JP2023125227A - Carbon fiber bundle and method for manufacturing the same - Google Patents

Carbon fiber bundle and method for manufacturing the same Download PDF

Info

Publication number
JP2023125227A
JP2023125227A JP2022029215A JP2022029215A JP2023125227A JP 2023125227 A JP2023125227 A JP 2023125227A JP 2022029215 A JP2022029215 A JP 2022029215A JP 2022029215 A JP2022029215 A JP 2022029215A JP 2023125227 A JP2023125227 A JP 2023125227A
Authority
JP
Japan
Prior art keywords
carbon fiber
fiber bundle
aqueous solution
carbon
treatment
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2022029215A
Other languages
Japanese (ja)
Inventor
究 太田
Kiwamu Ota
勉 藤田
Tsutomu Fujita
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Chemical Corp
Original Assignee
Mitsubishi Chemical Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Chemical Corp filed Critical Mitsubishi Chemical Corp
Priority to JP2022029215A priority Critical patent/JP2023125227A/en
Publication of JP2023125227A publication Critical patent/JP2023125227A/en
Pending legal-status Critical Current

Links

Landscapes

  • Chemical Or Physical Treatment Of Fibers (AREA)
  • Inorganic Fibers (AREA)

Abstract

To provide a carbon fiber bundle with high strand strength, in which defects in the fibers are controlled without reducing the strand elastic modulus and a method for manufacturing the same.SOLUTION: There is provided a carbon fiber bundle in which N/C, representing the ratio of the number of nitrogen atoms to the number of carbon atoms on the fiber surface of the carbon fiber bundle as determined by X-ray photoelectron spectroscopy, is 0.005 to 0.05. There is also provided a manufacturing method for obtaining a carbon fiber bundle by heating a carbon fiber precursor fiber bundle. The manufacturing method for the carbon fiber bundle comprises: heat treating at 2000°C or higher in an inert atmosphere; immersion in an acidic aqueous solution; immersion in an alkaline aqueous solution; and electrolytic treatment in at least the alkaline aqueous solution.SELECTED DRAWING: None

Description

本発明は、炭素繊維束及びその製造方法に関する。 The present invention relates to a carbon fiber bundle and a method for manufacturing the same.

炭素繊維は、他の繊維に比べて高い比強度及び比弾性率を有する。この炭素繊維の単繊維が集束されている炭素繊維束は、複合材料用補強繊維としてスポーツ用途や航空・宇宙用途に加え、自動車や土木・建築、圧力容器や風車ブレード等の一般産業用途にも幅広く展開されつつあり、更なる高性能化の要請が高い。 Carbon fibers have higher specific strength and specific modulus than other fibers. This carbon fiber bundle, which is a collection of single carbon fibers, is used as a reinforcing fiber for composite materials for sports, aviation, and space applications, as well as for general industrial applications such as automobiles, civil engineering, architecture, pressure vessels, and wind turbine blades. It is being widely deployed, and there is a high demand for further performance improvements.

炭素繊維の中でも広く利用されているポリアクリロニトリル(PAN)系炭素繊維は、一般的に以下のようにして工業的に製造されている。まず、前駆体となるアクリロニトリル系重合体を含む紡糸溶液を湿式紡糸、乾式紡糸又は乾湿式紡糸して炭素繊維前駆体アクリル繊維束を得る。得られた炭素繊維前駆体アクリル繊維束を例えば180~400℃の温度の酸化性雰囲気下で加熱して耐炎化繊維束へ転換した後に、例えば1000℃以上の不活性雰囲気下で加熱して炭素化することによって炭素繊維束を得る。 Polyacrylonitrile (PAN) carbon fibers, which are widely used among carbon fibers, are generally manufactured industrially as follows. First, a spinning solution containing an acrylonitrile polymer as a precursor is wet-spun, dry-spun, or dry-wet-spun to obtain an acrylic fiber bundle as a carbon fiber precursor. The obtained carbon fiber precursor acrylic fiber bundle is heated in an oxidizing atmosphere at a temperature of, for example, 180 to 400°C to convert it into a flame-resistant fiber bundle, and then heated in an inert atmosphere at a temperature of, for example, 1000°C or higher to form a carbon fiber bundle. A carbon fiber bundle is obtained by

炭素繊維は脆性材料であり、わずかな欠陥が強度低下を引き起こすため、破壊の原因となる欠陥を少なくすることが種々検討されている。具体的には、炭素繊維の欠陥のサイズや存在状態を特定の範囲になるよう制御する方法が提案されている。
例えば、特許文献1には、試長を10mmとして単繊維引張試験を実施した後に、無作為に選択した繊維の破断面の対の総数Nと、対となる破断面の少なくともいずれか一方に大きさ50nm以上の欠陥が存在する対の数nの比率(n/N)が35%以下であって、平均単繊維直径が4.3μm以上であり、ストランド強度が8.0GPa以上である炭素繊維束が開示されている。
Carbon fiber is a brittle material, and the slightest defect causes a decrease in strength, so various studies are being conducted to reduce the number of defects that cause breakage. Specifically, a method has been proposed for controlling the size and state of existence of defects in carbon fibers so that they fall within a specific range.
For example, in Patent Document 1, after carrying out a single fiber tensile test with a sample length of 10 mm, the total number N of pairs of fractured surfaces of randomly selected fibers and at least one of the paired fractured surfaces are Carbon fibers in which the ratio (n/N) of the number of pairs in which defects of 50 nm or more are present is 35% or less, the average single fiber diameter is 4.3 μm or more, and the strand strength is 8.0 GPa or more A bundle is disclosed.

国際公開第2018/003836号International Publication No. 2018/003836

しかしながら、特許文献1に記載の炭素繊維束では、単繊維引張試験において破断に至るような欠陥の評価は行われているものの、実際の使用条件に即した条件下での強度発現性に寄与するような欠陥の評価は必ずしもできていない。 However, in the carbon fiber bundle described in Patent Document 1, although defects that may lead to breakage have been evaluated in a single fiber tensile test, they do not contribute to strength development under conditions consistent with actual usage conditions. Evaluation of such defects is not always possible.

本発明は、ストランド弾性率を低下させることなく、繊維に含まれる欠陥が制御されており、ストランド強度の高い炭素繊維束及びその製造方法を提供することを目的とする。 An object of the present invention is to provide a carbon fiber bundle with controlled defects in the fibers and high strand strength without reducing the strand elastic modulus, and a method for producing the same.

本発明は、以下の態様を有する。
[1]X線光電子分光法により得られる炭素繊維束の繊維表面における炭素原子数に対する窒素原子数の比率N/Cが0.005~0.05である炭素繊維束。
[2]ストランド強度が5.2~7.0GPa、ストランド弾性率が370~430GPaである、[1]に記載の炭素繊維束。
[3]明細書に記載の方法で算出されるIpaの値が、0.01~0.25μA/cmである、[1]または[2]に記載の炭素繊維束。
[4]X線光電子分光法により得られる炭素繊維束の繊維表面における炭素原子数に対する酸素原子数の比率O/Cが0.01~0.25である、[1]~[3]のいずれかに記載の炭素繊維束。
[5]炭素繊維表面から5nmエッチングした領域における前記N/Cが0.005~0.04である、[1]~[4]のいずれかに記載の炭素繊維束。
[6]炭素繊維表面から10nmエッチングした領域における前記N/Cが0.005~0.04である、[1]~[5]のいずれかに記載の炭素繊維束。
[7]炭素繊維表面から15nmエッチングした領域における前記N/Cが0.01~0.04である、[1]~[6]のいずれかに記載の炭素繊維束。
[8]炭素繊維表面から20nmエッチングした領域における前記N/Cが0.02~0.04である、[1]~[7]のいずれかに記載の炭素繊維束。
[9]前記炭素繊維束の単繊維径が5.0~7.0μmである、[1]~[8]のいずれかに記載の炭素繊維束。
[10]前記炭素繊維束の単繊維径が5.5~6.7μmである、[1]~[8]のいずれかに記載の炭素繊維束。
[11]前記炭素繊維束の単繊維径が5.7~6.7μmである、[1]~[8]のいずれかに記載の炭素繊維束。
[12]炭素繊維前駆体繊維束を加熱して炭素繊維束を得る製造方法であって、不活性雰囲気下において炭素繊維前駆体繊維束を2000℃以上で熱処理した後に、酸性水溶液中へ浸漬し、続いてアルカリ性水溶液中に浸漬し、少なくともアルカリ水溶液中で電解処理を行う、炭素繊維束の製造方法。
[13]前記酸性水溶液中で電解処理を行う、[12]に記載の炭素繊維束の製造方法。
[14]前記酸性水溶液中での電解処理における電気量が、被処理炭素繊維1g当たり0~30クーロンである、[13]に記載の炭素繊維束の製造方法。
[15]前記アルカリ性水溶液中での電解処理における電気量が、被処理炭素繊維1g当たり5~200クーロンである、[12]~[14]のいずれかに記載の炭素繊維束の製造方法。
[16]前記酸性水溶液のpHが1~4である、[12]~[15]のいずれかに記載の炭素繊維束の製造方法。
The present invention has the following aspects.
[1] A carbon fiber bundle obtained by X-ray photoelectron spectroscopy, in which the ratio N/C of the number of nitrogen atoms to the number of carbon atoms on the fiber surface of the carbon fiber bundle is 0.005 to 0.05.
[2] The carbon fiber bundle according to [1], which has a strand strength of 5.2 to 7.0 GPa and a strand elastic modulus of 370 to 430 GPa.
[3] The carbon fiber bundle according to [1] or [2], wherein the value of I pa calculated by the method described in the specification is 0.01 to 0.25 μA/cm 2 .
[4] Any of [1] to [3], wherein the ratio O/C of the number of oxygen atoms to the number of carbon atoms on the fiber surface of the carbon fiber bundle obtained by X-ray photoelectron spectroscopy is 0.01 to 0.25. Carbon fiber bundle described in Crab.
[5] The carbon fiber bundle according to any one of [1] to [4], wherein the N/C in a region etched by 5 nm from the carbon fiber surface is 0.005 to 0.04.
[6] The carbon fiber bundle according to any one of [1] to [5], wherein the N/C in a region etched by 10 nm from the carbon fiber surface is 0.005 to 0.04.
[7] The carbon fiber bundle according to any one of [1] to [6], wherein the N/C in a region etched by 15 nm from the carbon fiber surface is 0.01 to 0.04.
[8] The carbon fiber bundle according to any one of [1] to [7], wherein the N/C in a region etched by 20 nm from the carbon fiber surface is 0.02 to 0.04.
[9] The carbon fiber bundle according to any one of [1] to [8], wherein the carbon fiber bundle has a single fiber diameter of 5.0 to 7.0 μm.
[10] The carbon fiber bundle according to any one of [1] to [8], wherein the carbon fiber bundle has a single fiber diameter of 5.5 to 6.7 μm.
[11] The carbon fiber bundle according to any one of [1] to [8], wherein the carbon fiber bundle has a single fiber diameter of 5.7 to 6.7 μm.
[12] A manufacturing method for obtaining a carbon fiber bundle by heating a carbon fiber precursor fiber bundle, which comprises heat-treating the carbon fiber precursor fiber bundle at 2000°C or higher in an inert atmosphere and then immersing it in an acidic aqueous solution. , followed by immersion in an alkaline aqueous solution and electrolytic treatment in at least the alkaline aqueous solution.
[13] The method for producing a carbon fiber bundle according to [12], wherein electrolytic treatment is performed in the acidic aqueous solution.
[14] The method for producing a carbon fiber bundle according to [13], wherein the amount of electricity in the electrolytic treatment in the acidic aqueous solution is 0 to 30 coulombs per gram of carbon fiber to be treated.
[15] The method for producing a carbon fiber bundle according to any one of [12] to [14], wherein the amount of electricity in the electrolytic treatment in the alkaline aqueous solution is 5 to 200 coulombs per gram of carbon fiber to be treated.
[16] The method for producing a carbon fiber bundle according to any one of [12] to [15], wherein the acidic aqueous solution has a pH of 1 to 4.

