JP2023117512A - Furnace cover and furnace cover cooling method - Google Patents

Furnace cover and furnace cover cooling method Download PDF

Info

Publication number
JP2023117512A
JP2023117512A JP2022020113A JP2022020113A JP2023117512A JP 2023117512 A JP2023117512 A JP 2023117512A JP 2022020113 A JP2022020113 A JP 2022020113A JP 2022020113 A JP2022020113 A JP 2022020113A JP 2023117512 A JP2023117512 A JP 2023117512A
Authority
JP
Japan
Prior art keywords
drainage channel
wall
furnace lid
inner diameter
drainage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2022020113A
Other languages
Japanese (ja)
Inventor
純一 神田
Junichi Kanda
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2022020113A priority Critical patent/JP2023117512A/en
Publication of JP2023117512A publication Critical patent/JP2023117512A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Casting Support Devices, Ladles, And Melt Control Thereby (AREA)
  • Vertical, Hearth, Or Arc Furnaces (AREA)
  • Furnace Housings, Linings, Walls, And Ceilings (AREA)

Abstract

To provide a furnace cover capable of suppressing the generation of heat cracks in an inner wall therein, and a furnace cover cooling method.SOLUTION: A furnace cover covering an opening upper end face of a container comprises: a hollow cooling chamber provided therein; a nozzle provided for injecting cooling water toward an inner wall inside the cooling chamber; and an annular drainage provided over all the circumference of a lower end part of the cooling chamber; and an exhaust port connected to the drainage. In the inner wall side of the drainage, the inner diameter thereof is larger than the opening inner diameter of the container, and the inner wall side of the drainage lower than a position in which the inner diameter is made maximum has a cylindrical shape with the same inner diameter or is diameter-reduced downward. Also provided is a furnace cover cooling method in which cooling water is injected to the inner wall inside the cooling chamber from the nozzle to cool the inner wall, and the cooling water injected to the inner wall is drained from the exhaust port to the outside of the furnace cover via the drainage.SELECTED DRAWING: Figure 1

Description

本発明は、鍋精錬炉、電気炉などの容器の開口部の上端面を覆う炉蓋、及び炉蓋の冷却方法に関する。 BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a furnace lid covering an upper end surface of an opening of a container such as a pot smelting furnace or an electric furnace, and a method of cooling the furnace lid.

鍋精錬炉や電気炉用容器などの高温の溶融金属を収容する容器の炉蓋は、精錬時における高熱によって変形や溶損が生じるおそれがある。そこで、内部に形成された中空の冷却室内に冷却水を噴射することによって炉蓋を冷却するスプレー式炉蓋が、その対応として、知られている。スプレー式炉蓋は、噴流によって炉蓋の内壁面を水冷することにより、水冷ジャケット方式に比べて、少ない流量で大きな冷却効果を得ることができる。しかし、炉蓋の底面に溜まった排水の水位より下側は、スプレー水が当たらず、排水口へ向かう遅い流速による緩やかな冷却しか得られないため、冷却不足によりヒートクラックが発生して水漏れに至るおそれがある。水漏れは容器内の高温の溶融金属との接触によって、水蒸気爆発が発生する恐れがあり、安全上大きな問題となる。 Furnace lids of containers containing hot molten metal, such as pot refining furnaces and electric furnace containers, may be deformed or melted due to high heat during refining. As a countermeasure, a spray type furnace lid is known, which cools the furnace lid by injecting cooling water into a hollow cooling chamber formed therein. The spray type furnace lid cools the inner wall surface of the furnace lid with water jets, so that a large cooling effect can be obtained with a small flow rate compared to the water cooling jacket method. However, the area below the water level of the wastewater accumulated on the bottom of the furnace lid is not exposed to the spray water and can only be cooled slowly due to the slow flow speed toward the wastewater outlet. may lead to A water leak may cause a steam explosion due to contact with the high-temperature molten metal in the container, which poses a serious safety problem.

この対応として、特許文献1には、外周排水溝を設け、外周排水溝へ排水を自然落下させる方法が開示されている。特許文献2には、排水路内に排水流加速用のノズルを設置する方法が開示されている。特許文献3には、真空ポンプによって排水の吸引排出を行う方法及び炉蓋内側下部に水冷ジャケットを設置する方法が開示されている。 As a countermeasure to this, Patent Document 1 discloses a method of providing an outer peripheral drainage groove and allowing the drainage to naturally fall into the outer peripheral drainage groove. Patent Literature 2 discloses a method of installing a nozzle for accelerating a drainage flow in a drainage channel. Patent Literature 3 discloses a method of sucking and discharging waste water with a vacuum pump and a method of installing a water cooling jacket at the bottom inside the furnace lid.

特開平7-260367号公報JP-A-7-260367 特開平10-246576号公報JP-A-10-246576 特開2017-116186号公報JP 2017-116186 A

上記の従来技術には以下のような問題がある。 The above prior art has the following problems.

