JP2023023869A - Peripheral surface light-emission linear light guide body, and method for manufacturing the same - Google Patents

Peripheral surface light-emission linear light guide body, and method for manufacturing the same Download PDF

Info

Publication number
JP2023023869A
JP2023023869A JP2021129781A JP2021129781A JP2023023869A JP 2023023869 A JP2023023869 A JP 2023023869A JP 2021129781 A JP2021129781 A JP 2021129781A JP 2021129781 A JP2021129781 A JP 2021129781A JP 2023023869 A JP2023023869 A JP 2023023869A
Authority
JP
Japan
Prior art keywords
core
light
light scattering
peripheral surface
scattering member
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2021129781A
Other languages
Japanese (ja)
Inventor
康太 橘
kota Tachibana
健一 田村
Kenichi Tamura
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Proterial Ltd
Original Assignee
Proterial Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Proterial Ltd filed Critical Proterial Ltd
Priority to JP2021129781A priority Critical patent/JP2023023869A/en
Publication of JP2023023869A publication Critical patent/JP2023023869A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Light Guides In General And Applications Therefor (AREA)
  • Radiation-Therapy Devices (AREA)

Abstract

To provide a peripheral surface light-emission linear light guide body which suppresses an excessive amount of a light scattering member covering an apical surface of a core, and can improve uniformity of intensity of light in a core radial direction in a range that the light scattering member is formed in a longitudinal direction of the optical fiber, and a method for manufacturing the same.SOLUTION: A peripheral surface light-emission linear light guide body 3 includes: an optical fiber 4 where a core 41 is exposed from a clad 42 on one end in a longitudinal direction; and a light scattering member 5 covering at least a part of an outer peripheral surface 41a of the core 41 in a part exposed from the clad 42 in a predetermined axial length range together with the apical surface 41b of the core 41. Light emitted from the core 41 is scattered/radiated by the light scattering member 5. An apical surface 41b of the core 41 is a convex surface.SELECTED DRAWING: Figure 3

Description

本発明は、光ファイバと光散乱部材とを備えた周面発光線状導光体、及びその製造方法に関する。 BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a peripheral surface emitting linear light guide provided with an optical fiber and a light scattering member, and a manufacturing method thereof.

従来、例えば人体の食道や腸などの管腔臓器、あるいは血管や心臓内に光ファイバを備えた光ファイバカテーテルを挿入し、光ファイバのコアから放射される光を用いて治療又は検査を行うカテーテル治療やカテーテル検査が行われている(例えば、特許文献1参照)。 Conventionally, for example, an optical fiber catheter equipped with an optical fiber is inserted into a hollow organ such as the esophagus and intestines of the human body, or into a blood vessel or heart, and the light emitted from the core of the optical fiber is used for treatment or examination. Treatment and catheterization are performed (see, for example, Patent Document 1).

特許文献1に記載の照射治療用光照射プローブは、筒状のクラッド内にコアが配置された導光部と、導光部を伝播した光をコアの軸方向に対し全方位周辺に散乱させる光散乱照射部とを有している。光散乱照射部は、例えば光ファイバの先端部におけるクラッドを所定の長さにわたって除去し、露出させたコアの側面に金属粒子等の光散乱粒子をアクリル等の透明樹脂と共に付着させることにより形成される。 The light irradiation probe for irradiation treatment described in Patent Document 1 includes a light guide part in which a core is arranged in a cylindrical clad, and light that propagates through the light guide part is scattered around in all directions with respect to the axial direction of the core. and a light scattering irradiation section. The light scattering irradiation part is formed, for example, by removing the clad at the tip of the optical fiber over a predetermined length and attaching light scattering particles such as metal particles to the exposed side surface of the core together with a transparent resin such as acrylic. be.

特開2018-79136号公報JP 2018-79136 A

本発明者らは、多数の光散乱粒子を含む光散乱部材をクラッドから露出した部分のコアの周囲に形成するにあたり、光散乱粒子が分散混合された液状の熱硬化性樹脂をコアの先端面及び外周面に付着させた後、この熱硬化性樹脂を加熱して硬化させる方法を創案した。しかし、この方法では、低コスト化が図れるものの、後述する比較例(図7参照)のように、コアの先端面を覆う光散乱部材が厚くなってしまい、この部分からの発光量が多くなるという課題があった。 In forming a light scattering member containing a large number of light scattering particles around the core exposed from the clad, the present inventors applied a liquid thermosetting resin in which the light scattering particles were dispersed and mixed to the tip surface of the core. And, after adhering to the outer peripheral surface, the method of heating and curing the thermosetting resin was devised. However, although this method can reduce the cost, the light scattering member covering the tip surface of the core becomes thick, as in a comparative example (see FIG. 7) described later, and the amount of light emitted from this portion increases. There was a problem.

そこで、本発明は、コアの先端面を覆う光散乱部材の量が過大となることを抑制し、光ファイバの長手方向において光散乱部材が形成された範囲におけるコアの径方向への光の強度の均一性を高めることが可能な周面発光線状導光体、及びその製造方法を提供することを目的とする。 Therefore, the present invention suppresses an excessive amount of the light scattering member covering the tip surface of the core, and increases the intensity of light in the radial direction of the core in the range where the light scattering member is formed in the longitudinal direction of the optical fiber. It is an object of the present invention to provide a peripheral surface emitting linear light guide capable of improving the uniformity of the light, and a method for manufacturing the same.

本発明は、上記課題を解決することを目的として、長手方向の一端部においてコアがクラッドから露出した光ファイバと、前記クラッドから露出した部分の前記コアの外周面の少なくとも一部を前記コアの先端面と共に所定の軸方向長さ範囲にわたって覆う光散乱部材とを備え、前記コアから出射された光が前記光散乱部材によって散乱放射される周面発光線状導光体であって、前記コアの前記先端面が凸曲面状である、周面発光線状導光体を提供する。 An object of the present invention is to solve the above problems by providing an optical fiber in which a core is exposed from the clad at one end in the longitudinal direction, and at least a portion of the outer peripheral surface of the core exposed from the clad is replaced by the core. and a light scattering member covering a predetermined axial length range together with the tip surface, wherein the light emitted from the core is scattered and emitted by the light scattering member, wherein the core is The peripheral surface emitting linear light guide is provided, wherein the tip end surface of is a convex curved surface.

また、本発明は、上記課題を解決することを目的として、上記の周面発光線状導光体を製造する製造方法であって、前記光ファイバの端部の前記クラッドを除去して前記コアを露出させる露出工程と、前記コアの前記先端面を凸曲面化する曲面化工程と、前記コアの周囲に前記光散乱部材を形成する光散乱部材形成工程とを有し、前記曲面化工程において、前記コアの先端部を加熱して溶融させた後に冷却して硬化させることで前記コアの前記先端面を凸曲面化する、周面発光線状導光体の製造方法を提供する。 In order to solve the above problems, the present invention also provides a manufacturing method for manufacturing the peripheral surface emitting linear light guide, wherein the clad at the end of the optical fiber is removed to remove the core. a surface forming step of convexly curving the end surface of the core; and a light scattering member forming step of forming the light scattering member around the core. A method for manufacturing a peripheral surface emitting linear light guide, wherein the tip end portion of the core is heated to melt and then cooled to harden, thereby forming the tip end surface of the core into a convex curved surface.

本発明に係る周面発光線状導光体及びその製造方法によれば、コアの先端面を覆う光散乱部材の量が過大となることを抑制し、光ファイバの長手方向において光散乱部材が形成された範囲におけるコアの径方向への光の強度の均一性を高めることが可能となる。 According to the peripheral surface emitting linear light guide and the method for manufacturing the same according to the present invention, the amount of the light scattering member covering the tip surface of the core is suppressed from becoming excessive, and the light scattering member is prevented from becoming too large in the longitudinal direction of the optical fiber. It is possible to improve the uniformity of light intensity in the radial direction of the core in the formed range.

