JP2023118669A - Wooden chip lamina board and manufacturing method thereof - Google Patents

Wooden chip lamina board and manufacturing method thereof Download PDF

Info

Publication number
JP2023118669A
JP2023118669A JP2022206877A JP2022206877A JP2023118669A JP 2023118669 A JP2023118669 A JP 2023118669A JP 2022206877 A JP2022206877 A JP 2022206877A JP 2022206877 A JP2022206877 A JP 2022206877A JP 2023118669 A JP2023118669 A JP 2023118669A
Authority
JP
Japan
Prior art keywords
wood
wooden
wood chip
board
group
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2022206877A
Other languages
Japanese (ja)
Inventor
明 島村
Akira Shimamura
広資 石川
Hiroshi Ishikawa
佳一 森角
Keiichi Morikado
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Noda Corp
Original Assignee
Noda Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Noda Corp filed Critical Noda Corp
Publication of JP2023118669A publication Critical patent/JP2023118669A/en
Pending legal-status Critical Current

Links

Abstract

To provide a wooden board which has superior surface smoothness than conventional OSB and which can be suitably used as a substrate serving as a decorative board by adhering a decorative material directly on itself.SOLUTION: A wood chip lamina board 1 has an average value of 40 μm or less of a maximum height showing surface roughness defined by Japanese Industrial Standards JIS B 0601:2013 and a maximum value of 50 μm or less. A first wood chip lamina group consisting of an aggregation of wood chip laminas 2 having a thickness of 0.6 mm or less and a second wood chip lamina group consisting of the aggregation of wood chip laminas 3 having the thickness of greater than 0.6 mm or more are prepared, 68 wt% or more, preferably 70 wt% or more, of the first wood chip lamina group to a total amount of the first and second wood chip lamina groups is mixed to obtain a raw material wood chip lamina, adhesive agent is applied, mixed, aggregated on the raw material wood chip lamina, integrated by hot pressing and manufactured. The wood chip lamina board can be suitably used as a substrate serving as a decorative board 5 by adhering a decorative material 4 such as a veneer or decorative sheet directly on itself.SELECTED DRAWING: Figure 2

Description

本発明は、木削薄片板およびその製造方法に関する。 TECHNICAL FIELD The present invention relates to a wood slice board and a manufacturing method thereof.

木材の小片ないし薄片を接着剤と混合して集積して熱圧一体化して得られる木質ボードとしては、配向性を有するOSB(配向性ストランドボード)が知られている。OSBはJASに定められる構造用パネルの一種であり、JISではパーティクルボードの一種として規格化されているが、近年の木質資源の枯渇化を背景として、OSBを構造用パネル以外の用途、たとえば化粧板の基材として用いることについても検討が進められている。 Oriented strand boards (OSB) are known as wooden boards obtained by mixing small pieces or thin pieces of wood with an adhesive, accumulating them, and integrating them under heat and pressure. OSB is a type of structural panel stipulated by JAS, and is standardized as a type of particle board by JIS. Consideration is also being given to using it as a base material for plates.

特表2007-521163号公報Japanese Patent Publication No. 2007-521163

従来のOSBは、一般に、0.7~1.2mm厚の多数の木削薄片同士を熱硬化性樹脂接着剤を介して互いに重なり合った状態に積層させ、この積層体を高温プレスして成板して製造されるが、接着剤の偏在やプレス荷重の不均一などに起因して一部の木削薄片が捲れ上がったような状態で表面に現出することが多く、表面平滑性に劣ることから、OSBの表面に突板や化粧シートなどの化粧材を直接貼着することは実際上困難であった。そのため、OSBを化粧板の基板として用いるに際しては、その表面にMDFなどの表面平滑性に優れた表面材を貼着した上に突板や化粧シートなどの化粧材を貼着して化粧板としているのが現状であり、OSBを単独で化粧板の基材として使用することは従来行われていなかった。 Conventional OSB is generally made by laminating a large number of wood slices with a thickness of 0.7 to 1.2 mm in a mutually overlapping state with a thermosetting resin adhesive interposed therebetween, and then pressing this laminate at a high temperature to form a plate. However, due to the uneven distribution of the adhesive and the unevenness of the press load, it often appears on the surface in a state where some of the wood flakes are curled up, resulting in poor surface smoothness. Therefore, it has been practically difficult to directly attach a decorative material such as a veneer or a decorative sheet to the surface of the OSB. Therefore, when OSB is used as a substrate for a decorative board, a surface material having excellent surface smoothness such as MDF is adhered to the surface of the OSB, and then a decorative material such as a veneer or a decorative sheet is adhered to form a decorative board. However, the use of OSB alone as a base material for decorative boards has not hitherto been carried out.

