JP2023128269A - Blowing lance for blast furnace and blast furnace operation method - Google Patents

Blowing lance for blast furnace and blast furnace operation method Download PDF

Info

Publication number
JP2023128269A
JP2023128269A JP2022032506A JP2022032506A JP2023128269A JP 2023128269 A JP2023128269 A JP 2023128269A JP 2022032506 A JP2022032506 A JP 2022032506A JP 2022032506 A JP2022032506 A JP 2022032506A JP 2023128269 A JP2023128269 A JP 2023128269A
Authority
JP
Japan
Prior art keywords
blast furnace
inner tube
blowing lance
outer tube
tube
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2022032506A
Other languages
Japanese (ja)
Inventor
親司 上城
Shinji Kamishiro
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2022032506A priority Critical patent/JP2023128269A/en
Publication of JP2023128269A publication Critical patent/JP2023128269A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Landscapes

  • Manufacture Of Iron (AREA)
  • Blast Furnaces (AREA)

Abstract

To prevent an excessive rise in furnace temperature in a blast furnace operation method in which a charcoal material having a large combustion speed is blown into the blast furnace.SOLUTION: In an operation method of a blast furnace in which a blast furnace blowing lance 5 is inserted into a blow pipe, pulverized coal containing 50 mass% or more of a charcoal material having a combustion speed of 3.0 (mg/min) or higher is blown from an inner tube 51 by a carrier gas while a hydrogen-based reducing gas is blown from an outer tube 52, and the blast furnace is operated so as to satisfy the condition of X1/X2≥0.5 where a flow rate of the hydrogen-based reducing gas is set to X1 and a flow rate of the carrier gas is set to X2. The blast furnace blowing lance has double-tube structure, and the tip opening of the inner tube is inclined by 55 degrees or more to a plane perpendicular to the axial direction of the inner tube. A distance W between the inner tube and the outer tube in the longitudinal direction is limited to a predetermined range.SELECTED DRAWING: Figure 2

Description

本発明は、微粉炭等を高炉に吹き込むための高炉吹き込み用ランス及び高炉の操業方法に関する。 The present invention relates to a blast furnace injection lance for blowing pulverized coal or the like into a blast furnace, and a blast furnace operating method.

高炉操業では、炉頂から鉄原料(塊鉱石、焼結鉱、ペレット等)及びコークス(還元材)を交互に層状に装入することにより銑鉄を製造する。高炉操業におけるコスト低減手段として、コークスの装入量を減らすとともに、羽口に設置された高炉吹き込み用ランスから微粉炭を吹き込む方法が知られている。また、高炉の還元材比の低減、二酸化炭素の排出量の削減などを目的として、水素系還元ガスを羽口から吹き込む高炉の操業方法も知られている。 In blast furnace operation, pig iron is produced by charging iron raw materials (lump ore, sintered ore, pellets, etc.) and coke (reducing material) alternately in layers from the top of the furnace. As a cost reduction method in blast furnace operation, a method is known in which the amount of coke charged is reduced and pulverized coal is injected from a blast furnace injection lance installed in the tuyere. Furthermore, a method of operating a blast furnace is known in which hydrogen-based reducing gas is blown into the tuyere for the purpose of reducing the reducing agent ratio in the blast furnace, reducing carbon dioxide emissions, and the like.

ここで、羽口から吹き込まれる微粉炭に揮発分(以下、VMともいう)が多く含まれる場合、送風圧が変動して、高炉の安定操業が阻害される。したがって、高炉に吹き込まれる微粉炭には、VMの低い半無煙炭等(以下、従来炭材ともいう)が利用されている。しかしながら、近年は、資源枯渇によりVMの低い炭材を確保することが困難となっている。そこで、バイオマスや褐炭を乾留した改質炭(以下、チャーともいう)を炭材として吹き込む方法が検討されている。しかしながら、バイオマスや褐炭を由来とするチャーは従来炭材よりも炭素結合が弱いため、燃焼しやすい(言い換えると、燃焼速度が大きい)。そのため、吹き込み用の炭材として前述のチャーを用いると、燃焼位置(燃焼焦点)が羽口側にシフトして、炉体温度が過度に上昇するおそれがある。 Here, if the pulverized coal blown in from the tuyeres contains a large amount of volatile matter (hereinafter also referred to as VM), the blowing pressure will fluctuate and stable operation of the blast furnace will be inhibited. Therefore, semi-anthracite coal or the like (hereinafter also referred to as conventional carbon material) having a low VM is used as the pulverized coal injected into the blast furnace. However, in recent years, it has become difficult to secure carbonaceous materials with low VM due to resource depletion. Therefore, a method of injecting modified coal (hereinafter also referred to as char) obtained by carbonizing biomass or lignite as a carbon material is being considered. However, char derived from biomass or lignite has weaker carbon bonds than conventional carbon materials, so it is easier to burn (in other words, it burns at a higher rate). Therefore, when the above-mentioned char is used as the blowing carbon material, there is a risk that the combustion position (combustion focus) will shift toward the tuyere side and the furnace body temperature will rise excessively.

特許文献1には、内管から気体還元材を吹き込み、外管と内管との間に冷却用の空気を流通させるように構成した二重管構造の高炉吹き込み用ランスが開示されているが、上述の課題については検討されていない。
特許文献2には、羽口の摩耗防止を目的として、内管の先端が切り欠き形状である二重管ランスが記載されている。
Patent Document 1 discloses a blast furnace blowing lance with a double tube structure configured to blow a gaseous reducing agent from an inner tube and circulate cooling air between an outer tube and an inner tube. , the above-mentioned issues have not been considered.
Patent Document 2 describes a double pipe lance in which the tip of the inner pipe has a cutout shape for the purpose of preventing wear of the tuyere.