本発明によれば、ストランド弾性率を低下させることなく、繊維に含まれる欠陥が制御されており、ストランド強度の高い炭素繊維束及びその製造方法を提供できる。 According to the present invention, defects contained in the fibers are controlled without reducing the strand elastic modulus, and a carbon fiber bundle with high strand strength and a method for manufacturing the same can be provided.

以下、本発明を詳細に説明する。以下の実施の形態は、本発明を説明するための単なる例示であって、本発明をこの実施の形態にのみ限定することは意図されない。本発明は、その趣旨を逸脱しない限り、様々な態様で実施することが可能である。
なお、特に断らない限り、本明細書において「~」を用いて表される数値範囲は、「~」の前後に記載された数値を下限値及び上限値として含む範囲を意味し、「A~B」は、A以上B以下であることを意味する。
The present invention will be explained in detail below. The following embodiments are merely examples for explaining the present invention, and are not intended to limit the present invention only to these embodiments. The present invention can be implemented in various ways without departing from the spirit thereof.
In addition, unless otherwise specified, a numerical range expressed using "~" in this specification means a range that includes the numerical values written before and after "~" as the lower limit value and upper limit value, and "A ~ "B" means greater than or equal to A and less than or equal to B.

[炭素繊維束]
本発明の炭素繊維束は、複数本の炭素繊維の単繊維が集束されて構成されるものであり、連続繊維の状態でもよく、所定の長さに切断された状態でもよい。
炭素繊維としては、例えばポリアクリロニトリル(PAN)系炭素繊維、レーヨン系炭素繊維、ピッチ系炭素繊維等が挙げられる。これらの中でも、工業規模における生産性及び機械的特性に優れている観点から、PAN系炭素繊維が好ましい。
[Carbon fiber bundle]
The carbon fiber bundle of the present invention is composed of a plurality of single carbon fibers bundled together, and may be in the form of continuous fibers or may be in the form of cut into predetermined lengths.
Examples of carbon fibers include polyacrylonitrile (PAN) carbon fibers, rayon carbon fibers, pitch carbon fibers, and the like. Among these, PAN-based carbon fibers are preferred from the viewpoint of excellent productivity and mechanical properties on an industrial scale.

炭素繊維束中の単繊維の本数は、8000~20000本が好ましく、10000~18000本がより好ましく、12000~18000本がさらに好ましい。フィラメント数が、上記下限値以上であれば加工性に優れ、上記上限値以下であれば取り扱い性に優れる。 The number of single fibers in the carbon fiber bundle is preferably 8,000 to 20,000, more preferably 10,000 to 18,000, even more preferably 12,000 to 18,000. If the number of filaments is greater than or equal to the above lower limit, it will have excellent workability, and if it is less than or equal to the above upper limit, it will be excellent in handleability.

本発明の炭素繊維束は、X線光電子分光法により得られる炭素繊維束の繊維表面における炭素原子の原子数に対する窒素原子の原子数の比率N/Cが0.005~0.05である。
前記N/Cが0.005以上であれば、樹脂との親和性が得られやすく、0.05以下であれば繊維に含まれる欠陥が少なく、ストランド強度の低下を抑制しやすい。
これらの観点から、前記N/Cは、0.007~0.045が好ましく、0.01~0.04がより好ましい。
炭素繊維束の前記N/Cは、炭素繊維の表面処理において、窒素原子を有する電解質を用い、電解酸化処理時の電気量を調節することで制御できる。
In the carbon fiber bundle of the present invention, the ratio N/C of the number of nitrogen atoms to the number of carbon atoms on the fiber surface of the carbon fiber bundle obtained by X-ray photoelectron spectroscopy is 0.005 to 0.05.
When the N/C is 0.005 or more, affinity with the resin is easily obtained, and when it is 0.05 or less, there are few defects contained in the fibers, and it is easy to suppress a decrease in strand strength.
From these viewpoints, the N/C is preferably 0.007 to 0.045, more preferably 0.01 to 0.04.
The N/C of the carbon fiber bundle can be controlled by using an electrolyte containing nitrogen atoms in the surface treatment of the carbon fibers and adjusting the amount of electricity during the electrolytic oxidation treatment.

本発明の炭素繊維束は、ストランド強度が5.2~7.0GPa、ストランド弾性率が370~430GPaであることが好ましい。
炭素繊維束のストランド強度が5.2GPa以上であれば、コンポジットの強度の上がりやすいため設計自由度が向上しやすく、7.0GPa以下であれば、炭素繊維束製造時の焼成時間が長くならず、生産性良く製造しやすい。これらの観点から、前記ストランド強度は5.5~6.9GPaが好ましく、5.9~6.8GPaがより好ましい。
ストランド強度は、JIS R 7608:2007に準拠して測定される。
The carbon fiber bundle of the present invention preferably has a strand strength of 5.2 to 7.0 GPa and a strand elastic modulus of 370 to 430 GPa.
If the strand strength of the carbon fiber bundle is 5.2 GPa or more, the strength of the composite can be easily increased, so the degree of design freedom can be easily improved, and if it is 7.0 GPa or less, the firing time during production of the carbon fiber bundle will not be long. , easy to manufacture with good productivity. From these viewpoints, the strand strength is preferably 5.5 to 6.9 GPa, more preferably 5.9 to 6.8 GPa.
Strand strength is measured in accordance with JIS R 7608:2007.

本発明における炭素繊維束のストランド弾性率が370GPa以上であれば、コンポジットとした際に十分な剛性が得られやすく、430GPa以下であれば、焼成温度を高くなり過ぎず、効率良く炭素繊維束を得ることができる。
これらの観点から、前記ストランド弾性率は、375~430GPaが好ましく、380~430GPaがよりに好ましい。
ストランド弾性率は、JIS R 7608:2007のA法に準拠して測定される。
If the strand elastic modulus of the carbon fiber bundle in the present invention is 370 GPa or more, sufficient rigidity can be easily obtained when made into a composite, and if it is 430 GPa or less, the carbon fiber bundle can be efficiently formed without increasing the firing temperature too high. Obtainable.
From these viewpoints, the strand elastic modulus is preferably 375 to 430 GPa, more preferably 380 to 430 GPa.
Strand elastic modulus is measured according to method A of JIS R 7608:2007.

