に押圧した際の電動モータのトルク負荷に基づいて移動体による袋体への押圧力を制御すると共に、電動モータの回転量に基づいて袋体の厚さを算出するようにすると、移動体から袋体に加わる押圧力を適切に設定することで袋体の厚さの測定条件を一定に維持できるため、連包袋の袋体の厚さを精度良く測定する上で有利となる。
また、光検出部を、検出光を照射する発光部と、連包袋を透過した検出光を検出する受光部とを備える透過型光電センサで構成すると、厚さ検出装置の構成の簡素化を図る上で有利となる。
また、連包袋が不透明な包装フィルムで形成されていると、光検出部による搬送方向における連包袋の先端と、ミシン目との検出をより確実に行なう上で有利となる。
また、製品がスナック菓子であると、スナック菓子を収容した袋体の厚さを検出することで袋体に収容される空気量が適正であるか否かを判定することができるため、輸送中におけるスナック菓子の破損を防止しつつ、連包袋を段ボール箱に確実に収容させる上で有利となる。
According to an embodiment of the present invention, the optical detection unit detects the leading edge and perforation of the multi-pack bag in the transport direction, and also compares the detection result with the length of the bag in the transport direction and the transport speed. The timing of the detection operation of each bag body by the thickness detection section is determined based on this.
Therefore, even if the multi-pack bag bends at the sealing part, the thickness detection unit can detect the thickness at the longitudinal center of each bag. This is advantageous in accurately measuring thickness.
In addition, the pressing force of the moving object on the bag is controlled based on the torque load of the electric motor when the moving object is pressed against the top surface of the bag, and the thickness of the bag is controlled based on the amount of rotation of the electric motor. By calculating this, the measurement conditions for the bag thickness can be maintained constant by appropriately setting the pressing force applied to the bag body from the moving object, making it possible to accurately measure the thickness of the bag body of multi-pack bags. It is advantageous to do so.
Furthermore, if the photodetection section is configured with a transmission type photoelectric sensor that includes a light emitting section that irradiates detection light and a light reception section that detects the detection light that has passed through the multi-pack bag, the configuration of the thickness detection device can be simplified. This will be advantageous in terms of planning.
Furthermore, if the multi-pack bag is made of an opaque packaging film, it is advantageous for the photodetector to more reliably detect the end of the multi-pack bag in the transport direction and the perforation.
In addition, if the product is a snack food, it is possible to determine whether or not the amount of air contained in the bag is appropriate by detecting the thickness of the bag containing the snack food. This is advantageous in ensuring that the multi-pack bag is accommodated in the cardboard box while preventing damage to the multi-pack bag.

製袋充填包装機械から排出された連包袋が本実施の形態の厚さ測定装置へ搬送されるまでの過程を示す説明図である。FIG. 3 is an explanatory diagram showing a process in which a continuous bag discharged from the bag making, filling and packaging machine is conveyed to the thickness measuring device of the present embodiment. (A)は実施の形態に係る連包袋の厚さ測定装置の構成を示す側面図、(B)は(A)の平面図である。(A) is a side view showing the configuration of a continuous bag thickness measuring device according to an embodiment, and (B) is a plan view of (A). 厚さ検出部の構成を示すブロック図である。FIG. 2 is a block diagram showing the configuration of a thickness detection section.

以下、本発明の実施の形態について図面を参照して説明する。
まず、図2(A)、(B)を参照して連包袋10について説明する。
連包袋10は、製品が収容された複数の袋体12がシール部14を介して接続されて構成されている。
本実施の形態では、連包袋10は不透明な包装フィルムで形成されており、このような包装フィルムとして、スナック菓子などの製品の酸化を防止するため遮光性のあるアルミ蒸着フィルムが用いられている。
連包袋10は、複数の袋体12が連接された方向の長さを有し、袋体12とシール部14は連包袋10の長さ方向に沿った長さを有し、袋体12の長さ方向の両端にシール部14が位置している。
シール部14の長さ方向の中間部に袋体12の破断を可能としたミシン目16が設けられている。
連包袋10の長さ方向において隣り合うミシン目16の寸法、言い換えると、各袋体12の長さは同一である。
本実施の形態では、連包袋10は、4つの袋体12が3つのシール部14を介して接続されて構成され、連包袋10の長さ方向の両端にはシール部14が位置している。
連包袋10の長さ方向の一端のシール部14に、販売店などにおいて連包袋10を吊り下げるための孔18Aが形成されたヘッダ部18が設けられており、このような連包袋10をヘッダ付き連包袋という。
したがって、連包袋10の長さ方向の一端にヘッダ部18が位置し、長さ方向の他端にシール部14が位置している。
なお、本発明は、ヘッダ部18が設けられていない連包袋にも無論適用可能である。
袋体12に収容される製品は、例えば、ポテトチップスなどのスナック菓子であるが、製品の種類は限定されるものではない。また、後述する製袋充填包装機20によって製品と共に空気が袋体12に収容されることによって袋体12をある程度膨らませた状態としている。これは、空気によって袋体12の厚さを確保することで輸送時の衝撃を緩和し、製品の保護を図るためである。
Embodiments of the present invention will be described below with reference to the drawings.
First, the continuous packaging bag 10 will be explained with reference to FIGS. 2(A) and 2(B).
The continuous packaging bag 10 is constructed by connecting a plurality of bags 12 containing products through a seal portion 14.
In this embodiment, the multi-pack bag 10 is formed of an opaque packaging film, and an aluminum vapor-deposited film with light-shielding properties is used as the packaging film to prevent products such as snacks from oxidizing. .
The continuous packaging bag 10 has a length in the direction in which the plurality of bags 12 are connected, and the bag bodies 12 and the seal portion 14 have a length along the length direction of the continuous packaging bag 10. Seal portions 14 are located at both ends of 12 in the length direction.
A perforation 16 is provided in the longitudinally intermediate portion of the seal portion 14 to allow the bag 12 to be broken.
The dimensions of adjacent perforations 16 in the length direction of the continuous packaging bag 10, in other words, the length of each bag body 12 are the same.
In this embodiment, the continuous packaging bag 10 is configured by four bag bodies 12 connected via three seal parts 14, and the seal parts 14 are located at both ends of the continuous packaging bag 10 in the length direction. ing.
A header part 18 in which a hole 18A for hanging the multi-pack bag 10 at a store etc. is formed is provided in the seal part 14 at one end in the length direction of the multi-pack bag 10. 10 is called a continuous bag with a header.
Therefore, the header part 18 is located at one end in the length direction of the multi-pack bag 10, and the seal part 14 is located at the other end in the length direction.
It should be noted that the present invention is of course applicable to multi-pack bags that are not provided with the header section 18.
The product accommodated in the bag body 12 is, for example, a snack food such as potato chips, but the type of product is not limited. In addition, air is accommodated in the bag body 12 together with the product by a bag making, filling and packaging machine 20, which will be described later, so that the bag body 12 is inflated to some extent. This is to protect the product by ensuring the thickness of the bag body 12 with air to reduce impact during transportation.

