JP2023121640A - Ground improvement method - Google Patents

Ground improvement method Download PDF

Info

Publication number
JP2023121640A
JP2023121640A JP2022025092A JP2022025092A JP2023121640A JP 2023121640 A JP2023121640 A JP 2023121640A JP 2022025092 A JP2022025092 A JP 2022025092A JP 2022025092 A JP2022025092 A JP 2022025092A JP 2023121640 A JP2023121640 A JP 2023121640A
Authority
JP
Japan
Prior art keywords
surplus
strength
solidifying material
ground improvement
improvement method
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2022025092A
Other languages
Japanese (ja)
Inventor
雅之 中村
Masayuki Nakamura
俊章 神
Toshiaki Jin
純一 山野辺
Junichi Yamanobe
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kajima Corp
Chemical Grouting Co Ltd
Original Assignee
Kajima Corp
Chemical Grouting Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kajima Corp, Chemical Grouting Co Ltd filed Critical Kajima Corp
Priority to JP2022025092A priority Critical patent/JP2023121640A/en
Publication of JP2023121640A publication Critical patent/JP2023121640A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Consolidation Of Soil By Introduction Of Solidifying Substances Into Soil (AREA)

Abstract

To effectively utilize an excess solidification material (sludge).SOLUTION: A ground improvement method using a high pressure injection agitation method for injecting a solidification material from a double pipe rod 18 (rotary injection pipe) into the ground, and establishing an improvement body 24, includes: a collection step of collecting an excess solidification material 22 discharged at the time of establishment of a ground improvement body; a measurement step of measuring the property of the collected excess solidification material 22 as an index of a strength of the excess solidification material 22; and an excess solidification material strength estimation step of estimating the strength of the solidified excess solidification material 22, on the basis of the measured property of the excess solidification material 22.SELECTED DRAWING: Figure 5

Description

本発明は、高圧噴射攪拌工法による地盤改良方法に関し、特に、施工時に生じる余剰固化材の扱いに関するものである。 TECHNICAL FIELD The present invention relates to a ground improvement method using a high-pressure injection stirring method, and more particularly to handling of surplus solidifying material generated during construction.

地盤を改良するために、回転噴射管から固化材を地盤中に噴射して改良体を造成する高圧噴射撹拌工法が知られている。また、地盤改良体の造成時に排出される排泥および/または未固結改良体の比重、粘性、および含有元素の種類と含有量の少なくとも一つを計測して、改良体の品質を確保する技術が知られている(例えば、特許文献1参照。)。 In order to improve the ground, a high-pressure jet agitation construction method is known, in which a solidification material is jetted into the ground from a rotary jet pipe to create an improved body. In addition, at least one of the specific gravity, viscosity, and the type and content of contained elements of the discharged sludge and/or unsolidified improvement body discharged during the preparation of the soil improvement body is measured to ensure the quality of the improvement body. A technique is known (see, for example, Patent Document 1).

特開2019-157551号公報JP 2019-157551 A

上記のように排泥の性状を計測することによって改良体の品質を迅速に推定すれば、改良体の品質をリアルタイムに管理して確保することが容易にできる。しかし、改良体の品質が向上したとしても、造成時に排出される排泥自体は、バキュームカー等によって吸引・除去され、産業廃棄物処理場に運搬されて、処理される。このため、運搬費用や処理費用などのコストが発生することになる。 If the quality of the improved material is quickly estimated by measuring the properties of the discharged sludge as described above, the quality of the improved material can be easily controlled and ensured in real time. However, even if the quality of the improved material is improved, the sludge itself discharged during construction is sucked and removed by a vacuum truck or the like, transported to an industrial waste disposal site, and disposed of. For this reason, costs such as transportation costs and processing costs are incurred.

本発明は、上記の点に鑑みてなされたものであり、排泥(以下、本発明においては、排泥のことを「余剰固化材」と称する。)の有効利用を可能にして、運搬費用や処理費用などのコストを低減することを目的とする。 The present invention has been made in view of the above points, and enables the effective use of the sludge (hereinafter referred to as "surplus solidification material" in the present invention), reducing transportation costs. The purpose is to reduce costs such as processing and processing costs.