特許文献1の方法では、炉蓋の外周に排水溝を設けることで、炉蓋の底面に排水が溜まることを抑制することができ、炉蓋の底面で冷却不足が生じることを防ぐことができる。しかし、排水溝が、炉蓋の外周面側に出っ張るため、炉蓋の吊りアームや周囲の設備等に干渉する虞がある。このため、炉蓋の全周にわたって排水溝を設けることは難しく、排水溝が設けられていない箇所では冷却不足となってしまう。 In the method of Patent Document 1, by providing a drainage groove on the outer periphery of the furnace lid, it is possible to suppress the accumulation of waste water on the bottom surface of the furnace lid, and it is possible to prevent insufficient cooling from occurring at the bottom surface of the furnace lid. . However, since the drainage ditch protrudes toward the outer peripheral surface of the furnace lid, it may interfere with the suspension arms of the furnace lid and surrounding equipment. For this reason, it is difficult to provide a drainage groove over the entire circumference of the furnace lid, resulting in insufficient cooling in places where no drainage groove is provided.

特許文献2の方法では、排水流を加速するノズルを設けることにより、排水路内に排水が溜まることを抑制することができる。しかし、十分に大きい流速を得るには、スプレー水とは別に多量の水が必要となり、排水処理装置の大型化が避けられない。 In the method of Patent Document 2, by providing a nozzle that accelerates the flow of waste water, it is possible to suppress accumulation of waste water in the drainage channel. However, in order to obtain a sufficiently high flow velocity, a large amount of water is required in addition to the spray water, which inevitably leads to an increase in the size of the wastewater treatment apparatus.

特許文献3の真空ポンプによって排水の吸引排出を行う方法では、真空ポンプにより排水を吸引して排出することで炉蓋の底面に排水が溜まることを抑制することができる。しかし、これだけ多量の排水を吸引して排出する真空ポンプは、装置の仕様が厳しく、かつ高額である。 In the method disclosed in Patent Document 3, in which waste water is sucked and discharged by a vacuum pump, it is possible to suppress accumulation of waste water on the bottom surface of the furnace lid by sucking and discharging the waste water with the vacuum pump. However, a vacuum pump that sucks and discharges such a large amount of waste water has strict device specifications and is expensive.

特許文献3の炉蓋内側下部に水冷ジャケットを設置する方法では、水冷ジャケットによって炉蓋を冷却することで炉蓋底部の冷却不足を解消することができる。しかし、炉蓋の底部の溜まり水部を覆うように、炉内側に新たに小型水路を設ける場合、十分な冷却効果を得るためには冷却水を圧送して流速を上げる必要がある。操業中に溶融金属が飛散するなどで小型水路が損傷を受けた場合、圧送の圧力によって冷却水が多量に噴き出すため、安全上のリスクが存在する。なお、スプレー冷却および溜まり水の場合は、炉蓋内は大気圧のため、噴出の恐れはない。 In the method of installing a water-cooling jacket inside the lower part of the furnace lid disclosed in Patent Document 3, the water-cooling jacket cools the furnace lid, thereby solving the problem of insufficient cooling of the bottom portion of the furnace lid. However, when a new small water channel is provided inside the furnace so as to cover the stagnant water part at the bottom of the furnace lid, it is necessary to pump the cooling water to increase the flow rate in order to obtain a sufficient cooling effect. If the small waterway is damaged during operation, for example by splashing molten metal, the pressure of pumping will cause a large amount of cooling water to spout, creating a safety risk. In the case of spray cooling and stagnant water, there is no risk of blowout because the pressure inside the furnace lid is atmospheric.

また、上記以外に知られている方法として、排水の水位を下げるために炉蓋の外径を拡大して排水路の幅を広げる方法がある。しかし、周囲設備と干渉が生じることとなり、また炉蓋の重量が大幅に増加して炉蓋の昇降装置が大型化するなどして設備上コストがかかる。 In addition to the above, there is a method known to increase the width of the drainage channel by enlarging the outer diameter of the furnace cover in order to lower the water level of the drainage. However, it causes interference with surrounding equipment, and the weight of the furnace lid is significantly increased, which increases the size of the lifting device for the furnace lid, resulting in high equipment cost.

そこで、本発明は、炉蓋の内壁におけるヒートクラックの発生を抑制するスプレー冷却式の炉蓋、及び炉蓋の冷却方法を提供することを目的とする。 SUMMARY OF THE INVENTION Accordingly, an object of the present invention is to provide a spray cooling type furnace lid and a cooling method for the furnace lid that suppresses the occurrence of heat cracks on the inner wall of the furnace lid.

上記課題を有利に解決する本発明に係る炉蓋は以下のように構成される。 The furnace lid according to the present invention, which advantageously solves the above problems, is constructed as follows.