したがって、本発明が解決しようとする課題は、表面平滑性を向上させた木質ボードを提供し、その上に直接突板や化粧シートなどの化粧材を貼着して化粧板とするための基材として使用可能にすることである。 Therefore, the problem to be solved by the present invention is to provide a wood board with improved surface smoothness, and a base material for making a decorative board by directly adhering a decorative material such as a veneer or a decorative sheet thereon. is to make it available as

この課題を解決するため、本願の請求項1に係る発明は、木削薄片と接着剤とを混合して集積し、熱圧一体化して得られる木削薄片板であって、日本産業規格JIS B 0601:2013で定義された表面粗さを示す最大高さの平均値が40μm以下、且つ、最大値が50μm以下であることを特徴とする。 In order to solve this problem, the invention according to claim 1 of the present application is a wood slice board obtained by mixing and accumulating wood slices and an adhesive and integrating them by heat and pressure, The average maximum height indicating surface roughness defined in B 0601:2013 is 40 μm or less and the maximum value is 50 μm or less.

本願の請求項2に係る発明は、厚さ0.6mm以下の木削薄片の集合体からなる第一の木削薄片グループと、厚さ0.6mm超の木削薄片の集合体からなる第二の木削薄片グループとを用意し、第一の木削薄片グループと第二の木削薄片グループの合計である全配合量に対して第一の木削薄片グループを68重量%以上用いて原料木削薄片とし、この原料木削薄片に接着剤を塗布混合して集積し、熱圧一体化することを特徴とする、木削薄片板の製造方法である。 The invention according to claim 2 of the present application provides a first group consisting of an aggregate of wooden slices having a thickness of 0.6 mm or less, and a first group consisting of an aggregate of wooden slices having a thickness of more than 0.6 mm. A second group of wooden slices is prepared, and the first group of wooden slices is used in an amount of 68% by weight or more with respect to the total compounding amount of the first group of wooden slices and the second group of wooden slices. This is a method of manufacturing a wooden board, characterized in that a raw material wooden board is prepared, an adhesive is applied to and mixed with the raw material wooden board, the raw material wooden board is accumulated, and the raw material wooden board is integrated by heat and pressure.

本願の請求項3に係る発明は、請求項2記載の木削薄片板の製造方法において、前記第一の木削薄片グループは、木削薄片を得る際に生ずる削粉を含むことを特徴とする。 The invention according to claim 3 of the present application is characterized in that, in the method for manufacturing a wooden slice board according to claim 2, the first group of wooden slices contains shavings generated when the wooden slices are obtained. do.

本願の請求項4に係る発明は、請求項2または3記載の製造方法で製造された木削薄片板である。 The invention according to claim 4 of the present application is a wooden plank manufactured by the manufacturing method according to claim 2 or 3.

本発明によれば、従来のOSBよりも大幅に表面平滑性が向上し、良好な表面平滑性を有するものとして知られているMDFに匹敵または同等の表面平滑性を有し、諸物性にも優れた木削薄片板が提供される。したがって、その上に直接板や化粧シートなどの化粧材を貼着して化粧板とするための基材として、従来使用されているMDFなどに代えて、本発明による木削薄片板を好適に使用することができる。 According to the present invention, surface smoothness is significantly improved over conventional OSB, and it has surface smoothness comparable to or equivalent to MDF, which is known to have good surface smoothness, and various physical properties An excellent wood-cutting plate is provided. Therefore, as a base material for directly adhering a decorative material such as a board or a decorative sheet on the board to form a decorative board, the wooden thin board according to the present invention can be suitably used in place of conventionally used MDF or the like. can be used.

本発明による木質薄片板を模式的に示す側面図である。1 is a side view schematically showing a wood flake plate according to the present invention; FIG. 本発明による木質薄片板を基材として用いた化粧板を模式的に示す側面図である。1 is a side view schematically showing a decorative board using the wooden flake board according to the present invention as a base material; FIG. 試験例における表面粗さ試験の測点を示す図である。It is a figure which shows the measuring point of the surface roughness test in a test example.

本発明は、木削薄片と接着剤とを混合して集積し、熱圧一体化して得られる木削薄片板に関する。図1はこの木削薄片板1を単独で示す断面図であり、符号2は厚さ0.6mm以下の木削薄片を示し、符号3は厚さ0.6mm超の木削薄片を示す。図2はこの木削薄片板1を基材として用い、その上に化粧材4を貼着して得た化粧板5の断面図である。 TECHNICAL FIELD The present invention relates to a wood flake board obtained by mixing wood flakes and an adhesive, accumulating them, and integrating them under heat and pressure. FIG. 1 is a cross-sectional view showing this wood slice plate 1 alone, where reference numeral 2 indicates wood slices with a thickness of 0.6 mm or less, and reference numeral 3 indicates wood slices with a thickness of more than 0.6 mm. FIG. 2 is a cross-sectional view of a decorative board 5 obtained by using this wooden board 1 as a base material and applying a decorative material 4 thereon.

木削薄片は、広葉樹または針葉樹の原木をフレーカーで薄く切削して作成する。植林再生可能な広葉樹や針葉樹から木削薄片を得ても良い。 Wood slices are prepared by thinly cutting hardwood or coniferous raw wood with a flaker. Wood slices may be obtained from broadleaf trees and conifers that can be reforested.