本発明の炭素繊維束は、明細書に記載の方法で算出されるIpaの値が0.01~0.25であることが好ましい。
前記Ipaの値が0.01以上であれば、樹脂との親和性が得られやすく、0.25以下であればストランド強度の低下を抑制できやすい。
これらの観点から、前記Ipaの値は、0.05~0.22がより好ましく、0.07~0.20がさらに好ましい。
paの値は、炭素繊維の表面処理において、電解質として酸性電解質を適用し、電解酸化処理にて電気量を調節することで制御できる。
The carbon fiber bundle of the present invention preferably has an I pa value of 0.01 to 0.25, calculated by the method described in the specification.
If the value of I pa is 0.01 or more, affinity with the resin can be easily obtained, and if it is 0.25 or less, it is easy to suppress a decrease in strand strength.
From these viewpoints, the value of I pa is more preferably 0.05 to 0.22, and even more preferably 0.07 to 0.20.
The value of I pa can be controlled by applying an acidic electrolyte as an electrolyte in surface treatment of carbon fibers and adjusting the amount of electricity in electrolytic oxidation treatment.

本発明の炭素繊維束は、X線光電子分光法により得られる炭素繊維束の繊維表面における炭素原子数に対する酸素原子数の比率O/Cが0.01~0.25であることが好ましい。
前記O/Cが0.01以上であれば、樹脂との親和性が得られやすく、0.25以下であればストランド強度の低下を抑制できやすい。
これらの観点から、前記O/Cは0.02~0.22がより好ましく、0.03~0.20がさらに好ましい。
炭素繊維の表面酸素濃度O/Cは、炭素繊維の表面処理における電解処理条件を調節することで制御できる。
In the carbon fiber bundle of the present invention, the ratio O/C of the number of oxygen atoms to the number of carbon atoms on the fiber surface of the carbon fiber bundle obtained by X-ray photoelectron spectroscopy is preferably 0.01 to 0.25.
If the O/C is 0.01 or more, affinity with the resin can be easily obtained, and if it is 0.25 or less, a decrease in strand strength can be easily suppressed.
From these viewpoints, the O/C is more preferably 0.02 to 0.22, and even more preferably 0.03 to 0.20.
The surface oxygen concentration O/C of carbon fibers can be controlled by adjusting electrolytic treatment conditions in surface treatment of carbon fibers.

本発明の炭素繊維束は、炭素繊維表面から5nmエッチングした領域における前記N/Cが0.005~0.04であることが好ましい。
さらに炭素繊維表面から10nmエッチングした領域における前記N/Cが0.005~0.04であることが好ましい。さらに炭素繊維表面から15nmエッチングした領域における前記N/Cが0.01~0.04であることが好ましい。より好ましくは炭素繊維表面から20nmエッチングした領域における前記N/Cが0.02~0.04であることが好ましい。
前記下限値以上であれば、樹脂との親和性が得られやすく、前記上限値以下であればストランド強度の低下を抑制できやすい。
炭素繊維表面のN/Cは、炭素繊維の表面処理における電解処理条件を調節することで制御できる。
In the carbon fiber bundle of the present invention, the N/C in a region etched by 5 nm from the carbon fiber surface is preferably 0.005 to 0.04.
Furthermore, it is preferable that the N/C in a region etched by 10 nm from the surface of the carbon fiber is 0.005 to 0.04. Furthermore, it is preferable that the N/C in a region etched by 15 nm from the surface of the carbon fiber is 0.01 to 0.04. More preferably, the N/C in a region etched by 20 nm from the carbon fiber surface is 0.02 to 0.04.
If it is more than the said lower limit, affinity with resin will be easily obtained, and if it is less than the said upper limit, it will be easy to suppress a fall in strand strength.
The N/C on the carbon fiber surface can be controlled by adjusting the electrolytic treatment conditions in the surface treatment of the carbon fiber.

本発明の炭素繊維束は、単繊維径が5.0~7.0μmが好ましく、5.5~6.7μmがより好ましく、5.7~6.7μmがさらに好ましい。
前記単繊維径が、5.0μm以上であれば繊維の開繊性が良好になりやすく、8.0μm以下であれば炭素繊維束の収束性が保たれ、ハンドリングしやすい。
The carbon fiber bundle of the present invention preferably has a single fiber diameter of 5.0 to 7.0 μm, more preferably 5.5 to 6.7 μm, and even more preferably 5.7 to 6.7 μm.
If the diameter of the single fiber is 5.0 μm or more, the opening property of the fiber tends to be good, and if it is 8.0 μm or less, the convergence property of the carbon fiber bundle is maintained and it is easy to handle.

<炭素繊維束の製造方法>
炭素繊維束は、炭素繊維前駆体繊維束を加熱処理することにより得られる。
加熱処理では、酸化性雰囲気下での耐炎化処理の後に不活性雰囲気下での炭素化処理を行う。
<Method for manufacturing carbon fiber bundles>
The carbon fiber bundle is obtained by heat-treating a carbon fiber precursor fiber bundle.
In the heat treatment, carbonization treatment is performed in an inert atmosphere after flameproofing treatment in an oxidizing atmosphere.

(炭素繊維前駆体繊維束)
炭素繊維前駆体繊維束としては、PAN系繊維、レーヨン系繊維、ピッチ系繊維等の繊維の単繊維が集束されたものが挙げられる。これらの中でも、炭素繊維前駆体繊維束としては、PAN系繊維の単繊維が集束されている炭素繊維前駆体繊維束が好ましい。以下、PAN系繊維の単繊維が集束されている炭素繊維前駆体繊維束を特に「炭素繊維前駆体アクリル繊維束」ともいう。
炭素繊維前駆体アクリル繊維束は、例えばアクリロニトリル系重合体を含む紡糸溶液を紡糸して凝固糸とし、必要に応じて従来公知の水洗、浴延伸、油剤付与、乾燥緻密化、延伸等を施すことで得られる。
アクリロニトリル系重合体は、分子構造中にアクリロニトリル単位を有していればよく、アクリロニトリルの単独重合体であってもよいし、アクリロニトリルと他のモノマー(例えば、メタクリル酸等)との共重合体であってもよい。共重合体中のアクリロニトリル単位と他のモノマー単位との含有割合は、製造する炭素繊維束の性質に応じて適宜設定することができる。
(Carbon fiber precursor fiber bundle)
Examples of the carbon fiber precursor fiber bundle include bundles of single fibers such as PAN fibers, rayon fibers, and pitch fibers. Among these, as the carbon fiber precursor fiber bundle, a carbon fiber precursor fiber bundle in which single fibers of PAN fibers are bundled is preferable. Hereinafter, a carbon fiber precursor fiber bundle in which single fibers of PAN fibers are bundled is also referred to as a "carbon fiber precursor acrylic fiber bundle."
The carbon fiber precursor acrylic fiber bundle is produced by spinning a spinning solution containing an acrylonitrile polymer, for example, into a coagulated thread, and subjecting it to conventionally known washing, bath stretching, oiling, drying and densification, stretching, etc., as necessary. It can be obtained with
The acrylonitrile-based polymer only needs to have an acrylonitrile unit in its molecular structure, and may be a homopolymer of acrylonitrile or a copolymer of acrylonitrile and other monomers (for example, methacrylic acid, etc.). There may be. The content ratio of acrylonitrile units and other monomer units in the copolymer can be appropriately set depending on the properties of the carbon fiber bundle to be produced.

アクリロニトリル系重合体を含む紡糸溶液の紡糸方法としては特に制限されないが、例えば紡糸溶液を直接凝固浴中に紡出する湿式紡糸、紡糸溶液を空気中で凝固する乾式紡糸、紡糸溶液を一旦空気中に紡出した後に浴中凝固させる乾湿式紡糸等が挙げられる。これらの中でも、単繊維の側面の表面皺を小さくすることができ、表面形状による欠陥生成を抑制できる観点から、炭素繊維前駆体アクリル繊維束は、アクリロニトリル系重合体を含む紡糸溶液を乾湿式紡糸で製造した繊維束であることが好ましい。
湿式紡糸又は乾湿式紡糸による紡糸方法では、紡糸溶液を円形断面の孔を有するノズルより凝固浴中に紡出することで行うことができる。凝固浴としては、紡糸溶液に用いられる溶剤を含む水溶液を用いるのが溶剤回収の容易さの観点から好ましい。
The method for spinning a spinning solution containing an acrylonitrile polymer is not particularly limited, but examples include wet spinning in which the spinning solution is directly spun into a coagulation bath, dry spinning in which the spinning solution is coagulated in the air, and spinning methods in which the spinning solution is once placed in the air. Examples include dry-wet spinning, in which the material is spun in a bath and then coagulated in a bath. Among these, carbon fiber precursor acrylic fiber bundles are produced by dry-wet spinning a spinning solution containing an acrylonitrile polymer, from the viewpoint of reducing surface wrinkles on the side surfaces of single fibers and suppressing the generation of defects due to surface shapes. Preferably, it is a fiber bundle manufactured by.
In the spinning method using wet spinning or wet/dry spinning, a spinning solution can be spun into a coagulation bath through a nozzle having a hole with a circular cross section. As the coagulation bath, it is preferable to use an aqueous solution containing the solvent used in the spinning solution from the viewpoint of ease of solvent recovery.