[1]容器の開口部の上端面を覆う炉蓋内に設けられた中空の冷却室と、前記冷却室内に内壁に向けて冷却水を噴射するために設けられたノズルと、前記冷却室の下端部にその周方向に設けられた環状の排水路と、前記排水路に接続された排水口と、を備え、前記排水路の内壁側の内径は、前記容器の開口部の内径より大きくなっており、前記内壁側の内径が最大となる位置より下部の前記排水路の内壁側は、内径が同一の円筒状であるか、又は下方へ向かい縮径している、炉蓋である。
[2]上記の[1]において、前記排水路の内壁側の内径が最大となる位置より上部の内壁側は、下方へ向かいその内径が大きくなる傾斜面となっている炉蓋である。
[3]上記の[1]又は[2]において、前記排水路の内壁側の内径が最大となる位置は、前記排水路に存在する冷却水の最大水位の水面より下方にある炉蓋である。
[4]上記の[1]から[3]のいずれかにおいて、さらに、前記排水路の分岐部に接続し、前記排水路より外側、かつ前記排水路より低い位置に配置される外周排水溝を有しており、少なくとも前記排水路の分岐部以外の内壁側の内径が、前記容器の開口部の内径より大きくなっている炉蓋である。
[5]上記の[1]から[4]のいずれかにおいて、前記排水路の内壁側の最大の内径は、前記排水路に存在する冷却水の最大水位の水面位置に基づいて設定される炉蓋である。
[6]上記の[5]において、溶融金属が収容されている前記容器に前記炉蓋を取着する場合であって、炉蓋の内壁のセットバックは、式(1)を満足する炉蓋である。
(セットバック量)/(溶融金属面の高さ)>0.10・・・式(1)
ここで、上記式(1)において、セットバック量とは、容器の開口部上端に対する排水路の内壁側の下端の外側へのずれ量、溶融金属面の高さとは、容器の開口部の上端面から溶融金属面までの距離をいう。
[1] A hollow cooling chamber provided in the furnace lid covering the upper end surface of the opening of the container, a nozzle provided for injecting cooling water toward the inner wall in the cooling chamber, and the cooling chamber An annular drainage channel provided in the circumferential direction at the lower end, and a drainage port connected to the drainage channel, the inner diameter of the inner wall side of the drainage channel being larger than the inner diameter of the opening of the container. The inner wall side of the drainage channel below the position where the inner wall side has the maximum inner diameter is a furnace cover that has a cylindrical shape with the same inner diameter or has a diameter that decreases downward.
[2] In the above [1], the inner wall side above the position where the inner wall side of the drainage channel has the maximum inner diameter is a furnace lid that forms an inclined surface whose inner diameter increases downward.
[3] In the above [1] or [2], the position where the inner diameter on the inner wall side of the drainage channel is maximum is the furnace lid below the water surface of the maximum water level of the cooling water existing in the drainage channel. .
[4] In any one of the above [1] to [3], there is further provided an outer peripheral drainage ditch connected to the branch of the drainage channel and arranged outside the drainage channel and at a position lower than the drainage channel. and at least the inside diameter of the inner wall side other than the branching portion of the drainage channel is larger than the inside diameter of the opening of the vessel.
[5] In any one of the above [1] to [4], the maximum inner diameter of the inner wall side of the drainage channel is set based on the water surface position of the maximum water level of the cooling water existing in the drainage channel. is the lid.
[6] In the above [5], when the furnace lid is attached to the container containing the molten metal, the setback of the inner wall of the furnace lid satisfies the equation (1): is.
(setback amount)/(height of molten metal surface)>0.10 Expression (1)
Here, in the above formula (1), the setback amount is the amount of outward displacement of the lower end of the inner wall side of the drainage channel with respect to the upper end of the opening of the container, and the height of the molten metal surface is the upper end of the opening of the container. It is the distance from the end face to the molten metal surface.

上記課題を有利に解決する本発明に係る炉蓋の冷却方法は以下のように構成される。
[7]上記の[1]から[6]のいずれかに記載の炉蓋を用いて、前記冷却室内の内壁へ前記ノズルから冷却水を噴射することによって前記内壁を冷却し、前記内壁に噴射する冷却水を、排水路を介して排水口から前記炉蓋の外へ排水する炉蓋の冷却方法である。
A furnace lid cooling method according to the present invention, which advantageously solves the above problems, is configured as follows.
[7] Using the furnace lid according to any one of [1] to [6] above, cooling the inner wall by injecting cooling water from the nozzle to the inner wall in the cooling chamber, and injecting it to the inner wall This is a cooling method for the furnace lid, in which the cooling water for cooling is drained out of the furnace lid from a drain port through a drainage channel.

本発明は、容器の開口部の上端面に炉蓋を取着するに際し、中空の冷却室下端に設けた環状排水路の内壁側を容器の開口部の外側にずらす、すなわち排水路の内壁側内径を容器開口部の内径より大きく形成し、さらにその内径が最大となる位置より下部の排水路の内壁側を円筒状にし、または容器内側に縮径させることで排水溜まり水の水位低減を図ったので、熱負荷低減によってヒートクラックを抑制することができる。
また、本発明は、真空ポンプが不要で、しかも多量の排水処理装置も必要としないため、設備コストが抑えられ、溶融金属が飛散してくる可能性のある冷却水圧送部がないので安全である。
When attaching the furnace lid to the upper end surface of the opening of the container, the present invention displaces the inner wall side of the annular drainage channel provided at the lower end of the hollow cooling chamber to the outside of the opening of the container, that is, the inner wall side of the drainage channel. The inner diameter is formed larger than the inner diameter of the container opening, and the inner wall side of the drainage channel below the position where the inner diameter is maximized is made cylindrical or the diameter is reduced toward the inside of the container to reduce the water level of the drained water. Therefore, heat cracks can be suppressed by reducing the heat load.
In addition, since the present invention does not require a vacuum pump and a large amount of wastewater treatment equipment, the equipment cost can be kept down. be.