図1に示すように、連包袋10は、製袋充填包装機20によって製品が空気と共に各袋体12に収容されて製造されたのち、ほぼ鉛直方向に延在する排出シュート22から、搬送方向の下流に至るほど高さが高くなるゆるやかな傾斜で延在する排出コンベヤ24上に連包袋10の自重により排出される。
なお、図中、符号20Aは製袋充填包装機20の横シール部を示し、横シール部20Aによって連包袋10のシール部14が形成される。
また、連包袋10は、搬送方向の上流端に、連包袋10の長さ方向の一端のヘッダ部18が位置し、搬送方向の下流端に連包袋10の長さ方向の他端のシール部14が位置するように排出コンベヤ24上に排出される。
搬送方向において排出コンベヤ24の下流側には、ウエイトチェッカ26を構成する第1搬送コンベヤ26Aが配置されており、第1搬送コンベヤ26A上において1つの連包袋10が搬送されている間に1つの連包袋10の重量が測定される。
ウエイトチェッカ26によって測定された連包袋10の重量が所定の合格範囲内にあるか否かが判定され、連包袋10の重量が合格範囲内でなければ不良品となり、後述する不良排除部50によって排除される。
As shown in FIG. 1, the continuous packaging bag 10 is manufactured by storing the product together with air in each bag body 12 by a bag-forming-fill-sealing machine 20, and then transported from a discharge chute 22 extending in a substantially vertical direction. Due to its own weight, the multi-pack bag 10 is discharged onto a discharge conveyor 24 which extends with a gentle slope and increases in height as it reaches the downstream side.
In addition, in the figure, the reference numeral 20A indicates a horizontal seal portion of the bag making, filling and packaging machine 20, and the seal portion 14 of the multi-pack bag 10 is formed by the horizontal seal portion 20A.
Further, in the continuous packaging bag 10, the header part 18 at one end in the length direction of the continuous packaging bag 10 is located at the upstream end in the conveyance direction, and the other longitudinal end of the continuous packaging bag 10 is located at the downstream end in the conveyance direction. is discharged onto the discharge conveyor 24 such that the seal portion 14 is located.
A first conveyor 26A constituting the weight checker 26 is arranged downstream of the discharge conveyor 24 in the conveyance direction, and while one continuous bag 10 is conveyed on the first conveyor 26A, one The weight of one continuous bag 10 is measured.
It is determined whether the weight of the multi-pack bag 10 measured by the weight checker 26 is within a predetermined passing range. If the weight of the multi-pack bag 10 is not within the pass range, it is considered a defective product, and the product is sent to a defect elimination section to be described later. excluded by 50.

