JP2023128795A - Recovery method and method for manufacturing electricity storage device - Google Patents

Recovery method and method for manufacturing electricity storage device Download PDF

Info

Publication number
JP2023128795A
JP2023128795A JP2022033400A JP2022033400A JP2023128795A JP 2023128795 A JP2023128795 A JP 2023128795A JP 2022033400 A JP2022033400 A JP 2022033400A JP 2022033400 A JP2022033400 A JP 2022033400A JP 2023128795 A JP2023128795 A JP 2023128795A
Authority
JP
Japan
Prior art keywords
recovery
storage device
capacity
electricity storage
recovery agent
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2022033400A
Other languages
Japanese (ja)
Inventor
信宏 荻原
Nobuhiro Ogiwara
由香 山田
Yuka Yamada
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Central R&D Labs Inc
Original Assignee
Toyota Central R&D Labs Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Central R&D Labs Inc filed Critical Toyota Central R&D Labs Inc
Priority to JP2022033400A priority Critical patent/JP2023128795A/en
Publication of JP2023128795A publication Critical patent/JP2023128795A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Secondary Cells (AREA)

Abstract

To perform capacity recovery of a power storage device including an olivine-type active material.SOLUTION: A recovery method for recovering the capacity of a power storage device using metal ions as carrier ions includes a recovery process of injecting a recovery agent, which is a solution containing an aromatic hydrocarbon compound in a reduced state and a metal ion of the same type as a carrier ion at a predetermined temperature range where the solution temperature is higher than room temperature, applying a constant voltage, maintaining a predetermined voltage lower than the full charge voltage, and restoring energy storage device capacity.SELECTED DRAWING: Figure 1

Description

本明細書では、回復方法及び蓄電デバイスの製造方法を開示する。 This specification discloses a recovery method and a method for manufacturing an electricity storage device.

従来、長期保存や充放電サイクルによって容量が劣化した非水電解液二次電池などの蓄電デバイスの容量を回復させる方法として、正極及び負極の他に第三極を設け、第三極と正極とを外部短絡させ、第三極から正極にキャリアイオンを供給する方法が提案されている(例えば、特許文献1参照)。また、蓄電デバイスとしては、正極活物質としてオリビン型のリチウムリン酸鉄を用いたものが提案されている(例えば、特許文献2参照)。 Conventionally, as a method to restore the capacity of electricity storage devices such as nonaqueous electrolyte secondary batteries whose capacity has deteriorated due to long-term storage or charge/discharge cycles, a third electrode is provided in addition to the positive and negative electrodes, and the third electrode and the positive electrode are connected. A method has been proposed in which carrier ions are supplied from the third electrode to the positive electrode by external short-circuiting (see, for example, Patent Document 1). Further, as a power storage device, one using olivine-type lithium iron phosphate as a positive electrode active material has been proposed (see, for example, Patent Document 2).

特開2016-076358号公報Japanese Patent Application Publication No. 2016-076358 特開2009-104794号公報Japanese Patent Application Publication No. 2009-104794

しかしながら、特許文献1では、第三極を組み入れることにより、電池の構造が複雑になるなどの問題があった。このため、第三極を用いなくても容量を回復させることが求められていた。また、特許文献2のようなオリビン型の正極活物質に対して、劣化した容量を回復することができる新規な回復方法が望まれていた。 However, in Patent Document 1, there were problems such as the structure of the battery becoming complicated by incorporating the third electrode. For this reason, there has been a need to restore capacity without using a third electrode. Furthermore, there has been a desire for a novel recovery method that can recover degraded capacity for olivine-type positive electrode active materials such as those disclosed in Patent Document 2.

本開示はこのような課題を解決するためになされたものであり、オリビン型の活物質を含む蓄電デバイスの容量回復を実行する新規な回復方法及び蓄電デバイスの製造方法を提供することを主目的とする。 The present disclosure has been made to solve such problems, and the main purpose is to provide a novel recovery method for performing capacity recovery of a power storage device containing an olivine-type active material and a method for manufacturing a power storage device. shall be.

上述した目的を達成するために鋭意研究したところ、本発明者らは、還元状態の芳香族炭化水素化合物と、蓄電デバイスのキャリアイオンと同種の金属イオンと、を含む回復剤の溶液を、所定の温度範囲、所定の電圧範囲で蓄電デバイスに投入すると、劣化した容量を回復することができることを見出し、本開示を完成するに至った。 As a result of intensive research to achieve the above-mentioned object, the present inventors have found that a solution of a recovery agent containing a reduced aromatic hydrocarbon compound and a metal ion of the same type as the carrier ion of the electricity storage device is The present disclosure has been completed based on the discovery that the degraded capacity can be restored when the battery is charged into a power storage device at a temperature range of 100% and a predetermined voltage range.

即ち、本明細書で開示する蓄電デバイスの回復方法は、
金属イオンをキャリアイオンとする蓄電デバイスの容量を回復させる回復方法であって、
正極活物質としてオリビン型化合物を含む前記蓄電デバイスに対して、還元状態の芳香族炭化水素化合物と前記キャリアイオンと同種の金属イオンとを含む溶液である回復剤をその溶液温度が常温より高い所定の温度範囲で注入するとともに、定電圧印加により満充電電圧よりは低い所定電圧を保持し、前記蓄電デバイスの容量を回復させる回復工程、
を含むものである。
That is, the recovery method for a power storage device disclosed in this specification is as follows:
A recovery method for recovering the capacity of an electricity storage device using metal ions as carrier ions,
For the electricity storage device containing an olivine-type compound as a positive electrode active material, a recovery agent, which is a solution containing an aromatic hydrocarbon compound in a reduced state and a metal ion of the same type as the carrier ion, is added at a predetermined temperature where the solution temperature is higher than room temperature. a recovery step in which the capacity of the electricity storage device is restored by injecting the electricity in a temperature range of , and maintaining a predetermined voltage lower than the full charge voltage by applying a constant voltage;
This includes:

また、本明細書で開示する蓄電デバイスの製造方法は、
上述した回復方法により、金属イオンをキャリアイオンとする容量劣化した前記蓄電デバイスの容量を回復させる回復工程、
を含むものである。
Further, the method for manufacturing an electricity storage device disclosed in this specification includes:
A recovery step of recovering the capacity of the electricity storage device whose capacity has deteriorated using metal ions as carrier ions by the recovery method described above;
This includes:

この回復方法及び蓄電デバイスの製造方法では、オリビン型化合物の正極活物質を含む蓄電デバイスの容量回復を実行する新規なものを提供できる。このような効果が得られる理由は以下のように推察される。例えば、還元状態の芳香族炭化水素化合物と金属イオンとを含む回復剤は、蓄電デバイスに注入するだけで正極に直接作用して、正極に電子と金属イオンを供給する回復反応を生じる。この回復反応の駆動力は正極と回復剤との電位差であると考えられる。回復剤を注入するだけで定電圧印加を行わない場合には、正極に電子と金属イオンが供給されるのに伴い正極の電位が低下して正極と回復剤との電位差が小さくなる。一方、回復剤を注入するとともに定電圧印加によって所定電圧を維持する場合には、正極に電子と金属イオンが供給されても正極の電位が高い状態に保たれ、正極と回復剤との電位差が高い状態に保たれる。それにより、回復反応の駆動力が高い状態に保たれるため、より多くの金属イオンを電池内に供給できる。また、この回復処理において、回復剤の温度をより高い状態で用い、より高い電圧で回復処理を行うため、オリビン型化合物の正極活物質に対して十分容量を回復することができ、負極などへの影響がより少ないものと推察される。 With this recovery method and method for manufacturing an electricity storage device, it is possible to provide a novel method for recovering the capacity of an electricity storage device including a positive electrode active material of an olivine type compound. The reason why such an effect is obtained is surmised as follows. For example, a recovery agent containing a reduced aromatic hydrocarbon compound and metal ions acts directly on the positive electrode simply by being injected into the electricity storage device, causing a recovery reaction that supplies electrons and metal ions to the positive electrode. The driving force for this recovery reaction is considered to be the potential difference between the positive electrode and the recovery agent. When only injecting the recovery agent without applying a constant voltage, the potential of the positive electrode decreases as electrons and metal ions are supplied to the positive electrode, and the potential difference between the positive electrode and the recovery agent becomes small. On the other hand, when a recovery agent is injected and a predetermined voltage is maintained by applying a constant voltage, the potential of the positive electrode is kept high even if electrons and metal ions are supplied to the positive electrode, and the potential difference between the positive electrode and the recovery agent is reduced. kept high. As a result, the driving force for the recovery reaction is maintained at a high level, so that more metal ions can be supplied into the battery. In addition, in this recovery process, the recovery agent is used at a higher temperature and the recovery process is performed at a higher voltage, so the capacity can be fully recovered for the positive electrode active material of the olivine type compound, and the negative electrode etc. It is presumed that the impact is smaller.

蓄電デバイス20の一例を示す模式図。FIG. 2 is a schematic diagram showing an example of a power storage device 20. 回復反応のスキームの一例を示す説明図。An explanatory diagram showing an example of a recovery reaction scheme. 回復剤注入後の正極と回復剤との電位差△Erecの変化を概念的に示す説明図。An explanatory diagram conceptually showing a change in the potential difference ΔE rec between the positive electrode and the recovery agent after injection of the recovery agent. 実験例1~7の回復処理前後の充放電曲線。Charging and discharging curves before and after recovery treatment in Experimental Examples 1 to 7. 実験例1~7の回復処理後の容量変化の測定結果。Measurement results of capacity changes after recovery processing in Experimental Examples 1 to 7.

本明細書で開示する回復方法は、蓄電デバイスの容量を回復させる回復方法であって、回復剤を用いて蓄電デバイスの容量を回復させる回復工程、を含む。蓄電デバイスは、金属イオンをキャリアイオンとするものであれば特に限定されず、例えば、リチウム、ナトリウム、カリウムなどの第1族イオンや、マグネシウム、カルシウム、ストロンチウムなどの第2族イオンをキャリアイオンとするものとしてもよい。また、蓄電デバイスは、非水電解液二次電池としてもよく、リチウムイオン二次電池などのイオン二次電池や、リチウム金属二次電池などの金属二次電池などとしてもよい。以下では、一例として、蓄電デバイスがリチウムイオン二次電池である場合について主に説明する。 The recovery method disclosed in this specification is a recovery method for recovering the capacity of an electricity storage device, and includes a recovery step of recovering the capacity of the electricity storage device using a recovery agent. The power storage device is not particularly limited as long as it uses metal ions as carrier ions, and for example, it uses Group 1 ions such as lithium, sodium, and potassium, and Group 2 ions such as magnesium, calcium, and strontium as carrier ions. It may also be something to do. Further, the power storage device may be a non-aqueous electrolyte secondary battery, an ion secondary battery such as a lithium ion secondary battery, a metal secondary battery such as a lithium metal secondary battery, or the like. Below, as an example, a case where the power storage device is a lithium ion secondary battery will be mainly described.