本発明の炉蓋の一実施態様を示す概略水平断面図である。1 is a schematic horizontal sectional view showing one embodiment of a furnace lid of the present invention; FIG. 本発明の炉蓋の一実施態様を示す、外周部の概略縦断面図であり、(a)は図1のA-A断面図であり、(b)は図1のB-B断面図であり、(c)は図1のC-C断面図である。1 is a schematic vertical cross-sectional view of the outer peripheral portion showing one embodiment of the furnace lid of the present invention, (a) is a cross-sectional view along AA in FIG. 1, and (b) is a cross-sectional view along BB in FIG. 1, and (c) is a cross-sectional view taken along the line CC of FIG. 従来の炉蓋であり、(a)は概略水平断面図であり、(b)は概略縦断面図である。It is a conventional furnace lid, (a) is a schematic horizontal sectional view, and (b) is a schematic longitudinal sectional view. 内壁のセットバックと排水路の水面高さから見える溶鋼面(溶融金属面)の関係を説明する概略図である。It is a schematic diagram explaining the relationship between the setback of the inner wall and the molten steel surface (molten metal surface) seen from the height of the water surface of the drainage channel. セットバック量/溶鋼面(溶融金属面)の高さと可視溶鋼面積割合及び排水水位との関係を示すグラフである。It is a graph which shows the relationship between the amount of setback/height of a molten steel surface (molten metal surface), a visible molten steel area ratio, and a drainage water level.

本発明の実施形態にかかる炉蓋は、鍋精錬炉、電気炉などの容器の開口部の上端面を覆うためのものである。なお、容器内には溶融金属の一例である溶鋼が収容されている。本実施形態にかかる炉蓋の一例を図1及び図2に示す。本実施形態の炉蓋は中空の冷却室を形成し、冷却室内は、冷却水による冷却機能、冷却水を排水する排水機能及び溶鋼の輻射熱を低減する輻射熱低減機能を含む構造となっている。また、従来の炉蓋の一例を図3に示す。従来の炉蓋の冷却室内では、内壁7へスプレーされた冷却水が排水路1を介して排水として1カ所の排水口1Aに集められる。排水路1の内壁側は、内径が同一の円筒状をなし、その内径は、容器20の開口部の上端の内径と一致する。なお、炉蓋の外周には、炉蓋吊アーム3が設けられている。炉蓋吊アーム3は炉蓋を吊り上げる際に用いられるものであり、4つの炉蓋吊アーム3が炉蓋の四方からそれぞれ突出している。なお、図1に示す例では、4つの炉蓋吊アーム3のうち2つのみを図示している。 A furnace lid according to an embodiment of the present invention is for covering the upper end surface of the opening of a container such as a ladle refining furnace or an electric furnace. Molten steel, which is an example of molten metal, is contained in the container. An example of the furnace lid according to this embodiment is shown in FIGS. 1 and 2. FIG. The furnace lid of this embodiment forms a hollow cooling chamber, and the cooling chamber has a structure including a cooling function by cooling water, a drainage function for draining cooling water, and a radiant heat reduction function for reducing radiant heat of molten steel. An example of a conventional furnace lid is shown in FIG. In the cooling chamber of the conventional furnace lid, the cooling water sprayed on the inner wall 7 is collected through the drainage channel 1 to one drainage port 1A. The inner wall side of the drainage channel 1 has a cylindrical shape with the same inner diameter, which matches the inner diameter of the upper end of the opening of the container 20 . A furnace lid suspension arm 3 is provided on the outer circumference of the furnace lid. The furnace lid suspension arms 3 are used to lift the furnace lid, and the four furnace lid suspension arms 3 protrude from the four sides of the furnace lid. In the example shown in FIG. 1, only two of the four furnace lid suspension arms 3 are shown.

<冷却機能>
図2(c)に示すように、本実施形態の炉蓋は、内壁7、外壁8、及び底壁11によって囲まれた中空の冷却室を形成する。複数のノズル13がその冷却室内に設けられている。そのノズル13には、冷却水供給用の管が接続されており、そのノズル13から冷却室内の内壁7に向かって冷却水が噴射され、内壁7が冷却される。
<Cooling function>
As shown in FIG. 2( c ), the furnace roof of this embodiment forms a hollow cooling chamber surrounded by an inner wall 7 , an outer wall 8 and a bottom wall 11 . A plurality of nozzles 13 are provided within the cooling chamber. A pipe for supplying cooling water is connected to the nozzle 13, and the cooling water is jetted from the nozzle 13 toward the inner wall 7 in the cooling chamber to cool the inner wall 7. As shown in FIG.

<排水機能>
図1、図2(b)に示すように、炉蓋の底面(内壁7、外壁8、及び底壁11によって囲まれた部分)である冷却室の下端は、全周にわたって環状の排水路1となっている。そして、ノズル13から内壁7へ噴射された冷却水が溜まるようになっている。排水路1に溜まった冷却水15は、排水路1を介して排水路1に接続された排水口1Aへと向かい、排水口1Aから炉蓋の外へと排水される。
<Drainage function>
As shown in FIGS. 1 and 2(b), the lower end of the cooling chamber, which is the bottom surface of the furnace lid (the portion surrounded by the inner wall 7, the outer wall 8, and the bottom wall 11), has an annular drainage channel 1 all around. It has become. Cooling water jetted from the nozzle 13 to the inner wall 7 is accumulated. The cooling water 15 collected in the drainage channel 1 is directed to the drainage port 1A connected to the drainage channel 1 via the drainage channel 1, and is drained out of the furnace lid from the drainage port 1A.

