JP2023131102A - Peripheral surface light emission linear light guide body - Google Patents

Peripheral surface light emission linear light guide body Download PDF

Info

Publication number
JP2023131102A
JP2023131102A JP2022200057A JP2022200057A JP2023131102A JP 2023131102 A JP2023131102 A JP 2023131102A JP 2022200057 A JP2022200057 A JP 2022200057A JP 2022200057 A JP2022200057 A JP 2022200057A JP 2023131102 A JP2023131102 A JP 2023131102A
Authority
JP
Japan
Prior art keywords
core
light
light guide
tip
reflective
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2022200057A
Other languages
Japanese (ja)
Inventor
健一 田村
Kenichi Tamura
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Proterial Ltd
Original Assignee
Proterial Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Proterial Ltd filed Critical Proterial Ltd
Publication of JP2023131102A publication Critical patent/JP2023131102A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Laser Surgery Devices (AREA)
  • Radiation-Therapy Devices (AREA)

Abstract

To provide a peripheral surface light emission linear light guide body capable of enhancing uniformity of intensity of radiated light while suppressing costs.SOLUTION: A peripheral surface light emission linear light guide body 3 includes: an optical fiber 4 in which a core 41 is exposed from a clad 42 at one end in a longitudinal direction; a light scattering member 5 for covering an outer peripheral surface 41a of the core 41 over a predetermined length range including a tip part 411 of the core 41 of the part exposed from the clad 42; and a reflection member 6 fixed to the tip part 411 of the core 41. The reflection member 6 includes a reflection surface 6a for reflecting light radiated from a tip surface 41b of the core 41, the reflection surface 6a being a curved surface protruding toward the tip surface 41b. The reflection member 6 is a sphere with a diameter D1 larger than a diameter D2 of the core 41, and a solder ball, for instance.SELECTED DRAWING: Figure 4

Description

本発明は、光ファイバと光散乱部材とを備えた周面発光線状導光体に関する。 The present invention relates to a circumferential light emitting linear light guide including an optical fiber and a light scattering member.

従来、例えば人体の食道や腸などの管腔臓器、あるいは血管や心臓内に光ファイバを備えた光ファイバカテーテルを挿入し、光ファイバカテーテルから放射される光によって患部の治療を行うカテーテル治療が行われている(例えば、特許文献1参照)。 Conventionally, catheter therapy has been performed, in which an optical fiber catheter equipped with an optical fiber is inserted into a luminal organ such as the esophagus or intestine, or into a blood vessel or the heart, and the affected area is treated using light emitted from the optical fiber catheter. (For example, see Patent Document 1).

特許文献1の医療用照明システムは、レーザ光源と、レーザ光源から発せられるレーザ光を導く光導波路(光ファイバ)と、光導波路の遠位端に取り付けられるディフューザ要素とを有している。ディフューザ要素は、石英ガラス等の透明体からなるディフューザ基体を有しており、このディフューザ基体に光を散乱させる散乱要素が含まれている。ディフューザ基体は、光導波路よりも直径が大きい円筒状であり、光導波路によって導かれたレーザ光がディフューザ基体の長手方向の一方の端部から入射する。ディフューザ基体に入射したレーザ光は、散乱要素によって散乱され、治療対象部位を照射する。ディフューザ基体の他方の端部には、ディフューザ基体を長手方向に通過したレーザ光を反射してディフューザ基体に戻す反射面が設けられている。 The medical illumination system of Patent Document 1 includes a laser light source, an optical waveguide (optical fiber) that guides the laser light emitted from the laser light source, and a diffuser element attached to the distal end of the optical waveguide. The diffuser element has a diffuser base made of a transparent material such as quartz glass, and the diffuser base includes a scattering element that scatters light. The diffuser base has a cylindrical shape with a diameter larger than that of the optical waveguide, and the laser light guided by the optical waveguide enters from one end in the longitudinal direction of the diffuser base. The laser light incident on the diffuser base is scattered by the scattering element and irradiates the treatment target area. The other end of the diffuser base is provided with a reflective surface that reflects the laser light that has passed through the diffuser base in the longitudinal direction and returns it to the diffuser base.

特表2020-534956号公報Special Publication No. 2020-534956

上記のような光ファイバカテーテルは、治療の精度と安全性の向上のために、側方に放射される光の強度が長手方向において高い均一性を有することが望ましい。しかし、例えば特許文献1に記載のものにおいて、ディフューザ基体の長手方向に沿って散乱要素を均等に配置した場合には、側方に放射される光の強度が長手方向の部位によってばらついてしまう。また、特許文献1に記載のものでは、ディフューザ基体が光導波路よりも大径であるため、治療対象の患者の体内に挿入される部分が大型化し、治療対象部位に制約が生じるおそれがあると共に、患者の負担が大きくなってしまう。またさらに、光導波路とディフューザ基体とを接続するために、これらの接続領域に熱膨張係数を整合させるための中間媒体が必要となる場合があり、部品コストや製造コストが増大してしまう。 In the optical fiber catheter as described above, it is desirable that the intensity of the light emitted laterally has high uniformity in the longitudinal direction in order to improve the accuracy and safety of treatment. However, in the case described in Patent Document 1, for example, when the scattering elements are arranged evenly along the longitudinal direction of the diffuser base, the intensity of the light emitted laterally varies depending on the longitudinal region. In addition, in the device described in Patent Document 1, since the diffuser base has a larger diameter than the optical waveguide, the portion to be inserted into the body of the patient to be treated becomes larger, which may restrict the area to be treated. , the burden on the patient increases. Furthermore, in order to connect the optical waveguide and the diffuser base, an intermediate medium may be required to match the coefficient of thermal expansion in these connection regions, which increases component costs and manufacturing costs.

本発明は、上記の事情に鑑みてなされたものであり、その目的は、コストを抑制しながらも、放射される光の強度の均一性を高めることが可能な周面発光線状導光体を提供することにある。 The present invention has been made in view of the above circumstances, and its purpose is to provide a circumferential light emitting linear light guide that can increase the uniformity of the intensity of emitted light while suppressing costs. Our goal is to provide the following.

本発明は、上記課題を解決することを目的として、長手方向の一端部においてコアがクラッドから露出した光ファイバと、前記クラッドから露出した部分の前記コアの先端部を含む所定長さ範囲にわたって前記コアの外周面を覆う光散乱部材と、前記コアの先端部に固定された反射部材とを備え、前記反射部材は、前記コアの先端面から放射された光を反射する反射面を有し、前記反射面が前記先端面に向かって凸な湾曲面である、周面発光線状導光体を提供する。 In order to solve the above problems, the present invention provides an optical fiber whose core is exposed from a cladding at one end in the longitudinal direction, and a predetermined length range including the tip of the core exposed from the cladding. A light scattering member that covers the outer peripheral surface of the core, and a reflecting member fixed to the tip of the core, the reflecting member having a reflective surface that reflects light emitted from the tip of the core, A circumferential light emitting linear light guide is provided, wherein the reflective surface is a curved surface convex toward the tip surface.