本発明の実施の形態に係る周面発光線状導光体を用いて構成されたカテーテルを有する治療装置を、治療対象の患者と共に示す模式図である。BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a schematic diagram showing a treatment apparatus having a catheter configured using a circumferentially emitting linear light guide according to an embodiment of the present invention together with a patient to be treated. 患者の体内に挿入されたカテーテルの先端部を示す模式図である。FIG. 4 is a schematic diagram showing the distal end of a catheter inserted into a patient's body; (a)は、周面発光線状導光体の一端部を示す斜視図である。(b)は、周面発光線状導光体の軸方向に沿った(a)のA-A線断面である。(c)は、周面発光線状導光体の軸方向に沿った(a)のB-B線断面である。(a) is a perspective view showing one end of a peripheral surface emitting linear light guide. (b) is a cross section along the line AA of (a) along the axial direction of the peripheral surface emitting linear light guide. (c) is a BB line cross section of (a) along the axial direction of the peripheral surface emitting linear light guide. (a)~(c)は、光ファイバの製造方法における露出工程を示す説明図である。(d)は、光ファイバの製造方法における曲面化工程を示す説明図である。(a) to (c) are explanatory diagrams showing an exposure step in the method of manufacturing an optical fiber. (d) is an explanatory diagram showing a curved surface forming step in the method of manufacturing an optical fiber. (a)~(d)は、光ファイバの製造方法における光散乱部材形成工程の各段階を示す断面図である。(e)は、光散乱部材の外周に保護コート層が形成された状態を示す断面図である。(a) to (d) are cross-sectional views showing each stage of a light scattering member forming step in the method of manufacturing an optical fiber. (e) is a cross-sectional view showing a state in which a protective coating layer is formed on the outer circumference of the light scattering member. (a)及び(b)は、第1乃至第4の光散乱層を形成するための光散乱層形成装置を示す概略構成図である。(a) and (b) are schematic configuration diagrams showing a light scattering layer forming apparatus for forming first to fourth light scattering layers. 比較例に係る周面発光線状導光体を示す断面図である。FIG. 10 is a cross-sectional view showing a peripheral surface emitting linear light guide according to a comparative example; 実施の形態に係る周面発光線状導光体、及び比較例に係る周面発光線状導光体の軸方向における光強度分布を測定する測定方法を示す説明図である。It is explanatory drawing which shows the measuring method which measures the light intensity distribution in the axial direction of the peripheral surface emitting linear light guide which concerns on embodiment, and the peripheral surface emitting linear light guide which concerns on a comparative example. 実施の形態及び比較例に係る周面発光線状導光体の光強度分布を示すグラフである。5 is a graph showing the light intensity distribution of peripheral surface emitting linear light guides according to the embodiment and the comparative example. (a)~(d)は、変形例を示す断面図である。(a) to (d) are cross-sectional views showing modifications.

[実施の形態]
図1は、本発明の実施の形態に係る周面発光線状導光体3をカテーテルとして用いる治療装置1を、治療対象の患者Pと共に示す模式図である。治療装置1は、本体2と周面発光線状導光体3とを有し、周面発光線状導光体3の先端部が患者Pの体内に挿入されている。本体2は、レーザ光を発する光源21を有しており、光源21で発生したレーザ光が周面発光線状導光体3の基端部に入射する。
[Embodiment]
FIG. 1 is a schematic diagram showing a treatment apparatus 1 using a circumferential surface emitting linear light guide 3 as a catheter together with a patient P to be treated according to an embodiment of the present invention. The treatment apparatus 1 has a main body 2 and a peripheral surface emitting linear light guide 3 , and the distal end portion of the peripheral surface emitting linear light guide 3 is inserted into the patient P's body. The main body 2 has a light source 21 that emits laser light, and the laser light generated by the light source 21 is incident on the proximal end portion of the peripheral surface emitting linear light guide 3 .

<周面発光線状導光体の構成>
図2は、患者Pの体内に挿入された周面発光線状導光体3の先端部を示す模式図である。図2では、患者Pの血管Pの一部を切り欠いて、血管P内に挿入された周面発光線状導光体3の先端部を示している。周面発光線状導光体3から散乱放射されたレーザ光Lrは、治療部Pを照射し、予め治療部Pに含ませた薬剤を反応させる。これにより、血管内レーザ治療が行われる。
<Structure of Peripheral Light Emitting Linear Light Guide>
FIG. 2 is a schematic diagram showing the distal end portion of the circumferential surface emitting linear light guide 3 inserted into the body of the patient P. As shown in FIG. In FIG. 2, a portion of the blood vessel P1 of the patient P is cut away to show the distal end portion of the peripheral surface emitting linear light guide 3 inserted into the blood vessel P1 . The laser light Lr scattered and radiated from the peripheral surface emitting linear light guide 3 irradiates the treatment area P2 and reacts the drug contained in the treatment area P2 in advance. Thus, intravascular laser therapy is performed.

図3(a)は、周面発光線状導光体3の一端部を示す斜視図である。図3(b)は、周面発光線状導光体3の軸方向に沿った図3(a)のA-A線断面である。図3(c)は、周面発光線状導光体3の軸方向に沿った図3(a)のB-B線断面である。 FIG. 3(a) is a perspective view showing one end of the peripheral surface emitting linear light guide 3. FIG. FIG. 3(b) is a cross section taken along the line AA of FIG. 3(a) along the axial direction of the peripheral surface emitting linear light guide 3. FIG. FIG. 3(c) is a cross section taken along the line BB of FIG. 3(a) along the axial direction of the peripheral surface emitting linear light guide 3. FIG.

周面発光線状導光体3は、光源21で発生したレーザ光を治療部Pに導く光ファイバ4と、光ファイバ4の一端部に設けられた光散乱部材5と、光散乱部材5を覆う保護コート層6とを備えている。光ファイバ4は、コア41、クラッド42、及びシース43を有している。光ファイバ4の長手方向の一端部では、図3(b)に示すように、クラッド42の外周面42aがシース43から露出しており、さらにコア41の外周面41aがクラッド42から露出している。 The circumferential surface emitting linear light guide 3 includes an optical fiber 4 that guides the laser light generated by the light source 21 to the treatment site P2 , a light scattering member 5 provided at one end of the optical fiber 4, and a light scattering member 5. and a protective coat layer 6 covering the The optical fiber 4 has a core 41 , a clad 42 and a sheath 43 . At one end in the longitudinal direction of the optical fiber 4, as shown in FIG. there is

光散乱部材5は、クラッド42から露出した部分のコア41の外周面41aの全周を所定の軸方向長さ範囲にわたって覆うと共に、コア41の先端面41bを覆っている。外周面41aが光散乱部材5に覆われた部分のコア41の軸方向長さは、例えば1~5cmである。コア41の長手方向の一部は、クラッド42にも光散乱部材5にも覆われていない非被覆部415となっている。保護コート層6は、光透過性を有しており、光散乱部材5、コア41の非被覆部415、及びシース43から露出した部分のクラッド42を覆っている。 The light scattering member 5 covers the entire circumference of the outer peripheral surface 41 a of the core 41 exposed from the clad 42 over a predetermined axial length range, and also covers the tip surface 41 b of the core 41 . The axial length of the portion of the core 41 where the outer peripheral surface 41a is covered with the light scattering member 5 is, for example, 1 to 5 cm. A part of the core 41 in the longitudinal direction is an uncovered portion 415 that is not covered with the clad 42 or the light scattering member 5 . The protective coat layer 6 is light transmissive and covers the light scattering member 5 , the uncovered portion 415 of the core 41 , and the clad 42 exposed from the sheath 43 .

コア41の先端面41bは、後述する周面発光線状導光体3の製造方法における曲面化工程で凸曲面化され、凸曲面となっている。ここで、コア41の先端面41bとは、直線状にしたコア41をその中心線Cに沿って軸方向から見た場合に見える範囲のコア41の表面をいう。また、凸曲面化されているとは、コア41を中心線Cに対して垂直に切断した場合の切断面(平面)に比較して、コア41の先端面41bが中心部ほど軸方向に大きく突出した凸曲面状であることをいう。本実施の形態では、図3(b)及び(c)に示すように、コア41の先端面41bが半球面状である。 The tip surface 41b of the core 41 is convexly curved in a curved surface forming step in the method of manufacturing the circumferential surface emitting linear light guide 3, which will be described later. Here, the front end surface 41b of the core 41 refers to the surface of the core 41 within a range that can be seen when the core 41 made into a straight line is viewed from the axial direction along the center line C thereof. In addition, being convex means that the tip end surface 41b of the core 41 is larger in the axial direction toward the center than the cut surface (plane) when the core 41 is cut perpendicularly to the center line C. It means that it has a protruding convex curved surface. In this embodiment, as shown in FIGS. 3(b) and 3(c), the tip surface 41b of the core 41 is hemispherical.

本実施の形態では、コア41が石英ガラスからなり、クラッド42がポリマーからなる。シース43は、フッ素系樹脂であり、より具体的にはETFE(エチレンテトラフルオロエチレンコポリマー)である。コア41の直径は、例えば200μmである。コア41の屈折率は、クラッド42の屈折率よりも高く、クラッド42内におけるコア41を伝搬する光がクラッド42との界面で全反射する。なお、図3(a)及び(b)では、コア41の太さや光散乱部材5の厚さを誇張して示している。 In this embodiment, the core 41 is made of quartz glass and the clad 42 is made of polymer. The sheath 43 is a fluororesin, more specifically ETFE (ethylenetetrafluoroethylene copolymer). The diameter of core 41 is, for example, 200 μm. The refractive index of the core 41 is higher than that of the clad 42 , and the light propagating through the core 41 within the clad 42 is totally reflected at the interface with the clad 42 . 3A and 3B, the thickness of the core 41 and the thickness of the light scattering member 5 are exaggerated.