(蓄電デバイス)
蓄電デバイスは、正極と、負極と、非水電解液とを備えている。正極は、リチウムイオンを吸蔵、放出しうる正極活物質を有するものとしてもよい。負極は、リチウムイオンを吸蔵・放出しうる負極活物質を有するものとしてもよい。非水電解液は、正極と負極との間に介在しリチウムイオンを伝導するものとしてもよい。
(Electricity storage device)
The electricity storage device includes a positive electrode, a negative electrode, and a non-aqueous electrolyte. The positive electrode may include a positive electrode active material that can insert and release lithium ions. The negative electrode may include a negative electrode active material capable of intercalating and deintercalating lithium ions. The non-aqueous electrolyte may be interposed between the positive electrode and the negative electrode to conduct lithium ions.

正極は、例えば正極活物質と導電材と結着材とを混合し、適当な溶剤を加えてペースト状の正極合材としたものを、集電体の表面に塗布乾燥し、必要に応じて電極密度を高めるべく圧縮して形成してもよい。この正極活物質は、オリビン型化合物であるものとしてもよく、例えば、リン酸鉄リチウムなどが挙げられる。このリン酸鉄リチウムは、マンガンなどの添加元素を添加したものとしてもよい。正極活物質は、酸化還元電位が、Li金属基準で3.5V以上としてもよく、4.0V以上としてもよい。 For the positive electrode, for example, a positive electrode active material, a conductive material, and a binder are mixed, an appropriate solvent is added to make a paste-like positive electrode mixture, and the mixture is applied and dried on the surface of a current collector, and then mixed as necessary. It may be formed by compression in order to increase the electrode density. This positive electrode active material may be an olivine type compound, such as lithium iron phosphate. This lithium iron phosphate may be added with an additional element such as manganese. The positive electrode active material may have an oxidation-reduction potential of 3.5 V or more, or 4.0 V or more based on Li metal.

正極において、導電材は、例えば、天然黒鉛(鱗状黒鉛、鱗片状黒鉛)や人造黒鉛などの黒鉛、アセチレンブラック、カーボンブラック、ケッチェンブラック、カーボンウィスカ、ニードルコークス、炭素繊維、金属(銅、ニッケル、アルミニウム、銀、金など)などの1種又は2種以上を混合したものを用いることができる。これらの中で、導電材としては、電子伝導性及び塗工性の観点より、カーボンブラック及びアセチレンブラックが好ましい。結着材は、活物質粒子及び導電材粒子を繋ぎ止める役割を果たすものであり、例えば、ポリテトラフルオロエチレン(PTFE)、ポリフッ化ビニリデン(PVdF)、フッ素ゴム等の含フッ素樹脂、或いはポリプロピレン、ポリエチレン等の熱可塑性樹脂、エチレンプロピレンジエンモノマー(EPDM)ゴム、スルホン化EPDMゴム、天然ブチルゴム(NBR)等を単独で、あるいは2種以上の混合物として用いることができる。また、水系バインダーであるセルロース系のカルボキシメチルセルロース(CMC)やスチレンブタジエン共重合体(SBR)、ポリビニルアルコールなどの水分散体等を用いることもできる。正極活物質、導電材、結着材を分散させる溶剤としては、例えばN-メチルピロリドン、ジメチルホルムアミド、ジメチルアセトアミド、メチルエチルケトン、シクロヘキサノン、酢酸メチル、アクリル酸メチル、ジエチレントリアミン、N,N-ジメチルアミノプロピルアミン、エチレンオキシド、テトラヒドロフランなどの有機溶剤を用いることができる。また、水に分散剤、増粘剤等を加え、SBRなどのラテックスで活物質をスラリー化してもよい。増粘剤としては、例えば、カルボキシメチルセルロース、メチルセルロースなどの多糖類を単独で、あるいは2種以上の混合物として用いることができる。塗布方法としては、例えば、アプリケータロールなどのローラコーティング、スクリーンコーティング、ドクターブレイド方式、スピンコーティング、バーコータなどが挙げられ、これらのいずれかを用いて任意の厚さ・形状とすることができる。正極合材の目付量は、特に限定されるものではないが、例えば、5mg/cm2超過としてもよく、6mg/cm2以上としてもよく、7mg/cm2以上としてもよい。正極合材の目付量は、例えば、20mg/cm2以下としてもよい。集電体としては、アルミニウム、チタン、ステンレス鋼、ニッケル、鉄、焼成炭素、導電性高分子、導電性ガラスなどのほか、接着性、導電性及び耐酸化性向上の目的で、アルミニウムや銅などの表面をカーボン、ニッケル、チタンや銀などで処理したものを用いることができる。これらについては、表面を酸化処理することも可能である。集電体の形状については、箔状、フィルム状、シート状、ネット状、パンチ又はエキスパンドされたもの、ラス体、多孔質体、発泡体、繊維群の形成体などが挙げられる。集電体の厚さは、例えば1~500μmのものが用いられる。 In the positive electrode, the conductive material is, for example, graphite such as natural graphite (scaly graphite, flaky graphite) or artificial graphite, acetylene black, carbon black, Ketjen black, carbon whisker, needle coke, carbon fiber, metal (copper, nickel), etc. , aluminum, silver, gold, etc.) or a mixture of two or more thereof can be used. Among these, carbon black and acetylene black are preferred as the conductive material from the viewpoint of electronic conductivity and coatability. The binder plays a role of binding the active material particles and the conductive material particles, and includes, for example, polytetrafluoroethylene (PTFE), polyvinylidene fluoride (PVdF), fluorine-containing resin such as fluororubber, or polypropylene, Thermoplastic resins such as polyethylene, ethylene propylene diene monomer (EPDM) rubber, sulfonated EPDM rubber, natural butyl rubber (NBR), etc. can be used alone or as a mixture of two or more. Further, an aqueous dispersion of cellulose-based carboxymethyl cellulose (CMC), styrene-butadiene copolymer (SBR), polyvinyl alcohol, etc., which is an aqueous binder, can also be used. Examples of solvents for dispersing the positive electrode active material, conductive material, and binder include N-methylpyrrolidone, dimethylformamide, dimethylacetamide, methylethylketone, cyclohexanone, methyl acetate, methyl acrylate, diethylenetriamine, and N,N-dimethylaminopropylamine. Organic solvents such as , ethylene oxide, and tetrahydrofuran can be used. Alternatively, the active material may be slurried with latex such as SBR by adding a dispersant, a thickener, etc. to water. As the thickener, for example, polysaccharides such as carboxymethyl cellulose and methyl cellulose can be used alone or as a mixture of two or more. Application methods include, for example, roller coating using an applicator roll, screen coating, doctor blade method, spin coating, bar coater, etc. Any of these methods can be used to obtain an arbitrary thickness and shape. The basis weight of the positive electrode composite material is not particularly limited, but may be, for example, more than 5 mg/cm 2 , more than 6 mg/cm 2 , or more than 7 mg/cm 2 . The basis weight of the positive electrode composite material may be, for example, 20 mg/cm 2 or less. Current collectors include aluminum, titanium, stainless steel, nickel, iron, sintered carbon, conductive polymers, conductive glass, etc., as well as aluminum, copper, etc. for the purpose of improving adhesiveness, conductivity, and oxidation resistance. It is possible to use materials whose surfaces have been treated with carbon, nickel, titanium, silver, etc. It is also possible to oxidize the surface of these materials. Examples of the shape of the current collector include foil, film, sheet, net, punched or expanded material, lath material, porous material, foam material, and fiber group formed material. The thickness of the current collector used is, for example, 1 to 500 μm.

負極は、負極活物質と集電体とを密着させて形成したものとしてもよいし、例えば負極活物質と導電材と結着材とを混合し、適当な溶剤を加えてペースト状の負極合材としたものを、集電体の表面に塗布乾燥し、必要に応じて電極密度を高めるべく圧縮して形成してもよい。負極活物質としては、リチウム、リチウム合金、スズ化合物などの無機化合物、リチウムイオンを吸蔵・放出可能な炭素質材料、複数の元素を含む複合酸化物、導電性ポリマーなどが挙げられる。炭素質材料は、例えば、コークス類、ガラス状炭素類、グラファイト類、難黒鉛化性炭素類、熱分解炭素類、炭素繊維などが挙げられる。このうち、人造黒鉛、天然黒鉛などのグラファイト類が、金属リチウムに近い作動電位を有し、高い作動電圧での充放電が可能であり支持塩としてリチウム塩を使用した場合に自己放電を抑え、且つ充電時における不可逆容量を少なくできるため、好ましい。複合酸化物としては、例えば、リチウムチタン複合酸化物やリチウムバナジウム複合酸化物などが挙げられる。負極活物質としては、このうち、炭素質材料が安全性の面から見て好ましい。また、負極に用いられる導電材、結着材、溶剤などは、それぞれ正極で例示したものを用いることができる。負極活物質は、酸化還元電位が、Li金属基準で1.0V以下のものとしてもよく、0.5V以下のものとしてもよく、0.3V以下のものとしてもよい。負極合材の目付量は、例えば、3mg/cm2超過としてもよく、4mg/cm2以上としてもよい。負極合材の目付量は、例えば、15mg/cm2以下としてもよい。負極の集電体には、銅、ニッケル、ステンレス鋼、チタン、アルミニウム、焼成炭素、導電性高分子、導電性ガラス、Al-Cd合金などのほか、接着性、導電性及び耐還元性向上の目的で、例えば銅などの表面をカーボン、ニッケル、チタンや銀などで処理したものも用いることができる。これらについては、表面を酸化処理することも可能である。集電体の形状は、正極と同様のものを用いることができる。 The negative electrode may be formed by closely adhering a negative electrode active material and a current collector, or, for example, by mixing a negative electrode active material, a conductive material, and a binding material, and adding an appropriate solvent to form a paste-like negative electrode composite. The material may be applied and dried on the surface of the current collector, and if necessary, compressed to increase the electrode density. Examples of negative electrode active materials include inorganic compounds such as lithium, lithium alloys, and tin compounds, carbonaceous materials capable of intercalating and deintercalating lithium ions, composite oxides containing multiple elements, and conductive polymers. Examples of carbonaceous materials include cokes, glassy carbons, graphites, non-graphitizable carbons, pyrolytic carbons, and carbon fibers. Among these, graphites such as artificial graphite and natural graphite have operating potentials close to those of metallic lithium, and can be charged and discharged at high operating voltages.When using lithium salts as supporting salts, they suppress self-discharge. In addition, it is preferable because irreversible capacity during charging can be reduced. Examples of the composite oxide include lithium titanium composite oxide and lithium vanadium composite oxide. Among these, carbonaceous materials are preferable as the negative electrode active material from the viewpoint of safety. Further, as the conductive material, binding material, solvent, etc. used in the negative electrode, those exemplified for the positive electrode can be used. The negative electrode active material may have an oxidation-reduction potential of 1.0 V or less, 0.5 V or less, or 0.3 V or less based on Li metal. The basis weight of the negative electrode composite material may be, for example, more than 3 mg/cm 2 or more than 4 mg/cm 2 . The basis weight of the negative electrode composite material may be, for example, 15 mg/cm 2 or less. The current collector of the negative electrode is made of copper, nickel, stainless steel, titanium, aluminum, fired carbon, conductive polymer, conductive glass, Al-Cd alloy, etc., as well as materials with improved adhesiveness, conductivity, and reduction resistance. For this purpose, for example, copper or the like whose surface is treated with carbon, nickel, titanium, silver, etc. can also be used. It is also possible to oxidize the surface of these materials. The shape of the current collector can be similar to that of the positive electrode.