炭素繊維前駆体繊維束の単繊維繊度は、0.5~2.5dtexが好ましく、0.7~2dtexがより好ましい。単繊維繊度が、上記下限値以上であれば糸切れの少ない炭素繊維束が得られやすくなり、上記上限値以下であれば性能ムラの小さい炭素繊維束が得られやすくなる。
炭素繊維前駆体繊維束の単繊維の本数は、8000~20000本が好ましく、10000~18000本がより好ましく、12000~18000本がさらに好ましい。単繊維数が、8000本以上であれば加工性に優れ、20000本以下であれば取り扱い性に優れる。
The single fiber fineness of the carbon fiber precursor fiber bundle is preferably 0.5 to 2.5 dtex, more preferably 0.7 to 2 dtex. If the single fiber fineness is equal to or greater than the above lower limit value, it becomes easier to obtain a carbon fiber bundle with less yarn breakage, and when it is equal to or less than the above upper limit value, it becomes easier to obtain a carbon fiber bundle with small performance unevenness.
The number of single fibers in the carbon fiber precursor fiber bundle is preferably 8,000 to 20,000, more preferably 10,000 to 18,000, even more preferably 12,000 to 18,000. If the number of single fibers is 8,000 or more, it has excellent processability, and if it has 20,000 or less, it has excellent handleability.

炭素繊維前駆体繊維束は、焼成工程へと移され、耐炎化処理、炭素化処理、表面酸化処理、サイジング処理が順次施され、炭素繊維束となる。 The carbon fiber precursor fiber bundle is transferred to a firing process, where it is sequentially subjected to flameproofing treatment, carbonization treatment, surface oxidation treatment, and sizing treatment to become a carbon fiber bundle.

(耐炎化処理)
耐炎化処理の工程(耐炎化工程)では、炭素繊維前駆体繊維束を酸化性雰囲気下で加熱して耐炎化繊維束に転換する。
耐炎化処理としては、180~280℃の熱風循環型の耐炎化炉で、炉内雰囲気温度を180~280℃として、耐炎化処理後の耐炎化繊維の密度が1.28~1.42g/cmになるまで、炭素繊維前駆体繊維束を加熱する方法が挙げられる。耐炎化繊維の密度が上記下限値以上であれば、次の工程である炭素化処理の際に単繊維間接着を防ぐことが容易になる。耐炎化繊維の密度が上記上限値以下であれば、耐炎化工程が長くなりすぎず、経済的である。
酸化性雰囲気を形成するガスとしては、例えば空気、酸素、二酸化窒素等が挙げられる。これらの中でも、経済性の面から空気が好ましい。
耐炎化処理の時間は、30~100分間が好ましい。
(Flame resistant treatment)
In the flame resistant treatment process (flame resistant process), the carbon fiber precursor fiber bundle is heated in an oxidizing atmosphere to convert it into a flame resistant fiber bundle.
The flame-retardant treatment is carried out in a hot air circulation type flame-retardant furnace at 180-280°C, with the furnace atmosphere temperature set at 180-280°C, and the density of the flame-retardant fiber after the flame-retardant treatment is 1.28-1.42 g/ A method of heating a carbon fiber precursor fiber bundle until the carbon fiber precursor fiber bundle reaches cm 3 is mentioned. If the density of the flame-resistant fiber is equal to or higher than the above lower limit, it will be easy to prevent adhesion between single fibers during the next step, carbonization treatment. If the density of the flame resistant fiber is below the above upper limit, the flame resistant process will not take too long and will be economical.
Examples of the gas that forms the oxidizing atmosphere include air, oxygen, nitrogen dioxide, and the like. Among these, air is preferable from the economic point of view.
The flameproofing treatment time is preferably 30 to 100 minutes.

耐炎化処理においては、フィブリル構造の配向を維持させやすい点から、伸長操作を行うことが好ましい。
耐炎化処理における伸長率は、1~8%が好ましい。耐炎化処理における伸長率が上記下限値以上であれば、フィブリル構造の配向の維持や向上が容易となり、力学特性に優れた炭素繊維束が得られやすい。耐炎化処理における伸長率が上記上限値以下であれば、フィブリル構造自体の破断が生じにくく、その後の炭素繊維の構造形成が損なわれにくいため、高強度な炭素繊維束が得られやすい。
In the flameproofing treatment, it is preferable to perform an elongation operation from the viewpoint of easily maintaining the orientation of the fibril structure.
The elongation rate in the flameproofing treatment is preferably 1 to 8%. If the elongation rate in the flame-retardant treatment is equal to or higher than the above lower limit, it will be easy to maintain or improve the orientation of the fibril structure, and a carbon fiber bundle with excellent mechanical properties will be easily obtained. If the elongation rate in the flameproofing treatment is below the above upper limit, the fibril structure itself is less likely to break and the subsequent structure formation of the carbon fibers is less likely to be impaired, making it easier to obtain a high-strength carbon fiber bundle.

(炭素化処理)
耐炎化繊維束は連続して炭素化処理の工程(炭素化工程)に導かれる。
炭素化工程では、耐炎化繊維束を不活性雰囲気下で加熱して炭素繊維束を得る。
不活性雰囲気を形成するガスとしては、例えば窒素、アルゴン、ヘリウム等が挙げられる。これらの中でも、経済性の面から窒素が好ましい。
(Carbonization treatment)
The flame-resistant fiber bundle is continuously guided to a carbonization process (carbonization process).
In the carbonization step, the flame-resistant fiber bundle is heated in an inert atmosphere to obtain a carbon fiber bundle.
Examples of the gas forming the inert atmosphere include nitrogen, argon, helium, and the like. Among these, nitrogen is preferred from the economic point of view.

炭素化処理の温度(炭素化処理温度)は、300~2500℃であることが好ましい。
炭素化処理温度は、炭素化処理中に昇温させることが好ましい。昇温させる場合、例えば複数の炭素化炉を設置し、上流側の炭素化炉から下流側の炭素化炉に向かって温度が高くなるように各炭素化炉の温度を設定して、上流側の炭素化炉から下流側の炭素化炉に向かって耐炎化繊維束を順次通過させて処理することで実現できる。
以下、炭素化処理温度を昇温させて炭素化処理する場合の一例について説明する。
The temperature of the carbonization treatment (carbonization treatment temperature) is preferably 300 to 2500°C.
The carbonization temperature is preferably raised during the carbonization treatment. When raising the temperature, for example, install multiple carbonization furnaces and set the temperature of each carbonization furnace so that the temperature increases from the upstream carbonization furnace to the downstream carbonization furnace. This can be achieved by sequentially passing the flame-resistant fiber bundle from the carbonization furnace to the downstream carbonization furnace.
Hereinafter, an example in which the carbonization treatment is performed by increasing the carbonization treatment temperature will be described.

本実施形態では、不活性雰囲気にて300℃から800℃の温度勾配の第一炭素化炉で加熱処理する第一炭素化処理と、不活性雰囲気にて1000℃から2500℃まで加熱処理する第二炭素化処理とを順次行い、耐炎化繊維束を炭素化処理する。なお、第二炭素化処理は複数以上の加熱処理炉を適用しても良い。 In this embodiment, the first carbonization treatment is performed in a first carbonization furnace with a temperature gradient of 300°C to 800°C in an inert atmosphere, and the second carbonization treatment is performed in an inert atmosphere from 1000°C to 2500°C. Carbonization treatment is performed sequentially to carbonize the flame-resistant fiber bundle. Note that the second carbonization treatment may be performed using a plurality of heat treatment furnaces.

本発明の炭素繊維束の製造方法は、炭素繊維前駆体繊維束を加熱して炭素繊維束を得る製造方法であって、不活性雰囲気下において2000℃以上の熱処理を行った後に、酸性水溶液中に浸漬し、続いてアルカリ性水溶液中に浸漬し、少なくともアルカリ水溶液中で電解処理を行うことが好ましい。 The method for producing a carbon fiber bundle of the present invention is a method for producing a carbon fiber bundle by heating a carbon fiber precursor fiber bundle, in which the carbon fiber bundle is heat-treated at 2000°C or higher in an inert atmosphere, and then heated in an acidic aqueous solution. It is preferable to immerse the substrate in water, then immerse it in an alkaline aqueous solution, and perform electrolytic treatment at least in the alkaline aqueous solution.

本発明の製造方法では、不活性雰囲気下において2000℃以上の熱処理を行うことが好ましい。2000℃以上の加熱を行うことでストランド弾性率を高くしやすい。
この観点から、不活性雰囲気下において2100℃以上の熱処理を行うことがより好ましく、2200℃以上の熱処理を行うことがさらに好ましい。
In the manufacturing method of the present invention, it is preferable to perform heat treatment at 2000° C. or higher in an inert atmosphere. The strand elastic modulus can be easily increased by heating at 2000°C or higher.
From this point of view, it is more preferable to perform heat treatment at 2100°C or higher in an inert atmosphere, and even more preferably to perform heat treatment at 2200°C or higher.