上記の目的を達成するために、
本発明は、
回転噴射管から固化材を地盤中に噴射して改良体を造成する高圧噴射撹拌工法を用いた地盤改良方法であって、
地盤改良体の造成時に排出される余剰固化材を採取する採取工程と、
採取された余剰固化材について、余剰固化材の強度の指標となる余剰固化材の性状を計測する計測工程と、
計測された余剰固化材の性状に基づいて、固化後の余剰固化材の強度を推定する余剰固化材強度推定工程と、
を有することを特徴とする。
To achieve the above objectives,
The present invention
A ground improvement method using a high-pressure injection stirring method in which a solidifying material is injected into the ground from a rotating injection pipe to create an improved body,
A collection step of collecting the surplus solidifying material discharged during the construction of the soil improvement body;
a measurement step of measuring the properties of the collected surplus solidifying material, which serves as an indicator of the strength of the surplus solidifying material;
a surplus solidifying material strength estimation step of estimating the strength of the surplus solidifying material after solidification based on the measured properties of the surplus solidifying material;
characterized by having

これにより、余剰固化材自体の強度を管理することが容易にできるので、例えば所定の強度を必要とする埋め戻し材料などとして有効に利用することなどが容易にできる。 As a result, since the strength of the surplus solidifying material itself can be easily managed, it can be effectively used, for example, as a backfilling material that requires a predetermined strength.

本発明では、余剰固化材の有効利用を可能にして、運搬費用や処理費用などのコストを低減できる。 In the present invention, the surplus solidifying material can be effectively used, and costs such as transportation costs and processing costs can be reduced.

高圧噴射撹拌工法の概略工程を示す説明図である。It is explanatory drawing which shows the schematic process of a high-pressure injection stirring construction method. 余剰固化材が埋め戻される空間の模式的な例を示す平断面図である。FIG. 4 is a cross-sectional plan view showing a schematic example of a space to be filled back with surplus solidifying material. 余剰固化材が埋め戻される空間の模式的な例を示す立断面図である。FIG. 4 is a cross-sectional elevational view showing a schematic example of a space to be filled back with surplus solidifying material. 余剰固化材が埋め戻される他の空間の模式的な例を示す立断面図である。FIG. 4 is a cross-sectional elevational view showing a schematic example of another space to be backfilled with surplus solidifying material. 地盤改良方法の余剰固化材再利用における品質管理の主要な工程を示すフローチャートである。It is a flowchart which shows the main process of quality control in the surplus solidification material reuse of the ground improvement method. 余剰固化材の強度と密度とカルシウム含有量との関係の例を示すグラフである。4 is a graph showing an example of the relationship between strength, density, and calcium content of surplus solidifying material. 余剰固化材の密度とカルシウム含有量に応じた強度の例を示すグラフである。4 is a graph showing an example of strength depending on the density and calcium content of surplus solidifying material.

以下、本発明の実施形態を図面に基づいて詳細に説明する。 BEST MODE FOR CARRYING OUT THE INVENTION Hereinafter, embodiments of the present invention will be described in detail based on the drawings.

(高圧噴射攪拌工法による地盤改良の一般的な手順)
初めに、図1に従い、高圧噴射攪拌工法による地盤改良の一般的な手順について説明する。
(General procedure for ground improvement by high-pressure injection stirring method)
First, according to FIG. 1, the general procedure of ground improvement by the high-pressure injection stirring method will be described.

まず、図1(1)に示すように、地表10に地盤改良装置12を設置し、ボーリングロッド14の先端から高圧の削孔水を噴射しながら所定の速度で下降させることにより、計画深度まで縦孔16を穿設する。 First, as shown in FIG. 1 (1), the soil improvement device 12 is installed on the ground surface 10, and the drilling rod 14 is lowered at a predetermined speed while jetting high-pressure drilling water from the tip of the drilling rod 14 to the planned depth. A vertical hole 16 is drilled.

次に、図1(2)に示すように、縦孔16に二重管ロッド18を建込んだ後、図1(3)に示すように、二重管ロッド18の先端側面に形成されたノズルから固化材と水の混合物を高圧で噴射しながら回転させ、所定の速度で計画深度まで上昇させる。 Next, as shown in FIG. 1(2), after the double tube rod 18 was erected in the vertical hole 16, as shown in FIG. A mixture of solidifying material and water is sprayed from the nozzle at high pressure while being rotated and raised to the planned depth at a predetermined speed.