木削薄片の含水率は15重量%以下とすることが好ましく、木削薄片板製造工程に入るまでにこの含水率以下になるまで乾燥する。含水率が15重量%を超えると、木削薄片板の表面に極度に高密度の層ができやすくなり、加圧成型時のプレスに長時間を要する。木削薄片の含水率は、日本産業規格JIS A 5905-2003 6.4に準拠して、(m-m)x100/mの式から求めることができる。ここで、mは乾燥前の木削薄片試料の質量(g)であり、mは該木削薄片試料を103℃の空気乾燥機に入れて恒量になったときの質量(g)である。 The moisture content of the wood flakes is preferably 15% by weight or less, and the wood flakes are dried until the water content falls below this moisture content before entering the manufacturing process of the wood flakes. If the water content exceeds 15% by weight, an extremely high-density layer tends to form on the surface of the wooden board, requiring a long time for pressing during pressure molding. The moisture content of the wood shavings can be obtained from the formula (m 1 -m 0 )×100/m 0 in accordance with Japanese Industrial Standard JIS A 5905-2003 6.4. Here, m 1 is the mass (g) of the wood slice sample before drying, and m 0 is the mass (g) when the wood slice sample is placed in an air dryer at 103 ° C. and has a constant weight. be.

木削薄片板に用いる木削薄片は、長さ10~200mm、幅1~5mmであることが好ましい。木削薄片の長さが200mmを超えると、乾燥した際にカールしてしまい、カールした状態のままで熱圧されると、局所的に空洞ができて接着不良を起こし、パンクや強度不良の原因となる。 The wood flake used for the wood flake board preferably has a length of 10 to 200 mm and a width of 1 to 5 mm. If the length of the wood slice exceeds 200 mm, it curls when dried, and if it is heat-pressed in the curled state, it causes local cavities and poor adhesion, resulting in punctures and poor strength. cause.

既述したように、従来のOSBでは厚さ0.7~1.2mmの木削薄片が用いられているが、本発明では、厚さ0.6mm以下の木削薄片の集合体からなる第一の木削薄片グループと、厚さ0.6mm超の木削薄片の集合体からなる第二の木削薄片グループとを用意し、第一の木削薄片グループと第二の木削薄片グループの合計量に対して第一の木削薄片グループを68重量%以上、好ましくは70重量%以上、さらに好ましくは80重量%以上配合して接着剤と混合する。すなわち、第一の木削薄片グループの重量をA、第二の木削薄片グループの重量をBとすると、A/(A+B)≧68%、好ましくは≧70%、さらに好ましくは≧80%となるように混合して用いる。この点については後に試験例を挙げて詳述するが、第一の木削薄片グループと第二の木削薄片グループとを厚さ0.6mmを分岐点として分類した理由については以下の通りである。 As mentioned above, the conventional OSB uses wood flakes with a thickness of 0.7 to 1.2 mm. A first wooden slice group and a second wooden slice group consisting of an aggregate of wooden slices having a thickness of more than 0.6 mm are prepared, and the first wooden slice group and the second wooden slice group are prepared. 68% by weight or more, preferably 70% by weight or more, more preferably 80% by weight or more of the first group of wood flakes is mixed with the adhesive. That is, where A is the weight of the first group of wooden slices and B is the weight of the second group of wooden slices, A/(A+B)≧68%, preferably ≧70%, more preferably ≧80%. Mix and use. This point will be described in detail later with reference to test examples, but the reason for classifying the first group of wooden slices and the second group of wooden slices with the thickness of 0.6 mm as the branching point is as follows. be.

すなわち、既述したように従来のOSBは主として構造用パネルとして使用することが想定され、表面に突板や化粧シートなどの化粧材を貼着して化粧板とするための基材として使用することが想定されていなかったため、比較的低コストで生産性良く製造される厚さ0.6mm以上、主として厚さ0.7~1.2mmの木削薄片をOSBの原料として用いていた。一方、化粧板の基材としての用途に向けて表面平滑性を向上させるためには、原料として用いる木削薄片の厚さを小さくすれば良いことは当然に予測できるものの、木削薄片の厚さを薄くすれば薄くするほど嵩が膨らむため、管理が困難であり、コストも上昇するので、一般的には製造されていなかった。また、厚さ0.6mm以下のような薄い木削薄片のみでOSBを製造しようとすると、その生産ラインにおいてマットが安定せず、傾いたり、崩れたり、倒れたりしてラインが停止することがあった。そこで、本発明においては、従来から一般的に製造されている厚さ0.6mm超(厚さ0.7~1.2mm)の木削薄片を使用しつつ、より薄い木削薄片を一定程度配合ないし混合することにより、化粧板の基材として好適に使用可能な表面平滑性を有する木削薄片板を比較的低コストおよび効率よく製造することができることに着目した。 That is, as described above, conventional OSB is expected to be used mainly as a structural panel, and it is also expected to be used as a base material for making a decorative board by attaching a decorative material such as a veneer or a decorative sheet to the surface. Therefore, wooden slices with a thickness of 0.6 mm or more, mainly 0.7 to 1.2 mm, which can be manufactured at a relatively low cost and with high productivity, were used as raw materials for OSB. On the other hand, in order to improve the surface smoothness for use as a base material for decorative boards, it is naturally expected that the thickness of the wood flakes used as raw materials should be reduced. The thinner the thickness, the more bulky it becomes, making it difficult to manage and increasing the cost, so it was not generally manufactured. Also, if an attempt is made to manufacture an OSB using only thin wood slices with a thickness of 0.6 mm or less, the mat will not be stable in the production line, and will tilt, crumble, or topple over, causing the line to stop. there were. Therefore, in the present invention, while using wood flakes having a thickness of more than 0.6 mm (thickness of 0.7 to 1.2 mm) that have been generally manufactured in the past, thinner wood flakes are used to a certain extent. The present inventors have noted that by blending or mixing, it is possible to efficiently produce a wood-cut thin board having surface smoothness that can be suitably used as a base material for a decorative board at a relatively low cost.