本発明に係る周面発光線状導光体によれば、コストを抑制しながらも、放射される光の強度の均一性を高めることが可能となる。 According to the circumferential light emitting linear light guide according to the present invention, it is possible to increase the uniformity of the intensity of emitted light while suppressing costs.

本発明の実施の形態に係る周面発光線状導光体をカテーテルとして用いる治療装置を、治療対象の患者と共に示す模式図である。BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a schematic diagram showing a treatment device using a circumferential light-emitting linear light guide as a catheter according to an embodiment of the present invention together with a patient to be treated. 患者の体内に挿入された周面発光線状導光体の一部を示す模式図である。It is a schematic diagram which shows a part of peripheral surface emitting linear light guide inserted into the patient's body. 周面発光線状導光体の一端部を示す斜視図である。FIG. 3 is a perspective view showing one end of a circumferential light-emitting linear light guide. (a)は、軸方向に沿った周面発光線状導光体の断面図である。(b)は、周面発光線状導光体の軸方向における先端部の断面図である。(a) is a cross-sectional view of the peripheral surface emitting linear light guide along the axial direction. (b) is a cross-sectional view of the tip portion in the axial direction of the circumferential light emitting linear light guide. (a)及び(b)は、反射部材固定工程の一例を示す説明図である。(a) and (b) are explanatory views showing an example of a reflecting member fixing process. (a)及び(b)は、光散乱部材形成工程の一例を示す説明図である。(a) and (b) are explanatory views showing an example of a light scattering member forming process.

[実施の形態]
図1は、本発明の実施の形態に係る周面発光線状導光体をカテーテルとして用いる治療装置を、治療対象の患者と共に示す模式図である。治療装置1は、本体2と周面発光線状導光体3とを有し、周面発光線状導光体3の先端部が患者Pの体内に挿入されている。本体2は、レーザ光を発する光源21を有しており、光源21で発生したレーザ光が周面発光線状導光体3の基端部に入射する。
[Embodiment]
FIG. 1 is a schematic diagram showing a treatment device using a circumferential light-emitting linear light guide as a catheter according to an embodiment of the present invention, together with a patient to be treated. The treatment device 1 has a main body 2 and a circumferential light-emitting linear light guide 3, and the distal end of the circumferential light-emitting linear light guide 3 is inserted into the patient's P body. The main body 2 has a light source 21 that emits laser light, and the laser light generated by the light source 21 is incident on the base end of the peripheral surface emitting linear light guide 3.

<周面発光線状導光体3の構成>
図2は、患者Pの体内に挿入された周面発光線状導光体3の一部を示す模式図である。図2では、患者Pの血管Pの一部を切り欠いて、血管P内に挿入された周面発光線状導光体3を示している。周面発光線状導光体3から散乱放射されたレーザ光Lrは、治療部Pを照射し、予め治療部Pに含ませた薬剤を反応させる。これにより、血管内レーザ治療が行われる。
<Configuration of circumferential light emitting linear light guide 3>
FIG. 2 is a schematic diagram showing a part of the circumferential light-emitting linear light guide 3 inserted into the body of the patient P. In FIG. 2, a part of the blood vessel P1 of a patient P is cut out, and the peripheral surface emitting linear light guide 3 is shown inserted into the blood vessel P1 . The laser light Lr scattered and emitted from the circumferential emitting linear light guide 3 irradiates the treatment area P 2 and causes the drug contained in the treatment area P 2 in advance to react. Intravascular laser treatment is thereby performed.

図3は、周面発光線状導光体3の一端部を示す斜視図である。図4(a)は、軸方向に沿った周面発光線状導光体3の断面図である。図4(b)は、周面発光線状導光体3の軸方向における先端部の断面図である。 FIG. 3 is a perspective view showing one end portion of the peripheral surface emitting linear light guide 3. As shown in FIG. FIG. 4(a) is a cross-sectional view of the circumferential light-emitting linear light guide 3 along the axial direction. FIG. 4(b) is a cross-sectional view of the tip portion of the circumferential light-emitting linear light guide 3 in the axial direction.

周面発光線状導光体3は、光源21で発生したレーザ光を伝搬光として治療部Pに導く光ファイバ4を有している。光ファイバ4は、導光体であるコア41と、コア41の外周を覆うクラッド42と、クラッドの42の外周を覆う保護部材であるシース43とを有して構成されている。光ファイバ4の長手方向の一端部では、クラッド42からシース43から露出し、さらにコア41がクラッド42から露出している。 The circumferential light-emitting linear light guide 3 has an optical fiber 4 that guides the laser light generated by the light source 21 as propagating light to the treatment area P2 . The optical fiber 4 includes a core 41 that is a light guide, a clad 42 that covers the outer periphery of the core 41, and a sheath 43 that is a protective member that covers the outer periphery of the clad 42. At one end in the longitudinal direction of the optical fiber 4, the cladding 42 is exposed from the sheath 43, and the core 41 is further exposed from the cladding 42.

また、周面発光線状導光体3は、クラッド42から露出した部分のコア41の先端部411を含む所定長さ範囲にわたってコア41の外周面41aを覆う光散乱部材5と、コア41の先端部411に固定された反射部材6と、コア41の先端部411を反射部材6の少なくとも一部と共に収容する筒状部材7とを備えている。 Further, the peripheral surface emitting linear light guide 3 includes a light scattering member 5 that covers the outer peripheral surface 41a of the core 41 over a predetermined length range including the tip portion 411 of the core 41 exposed from the cladding 42; It includes a reflecting member 6 fixed to the tip 411 and a cylindrical member 7 that accommodates the tip 411 of the core 41 together with at least a portion of the reflecting member 6.

本実施の形態では、一例として、コア41が石英ガラスからなり、クラッド42がポリマーからなる。シース43は、フッ素系樹脂であり、より具体的にはETFE(エチレンテトラフルオロエチレンコポリマー)である。コア41の直径は、例えば200μmである。コア41の屈折率は、クラッド42の屈折率よりも高く、クラッド42内におけるコア41を伝搬する光がクラッド42との界面で全反射する。コア41がクラッド42から露出した部分では、コア41を伝搬した光の一部がコア41の外周面41aから放射されると共に、コア41を伝搬した光の他の一部がコア41の先端面41bから放射される。 In this embodiment, as an example, core 41 is made of quartz glass, and cladding 42 is made of polymer. The sheath 43 is made of fluororesin, more specifically ETFE (ethylenetetrafluoroethylene copolymer). The diameter of the core 41 is, for example, 200 μm. The refractive index of the core 41 is higher than the refractive index of the cladding 42, and light propagating through the core 41 within the cladding 42 is totally reflected at the interface with the cladding 42. In the portion where the core 41 is exposed from the cladding 42, part of the light propagated through the core 41 is emitted from the outer circumferential surface 41a of the core 41, and another part of the light propagated through the core 41 is emitted from the distal end surface of the core 41. 41b.