この結果、図1(4)に示すように、切削地盤と水、固化材の混合物である円柱状の改良体24(杭体)が形成される。 As a result, as shown in FIG. 1(4), a cylindrical improved body 24 (pile body) is formed which is a mixture of the cut ground, water, and solidifying material.

この施工においては、切削地盤と水、固化材の混合物である余剰固化材22が二重管ロッド18と縦孔16の隙間を経由して地上に排出され、スライムピット20に貯められる。 In this construction, surplus solidifying material 22 , which is a mixture of cut ground, water, and solidifying material, is discharged to the ground through the gap between double pipe rod 18 and vertical hole 16 and stored in slime pit 20 .

上記施工の完了をもって地盤改良工事を終了してもよいが、さらに、改良体24が固化する前に上記施工に追加して、同地点に対し固化材、水を高圧噴射撹拌する施工を複数実施し、改良体24の品質向上を図るようにしてもよい。 The ground improvement work may be completed upon completion of the above construction, but in addition to the above construction before the improvement body 24 solidifies, multiple constructions of high-pressure injection and stirring of solidification material and water are carried out at the same point. However, the improved product 24 may be improved in quality.

(余剰固化材22の処理)
上記改良体24の施工の時に地上に排出され、スライムピット20に貯められた余剰固化材22は、図示しないバキュームカー等によって吸引・除去される他、例えば直下に改良体24を構築した既存構造物の上部空間に新築構造物が建設される際に生じる空間を埋め戻すためなどに用いられることがある。特に、本発明を適用すれば、後述するように余剰固化材22の強度(一軸圧縮強度)を管理することにより、所定の強度を必要とする空間を埋め戻す充填材料として用いることができる。
(Treatment of surplus solidifying material 22)
The surplus solidifying material 22 discharged to the ground and stored in the slime pit 20 at the time of construction of the improved body 24 is sucked and removed by a vacuum car or the like (not shown). It is sometimes used to backfill the space created when a new structure is constructed in the upper space of an object. In particular, by applying the present invention, by controlling the strength (uniaxial compressive strength) of the surplus solidifying material 22 as described later, it can be used as a filling material for backfilling a space that requires a predetermined strength.

具体的には、例えば図2、図3に示すように、地下に建設された既存構造物30内に新築構造物32が入れ子状に構築される場合、両者の壁面の間に生じる空間や、両者の耐圧版の間に生じる空間などの埋め戻し領域34が埋め戻される。そのような埋め戻し領域34が埋め戻されることによって、新築構造物32が支持される場合、埋め戻す充填材料は、所定の強度を有している必要がある。そこで、本発明に係る余剰固化材22を埋め戻し材料として使用することができる。 Specifically, for example, as shown in FIGS. 2 and 3, when a new structure 32 is nested inside an existing structure 30 constructed underground, the space created between the walls of both walls, A backfilling area 34 such as a space generated between both pressure plates is backfilled. If such a backfilling area 34 is backfilled to support the new structure 32, the backfilling filler material should have a certain strength. Therefore, the surplus solidifying material 22 according to the present invention can be used as a backfilling material.

なお、上記のような埋め戻しは、構造物地下部分に限らず、例えば図4に示すように地表10上に露出する既存構造物30を残したまま新築構造物32が入れ子状に構築される場合などに、地表面上の埋め戻し領域34の埋め戻しにも適用できる。 In addition, the backfilling as described above is not limited to the underground part of the structure. For example, as shown in FIG. It can also be applied to the backfilling of the backfilling area 34 on the ground surface.

(余剰固化材22の品質管理)
まず、余剰固化材26の品質管理の概要について説明する。
(Quality control of surplus solidifying material 22)
First, an outline of quality control of the surplus solidifying material 26 will be described.

高圧噴射攪拌工法で築造される改良地盤は、セメントまたはセメント系固化材と水、土の混合物であり、その強度(一軸圧縮強度)は固化材の添加量に起因している。 The improved ground constructed by the high-pressure jet agitation method is a mixture of cement or cement-based solidifying material, water, and soil, and its strength (uniaxial compressive strength) is due to the amount of solidifying material added.