また、図1、図2(a)に示すように、冷却室の下端に形成された排水路1には、部分的に外周排水溝2が接続されることが好ましい。すなわち、排水路1は、外周排水溝2が接続された分岐部4と、外周排水溝2が接続されていない非分岐部5とを有する。外周排水溝2は排水路1より外側、かつ排水路1より低い位置に設けられている。このように、外周排水溝2を設けることで、炉蓋の排水路1内の水位を下げることができる。もって、炉蓋の内壁7の冷却効果を向上させることができる。 Further, as shown in FIGS. 1 and 2(a), it is preferable that a peripheral drainage groove 2 is partially connected to the drainage path 1 formed at the lower end of the cooling chamber. That is, the drainage channel 1 has a branched portion 4 to which the outer peripheral drainage groove 2 is connected and a non-branched portion 5 to which the outer peripheral drainage groove 2 is not connected. The outer peripheral drainage groove 2 is provided outside the drainage channel 1 and at a position lower than the drainage channel 1.例文帳に追加Thus, the water level in the drainage channel 1 of the furnace lid can be lowered by providing the outer peripheral drainage channel 2 . Thereby, the cooling effect of the inner wall 7 of the furnace lid can be improved.

また、本実施形態の一例として、炉蓋の容器の着脱側とは反対側のみに外周排水溝2を形成することが好ましい。図1に示す例では、炉蓋の左半分のみに外周排水溝2を形成している。これにより、炉蓋の右側から左側に向かって容器(鍋)を移動させ、容器に炉蓋を取り付ける際に、外周排水溝2が容器に干渉して外周排水溝2が破損することを防ぐことができる。 Further, as an example of the present embodiment, it is preferable to form the outer peripheral drainage groove 2 only on the side of the furnace lid opposite to the side on which the container is attached and detached. In the example shown in FIG. 1, the outer drainage groove 2 is formed only in the left half of the furnace lid. As a result, when the container (pot) is moved from the right side to the left side of the furnace lid and the furnace lid is attached to the container, it is possible to prevent the outer peripheral drainage groove 2 from interfering with the container and damaging the outer peripheral drainage groove 2. can be done.

<輻射熱低減機能>
図2(b)や(c)に示すように、炉蓋の排水路1の内壁7側には、拡径部9が形成されている。この拡径部9は、内径が容器20の開口部の内径より大きく、かつ内径が最大となる位置10Bより下部(すなわち拡径部の下部10)は、排水路1の内壁7側の内径が同一の円筒状をなすか、又は下方へ向かうほど排水路1の内壁7側の内径が小さくなり縮径している。下部10が内径同一の円筒状の場合には、その上端を内径が最大となる位置10Bとする。
<Radiation heat reduction function>
As shown in FIGS. 2(b) and 2(c), an enlarged diameter portion 9 is formed on the inner wall 7 side of the drainage channel 1 of the furnace lid. This enlarged diameter portion 9 has an inner diameter larger than the inner diameter of the opening of the container 20, and below the position 10B where the inner diameter is the maximum (that is, the lower part 10 of the enlarged diameter portion), the inner diameter of the inner wall 7 side of the drainage channel 1 is It has the same cylindrical shape, or the inner diameter of the drain channel 1 on the inner wall 7 side becomes smaller as it goes downward. When the lower portion 10 is cylindrical with the same inner diameter, the upper end is the position 10B where the inner diameter becomes the maximum.

具体的には、拡径部9は、内径が最大となる位置より上方の「上部」10Aと、内径が最大となる位置10Bより下方の「下部」10に分かれており、拡径部の上部10Aは、下方へ向かうにつれて排水路1の内壁7側の内径が大きくなり、傾斜面(略截頭円錐面)を有する。一方、拡径部の下部10は、図2(b)や(c)の例では排水路1の内壁7側の内径が同一の円筒状(垂直面)である。なお、排水路1の内壁7側の内径が最大となる位置10Bは、排水路1に溜まる冷却水(排水)15の最大水位の水面より下方であることが好ましい。さらに、排水路1に溜まる冷却水15の最小水位の水面より上方であることがより好ましい。 Specifically, the enlarged diameter portion 9 is divided into an “upper portion” 10A above the position where the inner diameter is maximum and a “lower portion” 10 below the position 10B where the inner diameter is maximized. 10A has an inner diameter on the inner wall 7 side of the drainage channel 1 that increases downward, and has an inclined surface (substantially truncated cone surface). On the other hand, the lower portion 10 of the expanded diameter portion is cylindrical (vertical surface) having the same inner diameter on the inner wall 7 side of the drainage channel 1 in the examples of FIGS. 2(b) and 2(c). The position 10B where the inner wall 7 side of the drainage channel 1 has the maximum inner diameter is preferably below the maximum water level of the cooling water (drainage) 15 accumulated in the drainage channel 1 . Furthermore, it is more preferable to be above the water surface of the minimum water level of the cooling water 15 accumulated in the drainage channel 1 .