光散乱部材5は、コア41の外周面41a及び先端面41bから出射した光を散乱放射する。光散乱部材5は、コア41よりも屈折率が高い光透過性の基材50に多数の光散乱粒子500が分散混合されている。ここで、分散混合されているとは、光散乱粒子500が基材50内の一部に固まってしまうことがないよう、基材50内に光散乱粒子500が均等に散らばるように混合されていることをいう。本実施の形態では、基材50が熱硬化性の樹脂である。光散乱粒子500は、肉眼では認識できない程度の微細な粒子であるが、図3(c)では、光散乱粒子500の大きさを誇張して示している。 The light scattering member 5 scatters and radiates light emitted from the outer peripheral surface 41 a and the tip end surface 41 b of the core 41 . The light scattering member 5 is formed by dispersing and mixing a large number of light scattering particles 500 in a light transmissive base material 50 having a higher refractive index than the core 41 . Here, being dispersed and mixed means that the light scattering particles 500 are mixed so as to be evenly dispersed in the base material 50 so that the light scattering particles 500 do not clump together in a part of the base material 50 . It means that there is In this embodiment, the base material 50 is a thermosetting resin. The light scattering particles 500 are particles too small to be recognized by the naked eye, but the size of the light scattering particles 500 is exaggerated in FIG. 3(c).

基材50は、屈折率がコア41よりも高く、コア41の外周面41a及び先端面41bから出射された光が光散乱部材5に入射する。本実施の形態では、基材50がシリコン樹脂であり、その屈折率が例えば1.52である。コア41の屈折率は、例えば1.46である。なお、保護コート層6の屈折率は、光散乱部材5の基材50の屈折率と同じか、あるいは基材50の屈折率よりも高い。 The base material 50 has a higher refractive index than the core 41 , and the light emitted from the outer peripheral surface 41 a and the tip end surface 41 b of the core 41 enters the light scattering member 5 . In this embodiment, the base material 50 is made of silicone resin and has a refractive index of 1.52, for example. The refractive index of the core 41 is, for example, 1.46. The refractive index of the protective coat layer 6 is the same as or higher than the refractive index of the base material 50 of the light scattering member 5 .

光散乱粒子500は、光散乱部材5に入射した光を反射する金属粒子である。本実施の形態では、光散乱粒子500として酸化チタン(TiO)を用いる。ただし、これに限らず、酸化アルミニウム(アルミナ)や、銀、銅、鉄、もしくはこれらの合金の微細な金属粉を光散乱粒子500として用いてもよい。 The light scattering particles 500 are metal particles that reflect light incident on the light scattering member 5 . In this embodiment, titanium oxide (TiO 2 ) is used as the light scattering particles 500 . However, the light scattering particles 500 may be aluminum oxide (alumina), fine metal powder of silver, copper, iron, or alloys thereof.

光散乱部材5は、複数の層からなる多層構造であり、これら複数の層が少なくとも一部においてコア41の径方向に重なっている。本実施の形態では、光散乱部材5の層の数が4であり、コア41の先端部410における外周面41a及び先端面41bでは、4つの層が径方向に重なっている。以下、これら4つの層を、内側から順に、第1の光散乱層51、第2の光散乱層52、第3の光散乱層53、及び第4の光散乱層54とする。 The light scattering member 5 has a multi-layered structure composed of a plurality of layers, and at least a portion of the plurality of layers overlap in the radial direction of the core 41 . In the present embodiment, the number of layers of the light scattering member 5 is four, and four layers overlap in the radial direction on the outer peripheral surface 41 a and the tip surface 41 b of the tip portion 410 of the core 41 . These four layers are hereinafter referred to as a first light scattering layer 51, a second light scattering layer 52, a third light scattering layer 53, and a fourth light scattering layer 54 in order from the inside.

図3(c)に示すように、コア41の先端部410における外周面41aの周囲に積層された第1乃至第4の光散乱層51~54のそれぞれの厚みt~tは同等である。t~tは、それぞれ例えば5~10μmである。なお、保護コート層6の厚みtは、一例としてt~tと同じであるが、t~tと異なっていてもよい。 As shown in FIG. 3C, the thicknesses t 1 to t 4 of the first to fourth light scattering layers 51 to 54 laminated around the outer peripheral surface 41a of the tip 410 of the core 41 are the same. be. Each of t 1 to t 4 is, for example, 5 to 10 μm. Incidentally, the thickness t 5 of the protective coat layer 6 is the same as t 1 to t 4 as an example, but may be different from t 1 to t 4 .

図3(b)に示すように、光散乱部材5に覆われたコア41の軸方向長さ範囲Eを層の数(本実施の形態では4)に応じて第1乃至第4の領域411~414に分割したとき、先端面41bを含む最もコア41の先端側の第1の領域411では、コア41の外周面41a及び先端面41bに第1乃至第4の光散乱層51~54が形成されており、最もクラッド42側の第4の領域414では、コア41の外周面41aに第4の光散乱層54のみが形成されている。第1の領域411に隣り合う第2の領域412では、コア41の外周面41aに第2乃至第4の光散乱層52~54が形成されており、第4の領域414に隣り合う第3の領域413では、コア41の外周面41aに第3及び第4の光散乱層53,54が形成されている。 As shown in FIG. 3B, the axial length range E of the core 41 covered with the light scattering member 5 is divided into first to fourth regions 411 according to the number of layers (4 in this embodiment). 414, in the first region 411 closest to the distal end of the core 41 including the distal end surface 41b, the first to fourth light scattering layers 51 to 54 are formed on the outer peripheral surface 41a and the distal end surface 41b of the core 41. In the fourth region 414 closest to the clad 42 , only the fourth light scattering layer 54 is formed on the outer peripheral surface 41 a of the core 41 . In a second region 412 adjacent to the first region 411, second to fourth light scattering layers 52 to 54 are formed on the outer peripheral surface 41a of the core 41, and a third light scattering layer adjacent to the fourth region 414 is formed. In the region 413 of , the third and fourth light scattering layers 53 and 54 are formed on the outer peripheral surface 41a of the core 41 .

この多層構造により、コア41の外周面41aにおける光散乱部材5の径方向の厚みが、コア41の先端部410側ほど徐々に厚くなっている。また、コア41の外周囲における光散乱粒子500の量は、コア41の先端部410側ほど徐々に多くなっている。 Due to this multilayer structure, the radial thickness of the light scattering member 5 on the outer peripheral surface 41 a of the core 41 gradually increases toward the tip portion 410 side of the core 41 . Also, the amount of light scattering particles 500 in the outer circumference of the core 41 gradually increases toward the tip portion 410 side of the core 41 .

コア41の外周面41a及び先端面41bと、第1乃至第4の領域411~414における第1乃至第4の光散乱層51~54のうち最も内側の層とは、それぞれ隙間なく互いに密着している。図3(c)に示すように、第1の領域411におけるコア41の外周面41aに形成された光散乱部材5の全体の厚み(平均値)をtとし、先端面41bにおける光散乱部材5の全体の厚み(中心部における最大値)をtとしたとき、tは、tよりも厚く、tの2倍よりは薄い。すなわち、t及びtは、t<t<2tの関係式を満たす。なお、コア41の径方向への光の強度の均一性を高めるためには、tがtに近いことが望ましい。 The outer peripheral surface 41a and the tip surface 41b of the core 41 and the innermost layer among the first to fourth light scattering layers 51 to 54 in the first to fourth regions 411 to 414 are in close contact with each other without gaps. ing. As shown in FIG. 3C, the total thickness (average value) of the light scattering member 5 formed on the outer peripheral surface 41a of the core 41 in the first region 411 is ta , and the light scattering member on the tip surface 41b When the total thickness of 5 (maximum value at the central portion) is tb , tb is thicker than ta and less than twice ta . That is, t a and t b satisfy the relational expression t a <t b <2t a . In order to improve the uniformity of the light intensity in the radial direction of the core 41, it is desirable that tb be close to ta .

本実施の形態では、基材50への光散乱粒子500の混合割合が第1乃至第4の光散乱層51~54のそれぞれで互いに異なっている。第1乃至第4の光散乱層51~54における光散乱粒子500の濃度をそれぞれC~Cとしたとき、第1の光散乱層51の濃度Cは例えば20mg/ml、第2の光散乱層52の濃度Cは例えば10mg/ml、第3の光散乱層53の濃度Cは例えば0mg/ml、第4の光散乱層54の濃度Cは例えば7mg/mlである。つまり、本実施の形態では、第1乃至第4の光散乱層51~54における光散乱粒子500の濃度C~Cが、C>C>C>Cの関係にある。 In this embodiment, the mixing ratio of the light scattering particles 500 to the base material 50 is different for each of the first to fourth light scattering layers 51 to 54 . When the concentrations of the light scattering particles 500 in the first to fourth light scattering layers 51 to 54 are C 1 to C 4 respectively, the concentration C 1 of the first light scattering layer 51 is, for example, 20 mg/ml, and that of the second light scattering layer 51 is 20 mg/ml. The concentration C2 of the light scattering layer 52 is, for example, 10 mg/ml, the concentration C3 of the third light scattering layer 53 is, for example, 0 mg/ml, and the concentration C4 of the fourth light scattering layer 54 is, for example, 7 mg/ml. That is, in the present embodiment, the concentrations C 1 to C 4 of the light scattering particles 500 in the first to fourth light scattering layers 51 to 54 have a relationship of C 1 > C 2 >C 4 >C 3 .