光散乱部材5は、コア41の外周面41aから出射した光を散乱放射する。光散乱部材5は、コア41よりも屈折率が高い光透過性の基材50に多数の光散乱粒子500が分散混合されている。ここで、分散混合されているとは、光散乱粒子500が基材50内の一部に固まってしまうことがないよう、基材50内に光散乱粒子500が均等に散らばるように混合されていることをいう。本実施の形態では、基材50が熱硬化性の樹脂である。光散乱粒子500は、肉眼では認識できない程度の微細な粒子であるが、図4(a)及び(b)では光散乱粒子500の大きさを誇張して示している。 The light scattering member 5 scatters and emits the light emitted from the outer peripheral surface 41a of the core 41. The light-scattering member 5 includes a light-transmitting base material 50 having a higher refractive index than the core 41 and a large number of light-scattering particles 500 dispersed and mixed therein. Here, being dispersed and mixed means that the light scattering particles 500 are mixed so as to be evenly dispersed within the base material 50 so that the light scattering particles 500 do not aggregate in a part of the base material 50. It means to be there. In this embodiment, the base material 50 is a thermosetting resin. Although the light scattering particles 500 are so fine that they cannot be recognized with the naked eye, the size of the light scattering particles 500 is exaggerated in FIGS. 4A and 4B.

基材50は、屈折率がコア41よりも高く、コア41の外周面41aから放射された光が光散乱部材5に入射して光散乱粒子500に当たる。本実施の形態では、基材50が熱硬化性のシリコーン樹脂であり、その屈折率が例えば1.52である。コア41の屈折率は、例えば1.46である。光散乱粒子500は、光散乱部材5に入射した光を反射する金属粒子である。本実施の形態では、光散乱粒子500としてルチル型の酸化チタン(TiO)を用いる。ただし、これに限らず、酸化アルミニウム(アルミナ)や、銀、銅、鉄、もしくはこれらの合金の微細な金属粉を光散乱粒子500として用いてもよい。 The base material 50 has a higher refractive index than the core 41, and light emitted from the outer peripheral surface 41a of the core 41 enters the light scattering member 5 and hits the light scattering particles 500. In this embodiment, the base material 50 is a thermosetting silicone resin, and its refractive index is, for example, 1.52. The refractive index of the core 41 is, for example, 1.46. The light scattering particles 500 are metal particles that reflect the light incident on the light scattering member 5. In this embodiment, rutile-type titanium oxide (TiO 2 ) is used as the light scattering particles 500. However, the light scattering particles 500 are not limited to this, and fine metal powders such as aluminum oxide (alumina), silver, copper, iron, or alloys thereof may be used as the light scattering particles 500.

図4(b)に拡大して示すように、光散乱部材5は多層構造であり、第1乃至第4の光散乱層51~54を積層して構成されている。第1乃至第4の光散乱層51~54のそれぞれの厚みは、例えば5~10μmである。第1乃至第4の光散乱層51~54の基材50に対する光散乱粒子500の濃度は、同じであってもよく、異なっていてもよい。第1乃至第4の光散乱層51~54の基材50に対する光散乱粒子500の濃度は、例えば0~200mg/mLである。 As shown in an enlarged view in FIG. 4(b), the light scattering member 5 has a multilayer structure, and is constructed by laminating first to fourth light scattering layers 51 to 54. The thickness of each of the first to fourth light scattering layers 51 to 54 is, for example, 5 to 10 μm. The concentrations of light scattering particles 500 in the base material 50 of the first to fourth light scattering layers 51 to 54 may be the same or different. The concentration of the light scattering particles 500 relative to the base material 50 of the first to fourth light scattering layers 51 to 54 is, for example, 0 to 200 mg/mL.

本実施の形態では、コア41の長手方向における第1乃至第4の光散乱層51~54の長さが異なり、コア41の長手方向の位置によって光散乱部材5の厚みが変化している。コア41の先端部411では、第1乃至第4の光散乱層51~54の四つの層が積層されて光散乱部材5の厚みが最も厚く、先端部411から離れるほど積層された層数が順次少なくなり、クラッド42の近傍にあたる部分ではコア41の外周面41aに光散乱部材5が形成されていない。このように、光散乱部材5の厚みT(図4(a)参照)は、コア41の先端部411の外周で最も厚く、コア41の中心軸線Cに沿って先端部411から離れるにつれて徐々に薄くなる。なお、光散乱部材5の外周に、光透過性を有する樹脂からなる保護コート層あるいはカバー部材を設けてもよい。 In this embodiment, the lengths of the first to fourth light scattering layers 51 to 54 in the longitudinal direction of the core 41 are different, and the thickness of the light scattering member 5 is changed depending on the position in the longitudinal direction of the core 41. At the tip 411 of the core 41, the four layers of the first to fourth light scattering layers 51 to 54 are laminated, and the thickness of the light scattering member 5 is the thickest. The number of light scattering members gradually decreases, and in a portion near the cladding 42, the light scattering member 5 is not formed on the outer circumferential surface 41a of the core 41. In this way, the thickness T of the light scattering member 5 (see FIG. 4(a)) is thickest at the outer periphery of the tip 411 of the core 41, and gradually increases as it moves away from the tip 411 along the central axis C of the core 41. Become thin. Note that a protective coat layer or a cover member made of a light-transmitting resin may be provided around the outer periphery of the light-scattering member 5.

この光散乱部材5の階層構造は、光源21で発生してコア41を伝搬してきた光の強度が、クラッド42から露出した部分のコア41内において先端部411側ほど弱くなることを考慮して、先端部411側ほど光散乱粒子500の量を多くし、周面発光線状導光体3から放射される光の強度の均一性を高めるためのものである。つまり、光散乱部材5に入射した光のうち光散乱粒子500に当たらずに光散乱部材5の外表面に到達した光の一部は、内部反射して再びコア41に入射するため、先端部411側ほど光散乱粒子500の量を多くすることにより、周面発光線状導光体3の長手方向における光の強度の均一性が高められる。 This hierarchical structure of the light scattering member 5 is designed in consideration of the fact that the intensity of light generated by the light source 21 and propagated through the core 41 becomes weaker toward the tip 411 in the portion of the core 41 exposed from the cladding 42. This is to increase the amount of light scattering particles 500 toward the tip 411 side, thereby increasing the uniformity of the intensity of light emitted from the circumferential light emitting linear light guide 3. In other words, part of the light incident on the light scattering member 5 that reaches the outer surface of the light scattering member 5 without hitting the light scattering particles 500 is internally reflected and enters the core 41 again. By increasing the amount of light scattering particles 500 toward the 411 side, the uniformity of the light intensity in the longitudinal direction of the circumferential light emitting linear light guide 3 can be improved.