ここで、一般に、セメントまたはセメント系固化材は、酸化カルシウム(カルシウム・シリケート鉱物)を主成分としているため、固化材添加量はカルシウム含有量と比例関係にあり、それゆえ、一軸圧縮強度も、カルシウム含有量と比例関係にあると言える。 Here, in general, cement or cement-based solidifying material is mainly composed of calcium oxide (calcium silicate mineral), so the amount of solidifying material added is proportional to the calcium content. It can be said that there is a proportional relationship with the calcium content.

したがって、余剰固化材22のカルシウム含有量を測定することで、強度評価を行うことが出来る。本実施形態の余剰固化材22の再利用では、さらに、余剰固化材22のカルシウム含有量が変化すると、水、土の割合も変化し、上記水、土の割合は密度に反映されるため、密度とカルシウム含有量の関係から強度を推定している。 Therefore, strength evaluation can be performed by measuring the calcium content of the surplus solidifying material 22 . In the reuse of the surplus solidifying material 22 of the present embodiment, further, when the calcium content of the surplus solidifying material 22 changes, the ratio of water and soil also changes, and the ratio of water and soil is reflected in the density. Strength is estimated from the relationship between density and calcium content.

具体的には、余剰固化材22の品質管理は、例えば図5に示すように行われる。 Specifically, the quality control of the surplus solidifying material 22 is performed, for example, as shown in FIG.

(S11) まず、試験施工として、本施工と同様にして余剰固化材22が採取される。より詳しくは、上記図1(3)(4)で説明したように、二重管ロッド18の先端側面から固化材と水の混合物を高圧で噴射しながら回転させつつ上昇させることにより、地上に排出された切削地盤と水、固化材の混合物である余剰固化材22が採取される。 (S11) First, as a test construction, the surplus solidifying material 22 is collected in the same manner as in the main construction. More specifically, as described with reference to FIGS. 1(3) and 1(4), a mixture of solidifying material and water is sprayed from the tip side of the double-tube rod 18 at high pressure while being rotated and lifted to reach the ground. A surplus solidifying material 22, which is a mixture of the discharged cutting ground, water, and solidifying material, is collected.

(S12) 採取された余剰固化材22を基に、室内配合試験により、地盤改良の対象となる土と、固化材と、水との配合割合が複数通りの配合について、例えば4週間など、所定日数後の固化後の一軸圧縮強度を計測し、その強度と、余剰固化材22の性状との関係である強度・性状関係が求められる。より具体的には、任意の密度について、カルシウム含有量(Ca含有量)と一軸圧縮強度の相関関係を調べ、計測した強度を図6に示すようにプロットする。そして、余剰固化材22の強度評価を行うための合格判定強度線を作成し、設定した合格判定強度と各密度の線との交点(3点)を求める。図7に示すようなカルシウム含有量と密度のグラフにおいては、これらの交点の回帰線が設定した合格判定強度線となる。ここで、カルシウム含有量と密度の分布が合格判定強度線の上方及び右側を合格範囲(Ca含有量、密度ともに増加方向)と判断し、下方及び左側を不合格範囲(Ca含有量、密度ともに減少方向)と判断することにより、所定の設定合格判定強度を満たすカルシウム含有量と密度との組み合わせを容易に求めることが出来る。 (S12) Based on the collected surplus solidifying material 22, an indoor blending test is performed for a predetermined period of time, for example, 4 weeks, for a plurality of blending ratios of soil, solidifying material, and water to be ground improvement. The unconfined compressive strength after solidification after several days is measured, and the strength/property relationship, which is the relationship between the strength and the properties of the surplus solidifying material 22, is obtained. More specifically, the correlation between calcium content (Ca content) and unconfined compressive strength is examined for arbitrary densities, and the measured strength is plotted as shown in FIG. Then, a pass determination strength line for evaluating the strength of the surplus solidifying material 22 is created, and intersection points (three points) between the set pass determination strength and each density line are obtained. In the graph of the calcium content and density as shown in FIG. 7, the regression line of these intersections is the set acceptance determination strength line. Here, the distribution of calcium content and density judges that the upper and right sides of the pass judgment intensity line are acceptable ranges (both Ca content and density increase), and the lower and left sides are unacceptable ranges (both Ca content and density Decreasing direction), it is possible to easily obtain a combination of calcium content and density that satisfies a predetermined acceptance determination strength.