なお、上記の例では、第3の光散乱層53の濃度Cが0mg/mlであり、第3の光散乱層53に光散乱粒子500が含まれていないが、第3の光散乱層53に光散乱粒子500を含めてもよい。また、ここでは光散乱部材5の層の数が4である場合について説明したが、光散乱部材5の層の数は4に限らず、2又は3もしくは5以上であってもよい。またさらに、光散乱部材5は、多層構造に限らず、基材50への光散乱粒子500の混合割合が均一な単層構造であってもよい。 In the above example, the concentration C3 of the third light scattering layer 53 is 0 mg/ml, and the third light scattering layer 53 does not contain the light scattering particles 500. 53 may include light scattering particles 500 . Moreover, although the case where the number of layers of the light scattering member 5 is four has been described here, the number of layers of the light scattering member 5 is not limited to four, and may be two, three, or five or more. Furthermore, the light scattering member 5 is not limited to a multilayer structure, and may have a single layer structure in which the mixing ratio of the light scattering particles 500 to the base material 50 is uniform.

<周面発光線状導光体3の製造方法>
次に、周面発光線状導光体3の製造方法について説明する。周面発光線状導光体3の製造方法は、光ファイバ4の端部のクラッド42を除去してコア41を露出させる露出工程と、コア41の先端面41bを凸曲面化する曲面化工程と、コア41の周囲に光散乱部材5を形成する光散乱部材形成工程とを有している。
<Manufacturing Method of Peripheral Light Emitting Linear Light Guide 3>
Next, a method for manufacturing the peripheral surface emitting linear light guide 3 will be described. The manufacturing method of the circumferential surface emitting linear light guide 3 includes an exposing step of removing the clad 42 at the end of the optical fiber 4 to expose the core 41, and a curving step of convexly curving the tip surface 41b of the core 41. and a light scattering member forming step of forming the light scattering member 5 around the core 41 .

図4(a)~(c)は、露出工程を示す断面図である。この露出工程では、図4(a)に示すように、コア41、クラッド42、及びシース43を有する光ファイバ4を用意し、図4(b)に示すようにシース43を所定の長さ範囲にわたって除去する。その後、図4(c)に示すようにシース43から露出した部分のクラッド42を所定の長さ範囲にわたって除去してコア41をクラッド42から露出させ、露出したコア41の一部を切断する。コア41の切断方法としては、例えば刃具91を用いてコア41の一部に傷を付け、傷を付けた箇所でコア41を折ることにより行うことができる。切断されたコア41の切断面41cは、光ファイバ4の長手方向に対して垂直な平面状である。 4A to 4C are cross-sectional views showing the exposure process. In this exposure step, as shown in FIG. 4A, an optical fiber 4 having a core 41, a clad 42, and a sheath 43 is prepared, and as shown in FIG. remove over Thereafter, as shown in FIG. 4C, the clad 42 exposed from the sheath 43 is removed over a predetermined length range to expose the core 41 from the clad 42, and the exposed portion of the core 41 is cut. As a method for cutting the core 41, for example, a cutting tool 91 is used to scratch a portion of the core 41, and the core 41 is broken at the scratched portion. A cut surface 41 c of the cut core 41 is planar and perpendicular to the longitudinal direction of the optical fiber 4 .

図4(d)は、コア41の切断面41cが凸曲面化され、凸曲面状の先端面41bとなった状態を示す断面図である。曲面化工程では、コア41の切断面41cの周辺を加熱することにより溶融させて液状とし、その後に冷却して硬化させる。加熱により液状となったコア41の一部は、表面張力によって自然に半球状となり、冷却によってその形状のまま固体となる。コア41を加熱する具体的な方法は、特に限定されるものではないが、例えばアーク放電によって加熱を行うことができる。また、冷却は、例えば自然冷却によって行うことができる。 FIG. 4(d) is a cross-sectional view showing a state in which the cut surface 41c of the core 41 is convexly curved to form a convex curved distal end surface 41b. In the curved surface forming step, the periphery of the cut surface 41c of the core 41 is heated to be melted into a liquid state, and then cooled to harden. A portion of the core 41 that has been liquefied by heating naturally assumes a hemispherical shape due to surface tension, and then becomes a solid with that shape by cooling. A specific method for heating the core 41 is not particularly limited, but heating can be performed by arc discharge, for example. Moreover, cooling can be performed by natural cooling, for example.

図5(a)~(d)は、光散乱部材形成工程の各段階を示す断面図である。光散乱部材形成工程では、図5(a)及び(b)に示すように、コア41の第1の領域411における外周面41a及び先端面41bに第1の光散乱層51を形成した後、コア41の第2の領域412における外周面41a及び第1の光散乱層51の外側に第2の光散乱層52を形成する。さらにその後、図5(c)及び(d)に示すように、コア41の第3の領域413における外周面41a及び第2の光散乱層52の外側に第2の光散乱層52を形成し、コア41の第4の領域414における外周面41a及び第3の光散乱層53の外側に第4の光散乱層54を形成する。 5A to 5D are cross-sectional views showing each stage of the light scattering member forming process. In the light scattering member forming step, as shown in FIGS. 5A and 5B, after forming the first light scattering layer 51 on the outer peripheral surface 41a and the tip end surface 41b of the first region 411 of the core 41, A second light scattering layer 52 is formed outside the outer peripheral surface 41 a and the first light scattering layer 51 in the second region 412 of the core 41 . After that, as shown in FIGS. 5(c) and (d), the second light scattering layer 52 is formed outside the outer peripheral surface 41a and the second light scattering layer 52 in the third region 413 of the core 41. , the fourth light scattering layer 54 is formed outside the outer peripheral surface 41 a and the third light scattering layer 53 in the fourth region 414 of the core 41 .

また、コア41の周囲に第1乃至第4の光散乱層51~54を順次形成した後には、図5(e)に示すように、光散乱部材5、コア41の非被覆部415、及びシース43から露出した部分のクラッド42を覆うように、保護コート層6を形成する。 Further, after sequentially forming the first to fourth light scattering layers 51 to 54 around the core 41, as shown in FIG. A protective coat layer 6 is formed so as to cover the portion of the clad 42 exposed from the sheath 43 .

図6(a)及び(b)は、第1乃至第4の光散乱層51~54を形成するための光散乱層形成装置7を示す概略構成図である。図6(a)及び(b)では、図面上下方向が鉛直方向の上下にあたる。光散乱層形成装置7は、ベースプレート71と、ベースプレート71に対して垂直に立設された支柱72と、支柱72に対して上下方向に移動可能な昇降台73と、光ファイバ4を保持するホルダ74と、支柱72に固定されたヒータ75とを備えている。 6A and 6B are schematic configuration diagrams showing a light scattering layer forming apparatus 7 for forming the first to fourth light scattering layers 51 to 54. FIG. In FIGS. 6A and 6B, the vertical direction corresponds to the vertical direction. The light scattering layer forming device 7 includes a base plate 71 , a support 72 erected perpendicularly to the base plate 71 , a lift table 73 vertically movable with respect to the support 72 , and a holder for holding the optical fiber 4 . 74 and a heater 75 fixed to the post 72 .

昇降台73は、不図示のアクチュエータによって支柱72に対して上下方向に移動する。このアクチュエータとしては、例えば電動モータの回転をボールねじ等によって直線運動に変換する構成のものを用いることができる。昇降台73は、ホルダ74を支持する支持部731を有しており、この支持部731によってホルダ74を支持している。 The lift table 73 is vertically moved with respect to the column 72 by an actuator (not shown). As this actuator, for example, an actuator configured to convert rotation of an electric motor into linear motion by a ball screw or the like can be used. The lift table 73 has a support portion 731 that supports the holder 74 , and the holder 74 is supported by the support portion 731 .

ホルダ74は、シース43に覆われた部分の光ファイバ4を所定の長さ範囲にわたって鉛直方向に保持している。これにより、配置工程において、クラッド42の端部から突出したコア41が鉛直方向下方に向かって垂れるように配置される。ホルダ74は、光ファイバ4を保持した状態で昇降台73と共に上下方向に移動する。 The holder 74 vertically holds the portion of the optical fiber 4 covered with the sheath 43 over a predetermined length range. Thereby, in the arrangement step, the core 41 protruding from the end of the clad 42 is arranged so as to droop downward in the vertical direction. The holder 74 moves vertically together with the lift table 73 while holding the optical fiber 4 .

ヒータ75は、光ファイバ4を上下に挿通させる挿通孔750を有している。挿通孔750の周囲には、赤外線を放射する円筒状の放射材751が配置されており、放射材751が電熱線752によって加熱されることにより、赤外線が挿通孔750内に放射される。これにより、光ファイバ4のコア41の周囲を全方位から均等に加熱することが可能である。放射材751及び電熱線752は、ケース部材753に収容されており、ケース部材753が連結アーム754によって支柱72に連結されている。 The heater 75 has an insertion hole 750 through which the optical fiber 4 is vertically inserted. A cylindrical radiation member 751 that emits infrared rays is arranged around the insertion hole 750 . When the radiation member 751 is heated by the heating wire 752 , the infrared rays are emitted into the insertion hole 750 . Thereby, it is possible to uniformly heat the periphery of the core 41 of the optical fiber 4 from all directions. The radiation member 751 and the heating wire 752 are housed in a case member 753 , and the case member 753 is connected to the post 72 by a connecting arm 754 .