さらに、第一木削薄片グループを構成する厚さ0.6mm以下の木削薄片は、その平均厚さは約0.35mmであると想定され、これが熱圧によって厚さ1/2に圧縮され、または木削薄片同士が1/2厚さだけ喰い込むとすると、得られた木削薄片板の表面の平均凹凸深さは約0.175mmになるものと想定される。この木削薄片板を化粧板の基材として使用する場合、その表面に貼着される突板や化粧シートなどの化粧材は一般に厚さ0.2mmまたはそれ以上であるので、木削薄片板の表面に0.175mm程度の凹凸があっても、この凹凸深さを上回る厚さの化粧材が貼着されることによりこれを吸収することができ、化粧面には凹凸が現れにくい。これに対して、第一木削薄片グループを構成する木削薄片の厚さの上限値がより大きく(たとえば0.7mm)になると、得られる木削薄片板の表面に現れる凹凸が、化粧材の厚さと略同一またはそれより大きくなり、化粧材を貼着しても表面凹凸を吸収することができずに化粧面に凹凸が現れてしまい、化粧板としての商品価値を大きく損ねることになる。このことから、第一木削薄片グループと第二木削薄片グループとの分類に際して、厚さ0.6mmを基準とし、厚さ0.6mm以下の木削薄片を第一木削薄片グループとし、厚さ0.6mm超の木削薄片を第二木削薄片グループとした。 Furthermore, the wood flakes having a thickness of 0.6 mm or less, which constitute the first wood flake group, are assumed to have an average thickness of about 0.35 mm, and are compressed to 1/2 the thickness by hot pressing. , or if the wood flakes bite into each other by 1/2 thickness, the average depth of unevenness on the surface of the obtained wood flake board is assumed to be about 0.175 mm. When using this wood flake board as a base material for a decorative board, the decorative material such as a veneer or a decorative sheet attached to its surface generally has a thickness of 0.2 mm or more. Even if the surface has an unevenness of about 0.175 mm, it can be absorbed by attaching a decorative material having a thickness exceeding the depth of the unevenness, and the unevenness is less likely to appear on the decorative surface. On the other hand, when the upper limit of the thickness of the wood flakes constituting the first wood flake group is larger (for example, 0.7 mm), the unevenness appearing on the surface of the obtained wood flake board becomes a decorative material. The thickness is approximately the same as or greater than the thickness of the decorative board, and even if the decorative material is attached, the unevenness of the surface cannot be absorbed and the unevenness appears on the decorative surface, which greatly impairs the commercial value of the decorative board. . For this reason, when classifying the first wooden slice group and the second wooden slice group, the thickness of 0.6 mm is used as the standard, and the wooden slices with a thickness of 0.6 mm or less are classified as the first wooden slice group, Wood flakes with a thickness of more than 0.6 mm were taken as the second wood flake group.

木削薄片に塗布する接着剤としては、ユリア樹脂、メラミンユリア樹脂、フェノール樹脂、ポリウレタン樹脂、エポキシ樹脂などの熱硬化性樹脂を単独または適宜混合して用いることができるが、好ましくは、加圧成型時のプレス時間を短縮すると共に成形品の耐水性を向上させる観点から、ポリウレタン樹脂またはメラミンユリア樹脂を用いる。ポリウレタン樹脂としては、イソシアネート基を分子中に2個以上有するイソシアネート化合物、たとえば粗ジフェニルメタン-4,4’-ジイソシアネート(住化コベストロウレタン株式会社製品「スミジュール44V20」)などを用いることができる。 Thermosetting resins such as urea resins, melamine urea resins, phenol resins, polyurethane resins, and epoxy resins can be used alone or in appropriate mixtures as adhesives to be applied to the wood slices. A polyurethane resin or a melamine urea resin is used from the viewpoint of shortening the press time during molding and improving the water resistance of the molded product. As the polyurethane resin, an isocyanate compound having two or more isocyanate groups in the molecule, such as crude diphenylmethane-4,4'-diisocyanate ("Sumidule 44V20" manufactured by Sumika Covestro Urethane Co., Ltd.) can be used.