(S13) その後、高圧噴射撹拌工法による地盤改良の施工が開始されると、地盤の改良体28の造成時に地上に排出された余剰固化材22が採取される。 (S13) After that, when the construction of ground improvement by the high-pressure injection stirring method is started, the surplus solidifying material 22 discharged to the ground when the ground improvement body 28 is created is collected.

(S14) そして、採取された余剰固化材22の性状、すなわち、カルシウム含有量と密度が計測される。カルシウム含有量の計測方法は特に限定されないが、例えば蛍光X線分析機等を用いて簡易に計測することができる。 (S14) Then, the properties of the collected surplus solidifying material 22, that is, the calcium content and density are measured. Although the method for measuring the calcium content is not particularly limited, it can be easily measured using, for example, a fluorescent X-ray analyzer.

(S15) 計測されたカルシウム含有量、および密度と、上記のように予め算出した強度・性状関係とから、余剰固化材22の強度の推定、すなわち所定の設定合格判定強度を有するかどうかの判定が行われる。 (S15) Estimate the strength of the surplus solidifying material 22 from the measured calcium content and density, and the strength/property relationship calculated in advance as described above, that is, determine whether or not the surplus solidifying material 22 has a predetermined set acceptance determination strength. is done.

(S16) 所定の設定合格判定強度を有することが確認されれば、その余剰固化材22は、所定の強度を必要とされる埋め戻し領域34のための充填材料として用いられる。 (S16) If it is confirmed that the surplus solidifying material 22 has a predetermined set pass judgment strength, the surplus solidifying material 22 is used as a filling material for the backfilling region 34 that requires a predetermined strength.

(S17) 一方、所定の設定合格判定強度を有していないと判定された場合には、通常の排泥処理と同様にバキュームカー等によって搬出され、処理されるようにしたり、強度を必要としない箇所を埋め戻す充填材として用いられるようにしてもよいが、所定以上の強度になるように、固化材を添加し、カルシウム含有量を増加させる調整を行って、埋め戻しに用いられるようにしてもよい。これによって、余剰固化材22をより有効に利用することができる。なお、余剰固化材22の調整としては、強度を高めるための固化材の添加に限らず、要求設計強度とのバランスを取るために水を加えて強度を低下させてもよい。 (S17) On the other hand, if it is determined that the sludge does not have the predetermined set pass judgment strength, it is carried out by a vacuum truck or the like and processed in the same manner as normal sludge removal processing, or if strength is required. It may be used as a filling material for backfilling the unfilled area, but it should be used for backfilling by adding a solidifying material and adjusting the calcium content so that the strength is above the predetermined level. may As a result, the surplus solidifying material 22 can be used more effectively. The adjustment of the surplus solidifying material 22 is not limited to the addition of the solidifying material for increasing the strength, but water may be added to reduce the strength in order to balance with the required design strength.

(その他の事項)
なお、上記のように品質管理された余剰固化材22の量が埋め戻しに必要な量よりも少ない場合、例えば、別のプラントで混練した他の充填材料と併用してもよい。ただし、同じ埋め戻し領域において異なる性状(強度)の充填材が混ざり合うのは好ましくない場合がある。そのような場合には、埋め戻し領域を区分けして、各々を異なる充填材で埋め戻すなどしてもよい。
(Other Matters)
If the amount of surplus solidifying material 22 quality-controlled as described above is smaller than the amount required for backfilling, for example, it may be used in combination with another filling material kneaded in another plant. However, it may not be desirable to mix different properties (strengths) of filler materials in the same backfill region. In such cases, the backfill areas may be segmented, each backfilled with a different filler material, or the like.

また、上記のような余剰固化材22の品質管理を行う場合でも、実際に埋め戻した余剰固化材22が一軸圧縮強度が設計値を満足しているかを確認する為に、埋め戻した余剰固化材22を強度発現後に採取して、一軸圧縮試験を行ってもよい。 In addition, even when performing quality control of the surplus solidifying material 22 as described above, in order to confirm whether the uniaxial compressive strength of the surplus solidifying material 22 actually backfilled satisfies the design value, The material 22 may be sampled after strength development and subjected to a uniaxial compression test.

また、埋め戻し領域34に埋め戻された余剰固化材22と新築構造物32との密着性を確認するために、余剰固化材22にコアボーリングを行い、一軸圧縮試験を行ってもよい。 In order to confirm the adhesion between the surplus solidifying material 22 refilled in the backfilling area 34 and the new structure 32, core boring may be performed on the surplus solidifying material 22 and a uniaxial compression test may be performed.