第1乃至第4の光散乱層51~54は、光散乱粒子500の混合割合が異なる複数種類の液状体(第1乃至第4の液状体811~814)をコア41の周囲に付着させ、硬化させることにより形成される。第1の液状体811は、硬化によって第1の光散乱層51となり、第2の液状体812は、硬化によって第2の光散乱層52となる。また、第3の液状体813は、硬化によって第3の光散乱層53となり、第4の液状体814は、硬化によって第4の光散乱層54となる。 The first to fourth light scattering layers 51 to 54 are formed by attaching a plurality of types of liquid materials (first to fourth liquid materials 811 to 814) having different mixing ratios of the light scattering particles 500 around the core 41, It is formed by curing. The first liquid 811 becomes the first light scattering layer 51 by curing, and the second liquid 812 becomes the second light scattering layer 52 by curing. Further, the third liquid 813 becomes the third light scattering layer 53 by curing, and the fourth liquid 814 becomes the fourth light scattering layer 54 by curing.

第1乃至第4の液状体811~814には、硬化する前の液状の基材50Lに多数の光散乱粒子500が分散混合されている。液状の基材50Lは、加熱工程前において常温で液状であり、ヒータ75によって加熱されることにより硬化して、固体の基材50となる。第1乃至第4の液状体811~814における光散乱粒子500の濃度は、上記のC>C>C>Cの関係に応じた濃度である。 In the first to fourth liquid bodies 811 to 814, a large number of light scattering particles 500 are dispersed and mixed in the liquid base material 50L before curing. The liquid base material 50</b>L is liquid at room temperature before the heating step, and is cured by being heated by the heater 75 to become the solid base material 50 . The concentrations of the light scattering particles 500 in the first to fourth liquid bodies 811 to 814 are concentrations according to the above relationship of C 1 >C 2 >C 4 >C 3 .

第1乃至第4の液状体811~814は、それぞれ第1乃至第4の容器821~824に収容されている。第1乃至第4の容器821~824は、上方が開口したカップ状である。図6(a)では、第1乃至第4の容器821~824を断面で示し、その内部の第1乃至第4の液状体811~814を図示している。また、図6(a)及び(b)では、第2の容器822がベースプレート71におけるヒータ75の下方にあたる載置面71aに載置された状態を示している。ベースプレート71の載置面71aには、光散乱部材形成工程の段階に応じて第1乃至第4の液状体811~814が順次載置される。 The first to fourth liquid substances 811 to 814 are contained in first to fourth containers 821 to 824, respectively. The first to fourth containers 821 to 824 are cup-shaped with an open top. In FIG. 6A, the first to fourth containers 821 to 824 are shown in cross section, and the first to fourth liquid bodies 811 to 814 inside them are shown. 6A and 6B show a state in which the second container 822 is mounted on the mounting surface 71a of the base plate 71 below the heater 75. FIG. On the mounting surface 71a of the base plate 71, first to fourth liquid materials 811 to 814 are sequentially mounted according to the stage of the light scattering member forming process.

光散乱部材形成工程では、昇降台73の下方への移動によってコア41の軸方向の一部を第1乃至第4の液状体811~814の液面よりも下方に移動させた後、コア41を第1乃至第4の液状体811~814から引き上げ、ヒータ75によって加熱する。液状の基材50Lは、粘性を有しており、昇降台73が上方へ移動すると、基材50Lがその粘性によって周囲に付着した状態でコア41が引き上げられる。図6(a)では、コア41を第2の液状体812の液面812aから上方に引き上げつつある状態を示している。 In the light scattering member forming process, the core 41 is partially moved below the liquid surfaces of the first to fourth liquid materials 811 to 814 by moving the lift table 73 downward. are pulled up from the first to fourth liquid materials 811 to 814 and heated by the heater 75 . The liquid base material 50L is viscous, and when the lift table 73 moves upward, the core 41 is pulled up while the base material 50L adheres to the surroundings due to the viscosity. FIG. 6A shows a state in which the core 41 is being lifted upward from the liquid surface 812a of the second liquid 812. FIG.

基材50Lを硬化させる際には、図6(b)に示すように、クラッド42から露出したコア41がヒータ75の挿通孔750内に位置するまで昇降台73を上昇させ、第1乃至第4の液状体811~814を放射材751から放射される赤外線によって加熱して硬化させる。第1乃至第4の液状体811~814は、第1乃至第4の容器821~824から引き上げられてから硬化するまでの間に、自重によって僅かに鉛直方向下方に流動するので、上記のようにtがtよりも厚くなる。 When curing the base material 50L, as shown in FIG. 6B, the lift table 73 is raised until the core 41 exposed from the clad 42 is positioned within the insertion hole 750 of the heater 75, and the first to first 4 liquid materials 811 to 814 are heated by infrared rays emitted from the radiation material 751 to be cured. The first to fourth liquid materials 811 to 814 flow slightly vertically downward due to their own weight during the period from when they are pulled up from the first to fourth containers 821 to 824 until they harden. tb becomes thicker than ta .

その後さらに、保護コート層6を形成することによって周面発光線状導光体3が得られる。保護コート層6は、例えば第1乃至第4の光散乱層51~54と同様にして形成してもよいが、第1乃至第4の光散乱層51~54と異なる方法により保護コート層6を形成してもよい。 After that, a protective coating layer 6 is further formed to obtain the peripheral surface emitting linear light guide 3 . The protective coat layer 6 may be formed, for example, in the same manner as the first to fourth light scattering layers 51 to 54, but the protective coat layer 6 is formed by a method different from that for the first to fourth light scattering layers 51 to 54. may be formed.

<比較例に係る周面発光線状導光体3Aの構成>
図7は、比較例に係る周面発光線状導光体3Aを示す断面図である。この周面発光線状導光体3Aは、上記の実施の形態に係る周面発光線状導光体3と同様に、コア41の一部がクラッド42から露出した光ファイバ4を備えており、多数の光散乱粒子500が分散混合された光散乱部材5Aがコア41の周囲に形成されているが、コア41の先端面が凸曲面化されておらず、長手方向に対して垂直な切断面41cのままとなっている。また、光散乱部材5Aの構成が上記の実施の形態に係る光散乱部材5と異なり、光散乱粒子500の混合割合が全体にわたって均一な単層構造となっている。光散乱部材5Aは、保護コート層6Aに覆われている。
<Structure of Peripheral Light Emitting Linear Light Guide 3A According to Comparative Example>
FIG. 7 is a cross-sectional view showing a peripheral surface emitting linear light guide 3A according to a comparative example. This circumferential surface emitting linear light guide 3A includes an optical fiber 4 having a core 41 partially exposed from a clad 42, like the circumferential surface emitting linear light guide 3 according to the above embodiment. , the light scattering member 5A in which a large number of light scattering particles 500 are dispersed and mixed is formed around the core 41, but the tip surface of the core 41 is not convexly curved, and the cutting perpendicular to the longitudinal direction is performed. The surface 41c remains as it is. Further, unlike the light scattering member 5 according to the above embodiment, the light scattering member 5A has a single layer structure in which the mixing ratio of the light scattering particles 500 is uniform throughout. The light scattering member 5A is covered with a protective coat layer 6A.

周面発光線状導光体3Aの光散乱部材5Aは、実施の形態に係る周面発光線状導光体3の光散乱部材5と同様に、多数の光散乱粒子が分散混合された液状の基材をコア41に付着させた後、基材を加熱によって硬化させることにより形成されるが、切断面41cを覆う部分の光散乱部材5Aは、硬化前の液体の状態における表面張力により、半球状に形成される。このため、コア41の切断面41cを覆う光散乱部材5Aが厚くなっている。 The light scattering member 5A of the peripheral surface emitting linear light guide 3A is, like the light scattering member 5 of the peripheral surface emitting linear light guide 3 according to the embodiment, a liquid material in which a large number of light scattering particles are dispersed and mixed. is adhered to the core 41, and then the base material is cured by heating. Formed in a hemispherical shape. Therefore, the light scattering member 5A covering the cut surface 41c of the core 41 is thick.

<実施の形態及び比較例に係る周面発光線状導光体3,3Aの光強度分布>
図8は、上記の実施の形態に係る周面発光線状導光体3、及び比較例に係る周面発光線状導光体3Aの軸方向における光強度分布を測定する測定方法を示す説明図である。図8では、一例として周面発光線状導光体3の測定時の状態を示しているが、比較例に係る周面発光線状導光体3Aについても同様にして光強度分布を測定する。
<Light Intensity Distribution of Peripheral Light Emitting Linear Light Guides 3, 3A According to Embodiment and Comparative Example>
FIG. 8 is an explanation showing a measuring method for measuring the light intensity distribution in the axial direction of the peripheral surface emitting linear light guide 3 according to the above embodiment and the peripheral surface emitting linear light guide 3A according to the comparative example. It is a diagram. FIG. 8 shows the state during measurement of the peripheral surface emitting linear light guide 3 as an example, but the light intensity distribution is similarly measured for the peripheral surface emitting linear light guide 3A according to the comparative example. .