非水電解液は、支持塩と有機溶媒とを含むものとしてもよい。支持塩としては、例えば、LiPF6、LiClO4、LiAsF6、LiBF4などの無機塩や、LiN(FSO22、LiN(CF3SO22、LiN(C25SO22などの有機塩が挙げられる。これらの支持塩は、単独で用いてもよいし、複数を組み合わせて用いてもよい。支持塩の濃度は、0.1~2.0Mであることが好ましく、0.8~1.2Mであることがより好ましい。有機溶媒としては、例えば、非プロトン性の有機溶媒を用いることができる。このような有機溶媒としては、例えば環状カーボネート、鎖状カーボネート、環状エステル、環状エーテル、鎖状エーテル等が挙げられる。環状カーボネートとしては、例えばエチレンカーボネート、プロピレンカーボネート、ブチレンカーボネート、ビニレンカーボネート等がある。鎖状カーボネートとしては、例えばジメチルカーボネート、ジエチルカーボネート、メチルエチルカーボネート等がある。環状エステルとしては、例えばガンマブチロラクトン、ガンマバレロラクトン等がある。環状エーテルとしては、例えばテトラヒドロフラン、2-メチルテトラヒドロフラン等がある。鎖状エーテルとしては、例えばジメトキシエタン、エチレングリコールジメチルエーテル等がある。これらは単独で用いてもよいし、複数を混合して用いてもよい。また、非水電解液としては、そのほかにアセトニトリル、プロピルニトリルなどのニトリル系溶媒やイオン液体、ゲル電解質などを用いてもよい。非水電解液は、例えば、被膜形成剤や難燃剤等の添加剤を含んでいてもよい。 The non-aqueous electrolyte may include a supporting salt and an organic solvent. Examples of supporting salts include inorganic salts such as LiPF 6 , LiClO 4 , LiAsF 6 , and LiBF 4 , LiN(FSO 2 ) 2 , LiN(CF 3 SO 2 ) 2 , and LiN(C 2 F 5 SO 2 ) 2 . Organic salts such as These supporting salts may be used alone or in combination. The concentration of the supporting salt is preferably 0.1 to 2.0M, more preferably 0.8 to 1.2M. As the organic solvent, for example, an aprotic organic solvent can be used. Examples of such organic solvents include cyclic carbonates, chain carbonates, cyclic esters, cyclic ethers, and chain ethers. Examples of the cyclic carbonate include ethylene carbonate, propylene carbonate, butylene carbonate, and vinylene carbonate. Examples of chain carbonates include dimethyl carbonate, diethyl carbonate, and methylethyl carbonate. Examples of the cyclic ester include gamma-butyrolactone and gamma-valerolactone. Examples of the cyclic ether include tetrahydrofuran and 2-methyltetrahydrofuran. Examples of chain ethers include dimethoxyethane and ethylene glycol dimethyl ether. These may be used alone or in combination. In addition, as the nonaqueous electrolyte, nitrile solvents such as acetonitrile and propylnitrile, ionic liquids, gel electrolytes, and the like may be used. The nonaqueous electrolyte may contain additives such as a film forming agent and a flame retardant.

蓄電デバイスは、正極と負極との間にセパレータを備えていてもよい。セパレータとしては、蓄電デバイスの使用範囲に耐えうる組成であれば特に限定されないが、例えば、ポリプロピレン製不織布やポリフェニレンスルフィド製不織布などの高分子不織布、ポリエチレンやポリプロピレンなどのオレフィン系樹脂の薄い微多孔膜が挙げられる。これらは単独で用いてもよいし、複数を混合して用いてもよい。 The electricity storage device may include a separator between the positive electrode and the negative electrode. The separator is not particularly limited as long as it has a composition that can withstand the usage range of power storage devices, but examples include polymeric nonwoven fabrics such as polypropylene nonwoven fabrics and polyphenylene sulfide nonwoven fabrics, and thin microporous membranes made of olefin resins such as polyethylene and polypropylene. can be mentioned. These may be used alone or in combination.

蓄電デバイスの形状は、特に限定されないが、例えばコイン型、ボタン型、シート型、積層型、円筒型、偏平型、角型などが挙げられる。また、電気自動車等に用いる大型のものなどに適用してもよい。図1は、蓄電デバイス20の一例を示す模式図である。この蓄電デバイス20は、カップ形状の電池ケース21と、正極活物質を有しこの電池ケース21の下部に設けられた正極22と、負極活物質を有し正極22に対してセパレータ24を介して対向する位置に設けられた負極23と、絶縁材により形成されたガスケット25と、電池ケース21の開口部に配設されガスケット25を介して電池ケース21を密封する封口板26と、を備えている。この蓄電デバイス20では、正極22と負極23との間の空間に非水電解液27が満たされている。 The shape of the power storage device is not particularly limited, and examples thereof include a coin shape, a button shape, a sheet shape, a stacked type, a cylindrical shape, a flat shape, a square shape, and the like. Further, the present invention may be applied to large-sized vehicles used in electric vehicles and the like. FIG. 1 is a schematic diagram showing an example of a power storage device 20. This electricity storage device 20 includes a cup-shaped battery case 21, a positive electrode 22 that has a positive electrode active material and is provided at the bottom of the battery case 21, and a negative electrode active material that is connected to the positive electrode 22 through a separator 24. A negative electrode 23 provided at opposing positions, a gasket 25 formed of an insulating material, and a sealing plate 26 disposed in the opening of the battery case 21 and sealing the battery case 21 via the gasket 25. There is. In this electricity storage device 20, the space between the positive electrode 22 and the negative electrode 23 is filled with a non-aqueous electrolyte 27.

(回復剤)
回復剤は、還元状態の芳香族炭化水素化合物と、蓄電デバイスのキャリアイオンと同種の金属イオンと、を含む溶液である。回復剤は、予め調製された回復剤でもよいし、回復剤を調製する調製工程で調製してもよい。回復剤において、還元状態の芳香族炭化水素化合物と金属イオンとは、解離していてもよいし、会合していてもよい。回復剤は、還元状態の芳香族炭化水素化合物と、蓄電デバイスのキャリアイオンと同種の金属イオンと、を含むアレーニド溶液の他に、電解液を含むものとしてもよい。回復剤は、電解液を含まず、アレーニド溶液のままとしてもよい。アレーニド溶液は、更に有機溶媒を含むものとしてもよい。
(Recovery agent)
The recovery agent is a solution containing an aromatic hydrocarbon compound in a reduced state and metal ions of the same type as the carrier ions of the electricity storage device. The restoring agent may be a restoring agent prepared in advance, or may be prepared in the preparation process of preparing the restoring agent. In the recovery agent, the reduced aromatic hydrocarbon compound and the metal ion may be dissociated or associated. The recovery agent may contain an electrolyte solution in addition to an arenide solution containing a reduced aromatic hydrocarbon compound and metal ions of the same type as the carrier ions of the electricity storage device. The recovery agent may be an arenide solution without containing an electrolyte. The arenide solution may further contain an organic solvent.

回復剤において、芳香族炭化水素化合物は、ポリアセン又はポリフェニルであることが好ましい。ポリアセンは複数のベンゼン環が縮合した構造を有する化合物であり、ナフタレン、アントラセン、テトラセン、ペンタセン等が挙げられる。ポリフェニルは複数のフェニル基が単結合により連結した構造を有する化合物であり、ビフェニル、オルトターフェニル、メタターフェニル、パラターフェニル、パラクアテルフェニル、パラキンキフェニル等が挙げられる。ポリアセンやポリフェニルは、芳香環上に置換基を有していてもよいし、芳香環内にヘテロ原子を含んでいてもよい。置換基としては、例えば、ハロゲン原子、アルキル基、アリール基、アルケニル基、アルコキシ基、アリールオキシ基、スルホニル基、アミノ基、シアノ基、カルボニル基、アシル基、アミド基、水酸基等が挙げられる。ヘテロ原子としては、窒素、酸素、硫黄などが挙げられる。芳香環内にヘテロ原子を含むポリアセンとしては、キノリン、クロメン、アクリジンなどが挙げられる。芳香環内にヘテロ原子を含むポリフェニルとしては、ビピリジンなどが挙げられる。芳香族炭化水素化合物は、上述したもののうち、ナフタレン、ビフェニル、アントラセン、オルトターフェニル、パラターフェニルのうち1以上であることが好ましく、ナフタレン及びビフェニルのうちの1以上であることがより好ましい。芳香族炭化水素化合物は、例えば、式(1)及び式(2)のうちの1以上としてもよい。還元状態の芳香族炭化水素化合物は、例えば上述の芳香族炭化水素化合物が還元された状態のもの(還元体とも称する)であり、例えばラジカルアニオンである。還元状態の芳香族炭化水素化合物は、例えば、式(1)の化合物の還元体及び式(2)の化合物の還元体のうちの1以上としてもよい。 In the recovery agent, the aromatic hydrocarbon compound is preferably polyacene or polyphenyl. Polyacene is a compound having a structure in which a plurality of benzene rings are condensed, and examples include naphthalene, anthracene, tetracene, and pentacene. Polyphenyl is a compound having a structure in which a plurality of phenyl groups are connected by single bonds, and includes biphenyl, orthoterphenyl, metaterphenyl, paraterphenyl, paraquaterphenyl, paraquinkyphenyl, and the like. Polyacene and polyphenyl may have a substituent on the aromatic ring or may contain a heteroatom within the aromatic ring. Examples of the substituent include a halogen atom, an alkyl group, an aryl group, an alkenyl group, an alkoxy group, an aryloxy group, a sulfonyl group, an amino group, a cyano group, a carbonyl group, an acyl group, an amide group, and a hydroxyl group. Examples of heteroatoms include nitrogen, oxygen, sulfur, and the like. Examples of polyacenes containing heteroatoms in the aromatic ring include quinoline, chromene, and acridine. Examples of polyphenyl containing a heteroatom in the aromatic ring include bipyridine. Among those mentioned above, the aromatic hydrocarbon compound is preferably one or more of naphthalene, biphenyl, anthracene, orthoterphenyl, and paraterphenyl, and more preferably one or more of naphthalene and biphenyl. The aromatic hydrocarbon compound may be, for example, one or more of formula (1) and formula (2). The aromatic hydrocarbon compound in a reduced state is, for example, the above-mentioned aromatic hydrocarbon compound in a reduced state (also referred to as a reduced product), and is, for example, a radical anion. The aromatic hydrocarbon compound in a reduced state may be, for example, one or more of the reduced form of the compound of formula (1) and the reduced form of the compound of formula (2).