(表面処理)
本発明の炭素繊維束の製造方法は、不活性雰囲気下において2000℃以上の熱処理を行った後に、酸性水溶液中に浸漬し、続いてアルカリ性水溶液中に浸漬し、少なくともアルカリ水溶液中で電解処理を行うことが好ましい。
酸性水溶液中での強い表面処理を行った後、アルカリ水溶液中で緩やかな表面処理をすることで、弾性率を低下させずに、樹脂との親和性を高くすることができるので、ストランド強度を高くすることがさらに容易になる。
(surface treatment)
The method for producing carbon fiber bundles of the present invention includes heat treatment at 2000°C or higher in an inert atmosphere, followed by immersion in an acidic aqueous solution, followed by immersion in an alkaline aqueous solution, and at least electrolytic treatment in the alkaline aqueous solution. It is preferable to do so.
By performing a strong surface treatment in an acidic aqueous solution and then a gentle surface treatment in an alkaline aqueous solution, it is possible to increase the affinity with the resin without reducing the elastic modulus, thereby increasing the strand strength. It becomes easier to raise the price.

前記アルカリ性水溶液中での電解処理における電気量は、被処理炭素繊維1g当たり5~200クーロン(C)であることが好ましい。
前記電気量が5クーロン/g以上であれば、樹脂との親和性を高くできやすく、200クーロン/g以下であれば、ストランド強度を低下させにくい。
これらの観点から、前記電気量は、6~100クーロン/gがより好ましく、7~20クーロン/gがさらに好ましい。
The amount of electricity in the electrolytic treatment in the alkaline aqueous solution is preferably 5 to 200 coulombs (C) per gram of carbon fiber to be treated.
When the amount of electricity is 5 coulombs/g or more, it is easy to increase the affinity with the resin, and when it is 200 coulombs/g or less, it is difficult to reduce the strand strength.
From these viewpoints, the amount of electricity is more preferably 6 to 100 coulombs/g, and even more preferably 7 to 20 coulombs/g.

(表面酸化処理)
表面酸化処理の方法としては、例えば電解酸化、薬剤酸化、空気酸化等が挙げられる。これらの中でも、安定な表面酸化処理が可能な点から、工業的に広く実施されている電解酸化が好ましい。
本発明の製造方法では、酸による電解処理を行うことが好ましい。
(Surface oxidation treatment)
Examples of methods for surface oxidation treatment include electrolytic oxidation, chemical oxidation, and air oxidation. Among these, electrolytic oxidation, which is widely practiced industrially, is preferred because it allows stable surface oxidation treatment.
In the production method of the present invention, it is preferable to perform electrolytic treatment with an acid.

窒素原子を有する電解質を用い、電解酸化処理時の電気量を調整することにより、X線光電子分光法によって得られる炭素繊維表面のN/Cを0.005~0.05に制御することができる。
よって、前記電解質は窒素原子を有することが好ましい。
また、電解質として酸性電解質を適用し、電解酸化処理にて電気量を調整することにより、表面処理状態を表すIPaを0.010~0.25μA/cmに制御することや、X線光電子分光法によって得られる炭素繊維表面のO/Cを0.01~0.25に制御することができる。
By using an electrolyte containing nitrogen atoms and adjusting the amount of electricity during electrolytic oxidation treatment, the N/C of the carbon fiber surface obtained by X-ray photoelectron spectroscopy can be controlled to 0.005 to 0.05. .
Therefore, it is preferable that the electrolyte has nitrogen atoms.
In addition, by applying an acidic electrolyte as an electrolyte and adjusting the amount of electricity in electrolytic oxidation treatment, it is possible to control I Pa , which indicates the surface treatment state, to 0.010 to 0.25 μA/ cm2 , and to control X-ray photoelectron The O/C of the carbon fiber surface obtained by spectroscopy can be controlled to 0.01 to 0.25.

電解質としては、例えば硫酸、硝酸、リン酸、炭酸アンモニウム、重炭酸アンモニウム、硫酸アンモニウム、水酸化カルシウム、水酸化ナトリウム、水酸化カリウム等が挙げられる。中でも、リン酸、重炭酸アンモニウムが好ましい。
酸性水溶液中での電解処理に適用する電気量としては0~30クーロン/gが好ましい。電気量が0であっても、表面処理効果はあるが、1クーロン/g以上がより好ましく、5クーロン/g以上がさらに好ましい。また、30クーロン/g以下であれば、繊維表面のダメージが少なくストランド強度を低下させにくい。この観点から、前記電気量の上限値は25クーロン/g以下がより好ましく、20クーロン/g以下がさらに好ましい。
電解処理は1種類の電解液で行ってもよいし、複数回行うこともできる。マトリックス樹脂との接着性を発現しつつ、短時間で処理する観点からは複数回処理することが好ましい。
Examples of the electrolyte include sulfuric acid, nitric acid, phosphoric acid, ammonium carbonate, ammonium bicarbonate, ammonium sulfate, calcium hydroxide, sodium hydroxide, potassium hydroxide, and the like. Among these, phosphoric acid and ammonium bicarbonate are preferred.
The amount of electricity applied to the electrolytic treatment in an acidic aqueous solution is preferably 0 to 30 coulombs/g. Even if the amount of electricity is 0, there is a surface treatment effect, but it is more preferably 1 coulomb/g or more, and even more preferably 5 coulombs/g or more. Moreover, if it is 30 coulombs/g or less, there is little damage to the fiber surface and it is difficult to reduce the strand strength. From this viewpoint, the upper limit of the amount of electricity is more preferably 25 coulombs/g or less, and even more preferably 20 coulombs/g or less.
The electrolytic treatment may be performed using one type of electrolytic solution, or may be performed multiple times. From the viewpoint of processing in a short time while developing adhesiveness with the matrix resin, it is preferable to perform the processing multiple times.

(サイジング処理)
サイジング処理では、有機溶剤に溶解させたサイジング剤や、乳化剤等で水に分散させたサイジング剤エマルジョン液を、ローラー浸漬法、ローラー接触法等によって炭素繊維束に付与し、これを乾燥することによって行うことができる。
サイジング剤としては、公知のものを使用でき、例えばエポキシ樹脂、ポリエーテル樹脂、エポキシ変性ポリウレタン樹脂、ポリエステル樹脂を主成分としたサイジング剤等が挙げられる。
炭素繊維の表面へのサイジング剤の付着量は、サイジング剤液の濃度調整や絞り量調整によって制御できる。乾燥は、熱風、熱板、加熱ローラー、各種赤外線ヒーター等を利用して行なうことができる。
(Sizing process)
In the sizing process, a sizing agent dissolved in an organic solvent or a sizing agent emulsion liquid dispersed in water using an emulsifier is applied to the carbon fiber bundle by a roller dipping method, a roller contact method, etc., and then dried. It can be carried out.
As the sizing agent, known ones can be used, and examples thereof include sizing agents mainly composed of epoxy resin, polyether resin, epoxy-modified polyurethane resin, and polyester resin.
The amount of the sizing agent attached to the surface of the carbon fiber can be controlled by adjusting the concentration of the sizing agent liquid and adjusting the amount of squeezing. Drying can be performed using hot air, a hot plate, a heated roller, various infrared heaters, and the like.

<作用効果>
以上説明した本発明の炭素繊維束は、X線光電子分光法によって得られる炭素繊維表面のN/Cが0.005~0.05である。
このような炭素繊維束であれば、繊維に含まれる欠陥が制御され、ストランド弾性率の低下が抑制されており、ストランド強度が高い。
また、上述した炭素繊維束の製造方法であれば、X線光電子分光法によって得られる炭素繊維表面のN/Cが0.005~0.05である炭素繊維束を容易に製造でき、ストランド強度が5.2~7.0GPa、ストランド弾性率が370~430GPaの炭素繊維束が得られやすくなる。
<Effect>
The carbon fiber bundle of the present invention described above has a carbon fiber surface N/C of 0.005 to 0.05 obtained by X-ray photoelectron spectroscopy.
In such a carbon fiber bundle, defects contained in the fibers are controlled, a decrease in the strand elastic modulus is suppressed, and the strand strength is high.
In addition, with the method for producing a carbon fiber bundle described above, it is possible to easily produce a carbon fiber bundle whose N/C on the carbon fiber surface obtained by X-ray photoelectron spectroscopy is 0.005 to 0.05, and the strand strength is It becomes easier to obtain a carbon fiber bundle having a strand modulus of 5.2 to 7.0 GPa and a strand elastic modulus of 370 to 430 GPa.

<用途>
本発明の炭素繊維束は、例えばマトリックス樹脂と組み合わされて、複合材料として成形され、様々な用途に利用される。
マトリックス樹脂としては特に制限されないが、例えばエポキシ樹脂、フェノール樹脂等の熱硬化性樹脂、アクリル樹脂、ビニルエステル樹脂、不飽和ポリエステル樹脂等のラジカル重合系樹脂、熱可塑性アクリル樹脂、ポリアミド樹脂、ポリイミド樹脂、ポリカーボネート樹脂、ポリプロピレン樹脂、ポリエチレン樹脂等の熱可塑性樹脂等が挙げられる。また、これらの樹脂の変性体を用いることもできる。また、マトリックス樹脂としては市販品を用いてもよい。
炭素繊維束を用いた複合材料の用途としては特に限定されず、例えば自動車用部材、航空宇・宙素材、土木・建築用素材、スポーツ・レジャー用素材、圧力容器、風車ブレード等の工業用素材等、幅広い用途に使用できる。
<Application>
The carbon fiber bundle of the present invention is combined with, for example, a matrix resin, molded into a composite material, and used for various purposes.
Matrix resins are not particularly limited, but include thermosetting resins such as epoxy resins and phenol resins, radical polymerization resins such as acrylic resins, vinyl ester resins, and unsaturated polyester resins, thermoplastic acrylic resins, polyamide resins, and polyimide resins. , thermoplastic resins such as polycarbonate resin, polypropylene resin, and polyethylene resin. Moreover, modified products of these resins can also be used. Furthermore, a commercially available product may be used as the matrix resin.
Applications of composite materials using carbon fiber bundles are not particularly limited, but include industrial materials such as automobile parts, aerospace materials, civil engineering and construction materials, sports and leisure materials, pressure vessels, and wind turbine blades. It can be used for a wide range of purposes.