反射部材6は、コア41の先端面41bから放射された光を反射する反射面6aを有しており、光透過性を有する接着剤81によってコア41の先端面41bに接着固定されている。反射面6aは、コア41の先端面41bに向かって凸な湾曲面である。本実施の形態では、反射部材6が球体であり、反射部材6の表面におけるコア41の先端面41b側の半球状の部分が反射面6aとなっている。反射面6aの反対側にあたる反射部材6の背面6bは、光散乱部材5に覆われている。 The reflective member 6 has a reflective surface 6a that reflects light emitted from the distal end surface 41b of the core 41, and is adhesively fixed to the distal end surface 41b of the core 41 with an adhesive 81 having optical transparency. The reflective surface 6a is a curved surface that is convex toward the distal end surface 41b of the core 41. In this embodiment, the reflecting member 6 is a sphere, and a hemispherical portion of the surface of the reflecting member 6 on the side of the distal end surface 41b of the core 41 serves as a reflecting surface 6a. A back surface 6b of the reflective member 6 opposite to the reflective surface 6a is covered with a light scattering member 5.

本実施の形態では、製造容易性を考慮して、錫(Sn)を含む低融点の半田合金からなる球状の半田ボールを反射部材6として用いる。より具体的には、マイクロプロセッサ等の集積回路のパッケージの一種であるBGA(ボールグリッドアレイ)用の半田ボールを反射部材6として用いる。このような半田ボールは、例えば溶融した半田合金をノズルから冷媒の液面に滴下させて冷却することにより、低コストに製造することが可能である。 In this embodiment, a spherical solder ball made of a low melting point solder alloy containing tin (Sn) is used as the reflective member 6 in consideration of ease of manufacture. More specifically, solder balls for BGA (ball grid array), which is a type of package for integrated circuits such as microprocessors, are used as the reflective member 6. Such solder balls can be manufactured at low cost, for example, by cooling a molten solder alloy by dropping it from a nozzle onto the liquid surface of a coolant.

反射部材6を固定するための接着剤81としては、例えば光散乱粒子が混合されていない熱硬化性のシリコーン樹脂を好適に用いることができる。本実施の形態では、光散乱部材5の基材50と同じ材質のものを接着剤81として用い、硬化する前の液状の接着剤81の表面張力によってコア41と反射部材6とを芯合わせした後、加熱により接着剤81を硬化させる。これにより、図4(a)に示すようにコア41の中心軸線C上に反射部材6の中心点CPが定位する。 As the adhesive 81 for fixing the reflective member 6, for example, a thermosetting silicone resin not mixed with light scattering particles can be suitably used. In this embodiment, the same material as the base material 50 of the light scattering member 5 is used as the adhesive 81, and the core 41 and the reflective member 6 are aligned by the surface tension of the liquid adhesive 81 before hardening. After that, the adhesive 81 is cured by heating. As a result, the center point CP of the reflecting member 6 is positioned on the central axis C of the core 41 as shown in FIG. 4(a).

接着剤81は、硬化した状態で、コア41の径方向において反射部材6よりも外周側にはみ出していない。つまり、コア41の中心軸線Cに沿って反射部材6を見た場合に、接着剤81が反射部材6の外縁よりも外方に突出していない。これにより、接着剤81によって周面発光線状導光体3の外径が大きくなってしまうことが防止されている。図4(a)及び(b)では、一例として、接着剤81がコア41の外周面41aよりも外周側にはみ出さないように設けられた状態を示している。 In the hardened state, the adhesive 81 does not protrude beyond the reflective member 6 in the radial direction of the core 41 . That is, when the reflective member 6 is viewed along the central axis C of the core 41, the adhesive 81 does not protrude outward beyond the outer edge of the reflective member 6. This prevents the outer diameter of the circumferential light-emitting linear light guide 3 from increasing due to the adhesive 81. FIGS. 4A and 4B show, as an example, a state in which the adhesive 81 is provided so as not to protrude beyond the outer peripheral surface 41a of the core 41.

コア41の先端面41bに対する反射面6aの面積を十分に確保するため、反射部材6の直径Dは、コア41の直径Dよりも大きいことが望ましい。また、反射部材6が大き過ぎると周面発光線状導光体3が大径化してしまうため、反射部材6の直径Dは、コア41の直径Dの2倍以下であることが望ましい。コア41の直径Dに対する反射部材6の直径Dの比率をR(R=D/D)としたとき、比率Rは1.1以上1.5以
下であるとよい。
In order to ensure a sufficient area of the reflective surface 6a relative to the distal end surface 41b of the core 41, the diameter D1 of the reflective member 6 is desirably larger than the diameter D2 of the core 41. Furthermore, if the reflecting member 6 is too large, the diameter of the circumferential emitting linear light guide 3 will increase, so it is desirable that the diameter D 1 of the reflecting member 6 is less than or equal to twice the diameter D 2 of the core 41. . When the ratio of the diameter D 1 of the reflecting member 6 to the diameter D 2 of the core 41 is R (R=D 1 /D 2 ), the ratio R is preferably 1.1 or more and 1.5 or less.

筒状部材7は、例えばステンレス鋼からなる円筒状の金属製パイプであり、反射部材6の反射面6aの全体と共にコア41の外周を所定長さにわたって覆っている。筒状部材7の内面7aは、光沢を有しており、光を反射する反射面である。コア41の先端面41bから放射されて反射部材6の反射面6aで反射した反射光の一部は、さらに筒状部材7の内面7aで反射し、再度コア41に入射して筒状部材7に覆われていない部分のコア41の外周面41aから放射される。図4(b)では、コア41を伝搬した光の進路の一例を矢印で示している。 The cylindrical member 7 is a cylindrical metal pipe made of stainless steel, for example, and covers the entire reflective surface 6a of the reflective member 6 as well as the outer periphery of the core 41 over a predetermined length. The inner surface 7a of the cylindrical member 7 is a reflective surface that is glossy and reflects light. A part of the reflected light emitted from the distal end surface 41b of the core 41 and reflected by the reflecting surface 6a of the reflecting member 6 is further reflected by the inner surface 7a of the cylindrical member 7, enters the core 41 again, and is reflected by the cylindrical member 7. It is radiated from the outer circumferential surface 41a of the core 41, which is not covered by the rays. In FIG. 4(b), an example of the course of light propagated through the core 41 is indicated by an arrow.