接着剤の使用量は、木削薄片の絶乾重量100重量部に対して、固形分で4~30重量部であることが好ましい。木削薄片の絶乾重量100重量部に対する接着剤固形分量が4重量部未満になると木削薄片板の曲げ強度が低下して化粧板の基材としての適性に欠けるものとなり、30重量部を超えると過剰量になって剛性が必要以上となり、経済的にも不利である。より具体的には、接着剤にイソシアネート化合物を用いる場合は固形分を4~12重量部とし、メラミンユリア樹脂を用いる場合は固形分を15~25重量部とすることが好ましい。 The amount of the adhesive to be used is preferably 4 to 30 parts by weight in solid content with respect to 100 parts by weight of the absolute dry weight of the wood slice. If the amount of adhesive solids is less than 4 parts by weight per 100 parts by weight of the absolute dry weight of the wood flakes, the bending strength of the wood flakes will decrease and the board will not be suitable as a base material for decorative boards. If it exceeds, the amount becomes excessive and the rigidity becomes more than necessary, which is economically disadvantageous. More specifically, when an isocyanate compound is used as the adhesive, the solid content is preferably 4 to 12 parts by weight, and when a melamine urea resin is used, the solid content is preferably 15 to 25 parts by weight.

次に、本発明による木削薄片板の製造方法について説明する。上述したように、厚さ0.6mm以下の木削薄片の集合体からなる第一の木削薄片グループと、厚さ0.6mm超の木削薄片の集合体からなる第二の木削薄片グループとを、第一の木削薄片グループと第二の木削薄片グループの合計である全配合量に対して第一の木削薄片グループが70重量%以上、より好ましくは80重量%以上となるように混合して原料木削薄片を調製した後、その表面に上述の接着剤を塗布して混合する。塗布方法としてはスプレー方式を採用することができ、たとえば、低速で回転する回転ドラム内に原料木削薄片を投入し、回転ドラムから原料木削薄片が自然落下する際に接着剤をスプレー塗布する方法を採用することができる。 Next, a method for manufacturing a wooden plank according to the present invention will be described. As described above, the first wooden slice group consisting of an aggregate of wooden slices with a thickness of 0.6 mm or less, and the second wooden slice group consisting of an aggregate of wooden slices with a thickness of more than 0.6 mm. 70% by weight or more, more preferably 80% by weight or more of the first group of wooden flakes, based on the total amount of the first group of wooden flakes and the second group of wooden flakes. After preparing the raw material wood flakes by mixing so as to obtain the above-mentioned adhesive, the above-mentioned adhesive is applied to the surface and mixed. A spray method can be used as the coating method. For example, the raw wood flakes are put into a rotating drum that rotates at a low speed, and the adhesive is sprayed when the raw wood flakes naturally fall from the rotating drum. method can be adopted.

次いで、接着剤が塗布された原料木削薄片をマット状に成形し、プレス機で熱圧成形する。熱圧成形時の熱で熱硬化性接着剤が硬化して原料木削薄片同士が強固に結合して、木削薄片板が製造される。熱圧成形温度は、用いる接着剤の種類にもよるが、概して150~230℃である。 Next, the raw wood slice coated with the adhesive is shaped into a mat, and hot-pressed with a press. The thermosetting adhesive is hardened by the heat during thermocompression molding, and the raw wood slices are strongly bonded to each other to produce a wood slice board. The hot pressing temperature is generally 150-230° C., depending on the type of adhesive used.

このようにして製造される木削薄片板は、下記試験例によって実証されるように、従来技術によるOSBと比べて大幅に表面平滑性が向上されており、且つ、密度分布が0.3~0.95g/cm、曲げ強さが25~100MPa、剥離強さが0.3~3.0MPaであって、その上に直接突板や化粧シートなどの化粧材を貼着して化粧板とするための基材として好適に使用することができる。なお、木削薄片板の密度分布に関しては、含水率が15重量%以下である原料木削薄片を用いることによって木削薄片板の表面に高密度層が形成されることを効果的に防止しつつ、さらに、熱圧プレスの際に熱盤を木削薄片マットに接触させるタイミングおよび圧力を調製することによって、密度分布を0.3~0.95g/mの範囲内とすることができ、均等な密度分布を有する木削薄片板が製造される。 As demonstrated by the following test examples, the wood shavings produced in this way have significantly improved surface smoothness compared to OSB according to the prior art, and the density distribution is 0.3 to 0.3. 0.95 g/cm 3 , a bending strength of 25 to 100 MPa, and a peel strength of 0.3 to 3.0 MPa. It can be suitably used as a base material for Regarding the density distribution of the wood flakes, the formation of a high-density layer on the surface of the wood flakes can be effectively prevented by using raw wood flakes with a moisture content of 15% by weight or less. In addition, the density distribution can be set within the range of 0.3 to 0.95 g/m 3 by adjusting the timing and pressure of bringing the hot plate into contact with the wood slice mat during hot pressing. , wood flakes with a uniform density distribution are produced.