なお、拡径部の下部10は、排水路1の内壁7側の内径が同一の円筒状ではなく、下方へ向かうにつれて排水路1の内壁7側の内径が縮径する傾斜面(略截頭円錐面)としてもよい。また、拡径部の上部10Aは、下方へ向かうにつれて炉蓋の内径が大きくなるような形状であれば傾斜面に限らず、例えば段差部を有する形状などとしてもよい。 In addition, the lower part 10 of the expanded diameter portion is not a cylindrical shape having the same inner diameter on the inner wall 7 side of the drainage channel 1, but an inclined surface (substantially truncated) in which the inner diameter on the inner wall 7 side of the drainage channel 1 decreases as it goes downward. conical surface). Further, the upper portion 10A of the enlarged diameter portion is not limited to an inclined surface as long as it has a shape such that the inner diameter of the furnace lid increases as it goes downward.

拡径部の上部10Aを傾斜面とすることで、ノズル13の角度(ノズル13から噴射される冷却水角度)に対して内壁7の角度をほぼ直角にすることができ、抜熱の効率を上げることができる。また、拡径部の上部10Aを傾斜面形状とすることで、段差形状とする場合に比べ、排水(冷却水)が溜まることを抑制することができる。 By making the upper portion 10A of the enlarged diameter portion an inclined surface, the angle of the inner wall 7 can be made substantially perpendicular to the angle of the nozzle 13 (the angle of cooling water sprayed from the nozzle 13), and the heat removal efficiency is improved. can be raised. In addition, by forming the upper portion 10A of the enlarged diameter portion into an inclined surface shape, it is possible to suppress accumulation of waste water (cooling water) as compared with the case where the upper portion 10A is formed into a stepped shape.

なお、本実施形態では、上述した拡径部9は、排水路1の内壁7側の全周、すなわち分岐部4と非分岐部5の両方に形成されている。しかし、排水が溜まりやすいのは外周排水溝2が設けられていない非分岐部5であるため、拡径部9は、少なくとも排水路1の非分岐部5に面する内壁7に形成されていればよい。つまり、排水路1の分岐部4に外周排水溝2が接続され、その排水路1の分岐部4の内壁7側は、容器の開口部の内径と同一の半径を持つ円筒状としてもよい。外周排水溝2が設けられた分岐部4の内壁7側を、容器の開口部の上端の内径と同一の円筒状とすることで、炉蓋の製造や補修が容易となる。また、容器の開口部の上端面と炉蓋の底壁11との重なりが大きくなるため、溶鋼と外気との遮断性を高めることができる。 In this embodiment, the enlarged diameter portion 9 described above is formed on the entire circumference of the drainage channel 1 on the inner wall 7 side, that is, on both the branched portion 4 and the non-branched portion 5 . However, since it is the non-branched portion 5 where the outer peripheral drainage groove 2 is not provided that the drainage tends to accumulate, the enlarged diameter portion 9 should be formed at least on the inner wall 7 facing the non-branched portion 5 of the drainage channel 1. Just do it. That is, the outer peripheral drainage groove 2 is connected to the branch portion 4 of the drainage channel 1, and the inner wall 7 side of the branch portion 4 of the drainage channel 1 may be cylindrical with the same radius as the inner diameter of the opening of the container. By making the inner wall 7 side of the branch portion 4 provided with the outer peripheral drainage groove 2 cylindrical with the same inner diameter as the upper end of the opening of the container, the furnace lid can be easily manufactured and repaired. In addition, since the upper end surface of the opening of the vessel overlaps the bottom wall 11 of the furnace lid to a large extent, it is possible to improve the insulation between the molten steel and the outside air.

本実施形態では、特に外周排水溝2を設けない排水路1の非分岐部5では、図4に示すように排水路1の内壁7側の下端を容器の外側にずらして拡径部9を形成する。ここで、以下の説明では、排水路1の内壁7側の下端の容器の開口部上端に対する外側へのずれをセットバック12という。
このセットバック12により、炉蓋を容器20に取着した時、溶鋼面(溶融金属面)14から発する輻射熱のうち、一部は容器20の開口部の上端の縁に遮られて排水路1の内壁7側に達しなくなる。この効果は、下部ほど顕著になる。
In this embodiment, especially in the non-branched portion 5 of the drainage channel 1 where the outer peripheral drainage groove 2 is not provided, the enlarged diameter portion 9 is formed by shifting the lower end of the drainage channel 1 on the inner wall 7 side to the outside of the container as shown in FIG. Form. Here, in the following description, the outward displacement of the lower end of the drain channel 1 on the inner wall 7 side with respect to the upper end of the opening of the container is referred to as a setback 12 .
Due to this setback 12, when the furnace lid is attached to the vessel 20, part of the radiant heat emitted from the molten steel surface (molten metal surface) 14 is blocked by the edge of the upper end of the opening of the vessel 20, and the drainage path 1 does not reach the inner wall 7 side. This effect becomes more pronounced toward the bottom.

また、本実施形態の炉蓋の内壁7において、排水路1に溜まる冷却水15(排水溜まり水)の水位高さ18より上の部分は、冷却水のスプレーによって強冷却されるため、ヒートクラックは発生しにくい。一方、排水溜まり水の水位高さ18より下の部分は、溶鋼面(溶融金属面)14から発する輻射熱が遮られる効果がより顕著になる。
したがって、冷却と熱負荷の点から、排水路1における排水溜まり水の水位高さ18の内壁7(鉄皮)部分で、もっともヒートクラックが発生しやすく、水位高さを下げることが重要である。
In addition, in the inner wall 7 of the furnace lid of the present embodiment, the portion above the water level 18 of the cooling water 15 (drainage pool water) accumulated in the drainage channel 1 is strongly cooled by the cooling water spray, so that heat cracks is unlikely to occur. On the other hand, the effect of blocking the radiation heat emitted from the molten steel surface (molten metal surface) 14 is more pronounced in the portion below the water level 18 of the stagnant water.
Therefore, from the viewpoint of cooling and heat load, heat cracks are most likely to occur in the inner wall 7 (iron shell) portion of the water level height 18 of the pooled water in the drainage channel 1, and it is important to lower the water level height. .