筒状部材7がコア41を覆っている部分の長さLは、コア41の直径D以上であることが望ましい。この長さLがコア41の直径D未満であると、図4(a)に符号Pで示す部分(筒状部材7に覆われていない部分のコア41の外周面41aにおける筒状部材7の近傍部)から外部に放射される光の強度が高くなって周面発光線状導光体3の長手方向における光の強度の均一性が低下してしまうためである。また、周面発光線状導光体3の発光部分の長さを確保し、かつクラッド42から露出した部分のコア41の長さが必要以上に長くならないように、筒状部材7がコア41を覆っている部分の長さLは、コア41の直径Dの3倍以下であることが望ましい。 It is desirable that the length L of the portion of the cylindrical member 7 covering the core 41 be equal to or greater than the diameter D2 of the core 41. If this length L is less than the diameter D2 of the core 41, the portion indicated by the symbol P in FIG. This is because the intensity of the light emitted to the outside from the surrounding area (near the area) increases, and the uniformity of the light intensity in the longitudinal direction of the circumferential light emitting linear light guide 3 decreases. Further, in order to ensure the length of the light emitting portion of the circumferential light emitting linear light guide 3 and to prevent the length of the portion of the core 41 exposed from the cladding 42 from becoming longer than necessary, the cylindrical member 7 is attached to the core 41. It is desirable that the length L of the portion covering the core 41 is three times or less the diameter D2 of the core 41.

筒状部材7は、接着剤82によって光散乱部材5の外周に固定されている。接着剤82としては、反射部材6を固定するための接着剤81と同様、熱硬化性のシリコーン樹脂を好適に用いることができる。また、本実施の形態では、筒状部材7の外径がシース43の外径よりも小さ。これにより、患者Pの体内に挿入される部分の周面発光線状導光体3の最大外径が筒状部材7によって大きくならないように構成されている。なお、本実施の形態では、筒状部材7の外径は、クラッド42の外径よりも大きい。これにより、筒状部材7の肉厚が薄くなり過ぎないため、筒状部材7の製造が容易となる。 The cylindrical member 7 is fixed to the outer periphery of the light scattering member 5 with an adhesive 82. As the adhesive 82, like the adhesive 81 for fixing the reflective member 6, a thermosetting silicone resin can be suitably used. Further, in this embodiment, the outer diameter of the cylindrical member 7 is smaller than the outer diameter of the sheath 43. Thereby, the maximum outer diameter of the circumferential light emitting linear light guide 3 of the portion inserted into the body of the patient P is configured not to be increased by the cylindrical member 7. Note that in this embodiment, the outer diameter of the cylindrical member 7 is larger than the outer diameter of the cladding 42. Thereby, the wall thickness of the cylindrical member 7 does not become too thin, making it easy to manufacture the cylindrical member 7.

<周面発光線状導光体3の製造方法>
次に、周面発光線状導光体3の製造方法について説明する。周面発光線状導光体3の製造方法は、光ファイバ4の長手方向の一端部におけるクラッド42を除去してコア41を露出させる光ファイバ加工工程と、クラッド42から露出した部分のコア41の先端面41bに接着剤81によって反射部材6を接着固定する反射部材固定工程と、多層構造の光散乱部材5を形成する光散乱部材形成工程と、接着剤82によって筒状部材7を固定する筒状部材固定工程とを有している。
<Method for manufacturing circumferential light emitting linear light guide 3>
Next, a method for manufacturing the circumferential light-emitting linear light guide 3 will be described. The manufacturing method of the circumferential light-emitting linear light guide 3 includes an optical fiber processing step of removing the cladding 42 at one longitudinal end of the optical fiber 4 to expose the core 41, and removing the core 41 of the portion exposed from the cladding 42. a reflecting member fixing step of adhering and fixing the reflecting member 6 to the tip surface 41b of the reflector 6 with an adhesive 81; a light scattering member forming step of forming a multilayered light scattering member 5; and a step of fixing the cylindrical member 7 with an adhesive 82. and a cylindrical member fixing step.

図5(a)及び(b)は、反射部材固定工程の一例を示す説明図である。反射部材固定工程では、図5(a)に示すように、コア41の先端面41bを鉛直方向下方に向け、先端面41bに液状の接着剤81を付着させる。その後、図5(b)に示すように、反射部材6を接着剤81に接触させ、接着剤81の表面張力によって反射部材6をコア41に対して芯合わせされる。その後、接着剤81を加熱して固化させることにより、反射部材6がコア41の先端部411に固定される。なお、反射部材6は、コア41の先端面41bに接していてもよいが、コア41の先端面41bと反射部材6との間に接着剤81が介在して反射部材6がコア41の先端面41bに直接接触していなくてもよい。ただし、反射部材6とコア41の接触面41aとの最小間隔は、コア41の直径Dよりも小さいことが望ましく、コア41の直径Dの2分の1以下であることがより望ましい。 FIGS. 5A and 5B are explanatory diagrams showing an example of the reflecting member fixing process. In the reflecting member fixing step, as shown in FIG. 5A, the tip end surface 41b of the core 41 is directed vertically downward, and a liquid adhesive 81 is applied to the tip end surface 41b. Thereafter, as shown in FIG. 5(b), the reflective member 6 is brought into contact with the adhesive 81, and the reflective member 6 is centered with respect to the core 41 by the surface tension of the adhesive 81. Thereafter, the reflective member 6 is fixed to the tip 411 of the core 41 by heating and solidifying the adhesive 81. Note that the reflective member 6 may be in contact with the distal end surface 41b of the core 41, but the adhesive 81 is interposed between the distal end surface 41b of the core 41 and the reflective member 6, so that the reflective member 6 is in contact with the distal end surface 41b of the core 41. It does not need to be in direct contact with the surface 41b. However, the minimum distance between the reflective member 6 and the contact surface 41a of the core 41 is desirably smaller than the diameter D2 of the core 41, and more desirably one-half or less of the diameter D2 of the core 41.

図6(a)及び(b)は、光散乱部材形成工程の一例を示す説明図である。光散乱部材形成工程では、図6(a)に示すように、硬化する前の液状の基材50に多数の光散乱粒子500が分散混合された液状体50Lを用意し、反射部材6側が鉛直方向の下方となるようにコア41の一部を液状体50Lに浸す。その後、図6(b)に示すように、外周面41aに液状体50Lが付着したコア41を引き上げる。さらにその後、加熱によって基材50を硬化させる。 FIGS. 6A and 6B are explanatory diagrams showing an example of a light scattering member forming process. In the light scattering member forming step, as shown in FIG. 6(a), a liquid material 50L in which a large number of light scattering particles 500 are dispersed and mixed in a liquid base material 50 before hardening is prepared, and the reflective member 6 side is vertically disposed. A portion of the core 41 is immersed in the liquid 50L so as to be directed downward. Thereafter, as shown in FIG. 6(b), the core 41 with the liquid material 50L attached to the outer peripheral surface 41a is pulled up. Furthermore, after that, the base material 50 is cured by heating.