図1に示すように、ほぼ鉛直方向に延在する排出シュート22から連包袋10の自重により下方に排出された連包袋10は、排出コンベヤ24上においてシール部14を境目として折れ曲がるジャムと呼ばれる現象が発生しやすい。
また、ウエイトチェッカ26による重量測定の精度を確保するために、排出コンベヤ24の搬送速度に対して第1搬送コンベヤ26Aの搬送速度が低速に設定されているため、連包袋10が排出コンベヤ24から第1搬送コンベヤ26Aに移動した時点で搬送速度が急に低下することによっても上記と同様に連包袋10がシール部14を境目にして折れ曲がるといった現象が発生しやすい。
なお、図中、直線αは、連包袋10に折れ曲がりが生じていない場合におけるシール部14の厚さ方向の位置を示す。
As shown in FIG. 1, the multi-pack bag 10 is discharged downward by its own weight from the discharge chute 22 extending in a substantially vertical direction, and the multi-pack bag 10 is jammed and bent at the seal portion 14 on the discharge conveyor 24. A phenomenon known as this is likely to occur.
In addition, in order to ensure the accuracy of weight measurement by the weight checker 26, the conveyance speed of the first conveyor 26A is set to be lower than the conveyance speed of the discharge conveyor 24. If the conveyance speed suddenly decreases when the bag is moved from the bag to the first conveyor 26A, the same phenomenon as described above is likely to occur, in which the multi-pack bag 10 bends at the seal portion 14.
In addition, in the figure, the straight line α indicates the position of the seal portion 14 in the thickness direction when the continuous packaging bag 10 is not bent.

図2(A)、(B)に示すように、本実施の形態の連包袋の厚さ測定装置28は、第2搬送コンベヤ30(搬送部)と、厚さ検出部32と、光検出部34と、制御部36とを含んで構成されている。
第2搬送コンベヤ30は、第1搬送コンベヤ26Aから搬送された連包袋10を予め設定された搬送速度で複数の袋体12が接続された方向に搬送するものである。
本実施の形態では、第1搬送コンベヤ26Aの下流端と第2搬送コンベヤ30の上流端との間には隙間Sが形成される。
なお、図中、符号52は第2搬送コンベヤ30の搬送方向下流側に接続された不良排除部50の第3搬送コンベヤを示す。
As shown in FIGS. 2A and 2B, the multi-pack bag thickness measuring device 28 of this embodiment includes a second conveyor 30 (transport section), a thickness detection section 32, and a photodetector. It is configured to include a section 34 and a control section 36.
The second conveyor 30 conveys the multiple bags 10 conveyed from the first conveyor 26A at a preset conveyance speed in the direction in which the plurality of bags 12 are connected.
In this embodiment, a gap S is formed between the downstream end of the first transport conveyor 26A and the upstream end of the second transport conveyor 30.
In addition, in the figure, the reference numeral 52 indicates the third conveyor of the defect eliminating section 50 connected to the downstream side of the second conveyor 30 in the conveying direction.

厚さ検出部32は、第2搬送コンベヤ30を搬送される連包袋10の複数の袋体12の厚さをそれぞれ検出するものである。
図3に示すように、厚さ検出部32は、移動体38と、電動モータ40と、モータ制御部42と、厚さ算出部44とを含んで構成されている。
図2(A)に示すように、移動体38は、第2搬送コンベヤ30の搬送方向に沿った長さと、長さと直交する方向の幅を有した押圧面3802を有している。
移動体38は、袋体12の厚さ方向に昇降し、押圧面3802によって袋体12の上面を押圧可能に形成されている。
移動体38は、例えば、押圧面3802に不図示の多数のフリーローラが連包袋10の搬送方向に沿って回転可能に設けられており、搬送中の連包袋10の袋体12の上面を押圧面3802が押圧してもフリーローラが連包袋10に追従して回転することで、連包袋10の搬送を妨げないように図られている。
また、後述するように、移動体38の押圧面3802の長さ方向の中央で、袋体12の上面の搬送方向における長さ方向の中央を押圧した際に、袋体12の厚さが最も精度良く測定されるように図られている。
The thickness detection unit 32 detects the thickness of each of the plurality of bags 12 of the multi-pack bag 10 being conveyed on the second conveyor 30.
As shown in FIG. 3, the thickness detection section 32 includes a moving body 38, an electric motor 40, a motor control section 42, and a thickness calculation section 44.
As shown in FIG. 2(A), the moving body 38 has a pressing surface 3802 having a length along the conveyance direction of the second conveyor 30 and a width in a direction perpendicular to the length.
The movable body 38 is configured to move up and down in the thickness direction of the bag 12 and to press the top surface of the bag 12 using a pressing surface 3802.
The movable body 38 has, for example, a large number of free rollers (not shown) provided on the pressing surface 3802 so as to be rotatable along the conveying direction of the multi-pack bag 10, and the upper surface of the bag body 12 of the multi-pack bag 10 being transported. Even if pressed by the pressing surface 3802, the free roller rotates following the multi-pack bag 10, so that the conveyance of the multi-pack bag 10 is not hindered.
Furthermore, as will be described later, when the longitudinal center of the pressing surface 3802 of the movable body 38 presses the longitudinal center of the upper surface of the bag 12 in the conveyance direction, the thickness of the bag 12 is at its maximum. It is designed to ensure accurate measurements.

電動モータ40は、不図示の動力伝達機構を介して移動体38を昇降させるものであり、例えば、サーボ制御が可能なサーボモータで構成されている。
モータ制御部42は、後述する制御部36によって決定されたタイミングに基づいて電動モータ40の回転を制御するものである。
また、モータ制御部42は、移動体38を袋体12の上面に押圧した際の電動モータ40のトルク負荷に基づいて移動体38による袋体12への押圧力を制御するものである。
押圧力は予め定められた一定の値となるように制御され、これにより袋体12の厚さの測定条件を一定に維持するように図られている。
The electric motor 40 moves the movable body 38 up and down via a power transmission mechanism (not shown), and is composed of, for example, a servo motor capable of servo control.
The motor control section 42 controls the rotation of the electric motor 40 based on timing determined by a control section 36, which will be described later.
Further, the motor control unit 42 controls the pressing force of the movable body 38 on the bag body 12 based on the torque load of the electric motor 40 when the movable body 38 is pressed against the upper surface of the bag body 12.
The pressing force is controlled to a predetermined constant value, thereby maintaining the measurement conditions for the thickness of the bag 12 constant.