この測定方法では、光源21で発生したレーザ光Lrを光ファイバ4の基端部4aからコア41に入射させ、周面発光線状導光体3,3Aの光散乱部材5,5Aからコア41の径方向に放射される光の強度を光パワーメータ92によって測定する。測定時には、光パワーメータ92をコア41と平行なX方向に移動させ、複数のX方向位置で光の強度を測定する。 In this measurement method, the laser light Lr generated by the light source 21 is made incident on the core 41 from the base end portion 4a of the optical fiber 4, The intensity of the radially emitted light is measured by an optical power meter 92 . During measurement, the optical power meter 92 is moved in the X direction parallel to the core 41, and the intensity of light is measured at a plurality of positions in the X direction.

図7及び図8において、Xは、コア41がクラッド42から露出した箇所(クラッド42の端部)のX方向の位置を示している。Xは、X方向における光散乱部材5,5Aのクラッド42側の端部の位置を示している。Xは、コア41の最先端部のX方向の位置(周面発光線状導光体3におけるコア41の先端面41bの頂点41bの位置、及び周面発光線状導光体3Aにおけるコア41の切断面41cの位置)を示している。また、Xは、X方向における光散乱部材5,5Aのクラッド42側とは反対側の端部の位置を示している。 7 and 8, X0 indicates the position in the X direction of the portion where the core 41 is exposed from the clad 42 (the end of the clad 42). X1 indicates the position of the end of the light scattering member 5, 5A on the clad 42 side in the X direction. X 2 is the position of the tip end of the core 41 in the X direction (the position of the vertex 41b0 of the tip surface 41b of the core 41 in the peripheral surface emitting linear light guide 3 and the position of the peripheral surface emitting linear light guide 3A position of the cut surface 41c of the core 41). Also, X3 indicates the position of the end of the light scattering member 5, 5A on the side opposite to the clad 42 side in the X direction.

図9は、周面発光線状導光体3,3Aの光強度分布を示すグラフであり、横軸にX方向の位置を示し、縦軸に光パワーメータ92によって測定された光強度を示している。 FIG. 9 is a graph showing the light intensity distribution of the peripheral surface emitting linear light guides 3 and 3A, where the horizontal axis indicates the position in the X direction and the vertical axis indicates the light intensity measured by the optical power meter 92. ing.

図9に示すように、XとXとの間のX方向の範囲では、実施の形態に係る周面発光線状導光体3の光強度の極大値と極小値との差が、比較例に係る周面発光線状導光体3Aの光強度の極大値と極小値との差よりも小さく、光強度の均一性が高くなっている。これは、次のような理由によるものであると考えられる。 As shown in FIG. 9, in the range in the X direction between X1 and X2 , the difference between the maximum value and the minimum value of the light intensity of the peripheral surface emitting linear light guide 3 according to the embodiment is The difference between the maximum value and the minimum value of the light intensity of the peripheral surface emitting linear light guide 3A according to the comparative example is smaller, and the uniformity of the light intensity is higher. It is considered that this is due to the following reasons.

コア41の外周面41aから出射されて光散乱部材5,5Aに入射した光は、光散乱粒子500に当たらないで基材50を透過し、保護コート層6,6Aと大気との界面に到達すると、この界面で反射して再度コア41に入射する割合が大きい。光源21からコア41を伝搬して来た光は、コア41の軸方向に対する角度が浅いためである。しかし、光散乱部材5,5Aに入射した光が光散乱粒子500に当たると、光散乱粒子500がこの光を散乱させ、散乱光が比較的大きな角度で保護コート層6,6Aと大気との界面に当たる。これにより、光散乱粒子500で散乱された散乱光は、光散乱部材5,5A及び保護コート層6,6Aから外部に放射されやすい。 Light emitted from the outer peripheral surface 41a of the core 41 and incident on the light scattering members 5, 5A passes through the base material 50 without hitting the light scattering particles 500, and reaches the interface between the protective coating layers 6, 6A and the atmosphere. Then, there is a large proportion of the light reflected at this interface and incident on the core 41 again. This is because the light propagating through the core 41 from the light source 21 has a shallow angle with respect to the axial direction of the core 41 . However, when the light incident on the light scattering members 5 and 5A strikes the light scattering particles 500, the light scattering particles 500 scatter this light, and the scattered light scatters at a relatively large angle at the interface between the protective coating layers 6 and 6A and the atmosphere. hit. Accordingly, the scattered light scattered by the light scattering particles 500 is easily radiated to the outside from the light scattering members 5, 5A and the protective coating layers 6, 6A.

比較例に係る周面発光線状導光体3Aでは、コア41の外周面41aを覆う光散乱部材5Aの厚み及び光散乱粒子500の混合割合が軸方向の全体にわたって均一であるので、光パワーメータ92によって測定される光強度分布は、コア41から光散乱部材5Aに入射する光の強度分布に概ね一致する。コア41の外周面41aから出射される光は、X方向においてXの位置をX側に少し越えたあたりで極大となり、その後はコア41内を伝搬するにつれて徐々に弱くなるので、光散乱部材5Aから放射される光の強度も、これと同様に徐々に低下する。 In the peripheral surface emitting linear light guide 3A according to the comparative example, the thickness of the light scattering member 5A covering the outer peripheral surface 41a of the core 41 and the mixing ratio of the light scattering particles 500 are uniform throughout the axial direction. The light intensity distribution measured by the meter 92 roughly matches the intensity distribution of the light incident on the light scattering member 5A from the core 41. FIG. The light emitted from the outer peripheral surface 41a of the core 41 reaches a maximum when it slightly exceeds the position of X1 toward the X2 side in the X direction, and then gradually weakens as it propagates through the core 41. Therefore, light scattering Similarly, the intensity of the light emitted from the member 5A gradually decreases.

一方、実施の形態に係る周面発光線状導光体3では、コア41の外周における光散乱粒子500の量が第4の領域414の外周では少なく、第3の領域413、第2の領域412、第1の領域411の外周で徐々に多くなる。このため、コア41の第4の領域414における外周面41aから光散乱部材5に出射された光は、保護コート層6と大気との界面で反射してコア41に戻りやすい。一方、コア41の第1の領域411における外周面41aから光散乱部材5に出射された光は、光散乱粒子500に当たって反射され、保護コート層6の外部に放射されやすい。すなわち、周面発光線状導光体3では、コア41内における光の強度と光散乱部材5及び保護コート層6の外部への放射のされやすさとのバランスにより、XとXとの間のX方向の範囲でフラットな光強度分布が得られている。 On the other hand, in the peripheral surface emitting linear light guide 3 according to the embodiment, the amount of the light scattering particles 500 on the outer periphery of the core 41 is small at the outer periphery of the fourth region 414, and the third region 413 and the second region 412 , the number gradually increases at the outer periphery of the first region 411 . Therefore, the light emitted from the outer peripheral surface 41 a of the fourth region 414 of the core 41 toward the light scattering member 5 is likely to be reflected at the interface between the protective coat layer 6 and the atmosphere and return to the core 41 . On the other hand, the light emitted from the outer peripheral surface 41 a of the first region 411 of the core 41 toward the light scattering member 5 hits the light scattering particles 500 , is reflected, and is likely to be emitted to the outside of the protective coat layer 6 . That is, in the peripheral surface emitting linear light guide 3, the balance between the intensity of the light in the core 41 and the ease of radiation to the outside of the light scattering member 5 and the protective coating layer 6 results in a difference between X1 and X2 . A flat light intensity distribution is obtained in the range in the X direction between.

また、図9に示すように、Xの近傍では、比較例に係る周面発光線状導光体3Aの光強度が極端に大きくなっている。これは、比較例に係る周面発光線状導光体3Aでは、コア41の切断面41cで内部反射が起こりにくく、また切断面41cを覆う部分の光散乱部材5Aの厚みが大きいために、切断面41cから出射された光の大部分が光散乱部材5A及び保護コート層6の外部に放射されるためである。 Further, as shown in FIG. 9, in the vicinity of X2 , the light intensity of the peripheral surface emitting linear light guide 3A according to the comparative example is extremely high. This is because, in the peripheral surface emitting linear light guide 3A according to the comparative example, internal reflection is less likely to occur at the cut surface 41c of the core 41, and the thickness of the light scattering member 5A covering the cut surface 41c is large. This is because most of the light emitted from the cut surface 41 c is emitted to the outside of the light scattering member 5</b>A and the protective coat layer 6 .