図6(a)及び(b)では、第1乃至第4の光散乱層51~54のうち、最も内層側の第1の光散乱層51を形成するときの状態を示している。光散乱部材5は、コア41の外周面41aに第1の光散乱層51を形成した後、第2乃至第4の光散乱層52~54を順次積層することにより形成される。コア41の長手方向における第1乃至第4の光散乱層51~54の長さは、液状体50Lに浸すコア41の長さを変えることにより調節することができる。また、第1乃至第4の光散乱層51~54における光散乱粒子500の濃度を変える場合には、光散乱粒子500の濃度が異なる液状体50Lにコア41を浸す。 FIGS. 6A and 6B show the state when forming the innermost first light scattering layer 51 among the first to fourth light scattering layers 51 to 54. The light scattering member 5 is formed by forming a first light scattering layer 51 on the outer peripheral surface 41a of the core 41, and then sequentially stacking second to fourth light scattering layers 52 to 54. The lengths of the first to fourth light scattering layers 51 to 54 in the longitudinal direction of the core 41 can be adjusted by changing the length of the core 41 immersed in the liquid 50L. Furthermore, when changing the concentration of the light scattering particles 500 in the first to fourth light scattering layers 51 to 54, the core 41 is immersed in liquid material 50L having different concentrations of the light scattering particles 500.

筒状部材固定工程では、例えば光散乱部材5の外周に固化する前の接着剤82を塗布して筒状部材7を被せ、その後に接着剤82を加熱して硬化させる。なお、本実施の形態では、図4(b)に示すように反射部材6の一部が筒状部材7の長手方向の一端部から突出しているが、反射部材6の全体が筒状部材7に収容されていてもよい。 In the cylindrical member fixing process, for example, the adhesive 82 before solidification is applied to the outer periphery of the light scattering member 5, the cylindrical member 7 is covered, and then the adhesive 82 is heated and hardened. Note that in this embodiment, as shown in FIG. 4(b), a part of the reflecting member 6 protrudes from one end in the longitudinal direction of the cylindrical member 7, but the entire reflecting member 6 extends beyond the cylindrical member 7. may be housed in

(実施の形態の作用及び効果)
以上説明した実施の形態によれば、光源21で発生したコア41の先端面41bに到達したレーザ光が凸曲面である反射部材6の反射面6aで拡散的に反射する。これにより、コア41の先端面41bから発せられた高強度のレーザ光が患者Pの血管Pの内面に当たってしまうことを防止できると共に、レーザ光の利用効率を高めることができ、さらには光散乱部材5から放射される光の強度の均一性を高めることができる。
(Actions and effects of embodiments)
According to the embodiment described above, the laser light generated by the light source 21 and reaching the distal end surface 41b of the core 41 is diffusely reflected by the reflecting surface 6a of the reflecting member 6, which is a convex curved surface. Thereby, it is possible to prevent the high-intensity laser light emitted from the distal end surface 41b of the core 41 from hitting the inner surface of the blood vessel P1 of the patient P, and to improve the utilization efficiency of the laser light. The uniformity of the intensity of light emitted from the member 5 can be improved.

また、本実施の形態では、反射部材6が球体であるので、コア41に対する反射部材6の向きに配慮することなくコア41の先端部411に反射部材6を固定できる。特に、本実施の形態では、反射部材6が球状の半田ボールであるため、その製造が容易であり、周面発光線状導光体3の低コスト化に寄与し得る。 Further, in this embodiment, since the reflecting member 6 is a sphere, the reflecting member 6 can be fixed to the tip end 411 of the core 41 without considering the orientation of the reflecting member 6 with respect to the core 41. In particular, in this embodiment, since the reflecting member 6 is a spherical solder ball, it is easy to manufacture and can contribute to cost reduction of the circumferential light emitting linear light guide 3.

また、本実施の形態では、反射部材6が光透過性を有する接着剤81によってコア41の先端面41bに接着固定されているので、接着剤81の表面張力によってコア41と反射部材6とを芯合わせして固定することができる。またさらに、接着剤81がコア41の径方向において反射部材6よりも外周側にはみ出していないので、接着剤81によって周面発光線状導光体3の外径が大きくなってしまうことが防止される。 Furthermore, in this embodiment, since the reflective member 6 is adhesively fixed to the distal end surface 41b of the core 41 by the adhesive 81 having optical transparency, the core 41 and the reflective member 6 are bonded together by the surface tension of the adhesive 81. It can be aligned and fixed. Furthermore, since the adhesive 81 does not protrude beyond the reflective member 6 in the radial direction of the core 41, it is possible to prevent the adhesive 81 from increasing the outer diameter of the peripheral light emitting linear light guide 3. be done.

また、本実施の形態では、反射部材6の背面6bが光散乱部材5に覆われているので、接着剤81に加え、光散乱部材5によってもコア41に対する反射部材6の接合強度が高められている。 Further, in this embodiment, since the back surface 6b of the reflective member 6 is covered with the light scattering member 5, the bonding strength of the reflective member 6 to the core 41 is increased by the light scattering member 5 in addition to the adhesive 81. ing.

また、本実施の形態では、筒状部材7がコア41の先端部411を反射部材6の少なくとも一部と共に収容しているので、反射部材6が例えば血管Pの内面に当たって外れてしまうことを防げると共に、レーザ光の輻射熱によって温度上昇する反射部材6の放熱にも筒状部材7が寄与する。また、筒状部材7の内面7aが光を反射する反射面であるので、レーザ光の利用効率を高めることができると共に、筒状部材7が光を透過させない遮光部材として機能するため、反射部材6の反射面6aで反射した光がそのままコア41の径方向に放射されず、周面発光線状導光体3の長手方向における光の強度の均一性がさらに高められる。 Furthermore, in this embodiment, since the cylindrical member 7 accommodates the distal end portion 411 of the core 41 together with at least a portion of the reflective member 6, it is possible to prevent the reflective member 6 from coming off due to hitting the inner surface of the blood vessel P1 , for example. The cylindrical member 7 also contributes to the heat dissipation of the reflective member 6 whose temperature increases due to the radiant heat of the laser beam. In addition, since the inner surface 7a of the cylindrical member 7 is a reflective surface that reflects light, the utilization efficiency of laser light can be increased, and since the cylindrical member 7 functions as a light shielding member that does not transmit light, the reflective member The light reflected by the reflective surface 6a of 6 is not directly radiated in the radial direction of the core 41, and the uniformity of the light intensity in the longitudinal direction of the circumferential light emitting linear light guide 3 is further improved.