以下、実施例によって本発明を具体的に説明するが、本発明はその要旨を超えない限り以下の記載によっては限定されない。
本実施例で行った各種測定方法は、以下の通りである。
EXAMPLES Hereinafter, the present invention will be specifically explained with reference to Examples, but the present invention is not limited by the following description unless it exceeds the gist thereof.
The various measurement methods performed in this example are as follows.

[炭素繊維の単繊維径の測定方法]
炭素繊維束の密度(g/cm)、炭素繊維束1m当たりの質量、炭素繊維束の単繊維数より、炭素繊維の単繊維1本当たりの断面積を算出した。その断面積と等しい面積を有する真円の直径を算出し、炭素繊維の単繊維の直径とした。
[Method for measuring single fiber diameter of carbon fiber]
The cross-sectional area of each single carbon fiber was calculated from the density (g/cm 3 ) of the carbon fiber bundle, the mass per 1 m of the carbon fiber bundle, and the number of single fibers in the carbon fiber bundle. The diameter of a perfect circle having an area equal to the cross-sectional area was calculated and used as the diameter of a single carbon fiber.

[炭素繊維束の密度の測定方法]
炭素繊維束の密度は、JIS R 7063:1999に記載されたC法(密度こう配管法)に準拠して測定した。
[Method for measuring density of carbon fiber bundle]
The density of the carbon fiber bundle was measured according to method C (density tube method) described in JIS R 7063:1999.

[X線光電子分光法による炭素繊維表面のO/C、N/Cの測定方法]
カットした炭素繊維束を、試料ホルダーに両面テープを用いて固定した後、光電子脱出速度を90°にし、装置の測定チャンバー内を1×10-6Paの真空に保持して測定を行った。酸素濃度O1S/C1Sは538~524eVまでの範囲を積分し、それぞれC1sピーク面積に対する割合として評価した。
[Measurement method of O/C and N/C on carbon fiber surface using X-ray photoelectron spectroscopy]
After fixing the cut carbon fiber bundle to a sample holder using double-sided tape, the photoelectron escape velocity was set to 90°, and the measurement chamber of the apparatus was maintained at a vacuum of 1×10 −6 Pa to perform measurements. The oxygen concentration O 1S /C 1S was integrated over the range from 538 to 524 eV, and each was evaluated as a percentage of the C 1s peak area.

[炭素繊維表面からエッチングしたN/Cの測定方法]
測定条件は以下の通りとした。
装置:QuanteraII(アルバック・ファイ社製)
X線源:Al Kα(モノクロ化)200μmφ 50W
scan:0.1eV/step
試料となる炭素繊維束は各繊維が同じ方向になるよう引き揃え、測定点付近が極力平滑になるようにした。測定時の光電子脱出角度は45°とし、繊維軸に対し直角方向からの測定とした。
なお、繊維軸に対し直角方向からの測定としない場合には、分析深さがより浅くなるため、本発明における測定と同じ結果を得ることができない。
[Method for measuring N/C etched from carbon fiber surface]
The measurement conditions were as follows.
Equipment: Quantera II (manufactured by ULVAC-PHI)
X-ray source: Al Kα (monochrome) 200μmφ 50W
scan: 0.1eV/step
The carbon fiber bundles used as samples were aligned so that each fiber was oriented in the same direction, so that the vicinity of the measurement point was as smooth as possible. The photoelectron escape angle during measurement was 45°, and the measurement was taken from a direction perpendicular to the fiber axis.
Note that if the measurement is not performed in a direction perpendicular to the fiber axis, the analysis depth will be shallower, and therefore the same results as in the measurement according to the present invention cannot be obtained.

イオンエッチングは、Arイオンによるエッチングを行った。加速電圧を500Vとし2mm×2mmの範囲でイオンを照射し、その中心位置を測定点とした。
イオンエッチング時には、装置のZalarモードを使用し、360°/minのスピードで試料を水平回転させながらイオンビームを照射した。
以上の条件におけるQuanteraIIでのイオンエッチングレートは二酸化ケイ素膜の切削に換算して1nm/minであり、本発明では、当該条件による1minのエッチングを1nmの深さの切削であるものと定義した。
なお、イオンビームの照射方向と光電子を測定する際の光電子脱出方向は合致しない。このため試料を水平回転させながらイオンビームを照射しない場合には、イオンビーム照射の死角となっている部分も測定することになるため、本発明における測定と同じ結果を得ることができない。
得られた測定データから、装置標準の解析ソフトMutiPakを使用してピーク面積比を計算、感度因子はMutiPak搭載の値をそのまま使用し、原子数比を求めた。
The ion etching was performed using Ar ions. Ions were irradiated at an accelerating voltage of 500 V in an area of 2 mm x 2 mm, and the center position was taken as the measurement point.
During ion etching, the Zalar mode of the apparatus was used, and ion beam irradiation was performed while horizontally rotating the sample at a speed of 360°/min.
The ion etching rate with Quantera II under the above conditions is 1 nm/min in terms of cutting the silicon dioxide film, and in the present invention, 1 minute etching under these conditions is defined as cutting to a depth of 1 nm.
Note that the ion beam irradiation direction and the photoelectron escape direction when measuring photoelectrons do not match. For this reason, if the sample is horizontally rotated and the ion beam is not irradiated, the portion that is a blind spot for the ion beam irradiation will also be measured, making it impossible to obtain the same results as in the measurement according to the present invention.
From the obtained measurement data, the peak area ratio was calculated using the instrument standard analysis software MutiPak, and the atomic number ratio was determined using the sensitivity factor as it was installed in MutiPak.

[炭素繊維束のIpaの測定方法]
paは以下の方法により測定した。
用いる電解液は5%リン酸水溶液でpH3とし、窒素をバブリングさせて溶存酸素の影響を除いた。試料である炭素繊維を一方の電極として電解液に浸漬し、対極として充分な表面積を有する白金電極、参照電極としてAg/AgCl電極を用いた。試料形態は長さ50mmの12000フイラメントトウとした。炭素繊維電極と白金電極の間にかける電位の走査範囲は-0.2Vから+0.8Vとし、走査速度は2.0mV/secとした。X-Yレコーダーにより電流-電圧曲線を描き、3回以上掃引させ、曲線が安定した段階で、Ag/AgCl標準電極に対して+0.4Vでの電位を基準電位として電流値iを読み取り、次式に従ってIpaを算出した。
pa=1(μA)/試料長(cm)×(4π×目付(g/cm)×単繊維数/密度(g/cm))1/2
試料長と前述の方法で測定した炭素繊維束の密度と目付から見掛けの表面積を算出し、電流値iを除してIpaとした。本測定はサイクリック・ボルタ・メトリー・アナライザー(柳本製作所製、製品名:P-1100型)を用いて行った。
[Method for measuring I pa of carbon fiber bundle]
Ipa was measured by the following method.
The electrolytic solution used was adjusted to pH 3 with a 5% phosphoric acid aqueous solution, and nitrogen was bubbled to remove the influence of dissolved oxygen. A carbon fiber sample was immersed in an electrolytic solution as one electrode, a platinum electrode with sufficient surface area was used as a counter electrode, and an Ag/AgCl electrode was used as a reference electrode. The sample form was a 12000 filament tow with a length of 50 mm. The scanning range of the potential applied between the carbon fiber electrode and the platinum electrode was from −0.2 V to +0.8 V, and the scanning speed was 2.0 mV/sec. Draw a current-voltage curve with an X-Y recorder, sweep it three times or more, and when the curve becomes stable, read the current value i using the potential at +0.4 V with respect to the Ag/AgCl standard electrode as a reference potential, and then I pa was calculated according to the formula.
I pa = 1 (μA)/sample length (cm) x (4π x area weight (g/cm) x number of single fibers/density (g/cm 3 )) 1/2
The apparent surface area was calculated from the sample length and the density and basis weight of the carbon fiber bundle measured by the method described above, and was divided by the current value i to obtain I pa . This measurement was performed using a cyclic voltametry analyzer (manufactured by Yanagimoto Seisakusho, product name: P-1100 model).

[ストランド物性の測定方法]
JIS R 7608:2007に準拠して、炭素繊維束のストランド強度及びストランド弾性率を測定した。なお、ストランド弾性率は、同法のA法で算出した。
[Measurement method of strand physical properties]
The strand strength and strand elastic modulus of the carbon fiber bundle were measured in accordance with JIS R 7608:2007. Note that the strand elastic modulus was calculated using method A of the same method.