Figure 2023128795000002
Figure 2023128795000002

回復剤において、金属イオンは、蓄電デバイスのキャリアイオンと同種であればよいが、リチウムイオン、ナトリウムイオン及びカリウムイオンなどのアルカリ金属イオンのうち1以上であることが好ましい。 In the recovery agent, the metal ions may be of the same type as the carrier ions of the electricity storage device, but are preferably one or more of alkali metal ions such as lithium ions, sodium ions, and potassium ions.

回復剤は、式(3)及び式(4)のうちの1以上の化合物を含むものとしてもよい。式(3)及び式(4)の化合物において、ラジカルアニオンの部分が上述の還元状態の芳香族炭化水素化合物であり、金属カチオンの部分が上述の金属イオンである。 The recovery agent may contain one or more compounds of formula (3) and formula (4). In the compounds of formula (3) and formula (4), the radical anion part is the above-mentioned reduced aromatic hydrocarbon compound, and the metal cation part is the above-mentioned metal ion.

Figure 2023128795000003
Figure 2023128795000003

回復剤は、有機溶媒を含むものとしてもよい。有機溶媒としては、エーテル骨格を有する溶媒が好ましく、環状エーテルでも鎖状エーテルでもよい。回復剤は、テトラヒドロフラン(THF)、ジメトキシエタン(DME)、ジエトキシエタン(DEE)、ジオキソラン(DOL)、ジオキサン(DOX)のうち1以上の溶媒を含むものとしてもよい。回復剤は、テトラヒドロフラン及びジメトキシエタンのうちの1以上の溶媒を含むことが好ましく、回復処理後の充放電特性の低下を抑制する観点からは、ジメトキシエタンがより好ましい。 The recovery agent may include an organic solvent. The organic solvent is preferably a solvent having an ether skeleton, and may be a cyclic ether or a chain ether. The recovery agent may include one or more solvents among tetrahydrofuran (THF), dimethoxyethane (DME), diethoxyethane (DEE), dioxolane (DOL), and dioxane (DOX). It is preferable that the recovery agent contains one or more solvents of tetrahydrofuran and dimethoxyethane, and dimethoxyethane is more preferable from the viewpoint of suppressing deterioration of charge/discharge characteristics after the recovery treatment.

回復剤は、溶媒中に、芳香族炭化水素化合物と、イオン状態ではなく金属状態の金属とを投入して得られたものとしてもよい。例えば、式(5)及び式(6)のうちの1以上により得られたものとしてもよい。より具体的には、式(7)~(9)のように、THF溶媒中で、ナフタレン、ジフェニル、ターフェニルとLi金属とを反応させたものとしてもよい。また、式(7)~(9)に準じて、DME溶媒中で、ナフタレン、ジフェニル、ターフェニルとLi金属とを反応させたものとしてもよい。こうすれば、還元状態の芳香族炭化水素化合物と金属イオンとを含む回復剤を容易に調製できる。回復剤は、溶媒に芳香族炭化水素化合物を投入して得られた前駆体に、金属を投入して調製してもよい。回復剤は、アルゴン雰囲気などの不活性雰囲気下で調製してもよい。回復剤は、露点が-20℃以下や、-40℃以下、-60℃以下などの低露点環境下で調製してもよい。回復剤は、溶媒と芳香族炭化水素化合物と金属とを撹拌して調製してもよく、その際、スターラーなどを用いてもよい。 The recovery agent may be obtained by adding an aromatic hydrocarbon compound and a metal in a metallic state rather than an ionic state into a solvent. For example, it may be obtained by one or more of formula (5) and formula (6). More specifically, as shown in formulas (7) to (9), naphthalene, diphenyl, or terphenyl may be reacted with Li metal in a THF solvent. Further, according to formulas (7) to (9), naphthalene, diphenyl, terphenyl and Li metal may be reacted in a DME solvent. In this way, a recovery agent containing a reduced aromatic hydrocarbon compound and metal ions can be easily prepared. The recovery agent may be prepared by adding a metal to a precursor obtained by adding an aromatic hydrocarbon compound to a solvent. The recovery agent may be prepared under an inert atmosphere such as an argon atmosphere. The recovery agent may be prepared in a low dew point environment such as a dew point of -20°C or lower, -40°C or lower, or -60°C or lower. The recovery agent may be prepared by stirring a solvent, an aromatic hydrocarbon compound, and a metal, and in this case, a stirrer or the like may be used.

上記説明した還元状態の芳香族炭化水素化合物と金属イオンと有機溶媒とを含む溶液を、アレーニド溶液とも称する。このアレーニド溶液は、そのまま原液で回復剤として使用してもよいし、電解液を混合してその還元力を調整した回復剤として使用してもよい。アレーニド溶液において、還元状態の芳香族炭化水素化合物及び金属イオンの濃度は、各々、0.05mol/L以上1.1mol/L以下としてもよく、0.1mol/L以上1.1mol/L以下としてもよく、0.5mol/L以上1.0mol/L以下としてもよい。また、この濃度は、溶解度以下としてもよい。また、回復剤に含まれる還元状体の芳香族炭化水素化合物のモル数MA(mol)と金属イオンのモル数MB(mol)との比MA/MBは、1/1とすることが好ましいが、1.1/1.0~1.0/1.1としてもよいし、1.2/1.0~1.0/1.2としてもよい。 The solution containing the aromatic hydrocarbon compound in the reduced state, the metal ion, and the organic solvent described above is also referred to as an arenide solution. This arenide solution may be used as a recovery agent in its original form, or may be mixed with an electrolyte solution to adjust its reducing power and used as a recovery agent. In the arenide solution, the concentration of the aromatic hydrocarbon compound and the metal ion in the reduced state may be 0.05 mol/L or more and 1.1 mol/L or less, and 0.1 mol/L or more and 1.1 mol/L or less, respectively. The amount may be 0.5 mol/L or more and 1.0 mol/L or less. Further, this concentration may be lower than the solubility. In addition, the ratio M A /MB of the number of moles M A (mol) of the aromatic hydrocarbon compound in the reduced form contained in the recovery agent and the number M B ( mol ) of moles of the metal ion is 1/1. The ratio is preferably 1.1/1.0 to 1.0/1.1, or 1.2/1.0 to 1.0/1.2.

回復剤がアレーニド溶液のほかに電解液を含む場合、電解液は、例えば、蓄電デバイスの非水系電解液で例示した非水電解液としてもよく、非水系電解液で例示した電池用溶媒と、非水系電解液で例示した支持塩と、を含むものとしてもよい。電解液に含まれる電池用溶媒は、アレーニド溶液の有機溶媒と異なるものであればよいが、環状カーボネート、鎖状カーボネート、環状エステルのうちの1以上が好ましく、環状カーボネート及び鎖状カーボネートのうちの1以上がより好ましい。電池用溶媒は、エチレンカーボネート、ジメチルカーボネート、エチルメチルカーボネートのうちの1以上としてもよい。電解液の支持塩は、アレーニド溶液の溶質と異なるものであればよいが、LiPF6などの無機塩としてもよいし、リチウムビス(フルオロスルホニル)イミド(LiFSI)や、リチウムビス(フルオロスルホニル)イミド(LiFSI)や、リチウムビス(トリフルオロメタンスルホニル)イミド(LiTFSI)などのイミド系アニオンを含むものなどが挙げられ、イミド系アニオンを含むものがより好ましい。電解液は、被膜形成剤や難燃剤等の添加剤を含んでもよい。電解液の組成は、回復対象の蓄電デバイスの非水系電解液と同じでもよいし、異なっていてもよい。回復剤が電解液を含む場合、電解液の含有量は、30体積%以上70体積%以下としてもよく、30体積%以上60体積%以下としてもよく、30体積%以上50体積%以下としてもよい。電解液を含む回復剤を調製する際には、アレーニド溶液と電解液とを混合すればよく、混合後、直ちに回復処理に用いることがより好ましい。アレーニド溶液と電解液とを混合した直後は、その溶液温度が、例えば、36℃以上45℃以下の範囲などに上昇し、蓄電デバイスの容量回復に好ましい。 When the recovery agent contains an electrolytic solution in addition to the arenide solution, the electrolytic solution may be, for example, a non-aqueous electrolytic solution as exemplified as a non-aqueous electrolytic solution for a power storage device, and a battery solvent as exemplified as a non-aqueous electrolytic solution, It may also contain a supporting salt exemplified as a non-aqueous electrolyte. The battery solvent contained in the electrolytic solution may be different from the organic solvent of the arenide solution, but is preferably one or more of cyclic carbonates, chain carbonates, and cyclic esters, and preferably one or more of cyclic carbonates, chain carbonates, and cyclic esters. More preferably 1 or more. The battery solvent may be one or more of ethylene carbonate, dimethyl carbonate, and ethyl methyl carbonate. The supporting salt of the electrolyte may be different from the solute of the arenide solution, but it may be an inorganic salt such as LiPF 6 or lithium bis(fluorosulfonyl)imide (LiFSI) or lithium bis(fluorosulfonyl)imide. (LiFSI) and lithium bis(trifluoromethanesulfonyl)imide (LiTFSI), which contain imide-based anions, and the like, and those containing imide-based anions are more preferable. The electrolyte may contain additives such as film forming agents and flame retardants. The composition of the electrolytic solution may be the same as or different from the non-aqueous electrolytic solution of the electricity storage device to be recovered. When the recovery agent contains an electrolyte, the content of the electrolyte may be 30 volume% or more and 70 volume% or less, 30 volume% or more and 60 volume% or less, or 30 volume% or more and 50 volume% or less. good. When preparing a recovery agent containing an electrolytic solution, the arenide solution and the electrolytic solution may be mixed, and it is more preferable to use the recovery agent immediately after mixing. Immediately after mixing the arenide solution and the electrolytic solution, the solution temperature rises to a range of, for example, 36° C. or higher and 45° C. or lower, which is preferable for capacity recovery of the electricity storage device.