一方、実施の形態に係る周面発光線状導光体3では、Xの近傍における光強度の極端な上昇が抑えられている。これは、実施の形態に係る周面発光線状導光体3では、その長手方向の先端部における光散乱部材5の外表面が半球状であるものの、コア41の先端面41bもまた半球状であるため、コア41の先端面41bを覆う部分の光散乱部材5が比較的薄いためである。 On the other hand, in the peripheral surface emitting linear light guide 3 according to the embodiment, an extreme increase in light intensity in the vicinity of X2 is suppressed. This is because, in the peripheral surface emitting linear light guide 3 according to the embodiment, the outer surface of the light scattering member 5 at the tip portion in the longitudinal direction is hemispherical, but the tip surface 41b of the core 41 is also hemispherical. Therefore, the portion of the light scattering member 5 that covers the tip surface 41b of the core 41 is relatively thin.

(実施の形態の作用及び効果)
以上説明した実施の形態によれば、コア41の先端面41bを覆う光散乱部材5の量が過大となることを抑制することができ、光ファイバ4の長手方向において光散乱部材5が形成された範囲におけるコア41の径方向への光の強度の均一性を高めることが可能となる。これにより、例えば図2に示すように周面発光線状導光体3が患部の治療に用いられる場合には、治療の精度と安全性を向上させることができる。
(Actions and effects of the embodiment)
According to the embodiment described above, it is possible to prevent the amount of the light scattering member 5 covering the tip surface 41b of the core 41 from becoming excessive, and the light scattering member 5 is formed in the longitudinal direction of the optical fiber 4. It is possible to improve the uniformity of the light intensity in the radial direction of the core 41 in the range. As a result, for example, when the peripheral surface emitting linear light guide 3 is used for treatment of an affected area as shown in FIG. 2, the accuracy and safety of treatment can be improved.

(変形例)
図10(a)~(c)は、コア41の先端部410の形状の変形例を示す断面図である。図10(d)は、上記の実施の形態に係る光ファイバ4のコア41の外周面41a及び先端面41bに単層構造の光散乱部材5Bを形成した変形例を示す断面図である。
(Modification)
10A to 10C are sectional views showing modifications of the shape of the tip portion 410 of the core 41. FIG. FIG. 10(d) is a cross-sectional view showing a modification in which a light scattering member 5B having a single-layer structure is formed on the outer peripheral surface 41a and the tip end surface 41b of the core 41 of the optical fiber 4 according to the above embodiment.

本発明は、コア41の先端面41bが正半球状に限らず、凸曲面状であれば、上記の効果を奏することができる。ここで、正半球状とは、先端面41bの全体がコア41の直径の半分の曲率半径を有する凸曲面であることをいう。図10(a)~(c)では、コア41の先端面が正半球状である場合の形状を仮想線Lで示している。図10(a)は、仮想線Lよりもコア41の先端面41bが軸方向に突出した場合を示し、図10(b)は、仮想線Lよりもコア41の先端面41bが軸方向に突出していない場合を示している。また、図10(c)は、先端面41bを含むコア41の先端部410の直径Dが、曲面化工程を行う前のコア41の直径Dよりも大径である場合を示している。 The present invention is not limited to having a regular hemispherical shape, and the present invention can achieve the above effects as long as the tip surface 41b of the core 41 has a convex curved shape. Here, the term “regular hemispherical shape” means that the entire tip surface 41b is a convex curved surface having a radius of curvature half the diameter of the core 41 . In FIGS. 10(a) to 10(c), the shape of the core 41 having a regular hemispherical tip surface is indicated by an imaginary line L. As shown in FIG. 10(a) shows a case where the tip surface 41b of the core 41 protrudes in the axial direction from the imaginary line L, and FIG. It shows the case where it does not protrude. Also, FIG. 10(c) shows a case where the diameter D1 of the tip portion 410 of the core 41 including the tip surface 41b is larger than the diameter D2 of the core 41 before performing the curving process. .

コア41が図10(a)~(c)のような形状であっても、コア41の先端面41bを覆う光散乱部材の量が過大となることを抑制することができ、コア41の径方向への光の強度の均一性を高めることが可能となる。なお、図10(c)に示すようにコア41の先端部410の直径Dが曲面化工程を行う前のコア41の直径Dよりも大径である場合には、この直径Dの部分の外周に光散乱部材及び保護コート層を形成した際の全体の外径がシース43の外径を越えないことが望ましい。 Even if the core 41 has a shape as shown in FIGS. It becomes possible to improve the uniformity of the light intensity in the direction. In addition, as shown in FIG. 10(c), when the diameter D1 of the tip portion 410 of the core 41 is larger than the diameter D2 of the core 41 before performing the curving process, the diameter D1 It is desirable that the outer diameter of the whole when the light scattering member and the protective coating layer are formed on the outer periphery of the portion does not exceed the outer diameter of the sheath 43 .

また、図10(d)に示すように、コア41の外周面41a及び先端面41bに単層構造の光散乱部材5Bが形成されていても、コア41の先端面41bを覆う光散乱部材の量が過大となることを抑制することができ、上記の比較例に比較して、コア41の径方向への光の強度の均一性を高めることが可能となる。なお、図10(d)の図示例では、コア41の外周面41aを覆う光散乱部材5Bの厚みが均一である場合を示しているが、例えば外周面41aを覆う光散乱部材5Bの厚みがコア41の先端部410側ほど厚くなるようにしてもよい。 Further, as shown in FIG. 10(d), even if the light scattering member 5B having a single-layer structure is formed on the outer peripheral surface 41a and the tip end surface 41b of the core 41, the light scattering member covering the tip end surface 41b of the core 41 is not provided. An excessive amount can be suppressed, and the uniformity of the light intensity in the radial direction of the core 41 can be improved as compared with the above comparative example. In the illustrated example of FIG. 10(d), the thickness of the light scattering member 5B covering the outer peripheral surface 41a of the core 41 is uniform. The core 41 may be thicker toward the tip 410 side.

(実施の形態のまとめ)
次に、以上説明した実施の形態から把握される技術思想について、実施の形態における符号等を援用して記載する。ただし、以下の記載における各符号は、特許請求の範囲における構成要素を実施の形態に具体的に示した部材等に限定するものではない。
(Summary of embodiment)
Next, technical ideas understood from the embodiments described above will be described with reference to the reference numerals and the like in the embodiments. However, each reference numeral in the following description does not limit the constituent elements in the claims to the members and the like specifically shown in the embodiment.

[1]長手方向の一端部においてコア(41)がクラッド(42)から露出した光ファイバ(4)と、前記クラッド(42)から露出した部分の前記コア(41)の外周面(41a)の少なくとも一部を前記コア(41)の先端面(41b)と共に所定の軸方向長さ範囲にわたって覆う光散乱部材(5,5B)とを備え、前記コア(41)から出射された光が前記光散乱部材(5)によって散乱放射される周面発光線状導光体(3)であって、前記コア(41)の前記先端面(41b)が凸曲面状である、周面発光線状導光体(3)。 [1] An optical fiber (4) in which the core (41) is exposed from the clad (42) at one end in the longitudinal direction, and an outer peripheral surface (41a) of the core (41) exposed from the clad (42) a light scattering member (5, 5B) covering at least a part of the core (41) together with the tip surface (41b) of the core (41) over a predetermined axial length range, and the light emitted from the core (41) A circumferential surface emitting linear light guide (3) for scattered radiation by a scattering member (5), wherein the tip surface (41b) of the core (41) is convexly curved. Light body (3).

[2]前記コア(3)の前記外周面(41a)における前記光散乱部材(5)の径方向の厚みが、前記コア(41)の先端部(410)側ほど徐々に厚くなっている、上記[1]に記載の周面発光線状導光体(3)。 [2] The radial thickness of the light scattering member (5) on the outer peripheral surface (41a) of the core (3) gradually increases toward the tip (410) side of the core (41). The peripheral surface emitting linear light guide (3) according to the above [1].

[3]前記光散乱部材(5)がn個(nは2以上の自然数)の層からなり、前記コア(42)の前記先端面(41b)に形成された前記光散乱部材(5)の層数がnであり、前記コア(41)の前記外周面(41a)に形成された前記光散乱部材(5)の層数が前記先端部(410)側から前記クラッド(42)側に向かって徐々に少なくなる、上記[2]に記載の周面発光線状導光体(3)。 [3] The light scattering member (5) is composed of n layers (n is a natural number of 2 or more), and the light scattering member (5) is formed on the tip surface (41b) of the core (42). The number of layers is n, and the number of layers of the light scattering member (5) formed on the outer peripheral surface (41a) of the core (41) increases from the tip (410) side toward the clad (42) side. The peripheral surface emitting linear light guide (3) according to the above [2], which gradually decreases as the number increases.