[実施例1]
<炭素繊維前駆体繊維束の作製>
アクリロニトリル単位を98質量%、メタクリル酸単位を2質量%含有するアクリロニトリル系重合体をジメチルホルムアミドに溶解し、23.5質量%の紡糸溶液を調製した。
この紡糸溶液を直径150μm、孔数12000の吐出孔を配置した紡糸口金から紡出させて乾湿式紡糸した。すなわち、空気中に紡出させて約5mmの空間を通過させた後、10℃に調温した、ジメチルホルムアミドを79.0質量%含有する水溶液を満たした凝固液中で凝固させ、凝固糸を引き取った。次いで、空気中で1.1倍延伸した後、60℃に調温した、ジメチルホルムアミドを35質量%含有する水溶液を満たした延伸槽中にて2.5倍延伸した。延伸後、溶剤を含有している工程繊維束を清浄な水で洗浄し、次に、95℃の熱水中で1.4倍の延伸を行った。引き続き、繊維束にアミノ変性シリコーンを主成分とする油剤を1.1質量%となるよう付与し、乾燥緻密化した。乾燥緻密化後の繊維束を、加熱ロール間で2.6倍延伸して、更なる配向の向上と緻密化を行った後に巻き取って、炭素繊維前駆体繊維束(炭素繊維前駆体アクリル繊維束)を得た。得られた炭素繊維前駆体繊維束の単繊維繊度は0.8dtexであった。
[Example 1]
<Preparation of carbon fiber precursor fiber bundle>
An acrylonitrile polymer containing 98% by mass of acrylonitrile units and 2% by mass of methacrylic acid units was dissolved in dimethylformamide to prepare a 23.5% by mass spinning solution.
This spinning solution was spun out from a spinneret having a diameter of 150 μm and 12,000 discharge holes arranged therein for dry-wet spinning. That is, after spinning in the air and passing through a space of approximately 5 mm, it is coagulated in a coagulation solution filled with an aqueous solution containing 79.0% by mass of dimethylformamide, the temperature of which is adjusted to 10°C, to form a coagulated thread. I took over. Next, the film was stretched 1.1 times in air, and then stretched 2.5 times in a stretching tank filled with an aqueous solution containing 35% by mass of dimethylformamide, the temperature of which was adjusted to 60°C. After stretching, the processed fiber bundle containing the solvent was washed with clean water, and then stretched 1.4 times in hot water at 95°C. Subsequently, an oil agent containing amino-modified silicone as a main component was applied to the fiber bundle in an amount of 1.1% by mass, and the fiber bundle was dried and densified. The fiber bundle after drying and densification is stretched 2.6 times between heated rolls to further improve orientation and densification, and then wound to form a carbon fiber precursor fiber bundle (carbon fiber precursor acrylic fiber). bundle). The single fiber fineness of the obtained carbon fiber precursor fiber bundle was 0.8 dtex.

<炭素繊維束の作製>
複数の炭素繊維前駆体繊維束を平行に揃えた状態で耐炎化炉に導入し、220~280℃に加熱された空気を炭素繊維前駆体繊維束に吹き付けることによって、炭素繊維前駆体繊維束を耐炎化処理して、密度1.35g/cmの耐炎化繊維束を得た。伸長率は6%とし、耐炎化処理時間は70分とした。
<Preparation of carbon fiber bundle>
A plurality of carbon fiber precursor fiber bundles are arranged in parallel and introduced into a flameproofing furnace, and air heated to 220 to 280° C. is blown onto the carbon fiber precursor fiber bundles to form carbon fiber precursor fiber bundles. A flame resistant fiber bundle having a density of 1.35 g/cm 3 was obtained by flame resistant treatment. The elongation rate was 6%, and the flame resistance treatment time was 70 minutes.

次いで、耐炎化繊維束を窒素中300~700℃の温度勾配を有する第一炭素化炉にて4.5%の伸長を加えながら通過させ、第一炭素化処理を行った。温度勾配は直線的になるように設定した。処理時間は2.0分とした。
さらに、窒素雰囲気中で1000~2300℃の温度勾配を設定した第二炭素化炉を用いて第二炭素化処理を行い、炭素繊維束を得た。その際、第二炭素化処理での伸長率は-4.0%、処理時間は3.5分とした。
Next, the flame-resistant fiber bundle was passed through a first carbonization furnace having a temperature gradient of 300 to 700° C. in nitrogen while being stretched by 4.5% to perform a first carbonization treatment. The temperature gradient was set to be linear. The processing time was 2.0 minutes.
Further, a second carbonization treatment was performed using a second carbonization furnace in which a temperature gradient of 1000 to 2300° C. was set in a nitrogen atmosphere to obtain a carbon fiber bundle. At that time, the elongation rate in the second carbonization treatment was -4.0%, and the treatment time was 3.5 minutes.

<炭素繊維束の表面処理、サイジング処理>
引き続き炭素繊維束をリン酸5質量%水溶液中で走行せしめ、続いて重炭酸アンモニウム5質量%水溶液中を走行せしめると同時に、炭素繊維束を陽極として被処理炭素繊維1g当たり140クーロンの電気量となるように対極との間で通電処理を行った。リン酸水溶液中では通電処理は行わなかった。次いで、温水90℃で洗浄した後、乾燥することで表面処理された炭素繊維束を得た。
次いで、サイジング剤(DIC株式会社製、「ハイドランN320」)を0.5質量%付着させ(サイジング処理)、ボビンに巻き取り、炭素繊維束を得た。
サイジング処理後の炭素繊維束について、単繊維径及び本数、炭素繊維束の目付及び密度、炭素繊維束の繊維表面のO/C、N/C、エッチング後のN/C、Ipa、ストランド強度及びストランド弾性率を測定した。これらの結果を表1に示す。
<Surface treatment and sizing treatment of carbon fiber bundles>
Subsequently, the carbon fiber bundle was made to run in a 5% by mass aqueous solution of phosphoric acid, and then in a 5% by mass aqueous solution of ammonium bicarbonate, and at the same time, an electricity amount of 140 coulombs per gram of carbon fiber to be treated was generated using the carbon fiber bundle as an anode. Electricity was applied between the electrode and the opposite electrode so that the result was as follows. No current treatment was performed in the phosphoric acid aqueous solution. Next, after washing with hot water at 90° C., a surface-treated carbon fiber bundle was obtained by drying.
Next, 0.5% by mass of a sizing agent ("Hydran N320" manufactured by DIC Corporation) was attached (sizing treatment) and wound around a bobbin to obtain a carbon fiber bundle.
Regarding the carbon fiber bundle after sizing treatment, single fiber diameter and number, basis weight and density of the carbon fiber bundle, O/C, N/C on the fiber surface of the carbon fiber bundle, N/C after etching, I pa , strand strength and the strand elastic modulus was measured. These results are shown in Table 1.

[実施例2]
表面処理条件を表1に示す通りに変更した以外は、実施例1と同様にして炭素繊維束を作製し、各種測定を行った。結果を表1に示す。
[Example 2]
Carbon fiber bundles were produced in the same manner as in Example 1, except that the surface treatment conditions were changed as shown in Table 1, and various measurements were performed. The results are shown in Table 1.

[実施例3]
リン酸水溶液中を走行せしめると同時に、炭素繊維束を陽極として、被処理炭素繊維1g当たり7クーロンの電気量となるように対極との間で通電処理を行った以外は、実施例2と同様にして炭素繊維束を得た。
[Example 3]
The same as in Example 2 except that while running in a phosphoric acid aqueous solution, the carbon fiber bundle was used as an anode and energized with a counter electrode so that the amount of electricity was 7 coulombs per gram of carbon fiber to be treated. A carbon fiber bundle was obtained.

[実施例4~6、比較例1]
リン酸水溶液中での電解処理の電気量を表1に示す通りに変更した以外は、実施例3と同様にして炭素繊維束を得た。
[Examples 4 to 6, Comparative Example 1]
A carbon fiber bundle was obtained in the same manner as in Example 3, except that the amount of electricity in the electrolytic treatment in an aqueous phosphoric acid solution was changed as shown in Table 1.

[比較例2]
リン酸水溶液中での電解処理と重炭酸アンモニウム水溶液中の電解処理の電気量を表1に示す通りに変更した以外は、実施例3と同様にして炭素繊維束を得た。
[Comparative example 2]
A carbon fiber bundle was obtained in the same manner as in Example 3, except that the amounts of electricity in the electrolytic treatment in the phosphoric acid aqueous solution and the electrolytic treatment in the ammonium bicarbonate aqueous solution were changed as shown in Table 1.

[実施例7、8]
炭素繊維前駆体繊維束の単繊維繊度を1.2dtexに変更し、表面処理条件を表1に示す通りに変更した以外は、実施例1と同様にして炭素繊維束を作製し、各種測定を行った。結果を表1に示す。
[Example 7, 8]
A carbon fiber bundle was produced in the same manner as in Example 1, except that the single fiber fineness of the carbon fiber precursor fiber bundle was changed to 1.2 dtex and the surface treatment conditions were changed as shown in Table 1, and various measurements were carried out. went. The results are shown in Table 1.

[実施例9~12、比較例3~4]
炭素繊維前駆体繊維束の単繊維繊度を1.2dtexに変更し、表面処理条件を表1に示す通りに変更した以外は、実施例3と同様にして炭素繊維束を作製し、各種測定を行った。結果を表1に示す。
[Examples 9 to 12, Comparative Examples 3 to 4]
A carbon fiber bundle was produced in the same manner as in Example 3, except that the single fiber fineness of the carbon fiber precursor fiber bundle was changed to 1.2 dtex and the surface treatment conditions were changed as shown in Table 1, and various measurements were carried out. went. The results are shown in Table 1.