厚さ算出部44は、電動モータ40の回転量に基づいて袋体12の厚さを算出するものである。
例えば、厚さ算出部44は、モータ制御部42から供給される電動モータ40の回転量に対応する駆動パルスを計数し、駆動パルスの計数結果に基づいて移動体38の第2搬送コンベヤ30の上面からの高さ位置、すなわち、袋体12の厚さを算出する。
なお、算出された袋体12の厚さが所定の合格範囲内あるか否かが判定され、袋体12の厚さが合格範囲内になければ連包袋10は不良品とされ、不良排除部50によって排除される。
The thickness calculation unit 44 calculates the thickness of the bag 12 based on the amount of rotation of the electric motor 40.
For example, the thickness calculation unit 44 counts drive pulses corresponding to the amount of rotation of the electric motor 40 supplied from the motor control unit 42, and adjusts the speed of the second conveyor 30 of the movable body 38 based on the count result of the drive pulses. The height position from the top surface, that is, the thickness of the bag body 12 is calculated.
Note that it is determined whether the calculated thickness of the bag 12 is within a predetermined acceptable range, and if the thickness of the bag 12 is not within the acceptable range, the multi-pack bag 10 is determined to be a defective product, and the defective product is excluded. section 50.

図2(A)に示すように、光検出部34は、連包袋10の搬送方向において厚さ検出部32の上流側に設けられ、連包袋10に対して検出光Lを照射すると共に連包袋10を透過あるいは反射する検出光Lの強度を検出するものである。
本実施の形態では、光検出部34は、第1搬送コンベヤ26Aと第2搬送コンベヤ30の隙間Sを上下方向から挟むように配置された発光部46と受光部48とを含む透過型光電センサで構成されている。
発光部46は、連包袋10に向かって検出光Lを照射するものであり、受光部48は、連包袋10を透過した検出光Lを検出するものである。
なお、発光部46から照射される検出光Lの形状や数は限定されるものではないが、ミシン目16を確実に検出できるように、例えば、ミシン目16の長さ方向に沿って複数の検出光(光ビーム)Lが照射されることが好ましい。
したがって、光検出部34として複数の光軸を持つエリアセンサなどの従来公知の様々な透過型光電センサを用いることができる。
連包袋10のうちミシン目16の箇所は検出光Lが透過する一方、連包袋10のうちミシン目16以外の部分は、不透明な包装フィルムで形成されているため検出光Lは透過しない。
したがって、光検出部34によって検出される検出光Lの強度は、連包袋10が存在しない場合に最大値となり、連包袋10のミシン目16以外の部分で最小値となり、ミシン目16の部分で中間値となる。
そのため、検出光Lの強度は、連包袋10の搬送方向の先端部分で最大値から最小値に変化し、また、ミシン目16の前後において最小値から中間値に、中間値から最小値に変化することから、検出光Lの強度に基づいて、連包袋10の搬送方向の先端とミシン目16とを検出することが可能となる。
なお、連包袋10が透明な包装フィルムで形成されていても、検出光Lの透過量は、包装フィルムが存在しない場合に比較して、包装フィルムの部分で低下するため、上記と同様の原理でミシン目16を検出することができる。
As shown in FIG. 2(A), the light detection unit 34 is provided upstream of the thickness detection unit 32 in the conveyance direction of the multi-pack bag 10, and irradiates the multi-pack bag 10 with detection light L. This is to detect the intensity of the detection light L that is transmitted or reflected through the continuous packaging bag 10.
In the present embodiment, the photodetection section 34 is a transmission type photoelectric sensor including a light emitting section 46 and a light receiving section 48 arranged to sandwich the gap S between the first conveyor 26A and the second conveyor 30 from above and below. It consists of
The light emitting section 46 is for emitting detection light L toward the multi-pack bag 10, and the light receiving section 48 is for detecting the detection light L that has passed through the multi-pack bag 10.
Note that the shape and number of detection lights L emitted from the light emitting part 46 are not limited, but in order to reliably detect the perforation 16, for example, a plurality of detection lights L are emitted along the length direction of the perforation 16. It is preferable that detection light (light beam) L is irradiated.
Therefore, various conventionally known transmission type photoelectric sensors such as an area sensor having a plurality of optical axes can be used as the photodetector 34.
The detection light L passes through the perforations 16 in the multi-pack bag 10, while the detection light L does not pass through the parts of the multi-pack bag 10 other than the perforations 16 because they are formed of an opaque packaging film. .
Therefore, the intensity of the detection light L detected by the light detection unit 34 has a maximum value when the continuous packaging bag 10 is not present, and has a minimum value at a portion of the continuous packaging bag 10 other than the perforation 16. It becomes an intermediate value in some parts.
Therefore, the intensity of the detection light L changes from the maximum value to the minimum value at the leading end of the multi-pack bag 10 in the conveying direction, and also changes from the minimum value to the intermediate value and from the intermediate value to the minimum value before and after the perforation 16. Since the intensity of the detection light L changes, it becomes possible to detect the leading end of the multi-pack bag 10 in the transport direction and the perforation 16 based on the intensity of the detection light L.
Note that even if the multi-pack bag 10 is made of a transparent packaging film, the amount of transmitted detection light L is lower in the packaging film than in the case where there is no packaging film, so the same method as above is applied. The perforations 16 can be detected in principle.