以下に試験例を挙げて本発明の実施例および比較例について説明する。この試験例では、それぞれヒノキ原木からフレーカーで切削して厚さ0.6mm以下である試料A(厚さ0.1~0.6mmの木削薄片を主体として、これらの薄い木削薄片を得る際に不可避的に生ずる木粉や破片などの厚さ0.1mmに満たない削粉を含む)と、厚さ0.7~1.2mmである試料Bとを得た。なお、試料A,Bとなる木削薄片の長さと幅はいずれも同じであり、長さは10~200mm、幅は1~50mmであった。そして、これらの試料A,Bを、全重量(A+B)に対する試料Aの重量配合率を80%,70%,68%,66%,64%,62%,60%,50%および30%の9通りに変えて原料木削薄片とし、これに粗ジフェニルメタン-4,4’-ジイソシアネートからなる接着剤を前述のスプレー方式で塗布し、マット状にした後に、温度190℃、面圧17kg/cmの条件で9分間熱圧成形して、300mm×300mm×厚さ12mmの試験体1~9を得た。 EXAMPLES Examples and comparative examples of the present invention will be described below with reference to test examples. In this test example, sample A (mainly wood slices with a thickness of 0.1 to 0.6 mm), which is cut from a Japanese cypress log with a flaker and has a thickness of 0.6 mm or less, is obtained. A sample B having a thickness of 0.7 to 1.2 mm was obtained. The length and width of the wooden slices used as samples A and B were the same, and the length was 10 to 200 mm and the width was 1 to 50 mm. Then, these samples A and B were mixed at weight ratios of 80%, 70%, 68%, 66%, 64%, 62%, 60%, 50% and 30% of the total weight (A+B). The raw wood shavings were prepared by changing them in 9 ways, and the adhesive consisting of crude diphenylmethane-4,4'-diisocyanate was applied by the above-mentioned spray method to make a mat. 2 for 9 minutes to obtain specimens 1 to 9 of 300 mm×300 mm×thickness 12 mm.

また、比較のために、優れた表面平滑性を有することで知られているMDFと、従来技術によるOSB(試料Bのみを原料木削薄片としたもの)を、比較例A~Dとした。比較例A,Bはフロアの基材として実際に市販されているMDFであり、比較例C,Dは構造用パネルとして実際に市販されているOSBである。比較例A~Dの寸法も、試験体と同様に、300mm×300mm×厚さ12mmとした。 For comparison, MDF, which is known to have excellent surface smoothness, and OSB according to the prior art (only sample B was used as a raw wood slice) were used as Comparative Examples A to D. Comparative Examples A and B are MDF that is actually marketed as a floor substrate, and Comparative Examples C and D are OSB that is actually marketed as a structural panel. The dimensions of Comparative Examples A to D were also 300 mm×300 mm×12 mm in thickness, similar to the specimen.

これらの試験体1~9および比較例A~D(以下、これらを総称して「試験体」と言う。)の各々について、表面形状を表面粗さ測定器(JIS B 0651:2001、サーフテストSJ-310、株式会社ミツトヨ製)で測定した。測点は、図3に示すように、平面寸法300mm×300mmの試験体を100mm×100mmの9個の領域に区切り、各領域の中心を測点1~9とした。具体的には、各試験体の表面に測定器を載置すると共に、各測点にセットした触針が長さ15mmの直線上の範囲を移動する際に0.01mmピッチで凹凸形状を自動計測することによって行った。凹凸形状の計測は、この測定範囲内における最大高さ(JIS B 0601:2013、最も深い凹部の底から最も高い凸部の頂点までの距離Rz=Rv+Rq)を算出した上で、各測点で測定された最大高さの平均値と最大値を表1に示した。 For each of these test specimens 1 to 9 and Comparative Examples A to D (hereinafter collectively referred to as "test specimens"), the surface shape was measured by a surface roughness measuring instrument (JIS B 0651: 2001, surf test SJ-310, manufactured by Mitutoyo Corporation). As shown in FIG. 3, the test piece with a plane size of 300 mm×300 mm was divided into 9 areas of 100 mm×100 mm, and the center of each area was set as points 1 to 9. Specifically, a measuring instrument was placed on the surface of each test piece, and the stylus set at each measuring point moved in a linear range of 15 mm in length, and the uneven shape was automatically formed at a pitch of 0.01 mm. by measuring. Measurement of the uneven shape is performed by calculating the maximum height (JIS B 0601: 2013, the distance from the bottom of the deepest recess to the top of the highest protrusion Rz = Rv + Rq) within this measurement range, and then measuring at each measuring point. Table 1 shows the average and maximum measured maximum heights.

また、これらの試験体1~9および比較例A~Dの各々について、その上に直接化粧シートを貼着したときの表面状態を目視評価した結果を表2に示した。この表において、〇印は化粧シート表面に基材表面の凹凸が表出しておらず良好な表面状態が観察されたもの、X印は化粧シート表面に基材表面の凹凸が表出していて不良な表面状態が観察されたものを示す。 Table 2 shows the results of visual evaluation of the surface state when a decorative sheet was directly adhered to each of these test samples 1 to 9 and comparative examples A to D. In this table, ○ indicates that the surface of the decorative sheet has no unevenness on the surface of the substrate and a good surface condition is observed, and X indicates that the surface of the decorative sheet has unevenness on the surface of the substrate and is defective. It shows that the surface state was observed.