特開2006-312757号公報Japanese Patent Application Publication No. 2006-312757 実開昭62-97154号公報Utility Model Publication No. 62-97154

本発明は、燃焼速度が大きい炭材を高炉に吹き込む高炉の操業方法において、炉体温度の過度な上昇を防止することを目的とする。 An object of the present invention is to prevent an excessive rise in the temperature of the furnace body in a method of operating a blast furnace in which carbonaceous material having a high combustion rate is injected into the blast furnace.

上記課題を解決するために、本発明に係る高炉吹き込み用ランスは、(1)外管及び内管を有する二重管構造の高炉吹き込み用ランスにおいて、前記内管の先端開口部が、前記内管の軸方向に垂直な面に対して55度以上の所定角度θだけ傾斜しており、前記内管の先端開口部における最先端部と前記外管の先端開口部との、該高炉吹き込み用ランスの長手方向における距離をWとしたとき、距離Wは以下の式(1)を満足することを特徴とする高炉吹き込み用ランス。
W≦tanθ×D・・・・・・・・・式(1)
ただし、Dは前記内管の直径である。
In order to solve the above problems, a blast furnace blowing lance according to the present invention provides (1) a blast furnace blowing lance having a double pipe structure having an outer tube and an inner tube, in which the tip opening of the inner tube is connected to the inner tube; The tube is inclined by a predetermined angle θ of 55 degrees or more with respect to a plane perpendicular to the axial direction of the tube, and is connected to the most extreme end of the tip opening of the inner tube and the tip opening of the outer tube for blowing into the blast furnace. A lance for blast furnace injection, characterized in that when the distance in the longitudinal direction of the lance is W, the distance W satisfies the following formula (1).
W≦tanθ×D・・・・・・Formula (1)
However, D is the diameter of the inner tube.

(2)前記内管の前記最先端部は、前記外管の外側の突き出し位置、前記外管の内側の管路内位置及び前記外管の先端開口部と面一の面一位置のうちいずれかに配設されていることを特徴とする上記(1)に記載の高炉吹き込み用ランス。 (2) The most distal end of the inner tube is located at any one of a protruding position on the outside of the outer tube, a position in the pipe line inside the outer tube, and a position flush with the tip opening of the outer tube. The blast furnace blowing lance according to (1) above, characterized in that the lance is disposed in a straight line.

(3)前記外管の先端開口部は、前記内管の軸方向に対して垂直であることを特徴とする上記(1)又は(2)に記載の高炉吹き込み用ランス。 (3) The blast furnace injection lance according to (1) or (2) above, wherein the tip opening of the outer tube is perpendicular to the axial direction of the inner tube.

(4)上記(1)乃至(3)のうちいずれか一つに記載の高炉吹き込み用ランスがブローパイプに挿通された高炉の操業方法において、前記外管から水素系還元ガスを吹き込みながら、燃焼速度が3.0(mg/min)以上の炭材を50質量%以上含む微粉炭を、前記内管からキャリアガスにより吹き込むとともに、前記水素系還元ガスの流量をX1、前記キャリアガスの流量をX2としたとき、以下の式(2)に示す吹込み条件を満足させることを特徴とする高炉の操業方法。
X1/X2≧0.5・・・・・・・・・式(2)
(4) In the method of operating a blast furnace in which the blast furnace blowing lance according to any one of (1) to (3) above is inserted into a blow pipe, combustion is performed while blowing hydrogen-based reducing gas from the outer pipe. Pulverized coal containing 50% by mass or more of carbonaceous material at a speed of 3.0 (mg/min) or more is blown into the inner tube by a carrier gas, and the flow rate of the hydrogen-based reducing gas is set to X1, and the flow rate of the carrier gas is A method of operating a blast furnace characterized by satisfying the blowing conditions shown in the following formula (2) when X2 is taken as X2.
X1/X2≧0.5...Formula (2)

本発明によれば、燃焼速度が大きい炭材を高炉に吹き込む高炉の操業方法において、水素系還元ガスの吹込量及び高炉吹き込み用ランスの内管の先端傾斜角を調整することにより、炉体温度の過度な上昇を防止することができる。 According to the present invention, in a method of operating a blast furnace in which carbonaceous material having a high combustion rate is injected into the blast furnace, the temperature of the furnace body can be increased by adjusting the amount of hydrogen-based reducing gas injected and the tip angle of the inner tube of the blast furnace injection lance. It is possible to prevent an excessive rise in

高炉の概略図である。It is a schematic diagram of a blast furnace. 高炉吹き込み用ランスの先端部を拡大した拡大図である。FIG. 2 is an enlarged view of the tip of a blast furnace injection lance. 高炉炉下部を模擬した試験装置である。This is a test device that simulates the lower part of a blast furnace. 先端傾斜角θと炭材粒子個数の増加率との関係を示すグラフである。It is a graph showing the relationship between the tip inclination angle θ and the rate of increase in the number of carbonaceous particles. 水素系還元ガス流量(X1)/キャリアガス流量(X2)と炭材粒子個数の増加率との関係を示すグラフである。It is a graph showing the relationship between the hydrogen-based reducing gas flow rate (X1)/carrier gas flow rate (X2) and the rate of increase in the number of carbonaceous particles.

以下、図面を参照しながら、本発明の実施形態について説明する。図1は、本実施形態の高炉(ベルレス式高炉)の概略図である。高炉1では、主原料として焼結鉱やペレットや塊鉱石などの鉄原料が用いられ、還元材としてコークス、微粉炭、水素系還元ガスが用いられる。鉄原料とコークスは高炉1の炉頂部から交互に層状に装入される。これにより、高炉1の炉内には、塊状帯、鉄原料が溶解して固体から液体に変わる融着帯、液体になった溶鉄や溶融スラグがコークス層を滴下する滴下帯などが形成される。 Embodiments of the present invention will be described below with reference to the drawings. FIG. 1 is a schematic diagram of a blast furnace (bellless blast furnace) according to the present embodiment. In the blast furnace 1, iron raw materials such as sintered ore, pellets, and lump ore are used as main raw materials, and coke, pulverized coal, and hydrogen-based reducing gas are used as reducing agents. Iron raw material and coke are charged into the blast furnace 1 from the top of the furnace in alternating layers. As a result, inside the blast furnace 1, a lump zone, a cohesive zone where the iron raw material melts and changes from solid to liquid, and a drip zone where liquid molten iron and molten slag drip onto the coke layer are formed. .