(実施の形態のまとめ)
次に、以上説明した実施の形態から把握される技術思想について、実施の形態における符号等を援用して記載する。ただし、以下の記載における各符号は、特許請求の範囲における構成要素を実施の形態に具体的に示した部材等に限定するものではない。
(Summary of embodiments)
Next, technical ideas understood from the embodiments described above will be described using reference numerals and the like in the embodiments. However, each reference numeral in the following description does not limit the constituent elements in the scope of the claims to those specifically shown in the embodiments.

[1]長手方向の一端部においてコア(41)がクラッド(42)から露出した光ファイバ(4)と、前記クラッド(42)から露出した部分の前記コア(41)の先端部(411)を含む所定長さ範囲にわたって前記コア(41)の外周面(41a)を覆う光散乱部材(5)と、前記コア(41)の前記先端部(411)に固定された反射部材(6)とを備え、前記反射部材(6)は、前記コア(41)の先端面(41b)から放射された光を反射する反射面(6a)を有し、前記反射面(6a)が前記先端面(41b)に向かって凸な湾曲面である、周面発光線状導光体(3)。 [1] An optical fiber (4) in which the core (41) is exposed from the cladding (42) at one end in the longitudinal direction, and the tip (411) of the core (41) in the portion exposed from the cladding (42). a light scattering member (5) that covers the outer circumferential surface (41a) of the core (41) over a predetermined length range, and a reflective member (6) fixed to the tip (411) of the core (41). The reflecting member (6) has a reflecting surface (6a) that reflects light emitted from the tip surface (41b) of the core (41), and the reflecting surface (6a) is connected to the tip surface (41b). ) A circumferential light-emitting linear light guide (3) that is a curved surface convex toward ).

[2]前記反射部材(6)は、前記コア(41)の直径(D)よりも大きい直径(D)の球体である、上記[1]に記載の周面発光線状導光体(3)。 [2] The circumferential light emitting linear light guide according to [1] above, wherein the reflective member (6) is a sphere with a diameter (D 1 ) larger than the diameter (D 2 ) of the core (41). (3).

[3]前記反射部材(6)が半田ボールである、上記[2]に記載の周面発光線状導光体(3)。 [3] The circumferential light-emitting linear light guide (3) according to [2] above, wherein the reflective member (6) is a solder ball.

[4]前記反射部材(6)が光透過性を有する接着剤(81)によって前記コア(41)の前記先端面(41b)に接着固定されている、上記[1]乃至[3]の何れかに記載の周面発光線状導光体(3)。 [4] Any of the above [1] to [3], wherein the reflective member (6) is adhesively fixed to the tip surface (41b) of the core (41) with a light-transmitting adhesive (81). A circumferential light-emitting linear light guide (3) according to claim 1.

[5]前記接着剤(81)は、前記コア(41)の径方向において、前記反射部材(6)よりも外周側にはみ出していない、上記[2]又は[3]に従属する[4]に記載の周面発光線状導光体(3)。 [5] The adhesive (81) does not protrude beyond the reflective member (6) in the radial direction of the core (41), and is subordinate to [2] or [3] [4] The circumferential light-emitting linear light guide (3) described in (3).

[6]前記光散乱部材(5)は、前記コア(41)よりも屈折率が高い熱硬化性のシリコーン樹脂に光散乱粒子(500)が分散混合されたものであり、前記光散乱部材(5)の厚みが前記コア(41)の前記先端部(411)の外周で最も厚く、前記先端部(411)から離れるにつれて徐々に薄くなる、上記[1]乃至[5]の何れかに記載の周面発光線状導光体(3)。 [6] The light scattering member (5) is made by dispersing and mixing light scattering particles (500) in a thermosetting silicone resin having a higher refractive index than the core (41). 5) is thickest at the outer periphery of the tip (411) of the core (41) and gradually becomes thinner as it moves away from the tip (411), according to any one of [1] to [5] above. peripheral surface emitting linear light guide (3).

[7]前記反射部材(6)における前記反射面(6a)とは反対側の背面(6b)が前記光散乱部材(5)に覆われている、上記[1]乃至[6]の何れかに記載の周面発光線状導光体(3)。 [7] Any one of [1] to [6] above, wherein the back surface (6b) of the reflective member (6) opposite to the reflective surface (6a) is covered with the light scattering member (5). The circumferential light-emitting linear light guide (3) described in (3).

[8]前記コア(41)の前記先端部(411)を前記反射部材(6)の少なくとも一部と共に収容する筒状部材(7)をさらに備え、前記筒状部材(7)の内面(7a)が光を反射する反射面である、上記[1]乃至[6]の何れかに記載の周面発光線状導光体(3)。 [8] Further comprising a cylindrical member (7) that accommodates the tip end (411) of the core (41) together with at least a portion of the reflective member (6), the inner surface (7a) of the cylindrical member (7) ) is a reflective surface that reflects light, the circumferential light-emitting linear light guide (3) according to any one of [1] to [6] above.

以上、本発明の実施の形態を説明したが、上記に記載した実施の形態は特許請求の範囲に係る発明を限定するものではない。また、実施の形態の中で説明した特徴の組合せの全てが発明の課題を解決するための手段に必須であるとは限らない点に留意すべきである。 Although the embodiments of the present invention have been described above, the embodiments described above do not limit the invention according to the claims. Furthermore, it should be noted that not all combinations of features described in the embodiments are essential for solving the problems of the invention.

また、本発明は、その趣旨を逸脱しない範囲で、適宜変形して実施することが可能である。例えば、上記実施の形態では反射部材6が球体である場合について説明したが、これに限らず、例えば一端部が凸曲面状の砲弾型であってもよい。この場合、凸曲面状の一端部をコア41の先端面41bに対向させる。また、反射部材6の反射面6aで反射してコア41の径方向に放射される光の強度が許容範囲内であれば、筒状部材7を省略してもよい。また、筒状部材7は、光を透過させない材質であればよく、内面7aが光を反射する反射面でなくてもよい。またさらに、上記の実施の形態では、光散乱部材5の第1乃至第4の光散乱層51~54の長さがそれぞれ異なる場合について説明したが、複数の光散乱層の長さが同じであってもよい。 Moreover, the present invention can be implemented with appropriate modifications within a range that does not depart from the spirit thereof. For example, in the above embodiment, a case has been described in which the reflecting member 6 is a spherical body, but the reflecting member 6 is not limited to this, and may be, for example, in the shape of a bullet with one end having a convex curved surface. In this case, one end portion of the convex curved surface is opposed to the distal end surface 41b of the core 41. Furthermore, the cylindrical member 7 may be omitted if the intensity of the light reflected by the reflective surface 6a of the reflective member 6 and radiated in the radial direction of the core 41 is within a permissible range. Further, the cylindrical member 7 may be made of any material that does not transmit light, and the inner surface 7a does not need to be a reflective surface that reflects light. Furthermore, in the above embodiment, a case has been described in which the lengths of the first to fourth light scattering layers 51 to 54 of the light scattering member 5 are different, but the lengths of the plurality of light scattering layers are the same. There may be.