表1に示す結果から分かるように、試料Aの重量配合率が大きくなるにつれて表面凹凸の最大高さRzの平均値および最大値が小さくなる傾向が見られ、試料Aを30%以上配合した試験体1~9はいずれも従来のOSB(比較例C,D:いずれも最大高さRzの平均値および最大値がきわめて大きく、表面に大きな凹凸があることが示されている)と比べると最大高さRzの平均値および最大値が小さくなっており、表面平滑性が向上されたものではあるが、試料Aの重量配合率が66%以下である試験体4~9ではMDF(比較例A,B)に匹敵する数値には至っていない。これに対し、試料Aの重量配合率を68%以上とした試験体1~3ではMDF(試験体A,B)に近い表面平滑性が得られており、特に、試料Aの重量配合率が70%以上(試験体1,2)ではMDF(比較例A,B)と略同等の表面平滑性が得られることが確認できた。 As can be seen from the results shown in Table 1, as the weight blending ratio of sample A increases, the average value and maximum value of the maximum height Rz of the surface unevenness tend to decrease. All of the bodies 1 to 9 are the largest compared to the conventional OSB (Comparative Examples C and D: both have extremely large average and maximum values of the maximum height Rz, indicating that the surface has large unevenness) The average value and maximum value of the height Rz are small, and although the surface smoothness is improved, the weight blending ratio of the sample A is 66% or less. , B). On the other hand, in the test specimens 1 to 3 in which the weight blending ratio of sample A was 68% or more, surface smoothness close to that of MDF (specimens A and B) was obtained, and in particular, the weight blending ratio of sample A was It was confirmed that 70% or more (specimens 1 and 2) had surface smoothness substantially equal to that of MDF (comparative examples A and B).

また、表2に示す結果から分かるように、これらの試験体1~3は、いずれも、その上に直接化粧シートを貼着したときの表面状態が良好であった。これらの結果から、試料Aの重量配合率を68%以上、より好ましくは70%以上にして製造した木削薄片板は、化粧板の基材としてMDFに代えて使用するに適したものであることが実証された。 Moreover, as can be seen from the results shown in Table 2, all of these test specimens 1 to 3 had good surface conditions when the decorative sheet was directly adhered thereon. From these results, the wood-cut flake board manufactured with the weight blending ratio of sample A being 68% or more, more preferably 70% or more, is suitable for use as a base material for decorative board in place of MDF. It has been proven.

なお、上記の試験例では試料Aの重量配合率を最大80%(試験体1)としたが、表1に示される結果からして、試料Aをより多く配合すれば、表面最大高さRzの平均値および最大値がより小さくなって、MDF(試験体A,B)以上の表面平滑性が得られ、試料Aを100%配合すれば最大の効果が得られるであろうことが予測される。しかしながら、厚さ0.1~0.6mmの木削薄片を製造するには、厚さ0.7mm以上の木削薄片を製造する場合に比べて生産性が劣ると共にコストが嵩むため、これを過大に配合することは実際的ではない。また、比較的厚い木削薄片からなる試料Bをある程度の量以上混合することにより、試料Bの重量がマットを全体的に沈み込ませる役割を果たすので、生産ラインにおいてマットが安定し、傾いたり、崩れたり、倒れたりしてラインが停止することを防ぐことができる。これらの観点から、試料Aの重量配合率は95%以下とすることが好ましい。 In the above test examples, the maximum weight blending ratio of sample A was 80% (test sample 1), but from the results shown in Table 1, if more sample A was blended, the maximum surface height Rz The average and maximum values of are smaller, and surface smoothness equal to or greater than that of MDF (specimens A and B) is obtained. be. However, the production of wood flakes with a thickness of 0.1 to 0.6 mm is inferior to the production of wood flakes with a thickness of 0.7 mm or more, and the cost increases. Excessive blending is impractical. In addition, by mixing a certain amount or more of the sample B, which is made of relatively thick wood flakes, the weight of the sample B plays a role of sinking the mat as a whole, so that the mat is stable in the production line and does not tilt. , it is possible to prevent the line from stopping due to collapsing or falling. From these points of view, it is preferable that the weight blending ratio of Sample A is 95% or less.

また、上記の試験例においては、既述したように、厚さ0.1~0.6mmの木削薄片だけでなく、これらの薄い木削薄片を得る際に不可避的に生ずる木粉や破片などの厚さ0.1mmに満たない削粉を混合して試料Aを調製している。試料Aに含まれる削粉は、厚さ0.1~0.6mmの木削薄片を得た後にこれらとの分別作業を必要とせずに試料Aを得ることができるので、作業性およびコストメリットが向上するだけでなく、原材料ロスを削減することができる。さらに、原料木削薄片に削粉が混入されることにより、熱圧プレス時に削粉が木削薄片同士の隙間に入り込んで該隙間を埋める役割を果たすので、得られる木削薄片板の表面平滑性を向上させると共に諸物性も向上させることに寄与する。 In addition, in the above test examples, as described above, not only wood flakes with a thickness of 0.1 to 0.6 mm, but also wood powder and debris that inevitably occur when obtaining these thin wood flakes A sample A is prepared by mixing shaving powder with a thickness of less than 0.1 mm. The shaving powder contained in sample A can be obtained without the need for separation work from wood shavings with a thickness of 0.1 to 0.6 mm after obtaining sample A, so workability and cost merits Not only is it improved, but raw material loss can be reduced. Furthermore, when the shaving powder is mixed in the raw wood shavings, the shaving powder enters the gaps between the wood shavings during hot pressing and fills the gaps. It contributes to improving various physical properties as well as improving the properties.