本実施形態における高炉1は、羽口2と、環状管3と、ブローパイプ4と、高炉吹き込み用ランス5と、出銑口6等を備える。環状管3は高炉1の下部を包囲するように配設されている。ブローパイプ4は環状管3の周方向に間欠的に設けられるとともに、それぞれが異なる羽口2に接続されている。高炉吹き込み用ランス5は、各ブローパイプ4を挿通しており、各ブローパイプ4の内部には、高炉吹き込み用ランス5の先端部が延出している。出銑口6は、炉底にたまった溶銑を排出するために設けられている。上述の構成において、高炉吹き込み用ランス5は、微粉炭及び水素系還元ガスをブローパイプ4の内部に吹き込む。吹き込まれた微粉炭及び水素系還元ガスは、環状管3からブローパイプ4に送風された熱風と共に羽口2から高炉1内に吹き込まれる。 The blast furnace 1 in this embodiment includes a tuyere 2, an annular pipe 3, a blow pipe 4, a blast furnace blowing lance 5, a tap hole 6, and the like. The annular tube 3 is arranged so as to surround the lower part of the blast furnace 1. The blow pipes 4 are provided intermittently in the circumferential direction of the annular pipe 3, and are each connected to a different tuyere 2. The blast furnace blowing lance 5 is inserted through each blow pipe 4, and the tip of the blast furnace blowing lance 5 extends into the inside of each blow pipe 4. The tap hole 6 is provided to discharge hot metal accumulated at the bottom of the furnace. In the above-described configuration, the blast furnace blowing lance 5 blows pulverized coal and hydrogen-based reducing gas into the blow pipe 4 . The blown pulverized coal and hydrogen-based reducing gas are blown into the blast furnace 1 through the tuyeres 2 together with the hot air blown from the annular pipe 3 to the blow pipe 4.

熱風は例えば、熱風炉(不図示)で生成される。熱風炉には例えば、内部に珪石レンガを格子状に組んだ蓄熱室を含む円筒状の炉を用いることができる。熱風の温度を検出し、この検出結果に基づき、熱風炉における蓄熱量や空気の供給量を制御することにより、熱風の温度が調整される。以上の高炉1の設備構成は一例であり、本発明は、これらの構成に限定されるものではない。すなわち、本願発明は、例えば、ベル式高炉にも適用することができる。 The hot air is generated, for example, in a hot air stove (not shown). For example, a cylindrical furnace including a heat storage chamber in which silica bricks are arranged in a lattice shape can be used as the hot blast furnace. The temperature of the hot air is adjusted by detecting the temperature of the hot air and controlling the amount of heat stored in the hot air stove and the amount of air supplied based on the detection result. The above equipment configuration of the blast furnace 1 is an example, and the present invention is not limited to these configurations. That is, the present invention can also be applied to, for example, a bell-type blast furnace.

微粉炭は、吹き込む微粉炭の全量を100質量%としたとき、燃焼速度が大きい炭材を50質量%以上含む。つまり、本実施形態の高炉の操業方法では、羽口2から燃焼速度が大きい炭材をリッチに含む微粉炭を吹き込むことを操業条件としている。燃焼速度の定義は、以下の通りである。まず、炭材(質量10mg)を、赤外線ゴールドイメージ炉(例えば、Thermo plus EV02/TG-DTA8120(株式会社リガク製))を用いて空気流量200(ml/min)で流通させながら900(℃/min)の昇温速度にて常温から1000℃まで昇温し、昇温開始から炭材の質量変化が終了するまでの時間で炭材の質量(10mg)を除することによって、燃焼速度(mg/min)を求めることができる。なお、炭材の質量変化が終了する終了時点は、炭材質量の経時変化曲線の傾きが直線関係から逸脱した時点とする。 The pulverized coal contains 50% by mass or more of carbonaceous material having a high combustion rate when the total amount of pulverized coal to be blown is 100% by mass. That is, in the blast furnace operating method of the present embodiment, the operating condition is to inject pulverized coal rich in carbonaceous materials with a high combustion rate from the tuyeres 2. The definition of burning rate is as follows. First, carbon material (mass 10 mg) is heated to 900 (°C/ The combustion rate (mg) is calculated by increasing the temperature from room temperature to 1000°C at a heating rate of /min) can be obtained. Note that the end point at which the change in the mass of the carbonaceous material ends is the point in time when the slope of the curve of the temporal change in the mass of the carbonaceous material deviates from the linear relationship.