3…周面発光線状導光体 4…光ファイバ
41…コア 411…先端部
41a…外周面 41b…先端面
42…クラッド 5…光散乱部材
500…光散乱粒子 6…反射部材
6a…反射面 6b…背面
7…筒状部材 7a…内面
81…接着剤

3... Circumferential light emitting linear light guide 4... Optical fiber 41... Core 411... Tip portion 41a... Outer peripheral surface 41b... Tip surface 42... Clad 5... Light scattering member 500... Light scattering particles 6... Reflecting member 6a... Reflecting surface 6b...Back surface 7...Cylindrical member 7a...Inner surface 81...Adhesive

Claims (8)

長手方向の一端部においてコアがクラッドから露出した光ファイバと、前記クラッドから露出した部分の前記コアの先端部を含む所定長さ範囲にわたって前記コアの外周面を覆う光散乱部材と、前記コアの前記先端部に固定された反射部材とを備え、
前記反射部材は、前記コアの先端面から放射された光を反射する反射面を有し、
前記反射面が前記先端面に向かって凸な湾曲面である、
周面発光線状導光体。
an optical fiber whose core is exposed from the cladding at one end in the longitudinal direction; a light scattering member that covers the outer peripheral surface of the core over a predetermined length range including the tip of the core exposed from the cladding; and a reflective member fixed to the tip,
The reflective member has a reflective surface that reflects light emitted from the tip end surface of the core,
the reflective surface is a curved surface convex toward the tip surface;
Circumferential emitting linear light guide.
前記反射部材は、前記コアの直径よりも大きい直径の球体である、
請求項1に記載の周面発光線状導光体。
The reflective member is a sphere with a diameter larger than the diameter of the core.
The peripheral surface emitting linear light guide according to claim 1.
前記反射部材が半田ボールである、
請求項2に記載の周面発光線状導光体。
the reflective member is a solder ball;
The peripheral surface emitting linear light guide according to claim 2.
前記反射部材が光透過性を有する接着剤によって前記コアの前記先端面に接着固定されている、
請求項1乃至3の何れか1項に記載の周面発光線状導光体。
the reflective member is adhesively fixed to the tip surface of the core with a light-transmitting adhesive;
The circumferential light-emitting linear light guide according to any one of claims 1 to 3.
前記接着剤は、前記コアの径方向において、前記反射部材よりも外周側にはみ出していない、
請求項2又は3に従属する請求項4に記載の周面発光線状導光体。
The adhesive does not protrude beyond the reflective member in the radial direction of the core,
The circumferential light-emitting linear light guide according to claim 4 depending on claim 2 or 3.
前記光散乱部材は、前記コアよりも屈折率が高い熱硬化性のシリコーン樹脂に光散乱粒子が分散混合されたものであり、
前記光散乱部材の厚みが前記コアの前記先端部の外周で最も厚く、前記先端部から離れるにつれて徐々に薄くなる、
請求項1乃至5の何れか1項に記載の周面発光線状導光体。
The light scattering member is a thermosetting silicone resin having a higher refractive index than the core and light scattering particles are dispersed and mixed therein,
The thickness of the light scattering member is the thickest at the outer periphery of the tip of the core, and gradually becomes thinner as it moves away from the tip.
The circumferential light-emitting linear light guide according to any one of claims 1 to 5.
前記反射部材における前記反射面とは反対側の背面が前記光散乱部材に覆われている、
請求項1乃至6の何れか1項に記載の周面発光線状導光体。
a back surface of the reflective member opposite to the reflective surface is covered with the light scattering member;
The circumferential light-emitting linear light guide according to any one of claims 1 to 6.
前記コアの前記先端部を前記反射部材の少なくとも一部と共に収容する筒状部材をさらに備え、
前記筒状部材の内面が光を反射する反射面である、
請求項1乃至7の何れか1項に記載の周面発光線状導光体。

further comprising a cylindrical member that accommodates the tip end of the core together with at least a portion of the reflective member,
The inner surface of the cylindrical member is a reflective surface that reflects light.
The circumferential light-emitting linear light guide according to any one of claims 1 to 7.

JP2022200057A 2022-03-08 2022-12-15 Peripheral surface light emission linear light guide body Pending JP2023131102A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022034972 2022-03-08
JP2022034972 2022-03-08

Publications (1)

Publication Number Publication Date
JP2023131102A true JP2023131102A (en) 2023-09-21

Family

ID=88050258

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2022200057A Pending JP2023131102A (en) 2022-03-08 2022-12-15 Peripheral surface light emission linear light guide body

Country Status (1)

Country Link
JP (1) JP2023131102A (en)

Similar Documents

Publication Publication Date Title
JP5478232B2 (en) Lighting device
RU2740793C2 (en) Light-scattering devices for use in photoimmunotherapy
US20180239074A1 (en) Light diffusing devices for use in photoimmunotherapy
EP3045947B1 (en) Semiconductor laser module
US5373571A (en) Fiber optic diffuser tip
EP1949877B1 (en) Thermally robust illuminator probe
WO2012165347A1 (en) Light source device
US5429635A (en) Fiberoptic spherical diffuser
CN110869829B (en) Light diffusing device for light immunotherapy
US10207124B2 (en) Laser light irradiation device
CN105709338A (en) Improved uv application device
JP7337533B2 (en) medical light guide
JP2023131102A (en) Peripheral surface light emission linear light guide body
JP2012248401A (en) Light source device
JP2005087531A (en) Laser probe
JP2021132754A (en) Optical fiber probe and optical fiber probe manufacturing method
JP2023023869A (en) Peripheral surface light-emission linear light guide body, and method for manufacturing the same
JP2023130599A (en) Peripheral surface light emission linear light guide body and manufacturing method thereof
JP2024010346A (en) Light guide structure and method for manufacturing the same
WO2024101289A1 (en) Light diffusion device
WO2024101288A1 (en) Optical diffusion device
JP2023141618A (en) Linear light guide body
JP2022158714A (en) Peripheral surface light emission linear light guide body and manufacturing method therefor
JP2008220435A (en) Optical irradiation fiber
JP7053547B2 (en) Medical light guide and its manufacturing method