Figure 2023125227000001
Figure 2023125227000001

本発明の炭素繊維束は、ストランド強度が高いため、高い強度が要求される用途、例えば自動車用部材、航空宇・宙素材、土木・建築用素材、スポーツ・レジャー用素材、圧力容器、風車ブレード等の工業用素材等、幅広い用途において有用である。 Since the carbon fiber bundle of the present invention has high strand strength, it can be used in applications that require high strength, such as automobile parts, aerospace materials, civil engineering and construction materials, sports and leisure materials, pressure vessels, and wind turbine blades. It is useful in a wide range of applications, including industrial materials such as.

Claims (16)

X線光電子分光法により得られる炭素繊維束の繊維表面における炭素原子数に対する窒素原子数の比率N/Cが0.005~0.05である炭素繊維束。 A carbon fiber bundle in which the ratio N/C of the number of nitrogen atoms to the number of carbon atoms on the fiber surface of the carbon fiber bundle obtained by X-ray photoelectron spectroscopy is 0.005 to 0.05. ストランド強度が5.2~7.0GPa、ストランド弾性率が370~430GPaである、請求項1に記載の炭素繊維束。 The carbon fiber bundle according to claim 1, having a strand strength of 5.2 to 7.0 GPa and a strand elastic modulus of 370 to 430 GPa. 明細書に記載の方法で算出されるIpaの値が、0.01~0.25μA/cmである、請求項1または2に記載の炭素繊維束。 The carbon fiber bundle according to claim 1 or 2, wherein the value of I pa calculated by the method described in the specification is 0.01 to 0.25 μA/cm 2 . X線光電子分光法により得られる炭素繊維束の繊維表面における炭素原子数に対する酸素原子数の比率O/Cが0.01~0.25である、請求項1~3のいずれか一項に記載の炭素繊維束。 According to any one of claims 1 to 3, the ratio O/C of the number of oxygen atoms to the number of carbon atoms on the fiber surface of the carbon fiber bundle obtained by X-ray photoelectron spectroscopy is 0.01 to 0.25. carbon fiber bundle. 炭素繊維表面から5nmエッチングした領域における前記N/Cが0.005~0.04である、請求項1~4のいずれか一項に記載の炭素繊維束。 The carbon fiber bundle according to any one of claims 1 to 4, wherein the N/C in a region etched by 5 nm from the carbon fiber surface is 0.005 to 0.04. 炭素繊維表面から10nmエッチングした領域における前記N/Cが0.005~0.04である、請求項1~5のいずれか一項に記載の炭素繊維束。 The carbon fiber bundle according to any one of claims 1 to 5, wherein the N/C in a region etched by 10 nm from the carbon fiber surface is 0.005 to 0.04. 炭素繊維表面から15nmエッチングした領域における前記N/Cが0.01~0.04である、請求項1~6のいずれか一項に記載の炭素繊維束。 The carbon fiber bundle according to any one of claims 1 to 6, wherein the N/C in a region etched by 15 nm from the carbon fiber surface is 0.01 to 0.04. 炭素繊維表面から20nmエッチングした領域における前記N/Cが0.02~0.04である、請求項1~7のいずれか一項に記載の炭素繊維束。 The carbon fiber bundle according to any one of claims 1 to 7, wherein the N/C in a region etched by 20 nm from the carbon fiber surface is 0.02 to 0.04. 前記炭素繊維束の単繊維径が5.0~7.0μmである、請求項1~8のいずれか一項に記載の炭素繊維束。 The carbon fiber bundle according to any one of claims 1 to 8, wherein the carbon fiber bundle has a single fiber diameter of 5.0 to 7.0 μm. 前記炭素繊維束の単繊維径が5.5~6.7μmである、請求項1~8のいずれか一項に記載の炭素繊維束。 The carbon fiber bundle according to any one of claims 1 to 8, wherein the carbon fiber bundle has a single fiber diameter of 5.5 to 6.7 μm. 前記炭素繊維束の単繊維径が5.7~6.7μmである、請求項1~8のいずれか一項に記載の炭素繊維束。 The carbon fiber bundle according to any one of claims 1 to 8, wherein the carbon fiber bundle has a single fiber diameter of 5.7 to 6.7 μm. 炭素繊維前駆体繊維束を加熱して炭素繊維束を得る製造方法であって、不活性雰囲気下において炭素繊維前駆体繊維束を2000℃以上で熱処理した後に、酸性水溶液中へ浸漬し、続いてアルカリ性水溶液中に浸漬し、少なくともアルカリ水溶液中で電解処理を行う、炭素繊維束の製造方法。 A manufacturing method for obtaining a carbon fiber bundle by heating a carbon fiber precursor fiber bundle, the carbon fiber precursor fiber bundle being heat-treated at 2000°C or higher in an inert atmosphere, then immersed in an acidic aqueous solution, and then A method for producing a carbon fiber bundle, which comprises immersing the carbon fiber bundle in an alkaline aqueous solution and performing electrolytic treatment at least in the alkaline aqueous solution. 前記酸性水溶液中で電解処理を行う、請求項12に記載の炭素繊維束の製造方法。 The method for manufacturing a carbon fiber bundle according to claim 12, wherein electrolytic treatment is performed in the acidic aqueous solution. 前記アルカリ性水溶液中での電解処理における電気量が、被処理炭素繊維1g当たり5~200クーロンである、請求項12または13に記載の炭素繊維束の製造方法。 The method for producing a carbon fiber bundle according to claim 12 or 13, wherein the amount of electricity in the electrolytic treatment in the alkaline aqueous solution is 5 to 200 coulombs per gram of carbon fiber to be treated. 前記酸性水溶液のpHが1~4である、請求項12~14のいずれか一項に記載の炭素繊維束の製造方法。 The method for producing a carbon fiber bundle according to any one of claims 12 to 14, wherein the acidic aqueous solution has a pH of 1 to 4. 前記酸性水溶液中での電解処理における電気量が、被処理炭素繊維1g当たり0~30クーロンである、請求項13に記載の炭素繊維束の製造方法。 The method for producing a carbon fiber bundle according to claim 13, wherein the amount of electricity in the electrolytic treatment in the acidic aqueous solution is 0 to 30 coulombs per gram of carbon fiber to be treated.
JP2022029215A 2022-02-28 2022-02-28 Carbon fiber bundle and method for manufacturing the same Pending JP2023125227A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2022029215A JP2023125227A (en) 2022-02-28 2022-02-28 Carbon fiber bundle and method for manufacturing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2022029215A JP2023125227A (en) 2022-02-28 2022-02-28 Carbon fiber bundle and method for manufacturing the same

Publications (1)

Publication Number Publication Date
JP2023125227A true JP2023125227A (en) 2023-09-07

Family

ID=87887639

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2022029215A Pending JP2023125227A (en) 2022-02-28 2022-02-28 Carbon fiber bundle and method for manufacturing the same

Country Status (1)

Country Link
JP (1) JP2023125227A (en)

Similar Documents

Publication Publication Date Title
US8129017B2 (en) Carbon fiber strand and process for producing the same
JP4908636B2 (en) Carbon fiber bundle with excellent mechanical performance
JP6119168B2 (en) Method for producing flame-resistant fiber bundle and method for producing carbon fiber bundle
JP2006299439A (en) Carbon fiber, method for producing the same, acrylonitrile precursor fiber and method for producing the same
JP7494889B2 (en) Carbon fiber precursor acrylic fiber, carbon fiber, and manufacturing method thereof
KR102669949B1 (en) Carbon fiber bundle and method of manufacturing the same
JP2007162144A (en) Method for producing carbon fiber bundle
US20210079563A1 (en) Carbon fiber and method of manufacturing same
TW202117127A (en) Carbon fiber manufacturing method and carbon fiber using the same
JP2023125227A (en) Carbon fiber bundle and method for manufacturing the same
JPH09143824A (en) Carbon fiber, its precursor and their production
CN113597484B (en) Carbon fiber bundle and method for producing same
JP5999462B2 (en) Carbon fiber with excellent mechanical properties
JP2011241507A (en) Flame-resistant fiber bundle, carbon fiber bundle, and method for producing them
WO2019146487A1 (en) Flame-retardant fiber bundle and method for manufacturing carbon fiber bundle
JP2010111957A (en) Carbon fiber, composite material, and method for producing carbon fiber
WO2023085284A1 (en) Carbon fibers, carbon fiber bundle, and production method for carbon fiber bundle
TW202033850A (en) Precursor fiber bundle production method, carbon fiber bundle production method, and carbon fiber bundle
WO2023140212A1 (en) Carbon fiber bundle
JP2016037689A (en) Method for producing carbon fiber
JP7155577B2 (en) Carbon fiber precursor Acrylic fiber Carbon fiber
JP4715386B2 (en) Carbon fiber bundle manufacturing method
JPH0376869A (en) Method for treating surface of carbon fiber in vapor phase
JP2023146344A (en) Carbon fiber bundle and method for manufacturing carbon fiber bundle
CN118574955A (en) Carbon fiber bundle