制御部36は、検出光Lの強度に基づいて、搬送方向における連包袋10の先端と、ミシン目16とを検出すると共に、この検出結果と、袋体12の長さAと、第2搬送コンベヤ30の搬送速度Vとに基づいて厚さ検出部32による各袋体12の検出動作のタイミングを決定する。
より詳細には、検出結果と、袋体12の長さA(cm)と、第2搬送コンベヤ30の搬送速度V(cm/秒)と、第2搬送コンベヤ30の搬送方向に沿った検出光Lと移動体38の押圧面3802の長さ方向の中央との距離B(cm)とに基づいて厚さ検出部32による各袋体12の検出動作のタイミングを決定する。
すなわち、連包袋10の先端またはミシン目16が検出された時刻を基準として検出動作を実行するタイミングをT秒とすると、以下の式(1)でタイミングTが算出される。
T=((A/2)+B)/V (秒)……(1)
すなわち、制御部36は、厚さ検出部32のモータ制御部42に対して、袋体12の検出動作のタイミングを指示する。
これによりモータ制御部42は、移動体38の押圧面3802が連包袋10から上方に離間した上方待機位置と、移動体38の押圧面3802が袋体12を所定の押圧力で押圧する下方押圧位置との間で昇降させ、袋体12毎に厚さ算出部44によって袋体12の厚さが算出される。
この各袋体12の検出動作のタイミングを、第2搬送コンベヤ30による搬送方向における各袋体12の長さの中央を、移動体38の押圧面3802の中央が押圧するタイミングに設定することで、袋体12の厚さが最も精度良く測定されるように図られている。
The control unit 36 detects the tip of the multi-pack bag 10 and the perforation 16 in the transport direction based on the intensity of the detection light L, and uses this detection result, the length A of the bag body 12, and the second The timing of the detection operation of each bag 12 by the thickness detection section 32 is determined based on the conveyance speed V of the conveyor 30.
More specifically, the detection result, the length A (cm) of the bag body 12, the conveyance speed V (cm/sec) of the second conveyor 30, and the detection light along the conveyance direction of the second conveyor 30 The timing of the detection operation of each bag 12 by the thickness detection section 32 is determined based on L and the distance B (cm) from the center of the pressing surface 3802 of the moving body 38 in the longitudinal direction.
That is, assuming that the timing at which the detection operation is performed is T seconds based on the time when the leading edge or perforation 16 of the multi-pack bag 10 is detected, the timing T is calculated using the following equation (1).
T=((A/2)+B)/V (seconds)...(1)
That is, the control unit 36 instructs the motor control unit 42 of the thickness detection unit 32 regarding the timing of the detection operation of the bag 12.
As a result, the motor control unit 42 can move between an upper standby position where the pressing surface 3802 of the moving body 38 is spaced upward from the multi-pack bag 10 and a lower position where the pressing surface 3802 of the moving body 38 presses the bag 12 with a predetermined pressing force. The thickness of each bag 12 is calculated by the thickness calculating section 44 for each bag 12 by raising and lowering the bag 12 between the pressing position and the pressing position.
By setting the timing of the detection operation of each bag 12 to the timing at which the center of the pressing surface 3802 of the movable body 38 presses the center of the length of each bag 12 in the transport direction by the second transport conveyor 30. , the thickness of the bag body 12 is designed to be measured with the highest accuracy.

次に、本実施の形態の作用効果について説明する。
本実施の形態によれば、光検出部34によって搬送方向における連包袋10の先端と、ミシン目16とを検出すると共に、この検出結果と袋体12の搬送方向に沿った長さと搬送速度とに基づいて厚さ検出部32による各袋体12の検出動作のタイミングを決定するようにした。
したがって、連包袋10がシール部14を境にして折れ曲がる現象が生じても厚さ検出部32によって各袋体12の長さ方向の中央における厚さを検出することができるため、連包袋10の袋体12の厚さを精度良く測定する上で有利となる。
Next, the effects of this embodiment will be explained.
According to the present embodiment, the optical detection unit 34 detects the tip of the multi-pack bag 10 and the perforation 16 in the transport direction, and also uses this detection result to determine the length of the bag 12 in the transport direction and the transport speed. The timing of the detection operation of each bag 12 by the thickness detecting section 32 is determined based on the above.
Therefore, even if the continuous packaging bag 10 bends at the seal portion 14, the thickness of each bag body 12 at the center in the length direction can be detected by the thickness detection unit 32. This is advantageous in accurately measuring the thickness of the 10 bags 12.