以上に本発明について試験例を挙げて詳述したが、本発明は特許請求の範囲の記載によって定められる発明の範囲内において多種多様に変形ないし変更して実施可能である。 Although the present invention has been described in detail above with reference to test examples, the present invention can be modified or changed in various ways within the scope of the invention defined by the description of the claims.

1 木削薄片板(基材)
2 厚さ0.6mm以下の木削薄片
3 厚さ0.6mm超の木削薄片
4 化粧材
5 化粧板
1 Wood thin plate (base material)
2 Wood slices with a thickness of 0.6 mm or less 3 Wood slices with a thickness of more than 0.6 mm 4 Decorative material 5 Decorative board

Claims (4)

木削薄片と接着剤とを混合して集積し、熱圧一体化して得られる木削薄片板であって、日本産業規格JIS B 0601:2013で定義された表面粗さを示す最大高さの平均値が40μm以下、且つ、最大値が50μm以下であることを特徴とする木削薄片板。 A wood thin plate obtained by mixing and accumulating wood thin pieces and an adhesive and integrating them by heat and pressure, and having a maximum height exhibiting surface roughness defined by Japanese Industrial Standard JIS B 0601:2013. A wooden plank having an average value of 40 μm or less and a maximum value of 50 μm or less. 厚さ0.6mm以下の木削薄片の集合体からなる第一の木削薄片グループと、厚さ0.6mm超の木削薄片の集合体からなる第二の木削薄片グループとを用意し、第一の木削薄片グループと第二の木削薄片グループの合計量に対して第一の木削薄片グループを68重量%以上配合して原料木削薄片とし、この原料木削薄片に接着剤を塗布混合して集積し、熱圧一体化することを特徴とする、木削薄片板の製造方法。 A first wooden slice group consisting of an aggregate of wooden slices with a thickness of 0.6 mm or less and a second wooden slice group consisting of an aggregate of wooden slices with a thickness of more than 0.6 mm are prepared. , the first wood flake group is blended in an amount of 68% by weight or more with respect to the total amount of the first wood flake group and the second wood flake group to form a raw wood flake, and the raw wood flake is adhered to the raw wood flake. A method for producing a wooden plank, characterized by applying and mixing agents, accumulating them, and integrating them under heat and pressure. 前記第一の木削薄片グループは、木削薄片を得る際に生ずる削粉を含むことを特徴とする、請求項2記載の木削薄片板の製造方法。 3. The method of manufacturing a wooden plank according to claim 2, wherein said first group of wooden planks contains shavings generated when the wood planks are obtained. 請求項2または3記載の製造方法で製造された木削薄片板。 A wooden plank manufactured by the manufacturing method according to claim 2 or 3.
JP2022206877A 2022-02-15 2022-12-23 Wooden chip lamina board and manufacturing method thereof Pending JP2023118669A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022021415 2022-02-15
JP2022021415 2022-02-15

Publications (1)

Publication Number Publication Date
JP2023118669A true JP2023118669A (en) 2023-08-25

Family

ID=87663204

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2022206877A Pending JP2023118669A (en) 2022-02-15 2022-12-23 Wooden chip lamina board and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP2023118669A (en)

Similar Documents

Publication Publication Date Title
US6479127B1 (en) Manufacture of multi-layered board with a unique resin system
CN201525061U (en) Composite plywood with surface layer of fiberboard or shaving board
US4361612A (en) Medium density mixed hardwood flake lamina
Baharoğlu et al. The influence of moisture content of raw material on the physical and mechanical properties, surface roughness, wettability, and formaldehyde emission of particleboard composite
CN106272865B (en) The method of full Eucalyptus leftover pieces production weatherability oriented wood chipboard
JP2550483B2 (en) Manufacturing method of cellulosic board material
CN101486215A (en) Non-aldehyde recombinant material and manufacturing method thereof
CN101332614A (en) Burnishing surface wood oriented structure chipboard and manufacture method and use thereof
US20210189134A1 (en) Wood Composite Board and Preparation Method Thereof
CN112743645A (en) Faced waffle slab and preparation process thereof
CN101277817A (en) Wood panel containing inner culm flakes
JP2008525244A (en) Wood composite material including paulownia
CN109642138A (en) The hardening of bonding system
US20100075153A1 (en) Catalyzed Isocyanate Adhesive System For Wood Composites
JP2023118669A (en) Wooden chip lamina board and manufacturing method thereof
CN109203120A (en) Composite plate of directional structure board and preparation method thereof
JP5783888B2 (en) Adhesive composition for forming composite material with high water resistance, composite material, production method thereof, and adhesive for forming composite material with high water resistance
Hafezi et al. Surface characteristics and physical properties of wheat straw particleboard with UF resin
US5074946A (en) Wood bending methods employing fast curing phenolic resins
JP6985657B2 (en) Manufacturing method of wood composite board
JP2002086421A (en) Single-layer particle board and method for manufacturing it
CA2950106C (en) Oriented strand board
CN215511466U (en) But veneer waffle board
JPS5968225A (en) Three-layered particle board
Gollob et al. Wood adhesion