回復剤は、酸化還元電位が負極の酸化還元電位よりも高く正極の酸化還元電位よりも低いものとしてもよい。回復剤の酸化還元電位は、例えばLi金属基準で0.5V以上2.5V以下としてもよいし、1.0V以上2.0V以下としてもよいし、1.2V以上1.9V以下としてもよい。 The recovery agent may have a redox potential higher than that of the negative electrode and lower than that of the positive electrode. The oxidation-reduction potential of the recovery agent may be, for example, 0.5 V or more and 2.5 V or less, 1.0 V or more and 2.0 V or less, or 1.2 V or more and 1.9 V or less based on Li metal, for example. .

(回復工程)
この工程では、蓄電デバイスに対して、回復剤の溶液温度が常温より高い所定の温度範囲でこの回復剤を注入するとともに、定電圧印加により満充電電圧より低い所定電圧を維持して、蓄電デバイスの容量を回復させる処理を行う。回復対象となる蓄電デバイスは、容量劣化した状態の電池(劣化電池とも称する)であり、例えば、蓄電デバイスの定格容量に対して容量劣化した状態の電池としてもよい。回復対象となる蓄電デバイスは、未使用品でも使用済み品でもよい。未使用品でも、長期保存などによって容量劣化することがある。
(Recovery process)
In this process, the recovery agent is injected into the energy storage device at a predetermined temperature range where the solution temperature of the recovery agent is higher than room temperature, and a predetermined voltage lower than the full charge voltage is maintained by applying a constant voltage to the energy storage device. Perform processing to restore capacity. The power storage device to be recovered is a battery whose capacity has deteriorated (also referred to as a degraded battery), and may be, for example, a battery whose capacity has deteriorated relative to the rated capacity of the power storage device. The power storage device to be recovered may be an unused product or a used product. Even if the product is unused, its capacity may deteriorate due to long-term storage.

回復剤の投入時の溶液温度は、常温(20℃など)より高い所定の温度範囲であるが、例えば、36℃以上45℃以下の温度範囲が好ましい。溶液温度が36℃以上では、回復剤に含まれる物質の析出やゲル化などをより抑制することができ、45℃以下では回復剤の変質をより抑制することができ、好ましい。また、回復剤がアレーニド溶液と電解液との混合液である場合は、アレーニド溶液と電解液との混合直後に蓄電デバイスに投入することが好ましい。これらの溶液の混合時には、温度上昇を伴い、蒸気温度範囲になるためである。混合直後とは、溶液温度が常温に低下する前であればよく、例えば、混合後5分以内や3分以内、2分以内などが挙げられる。 The solution temperature when the recovery agent is added is in a predetermined temperature range higher than normal temperature (20°C, etc.), and preferably in a temperature range of 36°C or higher and 45°C or lower, for example. When the solution temperature is 36° C. or higher, precipitation and gelation of substances contained in the recovery agent can be further suppressed, and when the solution temperature is 45° C. or lower, deterioration of the recovery agent can be further suppressed, which is preferable. In addition, when the recovery agent is a mixed solution of an arenide solution and an electrolyte solution, it is preferable to add it to the electricity storage device immediately after mixing the arenide solution and the electrolyte solution. This is because when these solutions are mixed, the temperature increases and the temperature falls within the vapor temperature range. Immediately after mixing may be any time before the solution temperature drops to room temperature, and includes, for example, within 5 minutes, 3 minutes, or 2 minutes after mixing.

回復工程において、定電圧保持の所定電圧は、満充電電圧よりは低い電圧であればよいが、正極の電位が回復剤の電位よりも高くなるような電圧であることが好ましい。満充電電圧は蓄電デバイス(劣化前電池)に設定された充電上限電圧としてもよい。所定電圧は、回復対象電池の構成等に応じて適宜定めればよいが、例えば、3.6V以上4.1V未満としてもよく、3.8V以上や、3.9V以上としてもよいし、4.0V以下としてもよい。定電圧保持する電圧が3.6V以上4.1V未満の範囲では、容量回復を十分に行うことができる。 In the recovery step, the predetermined voltage for maintaining a constant voltage may be a voltage lower than the full charge voltage, but it is preferably a voltage such that the potential of the positive electrode is higher than the potential of the recovery agent. The full charge voltage may be the upper limit charge voltage set for the power storage device (battery before deterioration). The predetermined voltage may be determined as appropriate depending on the configuration of the battery to be recovered, but may be, for example, 3.6 V or more and less than 4.1 V, 3.8 V or more, 3.9 V or more, or 4. It may be set to .0V or less. Capacity recovery can be sufficiently performed when the constant voltage is maintained in a range of 3.6 V or more and less than 4.1 V.

この工程では、回復剤を注入するのに先立って、蓄電デバイスを上述の所定電圧にする電圧調整を行ってもよい。その場合、例えば、定電流充電(CC充電)や定電流定電圧充電(CCCV充電)で充電して、蓄電デバイスの電圧調整を行ってもよい。この電圧調整を行わなくてもよいが、回復対象の蓄電デバイスの電圧は上述の所定電圧であることが好ましい。 In this step, prior to injecting the recovery agent, voltage adjustment may be performed to bring the electricity storage device to the above-mentioned predetermined voltage. In that case, for example, the voltage of the power storage device may be adjusted by charging with constant current charging (CC charging) or constant current constant voltage charging (CCCV charging). Although it is not necessary to perform this voltage adjustment, it is preferable that the voltage of the electricity storage device to be recovered is the above-mentioned predetermined voltage.

この工程では、回復剤を注入する際には、蓄電デバイスを開封して回復剤を注入し開封部を塞いでもよいし、蓄電デバイスに注射などで回復剤を注入し穿孔を塞いでもよい。回復剤を注入する際には、アルゴン雰囲気などの不活性雰囲気下で注入してもよい。回復剤は、少なくとも正極と接触するように注入すればよいが、非水電解液と混合させてもよい。回復剤の注入量は、蓄電デバイスの構成や、劣化度合いなどに応じて適宜定めることができる。回復剤の注入量は、例えば、蓄電デバイスに含まれる非水電解液の体積[mL]に対して、1%以上100%以下としてもよく、10%以上75%以下としてもよく、25%以上50%以下としてもよい。定電圧印加は、回復剤の注入前や回復剤の注入中から継続してもよいし、回復剤の注入後、正極への金属イオンの供給に伴う蓄電デバイスの電圧低下が無視できる程度に小さいうち(例えば5分以内、好ましくは3分以内、より好ましくは1分以内)に開始してもよい。定電圧印加時間は、蓄電デバイスの構成や、劣化度合い、回復剤の注入量などに応じて適宜定めることができる。例えば、回復剤の注入量は一定とし、蓄電デバイスの構成や劣化度合いに応じて定電圧印加時間を調整してもよい。定電圧印加時間は、例えば、1時間以上48時間以下としてもよく、6時間以上36時間以下としてもよく、12時間以上24時間以下としてもよい。なお、回復剤の注入完了前から定電圧印加する場合には、回復剤の注入が完了してからの定電圧印加時間を定電圧印加時間とする。 In this step, when injecting the recovery agent, the power storage device may be unsealed, the recovery agent may be injected, and the unsealed portion may be closed, or the recovery agent may be injected into the power storage device and the perforation may be closed. When injecting the recovery agent, it may be injected under an inert atmosphere such as an argon atmosphere. The recovery agent may be injected so as to be in contact with at least the positive electrode, but it may be mixed with the non-aqueous electrolyte. The injection amount of the recovery agent can be determined as appropriate depending on the configuration of the electricity storage device, the degree of deterioration, and the like. The injection amount of the recovery agent may be, for example, 1% or more and 100% or less, 10% or more and 75% or less, or 25% or more with respect to the volume [mL] of the non-aqueous electrolyte contained in the electricity storage device. It may be 50% or less. The constant voltage application may be continued before or during the injection of the recovery agent, or after the recovery agent is injected, the voltage drop in the electricity storage device due to the supply of metal ions to the positive electrode is so small that it can be ignored. (for example, within 5 minutes, preferably within 3 minutes, more preferably within 1 minute). The constant voltage application time can be appropriately determined depending on the configuration of the electricity storage device, the degree of deterioration, the amount of recovery agent injected, and the like. For example, the injection amount of the recovery agent may be constant, and the constant voltage application time may be adjusted depending on the configuration and degree of deterioration of the electricity storage device. The constant voltage application time may be, for example, 1 hour or more and 48 hours or less, 6 hours or more and 36 hours or less, or 12 hours or more and 24 hours or less. In addition, when applying a constant voltage before the injection of the recovery agent is completed, the constant voltage application time after the injection of the recovery agent is completed is defined as the constant voltage application time.