また、本実施の形態では、厚さ検出部32は、移動体38を袋体12の上面に押圧した際の電動モータ40のトルク負荷に基づいて移動体38による袋体12への押圧力を制御すると共に、電動モータ40の回転量に基づいて袋体12の厚さを算出するようにした。
したがって、移動体38から袋体12に加わる押圧力を適切に設定することで袋体12の厚さの測定条件を一定に維持できるため、連包袋10の袋体12の厚さを精度良く測定する上で有利となる。
Further, in the present embodiment, the thickness detection unit 32 calculates the pressing force applied to the bag body 12 by the movable body 38 based on the torque load of the electric motor 40 when the movable body 38 is pressed against the top surface of the bag body 12. At the same time, the thickness of the bag body 12 is calculated based on the amount of rotation of the electric motor 40.
Therefore, by appropriately setting the pressing force applied from the movable body 38 to the bag body 12, the measurement conditions for the thickness of the bag body 12 can be maintained constant, so that the thickness of the bag body 12 of the multi-pack bag 10 can be accurately determined. This is advantageous for measurement.

また、本実施の形態では、光検出部34は、検出光Lを照射する発光部46と、連包袋10を透過した検出光Lを検出する受光部48とを備える透過型光電センサで構成されているので、厚さ検出装置の構成の簡素化を図る上で有利となる。
なお、光検出部34として、検出光Lを照射する発光部46と、連包袋10を反射した検出光Lを検出する受光部48とを備える反射型光電センサで構成してもよい。
この場合は、連包袋10のうちミシン目16以外の部分は、一定の割合で検出光Lが反射される一方、ミシン目16の箇所は検出光Lの一部がミシン目16を透過するため、反射される検出光Lの強度が低下する。
したがって、光検出部34によって検出される検出光Lの強度は、連包袋10が存在しない場合に最小値となり、連包袋10のミシン目16以外の部分で最大値となり、ミシン目16の部分で中間値となる。
そのため、検出光Lの強度は、連包袋10の搬送方向の先端部分で最小値から最大値に変化し、また、ミシン目16の前後において最大値から中間値に、中間値から最大値に変化することから、検出光Lの強度に基づいて、連包袋10の搬送方向の先端、ミシン目16を検出することが可能となる。
しかしながら、光検出部34として反射型光電センサを用いた場合、連包袋10で反射される検出光Lの強度は連包袋10の表面の状態によって影響を受けやすいことから、連包袋10で反射される検出光Lの強度とミシン目16で反射される検出光Lの強度とを判別する処理が多少複雑となることが考えられる。
そのため、本実施の形態のように光検出部34として透過型光電センサを用いると、光検出部34による搬送方向における連包袋10の先端と、ミシン目16との検出を簡素な構成で実現する上でより有利となる。
Furthermore, in the present embodiment, the light detection section 34 is constituted by a transmission type photoelectric sensor that includes a light emitting section 46 that irradiates the detection light L and a light receiving section 48 that detects the detection light L that has passed through the multi-pack bag 10. This is advantageous in simplifying the configuration of the thickness detection device.
Note that the light detection section 34 may be constituted by a reflective photoelectric sensor including a light emitting section 46 that emits the detection light L and a light receiving section 48 that detects the detection light L reflected from the multi-pack bag 10.
In this case, the detection light L is reflected at a constant rate in the portions of the multi-pack bag 10 other than the perforations 16, while a portion of the detection light L is transmitted through the perforations 16 at the perforations 16. Therefore, the intensity of the reflected detection light L decreases.
Therefore, the intensity of the detection light L detected by the light detection unit 34 has a minimum value when the continuous packaging bag 10 is not present, has a maximum value at a portion of the continuous packaging bag 10 other than the perforation 16, and has a maximum value at a portion of the continuous packaging bag 10 other than the perforation 16. It becomes an intermediate value in some parts.
Therefore, the intensity of the detection light L changes from the minimum value to the maximum value at the leading end of the multi-pack bag 10 in the conveying direction, and also changes from the maximum value to the intermediate value and from the intermediate value to the maximum value before and after the perforation 16. Based on the intensity of the detection light L, it is possible to detect the perforation 16 at the leading end of the continuous packaging bag 10 in the transport direction.
However, when a reflective photoelectric sensor is used as the light detection unit 34, the intensity of the detection light L reflected by the continuous packaging bag 10 is easily influenced by the surface condition of the continuous packaging bag 10. It is conceivable that the process for determining the intensity of the detection light L reflected by the perforation 16 and the intensity of the detection light L reflected by the perforation 16 becomes somewhat complicated.
Therefore, if a transmission type photoelectric sensor is used as the photodetector 34 as in this embodiment, the photodetector 34 can detect the tip of the multi-pack bag 10 and the perforation 16 in the transport direction with a simple configuration. It is more advantageous to do so.

また、本実施の形態では、連包袋10が不透明な包装フィルムで形成されているので、連包袋10が透明な包装フィルムで形成されている場合に比較して、光検出部34として光透過型センサを用いた場合に、検出光Lがミシン目16を透過する一方、ミシン目16以外の連包袋10の部分によって検出光Lが透過されないため、光検出部34による搬送方向における連包袋10の先端と、ミシン目16との検出をより確実に行なう上で有利となる。 In addition, in this embodiment, since the multi-pack bag 10 is made of an opaque packaging film, the light detecting section 34 is When a transmission type sensor is used, while the detection light L passes through the perforation 16, the detection light L is not transmitted through the parts of the continuous packaging bag 10 other than the perforation 16, so that the light detection unit 34 detects the continuous packaging in the transport direction. This is advantageous in that the tip of the packaging bag 10 and the perforation 16 can be detected more reliably.