また、本明細書において「燃焼速度が大きい炭材」とは、燃焼速度が3.0(mg/min)以上の炭材のことである。燃焼速度が3.0(mg/min)以上の炭材は、従来炭材と比べて燃焼しやすい。燃焼速度が3.0(mg/min)以上の炭材には、バイオマスや褐炭を乾留したチャーを用いることができる。バイオマスには、例えば、農業系(麦わら、サトウキビ、米糠、草木、椰子殻核等)のバイオマス、林業系(製紙廃棄物、製材廃材、除間伐材、薪炭林等)のバイオマス、畜産系(家畜廃棄物)のバイオマス、水産系(水産加工残滓)のバイオマス、廃棄物系(生ゴミ、RDF(ゴミ固形化燃料;Refused Derived Fuel)庭木、建設廃材、下水汚泥)のバイオマスなどを用いることができる。褐炭についても、産地などは特に限定しない。また、チャーとは、炭材を加熱した際に、軟化・溶融状態を得ないで生成する炭素質物質のことである(JIS0104 石炭利用技術用語参照)。 Furthermore, in this specification, "charcoal material with a high burning rate" refers to a carbon material with a burning rate of 3.0 (mg/min) or more. A carbonaceous material with a burning rate of 3.0 (mg/min) or more is easier to burn than conventional carbonaceous materials. As a carbon material having a combustion rate of 3.0 (mg/min) or more, char obtained by carbonizing biomass or lignite can be used. Biomass includes, for example, agricultural biomass (wheat straw, sugarcane, rice bran, plants, coconut kernels, etc.), forestry biomass (paper manufacturing waste, lumber waste, thinned wood, firewood forests, etc.), and livestock biomass (livestock). Biomass from fisheries (fisheries processing residues), biomass from waste products (garbage, RDF (Refused Derived Fuel) garden trees, construction waste, sewage sludge), etc. can be used. . Regarding lignite, there are no particular restrictions on the production area. Furthermore, char is a carbonaceous substance that is produced when a carbon material is heated without being softened or molten (see JIS0104 Coal Utilization Technical Terminology).

なお、本実施形態において用いられる微粉炭の粒径は、特に限定するものではないが、例えば、75μm以下に設定することができる。 Note that the particle size of the pulverized coal used in this embodiment is not particularly limited, but can be set to, for example, 75 μm or less.

高炉吹き込み用ランス5の構成について、図2を参照しながら、詳細に説明する。図2は、本実施形態の高炉吹き込み用ランスの先端部を拡大した拡大図である。高炉吹き込み用ランス5は、内管51及び外管52からなる二重管構造を呈しており、内管51から微粉炭が吹き込まれ、外管52(言い換えると、内管51及び外管52の間に形成された隙間)から水素系還元ガスが吹き込まれる。微粉炭を吹き込むためのキャリアガスとして、窒素ガスなどの不活性ガスを用いることができる。水素系還元ガスは、少なくとも元素として水素を含む還元ガスであり、天然ガス、COG、LPG、メタンガス等の水素含有ガスであってもよいし、水素ガスそのものであってもよい。 The configuration of the blast furnace injection lance 5 will be described in detail with reference to FIG. 2. FIG. 2 is an enlarged view of the tip of the blast furnace injection lance of this embodiment. The blast furnace blowing lance 5 has a double tube structure consisting of an inner tube 51 and an outer tube 52, and pulverized coal is blown into the inner tube 51, and the outer tube 52 (in other words, the inner tube 51 and the outer tube 52) Hydrogen-based reducing gas is blown in from the gap formed between the two. An inert gas such as nitrogen gas can be used as a carrier gas for blowing the pulverized coal. The hydrogen-based reducing gas is a reducing gas containing at least hydrogen as an element, and may be a hydrogen-containing gas such as natural gas, COG, LPG, or methane gas, or may be hydrogen gas itself.

内管51の先端面51Aは、切り欠き形状に形成されており、内管51及び外管52の長手方向軸5aに垂直な面に対してθ(以下、先端傾斜角θと称する)だけ傾斜している。先端傾斜角θの詳細については、後述する。外管52の先端面52Aは、長手方向軸5aに対して垂直であり、内管51のような切り欠き形状にはなっていない。ここで、内管51の先端面51Aにおける最先端部と、外管52の先端面52Aとの、長手方向軸5a方向における距離(離間距離)をWとしたとき、距離Wは以下の式(1)を満足する必要がある。
W≦tanθ×D・・・・・・・・・式(1)
ただし、Dは内管51の直径である。
図2は、内管51の最先端部と外管52の先端面が面一の状態(つまり、距離W=0)を図示するが、式(1)の範囲内で内管51は外管52から突き出していてもよいし(図2の「突き出し位置」参照)、外管52の内側に退避していてもよい(図2の「管路内位置」参照)。
The distal end surface 51A of the inner tube 51 is formed in a notch shape, and is inclined by θ (hereinafter referred to as the distal end inclination angle θ) with respect to a plane perpendicular to the longitudinal axis 5a of the inner tube 51 and the outer tube 52. are doing. Details of the tip inclination angle θ will be described later. The distal end surface 52A of the outer tube 52 is perpendicular to the longitudinal axis 5a, and does not have a cutout shape like the inner tube 51. Here, when the distance (separation distance) in the direction of the longitudinal axis 5a between the distal end of the distal end surface 51A of the inner tube 51 and the distal end surface 52A of the outer tube 52 is W, the distance W is calculated by the following formula ( 1) must be satisfied.
W≦tanθ×D・・・・・・Formula (1)
However, D is the diameter of the inner tube 51.
FIG. 2 illustrates a state in which the distal end of the inner tube 51 and the distal end surface of the outer tube 52 are flush with each other (that is, distance W=0), but within the range of formula (1), the inner tube 51 is 52 (see "Protruding position" in FIG. 2), or may be retracted inside the outer tube 52 (see "Pipe line position" in FIG. 2).