この工程で、回復剤を注入すると、例えば、図2に示すような回復反応が生じると考えられる。図2は、回復反応のスキームの一例を示す説明図であり、正極活物質がリン酸鉄リチウムのようなオリビン型化合物である場合のスキームを示す説明図である。図3は、回復剤注入後の正極と回復剤との電位差△Erecの変化を概念的に示す説明図であり、図3Aが回復剤注入後開回路状態で放置した場合の推定図であり、図3Bが回復剤注入とともに定電圧印加により所定電圧を維持した場合の推定図である。図2では、金属イオンをLi+、ラジカルアニオンをAre・-、オリビン型化合物をLin-yMePO4として説明する。図2に示すように、回復剤では、芳香族炭化水素化合物のラジカルアニオンと金属イオンとを含む化合物が、電子を供与する還元剤として機能するため、劣化した正極に作用させることで、還元剤から正極へ電子と金属イオンが供与され、容量を回復させることができる。ここで、仮に、回復剤を注入するだけで、定電圧印加を行わず開回路状態で放置した場合には、図3Aに示すように、回復反応の進行とともに正極電位が低下するため、反応の駆動力となる正極と回復剤との電位差△Erecが、回復反応の進行とともに△Erec.1>△Erec.2>△Erec.3と減少すると考えられる。このため、回復剤の効果は徐々に減衰すると考えられる。一方、回復剤を注入するとともに、定電圧印加により所定電圧を維持した場合には、図3Bに示すように、電池電圧を一定にすることにより正極電位の低下が抑制されるため、反応の駆動力となる正極と回復剤との電位差△Erecが、回復反応が進行しても△Erec.1≒△Erec.2≒△Erec.3と略一定に保たれると考えられる。このとき回復剤から正極に供与された電子は定電圧印加によって直ちに負極に送られ、それにともない正極に供給された金属イオンも負極に移動するため、正極では高い電位を保ったまま金属イオンや電子を受け入れる空の軌道が存在する。これにより、抵抗の比較的高い電極を用いた場合でも、電池容量を回復させながら(電池内の金属イオン量を増加させながら)も反応駆動力が高い状態を保つことができると考えられる。そのため、回復剤を有効に利用でき、回復後の電池の容量がより向上すると考えられる。また、定電圧印加によって芳香族炭化水素化合物のラジカルアニオンの活性が適度に抑えられたり、回復剤が有効に利用されることで芳香族炭化水素化合物のラジカルアニオンの残留が抑制されたりして、回復後の充放電特性の低下がより抑制されるものと考えられる。このように、蓄電デバイスの容量が回復し、容量が回復した蓄電デバイス(回復電池とも称する)が得られる。 In this step, when a recovery agent is injected, a recovery reaction as shown in FIG. 2, for example, is thought to occur. FIG. 2 is an explanatory diagram showing an example of a recovery reaction scheme, and is an explanatory diagram showing a scheme when the positive electrode active material is an olivine-type compound such as lithium iron phosphate. FIG. 3 is an explanatory diagram conceptually showing a change in the potential difference ΔE rec between the positive electrode and the restoring agent after the restoring agent is injected, and FIG. 3A is an estimated diagram when the restoring agent is left in an open circuit state after the restoring agent is injected. , FIG. 3B is an estimated diagram when a predetermined voltage is maintained by applying a constant voltage while injecting a restoring agent. In FIG. 2, the metal ion is described as Li + , the radical anion as Are·-, and the olivine type compound as Li ny MePO 4 . As shown in Figure 2, in the recovery agent, a compound containing a radical anion of an aromatic hydrocarbon compound and a metal ion functions as a reducing agent that donates electrons. Electrons and metal ions are donated to the positive electrode, allowing the capacity to be restored. If the recovery agent is simply injected and left in an open circuit state without applying a constant voltage, the positive electrode potential will decrease as the recovery reaction progresses, as shown in Figure 3A, and the reaction will slow down. It is considered that the potential difference ΔE rec between the positive electrode and the recovery agent, which serves as a driving force, decreases as the recovery reaction progresses to ΔE rec.1 > ΔE rec.2 > ΔE rec.3 . Therefore, it is thought that the effect of the recovery agent gradually diminishes. On the other hand, when a recovery agent is injected and a predetermined voltage is maintained by applying a constant voltage, as shown in FIG. It is considered that the potential difference △E rec between the positive electrode and the recovery agent, which acts as a force, is kept approximately constant as △E rec.1 ≒△E rec.2 ≒△E rec.3 even as the recovery reaction progresses. At this time, the electrons donated from the recovery agent to the positive electrode are immediately sent to the negative electrode by applying a constant voltage, and the metal ions supplied to the positive electrode also move to the negative electrode. There exists an empty orbit that accepts It is thought that this makes it possible to maintain a high reaction driving force while recovering the battery capacity (while increasing the amount of metal ions in the battery) even when using an electrode with relatively high resistance. Therefore, it is considered that the recovery agent can be used effectively and the capacity of the battery after recovery is further improved. In addition, the activity of radical anions of aromatic hydrocarbon compounds can be moderately suppressed by applying a constant voltage, and the residual radical anions of aromatic hydrocarbon compounds can be suppressed by effectively using a recovery agent. It is thought that the deterioration of charge-discharge characteristics after recovery is further suppressed. In this way, the capacity of the electricity storage device is recovered, and an electricity storage device (also referred to as a recovery battery) whose capacity has been recovered is obtained.

以上詳述した蓄電デバイスの回復方法では、所定の回復剤を注入することで、蓄電デバイスの容量を回復させることができる。この回復方法では、回復剤を注入するとともに定電圧印加によって所定電圧を維持することで、回復後の電池の容量をより向上させることができる。このような効果が得られる理由は以下のように推察される。例えば、還元状態の芳香族炭化水素化合物と金属イオンとを含む回復剤は、蓄電デバイスに注入するだけで正極に直接作用して、正極に電子と金属イオンを供給する回復反応を生じる。この回復反応の駆動力は正極と回復剤との電位差であると考えられる。回復剤を注入するだけで定電圧印加を行わない場合には、正極に電子と金属イオンが供給されるのに伴い正極の電位が低下して正極と回復剤との電位差が小さくなる。一方、回復剤を注入するとともに定電圧印加によって所定電圧を維持する場合には、正極に電子と金属イオンが供給されても正極の電位が高い状態に保たれ、正極と回復剤との電位差が高い状態に保たれる。それにより、回復反応の駆動力が高い状態に保たれるため、より多くの金属イオンを電池内に供給できる。更に、この回復処理において、回復剤の温度を常温より高い状態で用いて回復処理を行うため、回復剤のゲル化による流動性低下や、支持塩など含有成分の析出などをより抑制することができるため、回復剤の分散性をより高めることによってより高い回復効果を得ることができるものと推察される。更にまた、この回復処理において、より高い電圧で回復処理を行うため、オリビン型化合物の正極活物質に対して十分容量を回復することができ、負極などへの影響がより少ないものと推察される。 In the method for recovering an electricity storage device detailed above, the capacity of the electricity storage device can be recovered by injecting a predetermined recovery agent. In this recovery method, by injecting a recovery agent and maintaining a predetermined voltage by applying a constant voltage, the capacity of the battery after recovery can be further improved. The reason why such an effect is obtained is surmised as follows. For example, a recovery agent containing a reduced aromatic hydrocarbon compound and metal ions acts directly on the positive electrode simply by being injected into the electricity storage device, causing a recovery reaction that supplies electrons and metal ions to the positive electrode. The driving force for this recovery reaction is considered to be the potential difference between the positive electrode and the recovery agent. When only injecting the recovery agent without applying a constant voltage, the potential of the positive electrode decreases as electrons and metal ions are supplied to the positive electrode, and the potential difference between the positive electrode and the recovery agent becomes small. On the other hand, when a recovery agent is injected and a predetermined voltage is maintained by applying a constant voltage, the potential of the positive electrode is kept high even if electrons and metal ions are supplied to the positive electrode, and the potential difference between the positive electrode and the recovery agent is reduced. kept high. As a result, the driving force for the recovery reaction is maintained at a high level, so that more metal ions can be supplied into the battery. Furthermore, in this recovery treatment, since the recovery treatment is performed using the recovery agent at a temperature higher than room temperature, it is possible to further suppress fluidity reduction due to gelation of the recovery agent and precipitation of contained components such as supporting salts. Therefore, it is presumed that a higher recovery effect can be obtained by further increasing the dispersibility of the recovery agent. Furthermore, in this recovery process, since the recovery process is performed at a higher voltage, it is possible to sufficiently recover the capacity of the positive electrode active material of the olivine type compound, and it is presumed that there is less impact on the negative electrode etc. .

なお、本開示は上述した実施形態に何ら限定されることはなく、本開示の技術的範囲に属する限り種々の態様で実施し得ることはいうまでもない。 It goes without saying that the present disclosure is not limited to the embodiments described above, and can be implemented in various forms as long as they fall within the technical scope of the present disclosure.

例えば、上述した実施形態では、蓄電デバイスの回復方法について説明したが、この蓄電デバイスの回復方法では、容量劣化した蓄電デバイスを用い、容量が回復した新たな非水電解二次電池を製造することができる。このため、この回復方法は、蓄電デバイスの製造方法であるものとしてもよい。この製造方法は、上述の蓄電デバイスの回復方法における回復工程を実行して蓄電デバイスを製造してもよい。蓄電デバイスの製造方法は、金属イオンをキャリアイオンとする容量劣化した蓄電デバイスを準備する準備工程と、上述した蓄電デバイスの回復方法で蓄電デバイスの容量を回復させる回復工程と、を含むものとしてもよい。準備工程で準備する蓄電デバイスは、上述した実施形態で説明した劣化電池と同様とすることができる。 For example, in the embodiment described above, a method for recovering an electricity storage device has been described, but in this method for recovering an electricity storage device, a new non-aqueous electrolytic secondary battery with recovered capacity is manufactured using an electricity storage device whose capacity has been degraded. I can do it. Therefore, this recovery method may be a method for manufacturing a power storage device. In this manufacturing method, the power storage device may be manufactured by performing the recovery step in the above-described power storage device recovery method. The method for manufacturing a power storage device may include a preparation step of preparing a power storage device with degraded capacity using metal ions as carrier ions, and a recovery step of restoring the capacity of the power storage device using the above-described power storage device recovery method. good. The electricity storage device prepared in the preparation step can be the same as the degraded battery described in the embodiment described above.

以下には、本開示の蓄電デバイスの回復方法でリチウムイオン電池の回復を行った例を実施例として説明する。なお、実験例4~7が実施例に相当し、実験例1~3が比較例に相当する。本開示は以下の実施例に何ら限定されることはなく、本開示の技術的範囲に属する限り種々の態様で実施し得ることはいうまでもない。 Hereinafter, an example in which a lithium ion battery is recovered using the power storage device recovery method of the present disclosure will be described as an example. Note that Experimental Examples 4 to 7 correspond to Examples, and Experimental Examples 1 to 3 correspond to Comparative Examples. It goes without saying that the present disclosure is not limited to the following examples in any way, and can be implemented in various forms as long as they fall within the technical scope of the present disclosure.

[実験例1]
(蓄電デバイス(劣化前電池))
正極には、正極活物質としてのLiFePO4(LFP、合成品)を92質量%、導電材としてのアセチレンブラック(デンカ株式会社製)を5質量%、結着材としてのポリフッ化ビニリデン(クレハ製)を3質量%の割合で含む正極合材を、目付量7mg/cm2となるようにアルミ集電箔の片面に形成したものを用いた。負極には、負極活物質としての黒鉛(OMAC1.5s、大阪ガスケミカル製)を98質量%、結着材としてのカルボキシメチルセルロース(ダイセル製)を1質量%、結着材としてのスチレンブタジエンゴム(JSR製)を1質量%の割合で含む負極合材を、目付量4mg/cm2となるように銅集電箔の片面に形成したものを用いた。電解液には、エチレンカーボネートを30体積%、ジメチルカーボネートを40体積%、エチルメチルカーボネートを30体積%の割合で含む混合溶媒に、LiPF6を1.1Mの濃度となるように溶解させたものを用いた。正極と負極の間に、1mLの電解液を含侵させたポリプロピレンセパレータを挟み、ラミネートセルを作製した。これを劣化前電池とした。セルの電極面積は正極、負極ともに10cm2とした。劣化前電池の抵抗をデジタルマルチメータにて測定したところ、セル抵抗は10Ωcm2であった。この蓄電デバイスにおいて、電池構成に応じて定められる放電下限電圧は3.0Vであり充電上限電圧は4.1Vであった。
[Experiment example 1]
(Electricity storage device (battery before deterioration))
The positive electrode contained 92% by mass of LiFePO 4 (LFP, synthetic product) as a positive electrode active material, 5% by mass of acetylene black (manufactured by Denka Corporation) as a conductive material, and polyvinylidene fluoride (manufactured by Kureha Corporation) as a binder. ) was formed on one side of an aluminum current collector foil to have a basis weight of 7 mg/cm 2 . The negative electrode contained 98% by mass of graphite (OMAC1.5s, manufactured by Osaka Gas Chemicals) as a negative electrode active material, 1% by mass of carboxymethyl cellulose (manufactured by Daicel) as a binder, and styrene-butadiene rubber (as a binder). A negative electrode composite material containing 1% by mass of (manufactured by JSR) was used, which was formed on one side of a copper current collector foil so that the basis weight was 4 mg/cm 2 . The electrolyte was prepared by dissolving LiPF 6 to a concentration of 1.1M in a mixed solvent containing 30% by volume of ethylene carbonate, 40% by volume of dimethyl carbonate, and 30% by volume of ethyl methyl carbonate. was used. A laminate cell was prepared by sandwiching a polypropylene separator impregnated with 1 mL of electrolyte between the positive electrode and the negative electrode. This was used as a battery before deterioration. The electrode area of the cell was 10 cm 2 for both the positive and negative electrodes. When the resistance of the battery before deterioration was measured using a digital multimeter, the cell resistance was 10 Ωcm 2 . In this electricity storage device, the discharge lower limit voltage determined according to the battery configuration was 3.0V, and the charge upper limit voltage was 4.1V.