上記のように余剰固化材22の品質を管理して埋め戻しなどに用いることにより、余剰固化材22の埋め戻し可能な領域が拡がり、産業廃棄物処理場に運ぶ運搬費用や処理費用、品質を管理しない場合に別途必要になる充填材の費用やその運搬費用などを抑制でき、環境負荷の低減にも寄与することができる。 By managing the quality of the surplus solidifying material 22 and using it for backfilling, etc., as described above, the area where the surplus solidifying material 22 can be backfilled is expanded, and the cost of transporting it to the industrial waste disposal site, the processing cost, and the quality are reduced. It is possible to reduce the cost of the filler that would otherwise be required separately and the cost of transporting it, thus contributing to the reduction of the environmental load.

また、事前に配合試験を行って、地盤改良の対象となる土と、固化材と、水との複数通りの配合に対する固化後の強度に基づいて、余剰固化材22の強度と上記余剰固化材22の性状との関係である強度・性状関係を予め求めておくことで、これを基に、地盤改良の施工時に余剰固化材22の強度管理を迅速に行うことが出来る。 In addition, a mixing test is performed in advance, and the strength of the surplus solidifying material 22 and the surplus solidifying material are determined based on the strength after solidification for multiple combinations of the soil to be ground improvement, the solidifying material, and the water. By obtaining the strength/property relationship, which is the relationship with the property of 22, in advance, the strength of the surplus solidifying material 22 can be quickly controlled during ground improvement work.

10 地表
12 地盤改良装置
14 ボーリングロッド
16 縦孔
18 二重管ロッド(回転噴射管)
20 スライムピット
22 余剰固化材
24 改良体
30 既存構造物
32 新築構造物
34 領域
10 surface
12 soil improvement equipment
14 boring rod
16 vertical hole
18 Double tube rod (rotary injection tube)
20 slime pit
22 Surplus solidifying material
24 improved
30 Existing structures
32 New construction
34 areas

Claims (5)

回転噴射管から固化材を地盤中に噴射して改良体を造成する高圧噴射撹拌工法を用いた地盤改良方法であって、
地盤改良体の造成時に排出される余剰固化材を採取する採取工程と、
採取された余剰固化材について、余剰固化材の強度の指標となる余剰固化材の性状を計測する計測工程と、
計測された余剰固化材の性状に基づいて、固化後の余剰固化材の強度を推定する余剰固化材強度推定工程と、
を有することを特徴とする地盤改良方法。
A ground improvement method using a high-pressure injection stirring method in which a solidifying material is injected into the ground from a rotating injection pipe to create an improved body,
A collection step of collecting the surplus solidifying material discharged during the construction of the soil improvement body;
a measurement step of measuring the properties of the collected surplus solidifying material, which serves as an indicator of the strength of the surplus solidifying material;
a surplus solidifying material strength estimation step of estimating the strength of the surplus solidifying material after solidification based on the measured properties of the surplus solidifying material;
A ground improvement method characterized by having
請求項1の地盤改良方法であって、
上記余剰固化材の性状は、余剰固化材の密度、およびカルシウム含有量であり、前記余剰固化材の密度と前記カルシウム含有量の関係に応じて余剰固化材の強度を推定することを特徴とする地盤改良方法。
The ground improvement method of claim 1,
The properties of the surplus solidifying material are the density and calcium content of the surplus solidifying material, and the strength of the surplus solidifying material is estimated according to the relationship between the density of the surplus solidifying material and the calcium content. Soil improvement method.
請求項1から請求項2のうち何れか1項の地盤改良方法であって、
さらに、予め、余剰固化材の強度と上記余剰固化材の性状との関係である強度・性状関係を求める強度・性状関係設定工程を有し、
上記強度・性状関係設定工程は、地盤改良の対象となる土と、固化材と、水との複数通りの配合に対する固化後の強度に基づいて、上記強度・性状関係を求めるとともに、
上記余剰固化材強度推定工程は、上記強度・性状関係に基づいて、余剰固化材の強度を推定することを特徴とする地盤改良方法。
The ground improvement method according to any one of claims 1 and 2,
Furthermore, a strength/property relationship setting step is provided in advance to obtain a strength/property relationship, which is the relationship between the strength of the surplus solidifying material and the properties of the surplus solidifying material,
In the strength/property relationship setting step, the strength/property relationship is determined based on the strength after solidification for multiple combinations of soil to be ground improvement, solidification material, and water,
The ground improvement method, wherein the surplus solidifying material strength estimation step estimates the strength of the surplus solidifying material based on the strength/property relationship.
請求項1から請求項3のうち何れか1項の地盤改良方法であって、
さらに、上記余剰固化材強度推定工程で推定された余剰固化材の強度に応じて、推定された余剰固化材の強度が所定の強度よりも低い場合に、所定以上の強度になるように、固化材の添加によりカルシウム含有量を増加させる調整工程を有することを特徴とする地盤改良方法。
The ground improvement method according to any one of claims 1 to 3,
Furthermore, according to the strength of the surplus solidifying material estimated in the surplus solidifying material strength estimation step, if the estimated strength of the surplus solidifying material is lower than a predetermined strength, solidification is performed so that the strength becomes a predetermined strength or more. A soil improvement method characterized by having an adjustment step of increasing the calcium content by adding wood.
請求項1から請求項4のうち何れか1項の地盤改良方法であって、
さらに、既存構造物と、上記既存構造物内に構築される新築構造物との間に存在する空間に上記余剰固化材を埋め戻す埋め戻し工程を有することを特徴とする地盤改良方法。
The ground improvement method according to any one of claims 1 to 4,
Further, a ground improvement method comprising a backfilling step of filling the surplus solidifying material into a space existing between an existing structure and a new structure constructed within the existing structure.
JP2022025092A 2022-02-21 2022-02-21 Ground improvement method Pending JP2023121640A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2022025092A JP2023121640A (en) 2022-02-21 2022-02-21 Ground improvement method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2022025092A JP2023121640A (en) 2022-02-21 2022-02-21 Ground improvement method