本発明者は、水素系還元ガスの吹込量に関する条件A、高炉吹き込み用ランス5の構造面に関する条件B、条件Cを同時に満足させることによって、炉体温度の過度な温度上昇を防止できることを発見した。
条件A:外管52を流れる水素系還元ガスの流量をX1、内管51を流れるキャリアガスの流量をX2としたとき、X1/X2≧0.5とする。
条件B:内管51の先端面51Aの先端傾斜角θを55度以上(90度未満)に設定する。
条件C:W≦tanθ×D
なお、条件Cについては、上述したので説明を繰り返さない。
The present inventor discovered that it is possible to prevent an excessive rise in the temperature of the furnace body by simultaneously satisfying condition A regarding the amount of hydrogen-based reducing gas blown into the blast furnace, and conditions B and C regarding the structure of the blast furnace injection lance 5. did.
Condition A: When the flow rate of the hydrogen-based reducing gas flowing through the outer tube 52 is X1, and the flow rate of the carrier gas flowing through the inner tube 51 is X2, X1/X2≧0.5.
Condition B: The tip inclination angle θ of the tip surface 51A of the inner tube 51 is set to 55 degrees or more (less than 90 degrees).
Condition C: W≦tanθ×D
Note that the condition C has been described above, so the explanation will not be repeated.

条件Cを満足することを前提条件として、条件A及び条件Bを同時に満足させることにより、内管51から吐出された微粉炭が密集して酸素に触れにくくなるため、燃焼焦点を炉内側にシフトさせることができる。これにより、炉体温度の過度な温度上昇を防止することができる。すなわち、先端傾斜角θを55度以上に設定することにより、内管51から吐出された微粉炭粒子を一旦は分散させることができる。そして、条件Aの吹込条件を満足することにより、分散した微粉炭粒子が水素系還元ガスによって包囲され分散できなくなり、逆に密集するため、炉内に吹き込まれるまで密集状態を維持することができる。つまり、一旦分散した微粉炭粒子がリング状に直進する水素系還元ガスに衝突して、リング中心側に跳ね返されるため、微粉炭粒子を密集させることができる。一方、先端傾斜角θが55度未満に低下すると、内管51から吐出された微粉炭粒子が分散せずに水素系還元ガスに衝突しにくくなるため、上述の密集効果を十分に発現させることができない。 By satisfying condition A and condition B at the same time, with condition C being satisfied as a precondition, the pulverized coal discharged from the inner tube 51 becomes dense and difficult to come into contact with oxygen, so the combustion focus is shifted to the inside of the furnace. can be done. Thereby, excessive temperature rise in the furnace body temperature can be prevented. That is, by setting the tip inclination angle θ to 55 degrees or more, the pulverized coal particles discharged from the inner tube 51 can be dispersed once. By satisfying the injection condition of condition A, the dispersed pulverized coal particles are surrounded by the hydrogen-based reducing gas and cannot be dispersed, but instead become densely packed, so that the dense state can be maintained until they are blown into the furnace. . In other words, the pulverized coal particles once dispersed collide with the hydrogen-based reducing gas traveling straight in a ring shape and are bounced back toward the center of the ring, so that the pulverized coal particles can be densely packed. On the other hand, when the tip inclination angle θ is lowered to less than 55 degrees, the pulverized coal particles discharged from the inner tube 51 do not disperse and are less likely to collide with the hydrogen-based reducing gas, so that the above-mentioned crowding effect can be fully expressed. I can't.

次に、実施例を示しながら本発明について具体的に説明する。
(試験1)
図3に示す高炉炉下部を模擬した試験装置を用いて、微粉炭として用いる炭材や水素系還元ガスの流量を種々変化させながら炉体温度変化率(%)を評価した。なお、炉体温度は、後述する温度センサ15によって測定した。基準条件一定で実験を行い、温度センサ15の変化がほとんど見られなくなった時の温度を、基準条件における炉体温度とした。次に、条件を変更して温度センサ15の測定値が変化しなくなるまで実験を継続し、変化しなくなったときの温度を測定した。両者の温度差を基準条件における炉体温度で除して、変化後の条件における炉体温度変化率とした。条件を変更して安定するまでに要する時間は、約3時間であった。図3の試験炉10において、12は羽口であり、13は羽口12に熱風を供給するブローパイプであり、14は二重管構造の試験炉用ランス(以下、試験炉用二重管ランス14という)であり、15は温度センサである。なお、試験炉用二重管ランス14の本数は1本である。
Next, the present invention will be specifically explained by showing examples.
(Test 1)
Using a test device simulating the lower part of a blast furnace shown in FIG. 3, the rate of change in furnace body temperature (%) was evaluated while varying the flow rates of the carbonaceous material used as pulverized coal and the hydrogen-based reducing gas. Note that the furnace body temperature was measured by a temperature sensor 15, which will be described later. The experiment was conducted under constant standard conditions, and the temperature at which almost no change in the temperature sensor 15 was observed was defined as the furnace body temperature under the standard conditions. Next, the conditions were changed and the experiment was continued until the measured value of the temperature sensor 15 stopped changing, and the temperature was measured when the value stopped changing. The temperature difference between the two was divided by the furnace body temperature under the standard conditions to obtain the furnace body temperature change rate under the changed conditions. The time required to stabilize the conditions after changing them was about 3 hours. In the test furnace 10 in FIG. 3, 12 is a tuyere, 13 is a blow pipe that supplies hot air to the tuyere 12, and 14 is a double tube structure test furnace lance (hereinafter referred to as a double tube test furnace lance). 15 is a temperature sensor. Note that the number of double tube lances 14 for the test furnace is one.

試験炉10は長さ1.2m、幅1.2m、高さ2.4mの竪型直方体とし、炉壁は鉄皮の内側に耐火レンガを張り付けた二層構造とした。温度センサ15には熱電対を使用し、この熱電対を羽口12の中心軸から600mm上方の炉体レンガと鉄皮との間に配置した。 The test furnace 10 was a vertical rectangular parallelepiped with a length of 1.2 m, a width of 1.2 m, and a height of 2.4 m, and the furnace wall had a two-layer structure with refractory bricks pasted on the inside of the iron shell. A thermocouple was used as the temperature sensor 15, and this thermocouple was placed 600 mm above the central axis of the tuyere 12 between the furnace brick and the iron skin.