また、本実施の形態では、製品がスナック菓子であるため、各袋体12には適正量の空気と共にスナック菓子が収容される。
これは、袋体12に収容される空気量が過小だと、輸送時の振動や衝撃によってスナック菓子がこわれやすくなる不利があり、また、袋体12に収容される空気量が過剰だと、連包袋10を段ボール箱に収納する際に、連包袋10が段ボールに収まりきれなくなる不利があるため、適切な量の空気を袋体12に収容する必要があるためである。
本実施の形態では、このようなスナック菓子を収容した袋体12の厚さを検出することで袋体12に収容される空気量が適正であるか否かを判定することができるため、輸送中におけるスナック菓子の破損を防止しつつ、連包袋10を段ボール箱に確実に収容させる上で有利となる。
Furthermore, in this embodiment, since the product is a snack food, each bag body 12 accommodates the snack food together with an appropriate amount of air.
This is because if the amount of air accommodated in the bag body 12 is too small, the snack food will be easily broken due to vibrations and shocks during transportation, and if the amount of air accommodated in the bag body 12 is too large, it will cause problems. This is because when storing the packaging bag 10 in a cardboard box, there is a disadvantage that the multiple packaging bag 10 cannot be completely accommodated in the cardboard box, so it is necessary to store an appropriate amount of air in the bag body 12.
In this embodiment, by detecting the thickness of the bag 12 containing such snack food, it is possible to determine whether the amount of air stored in the bag 12 is appropriate. This is advantageous in ensuring that the continuous packaging bag 10 is housed in the cardboard box while preventing damage to the snack food.

なお、本実施の形態では、厚さ検出部32が移動体38の移動量に基づいて袋体12の厚さを測定するものである場合について説明したが、袋体12を押圧する移動体38とは別に、袋体12の厚さを測定する例えば非接触式(光電式)の厚さセンサを用いてもよい。その場合には、電動モータ40の回転量に基づいて袋体12の厚さを算出する機能は不要となる。
このような構成によっても本実施の形態と同様に、連包袋10の袋体12の厚さを精度良く測定する上で有利となる。
In the present embodiment, a case has been described in which the thickness detection unit 32 measures the thickness of the bag 12 based on the amount of movement of the moving body 38; Alternatively, for example, a non-contact type (photoelectric type) thickness sensor may be used to measure the thickness of the bag body 12. In that case, the function of calculating the thickness of the bag body 12 based on the amount of rotation of the electric motor 40 becomes unnecessary.
Similar to the present embodiment, this configuration is also advantageous in accurately measuring the thickness of the bag body 12 of the multi-pack bag 10.

10 連包袋
12 袋体
14 シール部
16 ミシン目
18 ヘッダ部
18A 孔
20 製袋充填包装機
20A 横シール部
22 排出シュート
24 排出コンベヤ
26 ウエイトチェッカ
26A 第1搬送コンベヤ
28 連包袋の厚さ測定装置
30 第2搬送コンベヤ(搬送部)
32 厚さ検出部
34 光検出部
36 制御部
38 移動体
3802 押圧面
40 電動モータ
42 モータ制御部
44 厚さ算出部
46 発光部
48 受光部
50 第3搬送コンベヤ
L 検出光
S 隙間
10 Continuous packaging bag 12 Bag body 14 Sealing part 16 Perforation 18 Header part 18A Hole 20 Bag making, filling and packaging machine 20A Horizontal sealing part 22 Discharge chute 24 Discharge conveyor 26 Weight checker 26A First conveyor 28 Thickness measurement of continuous packaging bag Device 30 Second conveyor (transport section)
32 Thickness detecting section 34 Photo detecting section 36 Control section 38 Moving body 3802 Pressing surface 40 Electric motor 42 Motor control section 44 Thickness calculating section 46 Light emitting section 48 Light receiving section 50 Third conveyor L Detection light S Gap

Claims (5)