[4]上記[1]乃至[3]の何れかに記載の周面発光線状導光体(3)を製造する製造方法であって、前記光ファイバ(4)の端部の前記クラッド(42)を除去して前記コア(41)を露出させる露出工程と、前記コア(41)の前記先端面(41b)を凸曲面化する曲面化工程と、前記コア(41)の周囲に前記光散乱部材(5)を形成する光散乱部材形成工程とを有し、前記曲面化工程において、前記コア(41)の先端部(410)を加熱して溶融させた後に冷却して硬化させることで前記コア(41)の前記先端面(41b)を凸曲面化する、周面発光線状導光体(3)の製造方法。 [4] A manufacturing method for manufacturing the peripheral surface emitting linear light guide (3) according to any one of [1] to [3] above, wherein the clad (4) at the end of the optical fiber (4) 42) is removed to expose the core (41); a surface forming step is to form the tip surface (41b) of the core (41) into a convex surface; a light scattering member forming step of forming a scattering member (5), and in the curving step, the tip (410) of the core (41) is heated to melt and then cooled to harden. A method for manufacturing a peripheral surface emitting linear light guide (3), wherein the tip surface (41b) of the core (41) is convexly curved.

[5]前記光散乱部材(5)は、前記コア(41)よりも屈折率が高い熱硬化性の樹脂に光散乱粒子(500)が分散混合されたものであり、前記光散乱部材形成工程は、前記コア(41)を前記先端部(410)が鉛直方向下方となるように支持しつつ前記コア(41)の周囲に液状の前記光散乱部材(5)を付着させ、当該付着させた前記光散乱部材(5)を加熱して硬化させる工程である、上記[4]に記載の周面発光線状導光体(3)の製造方法。 [5] The light scattering member (5) is formed by dispersing and mixing light scattering particles (500) in a thermosetting resin having a refractive index higher than that of the core (41). supports the core (41) so that the tip portion (410) faces vertically downward, and adheres the liquid light scattering member (5) around the core (41) to adhere the light scattering member (5). The method for producing a peripheral surface emitting linear light guide (3) according to the above [4], which is a step of heating and curing the light scattering member (5).

以上、本発明の実施の形態を説明したが、上記に記載した実施の形態は特許請求の範囲に係る発明を限定するものではない。また、実施の形態の中で説明した特徴の組合せの全てが発明の課題を解決するための手段に必須であるとは限らない点に留意すべきである。 Although the embodiments of the present invention have been described above, the embodiments described above do not limit the invention according to the scope of claims. Also, it should be noted that not all combinations of features described in the embodiments are essential to the means for solving the problems of the invention.

3…周面発光線状導光体
4…光ファイバ
41…コア
410…先端部
411~414…第1乃至第4の領域
41a…外周面
41b…先端面
42…クラッド
5,5A,5B…光散乱部材
50…基材
50L…液状の基材
500…光散乱粒子
51~54…第1乃至第4の光散乱層
6…保護コート層
3... Peripheral light-emitting linear light guide 4... Optical fiber 41... Core 410... Tip parts 411 to 414... First to fourth regions 41a... Outer peripheral surface 41b... Tip surface 42... Clads 5, 5A, 5B... Light Scattering member 50 Base material 50L Liquid base material 500 Light scattering particles 51 to 54 First to fourth light scattering layers 6 Protective coating layer

Claims (5)

長手方向の一端部においてコアがクラッドから露出した光ファイバと、前記クラッドから露出した部分の前記コアの外周面の少なくとも一部を前記コアの先端面と共に所定の軸方向長さ範囲にわたって覆う光散乱部材とを備え、前記コアから出射された光が前記光散乱部材によって散乱放射される周面発光線状導光体であって、
前記コアの前記先端面が凸曲面状である、
周面発光線状導光体。
An optical fiber in which the core is exposed from the clad at one end in the longitudinal direction, and light scattering that covers at least a part of the outer peripheral surface of the core exposed from the clad together with the tip surface of the core over a predetermined axial length range. A peripheral surface emitting linear light guide in which light emitted from the core is scattered and emitted by the light scattering member,
wherein the tip surface of the core is convexly curved;
Peripheral emitting linear light guide.
前記コアの前記外周面における前記光散乱部材の径方向の厚みが、前記コアの先端部側ほど徐々に厚くなっている、
請求項1に記載の周面発光線状導光体。
The radial thickness of the light scattering member on the outer peripheral surface of the core gradually increases toward the tip end of the core.
The peripherally emitting linear light guide according to claim 1.
前記光散乱部材がn個(nは2以上の自然数)の層からなり、前記コアの前記先端面に形成された前記光散乱部材の層数がnであり、前記コアの前記外周面に形成された前記光散乱部材の層数が前記先端部側から前記クラッド側に向かって徐々に少なくなる、
請求項2に記載の周面発光線状導光体。
The light scattering member is composed of n layers (n is a natural number of 2 or more), the number of layers of the light scattering member formed on the tip end surface of the core is n, and the light scattering member is formed on the outer peripheral surface of the core. the number of layers of the light-scattering member thus formed gradually decreases from the tip portion side toward the clad side;
The peripherally emitting linear light guide according to claim 2.
請求項1乃至3の何れか1項に記載の周面発光線状導光体を製造する製造方法であって、
前記光ファイバの端部の前記クラッドを除去して前記コアを露出させる露出工程と、
前記コアの前記先端面を凸曲面化する曲面化工程と、
前記コアの周囲に前記光散乱部材を形成する光散乱部材形成工程とを有し、
前記曲面化工程において、前記コアの先端部を加熱して溶融させた後に冷却して硬化させることで前記コアの前記先端面を凸曲面化する、
周面発光線状導光体の製造方法。
A manufacturing method for manufacturing the peripheral surface emitting linear light guide according to any one of claims 1 to 3,
an exposing step of removing the cladding at the end of the optical fiber to expose the core;
a curved surface forming step of convexly curving the distal end surface of the core;
a light scattering member forming step of forming the light scattering member around the core;
In the curved surface forming step, the tip end surface of the core is formed into a convex surface by heating and melting the tip portion of the core and then cooling and hardening it.
A method for manufacturing a peripheral surface emitting linear light guide.
前記光散乱部材は、前記コアよりも屈折率が高い熱硬化性の樹脂に光散乱粒子が分散混合されたものであり、
前記光散乱部材形成工程は、前記コアを前記先端部が鉛直方向下方となるように支持しつつ前記コアの周囲に液状の前記光散乱部材を付着させ、当該付着させた前記光散乱部材を加熱して硬化させる工程である、
請求項4に記載の周面発光線状導光体の製造方法。
The light-scattering member is a thermosetting resin having a higher refractive index than the core and light-scattering particles dispersed and mixed,
The light-scattering member forming step includes attaching the liquid light-scattering member around the core while supporting the core so that the distal end faces downward in the vertical direction, and heating the attached light-scattering member. is a step of curing by
5. The method for manufacturing the peripheral surface emitting linear light guide according to claim 4.
JP2021129781A 2021-08-06 2021-08-06 Peripheral surface light-emission linear light guide body, and method for manufacturing the same Pending JP2023023869A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2021129781A JP2023023869A (en) 2021-08-06 2021-08-06 Peripheral surface light-emission linear light guide body, and method for manufacturing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2021129781A JP2023023869A (en) 2021-08-06 2021-08-06 Peripheral surface light-emission linear light guide body, and method for manufacturing the same

Publications (1)

Publication Number Publication Date
JP2023023869A true JP2023023869A (en) 2023-02-16

Family

ID=85203828

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2021129781A Pending JP2023023869A (en) 2021-08-06 2021-08-06 Peripheral surface light-emission linear light guide body, and method for manufacturing the same

Country Status (1)

Country Link
JP (1) JP2023023869A (en)

Similar Documents

Publication Publication Date Title
US10416366B2 (en) Light diffusing devices for use in photoimmunotherapy
RU2740793C2 (en) Light-scattering devices for use in photoimmunotherapy
JPH09236707A (en) Light diffusing device for optical fiber, manufacture and using method of optical fiber and device for diffusing light from optical fiber
AU2018297141B2 (en) Light diffusing devices for use in photoimmunotherapy
WO2009125767A1 (en) Light diffuser having coil form for shining light beam on organism tissue and light-diffusing device including the light diffuser
CN113286631A (en) Illumination system comprising a light guide with substantially radially emitting diffuser elements and method for manufacturing the same
US10018784B2 (en) Fiber-optic device and process for manufacturing the device
JP2023023869A (en) Peripheral surface light-emission linear light guide body, and method for manufacturing the same
JP2005087531A (en) Laser probe
JP2022158714A (en) Peripheral surface light emission linear light guide body and manufacturing method therefor
JP2021132754A (en) Optical fiber probe and optical fiber probe manufacturing method
JP2024076662A (en) Peripheral surface-emitting linear light guide and method for manufacturing the same
JP2023130599A (en) Peripheral surface light emission linear light guide body and manufacturing method thereof
JP2023131102A (en) Peripheral surface light emission linear light guide body
JP2008220435A (en) Optical irradiation fiber
WO2024204739A1 (en) Catheter, and catheter set and light-diffusing device including catheter
JP2024010346A (en) Light guide structure and method for manufacturing the same
WO2024203845A1 (en) Light diffusion device
WO2024177102A1 (en) Light diffusion device
WO2023281918A1 (en) Light-emitting medical apparatus
JP2023043181A (en) Illumination system including light guide body having diffuser element
JP2007159862A (en) Light irradiating chip and optical waveguide fiber body