試験炉10には、粒径が9~13mmのコークスを充填した。熱風の送風温度を1200℃に設定し、送風量を0.8(m/min)に設定した。微粉炭の吹き込み量は、典型的な実炉の吹込条件:200(kg/pig-ton)に一致させた。
なお、実高炉で用いられる微粉炭粒子(75μm以下)を使用した。
The test furnace 10 was filled with coke having a particle size of 9 to 13 mm. The blowing temperature of the hot air was set to 1200° C., and the blowing amount was set to 0.8 (m 3 /min). The amount of pulverized coal injected was made to match the blowing conditions of a typical actual furnace: 200 (kg/pig-ton).
In addition, pulverized coal particles (75 μm or less) used in an actual blast furnace were used.

表1に、本試験において微粉炭として使用した炭材の種類及び性状を示す。チャー1は褐炭を乾留して得られたチャーであり、チャー2はバイオマス(木材)を乾留して得られたチャーである。Ashは灰分であり、FCは固定炭素である。VMについては、上述したので説明を繰り返さない。
Table 1 shows the type and properties of the carbon material used as pulverized coal in this test. Char 1 is a char obtained by carbonizing brown coal, and Char 2 is a char obtained by carbonizing biomass (wood). Ash is ash and FC is fixed carbon. Since the VM has been described above, the description thereof will not be repeated.

表2に、試験炉用二重管ランス14から吹き込まれる各炭材の吹込割合、先端傾斜角θ、水素系還元ガス及びキャリアガスの流量比(X1/X2)、炉体温度変化率、評価結果を示す。なお、各炭材の吹込割合は、各比較例及び実施例で吹き込まれる微粉炭の全量を100質量%としたときの質量分率で示した。各実施例及び比較例における炉体温度変化率は、参考例における炉体温度の上昇率を100%として算出した。炉体温度変化率が100%以下である場合には評価を「○」とし、炉体温度変化率が100%超である場合には評価を「×」とした。水素系還元ガスとして、コークス炉ガスの成分を模擬した水素を含む気体還元材(質量%で、H:約59%、CH:約29%、CO:約6%、N:約6%)を使用した。
先端傾斜角θが0度に統一された参考例、比較例1及び比較例2を比較参照して、燃焼速度が3.0(mg/min)未満の半無煙炭Aの含有割合を100質量%から50質量%に減らして、燃焼速度が3.0(mg/min)以上のチャー1又はチャー2に振り替えることにより、炉体温度変化率(%)が高くなった。燃焼速度が3.0(mg/min)以上の炭材が含まれることによって、燃焼焦点が羽口近傍となり、炉体温度変化率(%)が増大したと考えられる。
Table 2 shows the injection ratio of each carbon material blown from the test furnace double tube lance 14, tip inclination angle θ, flow rate ratio of hydrogen-based reducing gas and carrier gas (X1/X2), furnace body temperature change rate, and evaluation. Show the results. In addition, the blowing ratio of each carbon material was shown as a mass fraction when the total amount of pulverized coal injected in each comparative example and example was set to 100% by mass. The rate of change in furnace body temperature in each Example and Comparative Example was calculated by setting the rate of increase in furnace body temperature in the Reference Example as 100%. When the furnace body temperature change rate was 100% or less, the evaluation was given as "○", and when the furnace body temperature change rate was more than 100%, the evaluation was given as "x". As a hydrogen-based reducing gas, a gaseous reducing agent containing hydrogen that simulates the components of coke oven gas (in mass %, H 2 : about 59%, CH 3 : about 29%, CO: about 6%, N 2 : about 6 %)It was used.
By comparing and referring to the reference example, comparative example 1, and comparative example 2 in which the tip inclination angle θ is unified to 0 degrees, the content ratio of semi-anthracite coal A with a combustion rate of less than 3.0 (mg/min) is 100% by mass. By reducing the amount from 50% by mass and switching to Char 1 or Char 2, which has a combustion rate of 3.0 (mg/min) or more, the rate of change in furnace body temperature (%) increased. It is thought that the inclusion of carbonaceous material with a combustion rate of 3.0 (mg/min) or higher caused the combustion focus to be near the tuyeres, and the rate of change in furnace body temperature (%) increased.

実施例1乃至4は、炉体温度変化率が参考例と同程度(100%)となり、評価が「○」となった。条件A及びBを満足させることにより、微粉炭を密集させる効果が発現して、燃焼焦点が炉内側にシフトしたものと推察される。また、実施例1,2と実施例5,6を比較して、X1/X2を1.0から0.5に下げても、炉体温度変化率(%)が参考例に対してほぼ同程度に維持されることがわかった。実施例5,6と比較例3,4を比較して、、X1/X2を0.5から0.4に低下させることにより、炉体温度変化率(%)が参考例に対して大幅に増大することがわかった。X1/X2が0.4に低下することにより、微粉炭の密集状態を維持する効果が低下して、燃焼焦点が羽口側にシフトしたものと推察される。 In Examples 1 to 4, the furnace body temperature change rate was comparable to that of the reference example (100%), and the evaluation was "○". It is presumed that by satisfying conditions A and B, an effect of crowding the pulverized coal was produced, and the combustion focus was shifted to the inside of the furnace. In addition, comparing Examples 1 and 2 with Examples 5 and 6, even if X1/X2 is lowered from 1.0 to 0.5, the furnace body temperature change rate (%) is almost the same as that of the reference example. It was found that it was maintained to a certain extent. Comparing Examples 5 and 6 and Comparative Examples 3 and 4, by lowering X1/X2 from 0.5 to 0.4, the furnace body temperature change rate (%) was significantly lower than that of the reference example. It was found that it increases. It is presumed that as X1/X2 decreased to 0.4, the effect of maintaining the dense state of pulverized coal decreased, and the combustion focus shifted to the tuyere side.