(劣化電池)
作製したラミネートセルにおいて、電圧範囲3.0Vから3.65Vでのセルの電気容量(12mAh)の50%に相当する容量(SOC=50%,6mAh)まで充電を行うことで、正極からLiを引き抜いて、模擬的に容量を減少させた状態の正極を得た(劣化正極とも称する)。その後セルを解体し、劣化正極を取り出したのち、この劣化正極を正極として用いた以外は劣化前電池の作製と同様にして、ラミネートセルを作製した。これを劣化電池とした。
(Deteriorated battery)
In the produced laminate cell, Li was removed from the positive electrode by charging it to a capacity (SOC = 50%, 6mAh) corresponding to 50% of the cell's electric capacity (12mAh) in a voltage range of 3.0V to 3.65V. By pulling it out, a positive electrode with a simulated capacity reduction was obtained (also referred to as a degraded positive electrode). Thereafter, the cell was disassembled and the degraded positive electrode was taken out, and then a laminate cell was produced in the same manner as in the production of the battery before degradation, except that this degraded positive electrode was used as the positive electrode. This was used as a degraded battery.

(回復剤)
不活性雰囲気下において、ジメトキシエタン(DME)溶媒に対して1.0mol/Lになるようにナフタレンを溶解させ、その後、1.0mol/Lに相当するリチウム金属を加えて撹拌し、上記式(7)に示す反応により、アレーニド溶液である濃緑色のラジカルアニオン液体組成物(リチウムナフタレニド/DME)を調製した。その後、アレーニド溶液と上記電解液を体積比で5:5となるように混合して、回復剤を調製した。なお、電解液に含まれる支持塩は、LiPF6のほか、リチウム ビス(フルオロスルホニル)イミド(LiFSI)を用いた。また、アレーニド溶液の溶媒として、DMEの代わりにテトラヒドロフラン(THF)を用いた以外は上述と同様の処理を行い、ラジカルアニオン液体組成物(リチウムナフタレニド/THF)を調製した。
(Recovery agent)
Under an inert atmosphere, naphthalene is dissolved in dimethoxyethane (DME) solvent to a concentration of 1.0 mol/L, and then lithium metal corresponding to 1.0 mol/L is added and stirred to form the above formula ( A dark green radical anion liquid composition (lithium naphthalenide/DME), which is an arenide solution, was prepared by the reaction shown in 7). Thereafter, the arenide solution and the electrolytic solution were mixed at a volume ratio of 5:5 to prepare a recovery agent. In addition to LiPF 6 , lithium bis(fluorosulfonyl)imide (LiFSI) was used as the supporting salt contained in the electrolytic solution. Further, a radical anion liquid composition (lithium naphthalenide/THF) was prepared by performing the same treatment as described above except that tetrahydrofuran (THF) was used instead of DME as the solvent for the arenide solution.

(劣化電池の回復)
上記作製した劣化電池を表1に示すセル電圧に調整し、上記で作製した回復剤を0.5mLピペットにて投入し、表1に占めるセル電圧において定電圧保持あるいは開回路条件下で回復処理を24時間行った。投入前容量に対して、投入、処理後容量から処理前後の容量増加量を計算した。また、回復処理後、上記の3.0Vから3.65Vの電圧範囲において、1.2mAにて充放電試験を行い、放電容量を測定し、投入前の容量に対する容量変化(回復容量:mAh)を求めた。
(Recovery of deteriorated battery)
Adjust the degraded battery prepared above to the cell voltage shown in Table 1, inject the recovery agent prepared above with a 0.5 mL pipette, and perform recovery treatment under constant voltage maintenance or open circuit conditions at the cell voltage shown in Table 1. was carried out for 24 hours. The increase in capacity before and after treatment was calculated from the capacity before and after treatment. In addition, after the recovery process, a charge/discharge test was performed at 1.2 mA in the voltage range of 3.0 V to 3.65 V above, and the discharge capacity was measured. The change in capacity with respect to the capacity before charging (recovery capacity: mAh) I asked for

[実験例1~3]
上記の試験において、アレーニド溶液の溶媒をDMEとし、回復剤に含まれる電解液の支持塩をLiPF6とし、アレーニド溶液と電解液とを混合放置して回復剤温度を25℃とし、電圧3.6Vで定電圧保持したものを実験例1とした。また、回復剤に含まれる電解液の支持塩をLiFSIとし、回復剤投入後に開回路で回復処理した以外は実験例1と同様としたものを実験例2とした。また、回復剤に含まれる電解液の支持塩をLiFSIとした以外は実験例1と同様としたものを実験例3とした。
[Experiment Examples 1 to 3]
In the above test, the solvent of the arenide solution was DME, the supporting salt of the electrolyte contained in the recovery agent was LiPF 6 , the arenide solution and the electrolyte were mixed and left to stand, the temperature of the recovery agent was 25°C, and the voltage was 3. Experimental example 1 was obtained by maintaining a constant voltage of 6V. Further, Experimental Example 2 was prepared in the same manner as Experimental Example 1 except that the supporting salt of the electrolyte contained in the recovery agent was LiFSI and the recovery treatment was performed in an open circuit after the recovery agent was added. Further, Experimental Example 3 was the same as Experimental Example 1 except that the supporting salt of the electrolytic solution contained in the recovery agent was LiFSI.

[実験例4~7]
上記の試験において、アレーニド溶液の溶媒をDMEとし、回復剤に含まれる電解液の支持塩をLiFSIとし、アレーニド溶液と電解液とを混合直後に回復剤温度を40℃でセルへ投入し、電圧3.6Vで定電圧保持したものを実験例4とした。また、電圧4.0Vで定電圧保持した以外は実験例4と同様としたものを実験例5とした。また、回復剤に含まれる電解液の支持塩をLiPF6とした以外は実験例4と同様としたものを実験例6とした。また、アレーニド溶液の溶媒をTHFとした以外は実験例4と同様としたものを実験例7とした。
[Experiment Examples 4 to 7]
In the above test, the solvent of the arenide solution was DME, the supporting salt of the electrolyte contained in the recovery agent was LiFSI, and immediately after mixing the arenide solution and the electrolyte, the recovery agent was put into the cell at a temperature of 40°C, and the voltage was Experimental example 4 was one in which the voltage was maintained at a constant voltage of 3.6V. Further, Experimental Example 5 was the same as Experimental Example 4 except that the voltage was maintained at a constant voltage of 4.0V. Further, Experimental Example 6 was prepared in the same manner as Experimental Example 4 except that the supporting salt of the electrolyte contained in the recovery agent was LiPF 6 . Experimental Example 7 was the same as Experimental Example 4 except that THF was used as the solvent for the arenide solution.

[結果と考察]
実験例1~7のアレーニド溶液の組成、回復剤に加える電解液の支持塩、その混合比、劣化セルへの回復剤の投入時期及び投入時の回復剤の溶液温度、回復処理の電圧条件、電圧処理条件及び回復処理後の容量変化を表1にまとめた。図4は、実験例1~7の回復処理前後の充放電曲線であり、図4A~4Gがそれぞれ実験例1~7である。図5は、実験例1~7の回復処理後の容量変化の測定結果である。
[Results and discussion]
The composition of the arenide solutions of Experimental Examples 1 to 7, the supporting salt of the electrolyte added to the recovery agent, the mixing ratio thereof, the timing of introducing the recovery agent into the deteriorated cell and the solution temperature of the recovery agent at the time of injection, the voltage conditions of recovery treatment, Table 1 summarizes the voltage treatment conditions and the capacitance changes after the recovery treatment. FIG. 4 shows the charge/discharge curves before and after the recovery treatment for Experimental Examples 1 to 7, and FIGS. 4A to 4G are for Experimental Examples 1 to 7, respectively. FIG. 5 shows the measurement results of the capacitance changes after the recovery treatment in Experimental Examples 1 to 7.

表1、図4,5に示すように、実験例1~3における、回復剤の温度が低い、3.6Vのセル電圧での回復処理では、定電圧保持においても開回路保持においても、容量は回復せず、減少するものもあった。これは、3.6Vの回復条件では投入した回復剤の溶液の未反応物が残存し、負極部材を劣化させたためであると推察された。一方、回復剤の温度がより高い実験例4では、回復幅は小さいが容量回復できることがわかった。また、実験例5、6における、4.0Vでの定電圧処理によれば、より高い回復容量が得られることが分かった。これは、回復処理での定電圧保持のセル電圧を4.0Vとより高い電圧で保持することにより、投入したリチウムナフタレニドがLFP正極へ電子およびLi+を供給するのと同時に、未反応のリチウムナフタレニドを分解することで、容量回復とその後の副反応を防ぐことができたためであると推察された。また、実験例5,6の結果より、回復剤の溶液温度がより高ければ、容量回復効果に対する電解液の支持塩の種別の影響が少ないこともわかった。また、実験例7の結果より、アレーニド溶液の溶媒は、DMEやTHFでも、良好な回復容量が得られることがわかった。なお、回復剤は。その溶液温度が36℃未満において析出物が生じ、その流動性が低下することが確認された。 As shown in Table 1 and Figures 4 and 5, in the recovery treatment at a cell voltage of 3.6V in which the temperature of the recovery agent was low in Experimental Examples 1 to 3, the capacity did not recover, and some even decreased. This was presumed to be because under the recovery condition of 3.6V, unreacted substances of the solution of the recovery agent that had been introduced remained and deteriorated the negative electrode member. On the other hand, in Experimental Example 4 in which the temperature of the recovery agent was higher, it was found that the capacity could be recovered although the recovery width was small. Furthermore, it was found that higher recovery capacity could be obtained by constant voltage treatment at 4.0 V in Experimental Examples 5 and 6. By maintaining the constant voltage cell voltage at a higher voltage of 4.0 V during the recovery process, the introduced lithium naphthalenide supplies electrons and Li + to the LFP positive electrode, and at the same time unreacted It is assumed that this is because by decomposing the lithium naphthalenide, capacity recovery and subsequent side reactions could be prevented. Furthermore, from the results of Experimental Examples 5 and 6, it was found that the higher the solution temperature of the recovery agent, the less the influence of the type of supporting salt of the electrolytic solution on the capacity recovery effect. Moreover, from the results of Experimental Example 7, it was found that a good recovery capacity can be obtained even when the solvent of the arenide solution is DME or THF. In addition, the recovery agent. It was confirmed that when the solution temperature was lower than 36° C., precipitates were formed and the fluidity decreased.