Publications (1)

Publication Number Publication Date
JP2023121640A true JP2023121640A (en) 2023-08-31

Family

ID=87798094

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2022025092A Pending JP2023121640A (en) 2022-02-21 2022-02-21 Ground improvement method

Country Status (1)

Country Link
JP (1) JP2023121640A (en)

Similar Documents

Publication Publication Date Title
CN104404838B (en) The above railway collapsible loess subgrade substrate treating method of speed 200km
CN104110028B (en) A kind of dry operation boring is without the cast-in-place pile construction method of water law concrete perfusion
CN109338999A (en) Using the construction method of cement sand and gravel processing side slope in a kind of rock
JP2023121640A (en) Ground improvement method
CN101713189B (en) Construction process of floral tube dry filling piles
Jendrysik et al. Mass stabilization as a modern method of substrate strengthening
CN209669857U (en) A kind of variable diameters steel reinforcement cage enlarged footing anchor pole anti-floating or pressure bearing pile
CN107142902A (en) High head and large flow tunneling boring damming method
JP6831211B2 (en) Strength control method of backfill material and backfill method of ground
KR100272950B1 (en) Method of forming water-resist wall of rubbish buried place
JP5317938B2 (en) Construction method of soil cement pillar and soil cement continuous wall
CN103603355A (en) Empty pile processing method for cast-in-situ bored pile
Costello A Theoretical and Practical Analysis of the Effect of Drilling Fluid on Rebar Bond Strength
CN102477737A (en) Construction method of cement fly-ash gravel (CFG) pile on collapsible loess foundation of highway
JP7112820B2 (en) SOIL IMPROVEMENT SYSTEM AND QUALITY CONTROL METHOD
JP2004044327A (en) Soil improving method and soil improvement management system
JP4098575B2 (en) Formulation management method of soil mortar
CN110528510A (en) A kind of method that complicated geological carries out the processing of bottom hole spillage
JP3920158B2 (en) Ground improvement method
JP4395212B2 (en) Construction method of underwater cured body
Zimmer et al. Development and Evaluation of Air-Entrained Grout-Enriched Roller-Compacted Concrete
JP2018193716A (en) Strength estimation method for foot protection part
CN208578343U (en) A kind of concrete grouting quantitatively uses tool
Safi Improvement of selected coastal soils of Bangladesh using cement
JP6854475B2 (en) Strength management method for solidified muddy water