(試験2)
先端傾斜角θを55度以上に設定することによって、炉体温度変化率が改善する理由を調べるために、先端傾斜角θを種々変更して、炭材粒子の密集度合いの増加率を求めた。炭材粒子の密集度合いの増加率は、所定領域内に存する炭材粒子個数の増加率(%)によって評価した。具体的には、汎用流体解析ソフト(FLUENT)を用いて高炉吹き込み用ランスからブローパイプ内に吹き込まれる粒子の運動状態を計算し、高炉吹き込み用ランスの先端から炉内方向に100mmの位置における、ブローパイプ内の炭材粒子のスナップショットを出力した。出力したスナップショットの結果から、ブローパイプ断面の中心点を中心とする円形領域(ブローパイプの断面積の6.25%に相当する領域)内の炭材粒子個数を集計した。炭材粒子には、実高炉に吹き込まれる微粉炭粒子(粒径:75μm以下)を使用した。なお、水素系還元ガス及びキャリアガスの流量比(X1/X2)は、1.2とした。
(Test 2)
In order to investigate the reason why the rate of change in temperature of the furnace body improves by setting the tip inclination angle θ to 55 degrees or more, we varied the tip inclination angle θ and determined the rate of increase in the density of carbonaceous particles. . The rate of increase in the degree of density of carbonaceous particles was evaluated by the rate of increase (%) in the number of carbonaceous particles existing within a predetermined area. Specifically, we used general-purpose fluid analysis software (FLUENT) to calculate the state of motion of particles injected into the blowpipe from the blast furnace injection lance, and calculated the following results at a position 100 mm from the tip of the blast furnace injection lance toward the inside of the furnace. A snapshot of carbon particles inside the blowpipe was output. From the output snapshot results, the number of carbonaceous particles within a circular area (an area corresponding to 6.25% of the cross-sectional area of the blow pipe) centered on the center point of the cross-section of the blow pipe was counted. As the carbon material particles, pulverized coal particles (particle size: 75 μm or less) that are blown into an actual blast furnace were used. Note that the flow rate ratio (X1/X2) of the hydrogen-based reducing gas and the carrier gas was set to 1.2.

この集計結果に基づいて、先端傾斜角θが0度のときの該円形領域内の炭材粒子個数を100%として、炭材粒子個数の増加率(%)を算出した。図4は、算出結果を纏めたグラフである。同図を参照して、先端傾斜角θが大きくなるほど、炭材粒子個数の増加率(すなわち、炭材粒子の密集度合いの増加率)が上昇した。特に、先端傾斜角θを55度以上に設定した場合、炭材粒子の密集度合いの増加率が大幅に上昇した。すなわち、先端傾斜角θを55度以上に設定することにより、高炉吹き込み用ランスから吐出された微粉炭が十分に密集することがわかった。 Based on this tabulation result, the rate of increase (%) in the number of carbonaceous particles was calculated, with the number of carbonaceous particles within the circular region when the tip inclination angle θ was 0 degrees as 100%. FIG. 4 is a graph summarizing the calculation results. Referring to the figure, as the tip inclination angle θ increased, the rate of increase in the number of carbonaceous particles (that is, the rate of increase in the degree of density of carbonaceous particles) increased. In particular, when the tip inclination angle θ was set to 55 degrees or more, the rate of increase in the degree of density of carbonaceous particles increased significantly. That is, it was found that by setting the tip inclination angle θ to 55 degrees or more, the pulverized coal discharged from the blast furnace injection lance was sufficiently dense.

(試験3)
水素系還元ガスの吹込量が炭材の分散に与える影響を評価するために、水素系還元ガスの流量を変更して、炭材粒子の密集度合いの増加率を調べた。炭材粒子の密集度合いについては、試験2と同じ方法で算出した。先端傾斜角θは、55度に統一した。図5のグラフは試験結果であり、水素系還元ガスの流量は実施形態で説明したX1/X2(水素系還元ガスの流量/微粉炭のキャリアガスの流量)で表している。
(Test 3)
In order to evaluate the influence of the amount of hydrogen-based reducing gas blown on the dispersion of carbonaceous materials, the rate of increase in the degree of density of carbonaceous material particles was investigated by changing the flow rate of hydrogen-based reducing gas. The degree of density of carbonaceous particles was calculated using the same method as Test 2. The tip inclination angle θ was unified to 55 degrees. The graph in FIG. 5 is a test result, and the flow rate of the hydrogen-based reducing gas is expressed as X1/X2 (flow rate of hydrogen-based reducing gas/flow rate of carrier gas for pulverized coal) described in the embodiment.

同図に示すように、X1/X2が0.5に達すると、炭材粒子の密集度合いの増加率が急激に増大することがわかった。 As shown in the figure, it was found that when X1/X2 reached 0.5, the rate of increase in the degree of density of carbonaceous particles increased rapidly.

また、X1/X2=0.5の吹込条件にて、内管の先端面(以下、切断面という)の向きを「上」、「右」、「下」、「左」で変化させて炭材粒子の密集度合いの増加率を調べたところ、それぞれ「13.1%」、「13.5%」、「13.3%」、「12.9%」であった。切断面の向きによって、炭材粒子の密集度合いの増加率は殆ど変わらないことを確認した。なお、切断面の向きは、羽口を炉内側から視たときに切断面の切り口が向く方向を、時計回り方向に順に「上」、「右」、「下」、「左」と定義した。 In addition, under the blowing conditions of When the rate of increase in the degree of density of material particles was investigated, they were "13.1%", "13.5%", "13.3%", and "12.9%", respectively. It was confirmed that the rate of increase in the density of carbonaceous particles hardly changes depending on the direction of the cut surface. The direction of the cut surface was defined as ``top'', ``right'', ``bottom'', and ``left'' in the clockwise order of the direction in which the cut surface faces when the tuyere is viewed from inside the furnace. .