実験例1~3に示すように、層状岩塩型のLiNi0.8Co0.15Al0.052(NCA)やLiNi1/3Co1/3Mn1/32(NCM)などと同様の処理条件での回復処理では、オリビン型のLiFePO4を正極活物質とする蓄電デバイスにおいては、十分な回復効果が得られなかった。一方、実験例4~7に示すように、LiFePO4を正極活物質とする蓄電デバイスにおいては、回復剤の溶液温度を36℃以上、更には40℃以上とし、回復剤の投入時から比較的高い3.6V~4.0Vの電圧で定電圧保持する回復処理を行えば、その容量回復を十分実行することができることが明らかとなった。また、回復剤に混合する電解液は、蓄電デバイスに用いられているのと同種の電池用溶媒を含み、イミド系のアニオンを含む支持塩を有するものが、より好ましいものと推察された。この点について、層状岩塩型の正極活物質では、抵抗が低いことから、回復剤の状態に係わらず回復効果が得られるものと推察される。一方、オリビン型の正極活物質では、層状岩塩型の正極活物質に比して抵抗が高いことから、回復剤の状態に影響を受け、層状岩塩型の正極活物質と同様の処理では回復効果が得られにくいことが一因として考えられた。 As shown in Experimental Examples 1 to 3, under the same treatment conditions as layered rock salt type LiNi 0.8 Co 0.15 Al 0.05 O 2 (NCA) and LiNi 1/3 Co 1/3 Mn 1/3 O 2 (NCM), etc. In the recovery treatment, a sufficient recovery effect could not be obtained in a power storage device using olivine-type LiFePO 4 as a positive electrode active material. On the other hand, as shown in Experimental Examples 4 to 7, in a power storage device using LiFePO 4 as a positive electrode active material, the solution temperature of the recovery agent is set to 36°C or higher, or even 40°C or higher, and the temperature is relatively high from the time of adding the recovery agent. It has become clear that the capacity recovery can be sufficiently performed by performing a recovery process that maintains a constant voltage at a high voltage of 3.6V to 4.0V. Further, it was inferred that it is more preferable for the electrolytic solution to be mixed with the recovery agent to contain the same type of battery solvent as that used in the electricity storage device, and to have a supporting salt containing an imide-based anion. In this regard, since the layered rock salt type positive electrode active material has low resistance, it is presumed that the recovery effect can be obtained regardless of the state of the recovery agent. On the other hand, since olivine-type positive electrode active materials have higher resistance than layered rock salt-type positive electrode active materials, they are affected by the state of the recovery agent, and the same treatment as for layered rock-salt-type positive electrode active materials has no recovery effect. This is thought to be because it is difficult to obtain.

Figure 2023128795000006
Figure 2023128795000006

20 蓄電デバイス、21 電池ケース、22 正極、23 負極、24 セパレータ、25 ガスケット、26 封口板、27 非水電解液。 20 electricity storage device, 21 battery case, 22 positive electrode, 23 negative electrode, 24 separator, 25 gasket, 26 sealing plate, 27 non-aqueous electrolyte.

Claims (8)

金属イオンをキャリアイオンとする蓄電デバイスの容量を回復させる回復方法であって、
正極活物質としてオリビン型化合物を含む前記蓄電デバイスに対して、還元状態の芳香族炭化水素化合物と前記キャリアイオンと同種の金属イオンとを含む溶液である回復剤をその溶液温度が常温より高い所定の温度範囲で注入するとともに、定電圧印加により満充電電圧よりは低い所定電圧を保持し、前記蓄電デバイスの容量を回復させる回復工程、
を含む回復方法。
A recovery method for recovering the capacity of an electricity storage device using metal ions as carrier ions,
For the electricity storage device containing an olivine-type compound as a positive electrode active material, a recovery agent, which is a solution containing an aromatic hydrocarbon compound in a reduced state and a metal ion of the same type as the carrier ion, is added at a predetermined temperature where the solution temperature is higher than room temperature. a recovery step in which the capacity of the electricity storage device is restored by injecting the electricity in a temperature range of , and maintaining a predetermined voltage lower than the full charge voltage by applying a constant voltage;
Recovery methods including.
前記回復工程では、36℃以上45℃以下の前記温度範囲の前記回復剤を注入する、請求項1に記載の回復方法。 The recovery method according to claim 1, wherein in the recovery step, the recovery agent having the temperature range of 36°C or more and 45°C or less is injected. 前記回復工程では、3.6V以上4.1V未満の範囲の前記所定電圧で定電圧印加する、請求項1又は2に記載の回復方法。 The recovery method according to claim 1 or 2, wherein in the recovery step, a constant voltage is applied at the predetermined voltage in a range of 3.6V or more and less than 4.1V. 前記回復工程では、前記還元状態の芳香族炭化水素化合物として式(1)の化合物の還元体及び式(2)の化合物の還元体のうちの1以上を含む前記回復剤を用いる、
請求項1~3のいずれか1項に記載の回復方法。
Figure 2023128795000007
In the recovery step, the recovery agent containing one or more of the reduced form of the compound of formula (1) and the reduced form of the compound of formula (2) is used as the aromatic hydrocarbon compound in the reduced state;
The recovery method according to any one of claims 1 to 3.
Figure 2023128795000007
前記回復工程では、前記還元状態の芳香族炭化水素化合物と前記キャリアイオンと同種の金属イオンと有機溶媒とを含むアレーニド溶液と、前記蓄電デバイスで用いられる電池用溶媒と支持塩とを含む電解液と、を混合した前記回復剤を用いる、請求項1~4のいずれか1項に記載の回復方法。 In the recovery step, an arenide solution containing the aromatic hydrocarbon compound in a reduced state, a metal ion of the same type as the carrier ion, and an organic solvent, and an electrolyte solution containing a battery solvent and a supporting salt used in the electricity storage device. The recovery method according to any one of claims 1 to 4, wherein the recovery agent is a mixture of the following. 前記回復工程では、ジメトキシエタン(DME)及びテトラヒドロフラン(THF)のいずれか1以上である前記有機溶媒と、イミド系アニオンを含む前記支持塩と、を含む前記回復剤を用いる、請求項5に記載の回復方法。 6. The recovery step uses the recovery agent containing the organic solvent which is one or more of dimethoxyethane (DME) and tetrahydrofuran (THF), and the supporting salt containing an imide anion. How to recover. 前記回復工程では、前記アレーニド溶液と前記電解液とを混合した直後に前記蓄電デバイスへ前記回復剤を投入する、請求項1~6のいずれか1項に記載の回復方法。 7. The recovery method according to claim 1, wherein in the recovery step, the recovery agent is introduced into the electricity storage device immediately after mixing the arenide solution and the electrolytic solution. 請求項1~7のいずれか1項に記載の回復方法により、金属イオンをキャリアイオンとする容量劣化した前記蓄電デバイスの容量を回復させる回復工程、
を含む蓄電デバイスの製造方法。
A recovery step of recovering the capacity of the electricity storage device whose capacity has deteriorated using metal ions as carrier ions by the recovery method according to any one of claims 1 to 7;
A method for manufacturing a power storage device including:
JP2022033400A 2022-03-04 2022-03-04 Recovery method and method for manufacturing electricity storage device Pending JP2023128795A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2022033400A JP2023128795A (en) 2022-03-04 2022-03-04 Recovery method and method for manufacturing electricity storage device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2022033400A JP2023128795A (en) 2022-03-04 2022-03-04 Recovery method and method for manufacturing electricity storage device

Publications (1)

Publication Number Publication Date
JP2023128795A true JP2023128795A (en) 2023-09-14

Family

ID=87972461

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2022033400A Pending JP2023128795A (en) 2022-03-04 2022-03-04 Recovery method and method for manufacturing electricity storage device

Country Status (1)

Country Link
JP (1) JP2023128795A (en)

Similar Documents

Publication Publication Date Title
US11374254B2 (en) Solid state electrolyte for lithium secondary battery
JP5032773B2 (en) Lithium secondary battery using ionic liquid
US20180366798A1 (en) Hybrid solid state electrolyte for lithium sulfur secondary battery
US9005820B2 (en) Lithium secondary battery using ionic liquid
JPWO2009011249A1 (en) Lithium secondary battery
KR20150050507A (en) Lithium secondary battery
JP5160159B2 (en) Lithium secondary battery
JP2015018713A (en) Nonaqueous electrolytic solution and lithium-ion secondary battery using the same
CN104157466A (en) Super lithium-ion capacitor and manufacturing method thereof
WO2015115242A1 (en) Non-aqueous electrolyte secondary cell
CN109935905B (en) Electrolyte and lithium ion battery
KR102233775B1 (en) Polymer, and Electrolyte and Lithium battery comprising polymer
JP6288023B2 (en) Non-aqueous electrolyte battery
WO2019065288A1 (en) Nonaqueous electrolyte for lithium ion secondary batteries, and lithium ion secondary battery using same
JP2022139980A (en) Recovery agent, recovery method for non-aqueous electrolyte secondary battery, and manufacturing method for non-aqueous electrolyte secondary battery
JP4016497B2 (en) Non-aqueous electrolyte and lithium secondary battery using the same
JP2018113174A (en) Lithium secondary battery
JP2023128795A (en) Recovery method and method for manufacturing electricity storage device
JP7564740B2 (en) Method for restoring non-aqueous electrolyte secondary battery and method for manufacturing non-aqueous electrolyte secondary battery
JP7569719B2 (en) Recovery agent, recovery method for non-aqueous electrolyte secondary battery, and manufacturing method for non-aqueous electrolyte secondary battery
JP2023153526A (en) Recovery method, method for manufacturing power storage device, and recovery agent
WO2015151145A1 (en) All-solid lithium secondary cell
KR101018142B1 (en) Non-aqueous electrolyte and secondary battery comprising the same
JP2019204725A (en) Lithium secondary battery
JP2022139775A (en) Recovery agent, recovery method for non-aqueous electrolyte secondary battery, and manufacturing method for non-aqueous electrolyte secondary battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20230612

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20240624

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20240702

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20240731

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20241008