排水路1における排水溜まり水の水位高さ18は、溜まり水が外周排水溝2のある分岐部4(排水がほとんど溜まらない範囲)に流れ出す流速によって決まるが、これは四角堰に相当するものであり、トリチェリの定理によれば、水位高さの深い位置ほど流出流速が大きくなる。
このため、炉蓋の内壁7の拡径部9の下部10を外側に向かって傾斜させてしまうと、つまり下方へ向かって内径を大きくしてしまうと、流出流速が速くなる水位高さの深い位置での水平面積が小さく、結果として、同一流出量では水位が高くなる。
これに対し、炉蓋の内壁7の拡径部9の下部10について、内径を変えない、つまり垂直に下方へ向かう、又は内径を小さくする、つまり容器20の内側に傾斜させ、水位高さの深い位置ほど水平面積を広くすることで水位を下げることが可能である。
The water level 18 of the pooled water in the drainage channel 1 is determined by the flow rate at which the pooled water flows into the branch 4 (the range where almost no drainage is collected) where the outer drainage ditch 2 is located, which corresponds to a square weir. Yes, according to Torricelli's theorem, the deeper the water level, the higher the outflow velocity.
For this reason, if the lower part 10 of the enlarged diameter part 9 of the inner wall 7 of the furnace lid is inclined outward, that is, if the inner diameter is increased downward, the outflow velocity increases. The horizontal area at the location is smaller, resulting in a higher water level for the same outflow.
On the other hand, the inner diameter of the lower part 10 of the enlarged diameter portion 9 of the inner wall 7 of the furnace lid is not changed, that is, it is vertically downward, or the inner diameter is decreased, that is, it is inclined inward of the container 20, and the water level is increased. It is possible to lower the water level by widening the horizontal area at a deeper position.

また、本実施形態では、拡径部9の内径が最大となる位置(最大内径の位置)10Bは、排水路1に溜まる冷却水15(排水溜まり水)の最大の水位高さ18に基づいて設定される。炉蓋の外壁8の位置が一定であるとした場合、内壁7の内径を大きくすればするほど、内壁7の熱負荷を下げる効果、すなわち溶鋼面14が容器の縁に遮られる面積17を増やす効果がある一方、排水路1の流路が狭くなって水位が高くなるという相反関係があり、内壁7の位置には最適値がある。また、内壁7のセットバック12量と、溶鋼面(溶融金属面)14の高さ(容器の開口部の上端面から溶鋼面(溶融金属面)14までの距離19)との間には、相関関係がある。 Further, in the present embodiment, the position 10B where the inner diameter of the enlarged diameter portion 9 is maximum (the position of the maximum inner diameter) is based on the maximum water level height 18 of the cooling water 15 (drainage stagnant water) accumulated in the drainage channel 1. set. Assuming that the position of the outer wall 8 of the furnace lid is constant, the larger the inner diameter of the inner wall 7, the more the effect of reducing the heat load of the inner wall 7, that is, the area 17 where the molten steel surface 14 is blocked by the edge of the vessel increases. While it is effective, there is a contradictory relationship that the channel of the drainage channel 1 becomes narrower and the water level rises, and the position of the inner wall 7 has an optimum value. In addition, between the setback 12 amount of the inner wall 7 and the height of the molten steel surface (molten metal surface) 14 (the distance 19 from the upper end surface of the opening of the container to the molten steel surface (molten metal surface) 14), There is a correlation.