製品が収容された複数の袋体がミシン目を有するシール部を介して接続されて構成された連包袋の厚さ測定装置であって、
予め設定された搬送速度で前記連包袋を前記複数の袋体が接続された方向に搬送する搬送部と、
前記搬送部を搬送される前記連包袋の前記複数の袋体の厚さをそれぞれ検出する厚さ検出部と、
前記連包袋の搬送方向において前記厚さ検出部の上流側に設けられ、前記連包袋に対して検出光を照射すると共に前記連包袋を透過あるいは反射する前記検出光の強度を検出する光検出部と、
前記検出光の強度に基づいて、前記搬送方向における前記連包袋の先端と、前記ミシン目とを検出すると共に、この検出結果と前記袋体の前記搬送方向に沿った長さと前記搬送速度とに基づいて前記厚さ検出部による前記各袋体の検出動作のタイミングを決定する制御部と、
を備えることを特徴とする連包袋の厚さ測定装置。
A device for measuring the thickness of a continuous bag, which is configured by connecting a plurality of bags containing products through a seal portion having perforations, the device comprising:
a conveyance unit that conveys the continuous packaging bag in a direction in which the plurality of bags are connected at a preset conveyance speed;
a thickness detection unit that detects the thickness of each of the plurality of bag bodies of the continuous packaging bag that is transported through the transport unit;
It is provided on the upstream side of the thickness detection unit in the transport direction of the multi-pack bag, and irradiates the multi-pack bag with detection light and detects the intensity of the detection light that is transmitted through or reflected from the multi-pack bag. a light detection section;
Based on the intensity of the detection light, the leading end of the multi-pack bag and the perforation in the transport direction are detected, and this detection result is combined with the length of the bag along the transport direction and the transport speed. a control unit that determines the timing of the detection operation of each bag body by the thickness detection unit based on;
A device for measuring the thickness of continuous packaging bags.
前記厚さ検出部は、
前記袋体の厚さ方向に昇降し前記袋体の上面を押圧可能に形成された移動体と、
前記移動体を昇降させる電動モータと、
前記制御部によって決定された前記タイミングに基づいて前記電動モータを制御し前記移動体を前記袋体の上面に押圧した際の前記電動モータのトルク負荷に基づいて前記移動体による前記袋体への押圧力を制御するモータ制御部と、
前記電動モータの回転量に基づいて前記袋体の厚さを算出する厚さ算出部と、
を備えることを特徴とする請求項1記載の連包袋の厚さ測定装置。
The thickness detection section is
a movable body configured to move up and down in the thickness direction of the bag and press the top surface of the bag;
an electric motor that raises and lowers the moving body;
The electric motor is controlled based on the timing determined by the control unit, and the movable body is applied to the bag body based on the torque load of the electric motor when the movable body is pressed against the top surface of the bag body. a motor control unit that controls the pressing force;
a thickness calculation unit that calculates the thickness of the bag based on the amount of rotation of the electric motor;
The device for measuring the thickness of a multi-pack bag according to claim 1, comprising the following.
前記光検出部は、前記検出光を照射する発光部と、前記連包袋を透過した前記検出光を検出する受光部とを備える透過型光電センサで構成されている、
ことを特徴とする請求項1または2記載の連包袋の厚さ測定装置。
The light detection unit is configured with a transmission type photoelectric sensor including a light emitting unit that irradiates the detection light and a light receiving unit that detects the detection light that has passed through the multi-pack bag.
The device for measuring the thickness of continuous packaging bags according to claim 1 or 2.
前記連包袋は、不透明な包装フィルムで形成されている、
ことを特徴とする請求項3記載の連包袋の厚さ測定装置。
The continuous packaging bag is made of an opaque packaging film.
4. The device for measuring the thickness of continuous packaging bags according to claim 3.
前記製品はスナック菓子である、
ことを特徴とする請求項1から4の何れか1項記載の連包袋の厚さ測定装置。
the product is a snack food;
The device for measuring the thickness of continuous packaging bags according to any one of claims 1 to 4.
JP2022036819A 2022-03-10 2022-03-10 Thickness measurement device for serial packaging bag Pending JP2023131841A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2022036819A JP2023131841A (en) 2022-03-10 2022-03-10 Thickness measurement device for serial packaging bag

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2022036819A JP2023131841A (en) 2022-03-10 2022-03-10 Thickness measurement device for serial packaging bag

Publications (1)

Publication Number Publication Date
JP2023131841A true JP2023131841A (en) 2023-09-22

Family

ID=88064922

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2022036819A Pending JP2023131841A (en) 2022-03-10 2022-03-10 Thickness measurement device for serial packaging bag

Country Status (1)

Country Link
JP (1) JP2023131841A (en)

Similar Documents

Publication Publication Date Title
JP5470885B2 (en) Film flatness inspection apparatus and flatness inspection method
NL1028103C2 (en) Density determination of packaging.
JP2023131841A (en) Thickness measurement device for serial packaging bag
KR102171867B1 (en) Sorting apparatus for carrier breakage reduction
JP4898493B2 (en) Weighing device
US11906287B2 (en) Shape profile measurement device, and shrink-packaging machine
EP3472074B1 (en) Wet case detector in a conveyor belt
JP2000000525A (en) Weight measuring method, article sorting apparatus, and product sorting method
JP2023161255A (en) Thickness measurement device for packaging bag
JPS61175552A (en) Detection of defective sheet
JPH10277645A (en) Device for detecting abnormal member carried on steel plate carrying line
JP6139945B2 (en) Boxing equipment
JP5212386B2 (en) Transport system
JP6044404B2 (en) Paper roll conveyance state detection apparatus and conveyance state detection method
JPH11245923A (en) Article processing apparatus
JPH08244951A (en) Carrying conveyer
JP2002145204A (en) Packaging system
JP3209508B2 (en) Cutting blade inspection device for carton with cutting blade
JP6872810B2 (en) Seal length measuring device and seal length measuring method
JPH09159567A (en) Internal pressure inspection device for sealed container
JP2000043809A (en) Packaging system
JPH04289404A (en) Apparatus for measuring size of material in conveyance
JP6820461B2 (en) Internal pressure inspection system
JP2000355305A (en) Product collective supplying device and product collective supplying method
JP2003185576A (en) Nondestructive quality decision apparatus for agricultural products