1:高炉 2:羽口 3:環状管 4:ブローパイプ 5:高炉吹き込み用ランス 6:出銑口
51:内管 52:外管
1: Blast furnace 2: Tuyere 3: Annular tube 4: Blow pipe 5: Blast furnace blowing lance 6: Tapping port 51: Inner tube 52: Outer tube

Claims (4)

外管及び内管を有する二重管構造の高炉吹き込み用ランスにおいて、
前記内管の先端開口部が、前記内管の軸方向に垂直な面に対して55度以上の所定角度θだけ傾斜しており、前記内管の先端開口部における最先端部と前記外管の先端開口部との、該高炉吹き込み用ランスの長手方向における距離をWとしたとき、距離Wは以下の式(1)を満足することを特徴とする高炉吹き込み用ランス。
W≦tanθ×D・・・・・・・・・式(1)
ただし、Dは前記内管の直径である。
In a blast furnace blowing lance with a double pipe structure having an outer pipe and an inner pipe,
The distal end opening of the inner tube is inclined by a predetermined angle θ of 55 degrees or more with respect to a plane perpendicular to the axial direction of the inner tube, and the distal end of the distal opening of the inner tube and the outer tube A blast furnace blowing lance, characterized in that, where W is a distance in the longitudinal direction of the blast furnace blowing lance from the tip opening of the blast furnace blowing lance, the distance W satisfies the following formula (1).
W≦tanθ×D・・・・・・Formula (1)
However, D is the diameter of the inner tube.
前記内管の前記最先端部は、前記外管の外側の突き出し位置、前記外管の内側の管路内位置及び前記外管の先端開口部と面一の面一位置のうちいずれかに配設されていることを特徴とする請求項1に記載の高炉吹き込み用ランス。 The distal end portion of the inner tube is located at any one of a protruding position outside the outer tube, a position inside the outer tube within the conduit, and a flush position flush with the distal end opening of the outer tube. The blast furnace blowing lance according to claim 1, wherein the lance is provided with a lance. 前記外管の先端開口部は、前記内管の軸方向に対して垂直であることを特徴とする請求項1又は2に記載の高炉吹き込み用ランス。 The blast furnace blowing lance according to claim 1 or 2, wherein the tip opening of the outer tube is perpendicular to the axial direction of the inner tube. 請求項1乃至3のうちいずれか一つに記載の高炉吹き込み用ランスがブローパイプに挿通された高炉の操業方法において、
前記外管から水素系還元ガスを吹き込みながら、
燃焼速度が3.0(mg/min)以上の炭材を50質量%以上含む微粉炭を、前記内管からキャリアガスにより吹き込むとともに、
前記水素系還元ガスの流量をX1、前記キャリアガスの流量をX2としたとき、以下の式(2)に示す吹込み条件を満足させることを特徴とする高炉の操業方法。
X1/X2≧0.5・・・・・・・・・式(2)
A method of operating a blast furnace in which the blast furnace blowing lance according to any one of claims 1 to 3 is inserted into a blow pipe,
While blowing hydrogen-based reducing gas from the outer tube,
Injecting pulverized coal containing 50% by mass or more of carbonaceous material with a combustion rate of 3.0 (mg/min) or more through the inner tube with a carrier gas,
A method for operating a blast furnace, characterized in that the blowing conditions shown in the following equation (2) are satisfied, where the flow rate of the hydrogen-based reducing gas is X1 and the flow rate of the carrier gas is X2.
X1/X2≧0.5...Formula (2)
JP2022032506A 2022-03-03 2022-03-03 Blowing lance for blast furnace and blast furnace operation method Pending JP2023128269A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2022032506A JP2023128269A (en) 2022-03-03 2022-03-03 Blowing lance for blast furnace and blast furnace operation method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2022032506A JP2023128269A (en) 2022-03-03 2022-03-03 Blowing lance for blast furnace and blast furnace operation method

Publications (1)

Publication Number Publication Date
JP2023128269A true JP2023128269A (en) 2023-09-14

Family

ID=87972161

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2022032506A Pending JP2023128269A (en) 2022-03-03 2022-03-03 Blowing lance for blast furnace and blast furnace operation method

Country Status (1)

Country Link
JP (1) JP2023128269A (en)

Similar Documents

Publication Publication Date Title
EP3124626B1 (en) Method of operating oxygen blast furnace
JP4697340B2 (en) Blast furnace operation method
KR101536626B1 (en) Method for operating blast furnace
CN103314118A (en) Method for operating blast furnace
JP5011702B2 (en) Blast furnace operation method
CN104379770B (en) Method for operating blast furnace
JP4490640B2 (en) Method for producing reduced metal
JP2008111172A (en) Method for operating blast furnace
JP2008231294A (en) Two-stage gasification furnace
JP4992235B2 (en) Method and apparatus for injecting reducing material into blast furnace
JP2023128269A (en) Blowing lance for blast furnace and blast furnace operation method
JP4894949B2 (en) Blast furnace operation method
JP7356021B2 (en) Lance for blowing pulverized coal and method for blowing pulverized coal
RU2695793C2 (en) Blast furnace operation method
JP6870426B2 (en) How to operate the blast furnace
WO2018180892A1 (en) Method for operating blast furnace
JP4377826B2 (en) Waste melting treatment method
JP7310858B2 (en) Blast furnace operation method
JP2006312756A (en) Injection lance for gaseous reducing material, blast furnace and blast furnace operation method
JP2019019347A (en) Method of operating blast furnace
JP2011190471A (en) Method for operating blast furnace
RU2796917C1 (en) Method for producing molten iron in electric arc furnace
JP7265161B2 (en) Blast furnace operation method
EP4056722A1 (en) Method for producing molten iron using electric furnace
JP5400600B2 (en) Blast furnace operation method