そこで、セットバック12量を溶融金属面の高さ(距離19)で除する値と、容器の溶鋼面(溶融金属面)14の表面積に対する排水溜まり水の水面高さから視野に入る溶鋼(溶融金属)の表面積である可視溶鋼面積16の割合及び排水溜まり水の水位高さ18(排水水位)との関係について、外周排水溝2を設置した場合(図1)と従来の排水路1を有する場合(図3)で検討した結果を図5に示す。ここで、セットバック12量とは、容器20の開口部上端に対する排水路1の内壁7側の下端の外側へのずれ量、すなわち容器20の開口部内径と拡径部9の最大内径10Bの差(半径差)の距離をいう(図2(c)、図4)。いずれの場合においても、可視溶鋼面積16の割合は、(セットバック12量)/(距離19)を0.20まで増やすにつれて、小さくなっていく。
しかし、その分、排水溜まり水の水位高さ18が上がっていくため、(セットバック12量)/(距離19)が0.20を超えると、むしろ可視溶鋼面積16が大きくなる。このため、図5では、(セットバック12量)/(距離19)は0.20が最適値となる。
内壁の熱負荷を下げる観点から、可視溶鋼面積16は90%以下であることが好ましく、図5では、従来の排水路1(図3)を有する炉蓋において(セットバック12量)/(距離19)が0.10のときに可視溶鋼面積16が90%となる。したがって、溶融金属が収容されている容器に炉蓋を取着する場合のセットバックは、内壁の熱負荷を下げるため、下記の式(1)を満足する範囲で設定する。
(セットバック量)/(溶融金属面の高さ)>0.10・・・式(1)
Therefore, the molten steel (molten Regarding the relationship between the ratio of the visible molten steel area 16, which is the surface area of metal), and the water level height 18 (drainage water level) of the pooled water (drainage water level), the case where the outer drainage ditch 2 is installed (Fig. 1) and the conventional drainage channel 1 FIG. 5 shows the results of the investigation in the case (FIG. 3). Here, the amount of setback 12 is the amount of outward displacement of the lower end of the inner wall 7 side of the drainage channel 1 with respect to the upper end of the opening of the container 20, that is, the difference between the inner diameter of the opening of the container 20 and the maximum inner diameter 10B of the expanded diameter portion 9. It means the distance of the difference (radius difference) (Fig. 2(c), Fig. 4). In either case, the ratio of the visible molten steel area 16 decreases as the (setback 12 amount)/(distance 19) increases to 0.20.
However, since the water level 18 of the stagnant water rises accordingly, the visible molten steel area 16 rather increases when the (setback 12 amount)/(distance 19) exceeds 0.20. Therefore, in FIG. 5, the optimum value of (setback 12 amount)/(distance 19) is 0.20.
From the viewpoint of reducing the heat load on the inner wall, the visible molten steel area 16 is preferably 90% or less. 19) is 0.10, the visible molten steel area 16 is 90%. Therefore, the setback when the furnace lid is attached to the container containing the molten metal is set within a range that satisfies the following formula (1) in order to reduce the heat load on the inner wall.
(setback amount)/(height of molten metal surface)>0.10 Expression (1)

なお、外周排水溝2を設置した場合は、排水路1における排水溜まり水の水位高さ18が低いため、可視溶鋼面積16の割合については、外周排水溝2を設置した場合の方が、より低くすることができる。 In addition, when the outer drainage ditch 2 is installed, the water level 18 of the drainage pool water in the drainage channel 1 is low, so the ratio of the visible molten steel area 16 is higher when the outer drainage ditch 2 is installed. can be lowered.

従来の炉蓋と上記実施形態の炉蓋において、炉蓋の内壁面を冷却しその効果を確認した。
(1)従来の炉蓋(図3)
炉蓋の内壁における熱伝達係数は6,000~7,500W/m・K、排水溜まり水部における熱伝達係数は600~2,500W/m・Kであり、冷却水によるスプレー冷却は排水路の溜まり水に比べ、冷却能力は高い。
排水路における溜まりの最大水位hを次のように算出した。

Figure 2023117512000002
Figure 2023117512000003
v(y):排水の水面の高さhから深さyにおける流出速度
g:重力加速度
W:排水路から2カ所の流出 流出断面の幅 281mm
Q:流出量
排水量=給水量:180 t/h
その結果、排水水位hは96.8mm、可視溶鋼面積の割合は100%(セットバックなし)であった。炉蓋の内壁において、排水の水面高さ位置で微小のヒートクラックが観察された。これは、水位96.8mmから下の内壁は、スプレー水による強冷却を受けられず、熱負荷を受けたためと考えられる。 In the conventional furnace lid and the furnace lid of the above-described embodiment, the inner wall surface of the furnace lid was cooled and the effect thereof was confirmed.
(1) Conventional furnace cover (Fig. 3)
The heat transfer coefficient on the inner wall of the furnace lid is 6,000 to 7,500 W/m 2 ·K, and the heat transfer coefficient on the wastewater pool is 600 to 2,500 W/m 2 ·K. It has a higher cooling capacity than stagnant water in drainage channels.
The maximum water level h of stagnation in the drainage channel was calculated as follows.
Figure 2023117512000002
Figure 2023117512000003
v (y): Outflow velocity g at depth y from height h of water surface of drainage: Gravitational acceleration W: Outflow from drainage channel at two locations Width of outflow cross section 281 mm
Q: Outflow amount Wastewater amount = Water supply amount: 180 t/h
As a result, the drain water level h was 96.8 mm, and the percentage of visible molten steel area was 100% (no setback). On the inner wall of the furnace lid, minute heat cracks were observed at the height of the water surface of the waste water. It is considered that this is because the inner wall below the water level of 96.8 mm could not be strongly cooled by the spray water and received a heat load.

(2)上記実施形態の炉蓋(図1、図2)
炉蓋の中空部内に冷却水を噴射するためのノズルを設置し、外周排水溝を設置し、さらに内壁の下端(排水路の内壁側)に拡径部を形成し、炉蓋の内径を拡大し、拡径部の上部は、下方に向かい傾斜面とし、拡径部の下部10は、円筒状として、炉蓋の内径を一定にした構造を有する炉蓋で冷却水により冷却を行った。(セットバック量)/(溶融金属面の高さ)は、0.20であった。
その結果、排水水位は120.0mmであり、可視溶鋼面積の割合は76%と評価された。炉蓋の内壁でヒートクラックは発生しなかった。
(2) Furnace cover of the above embodiment (Figs. 1 and 2)
A nozzle for injecting cooling water is installed in the hollow part of the furnace lid, a peripheral drainage groove is installed, and an enlarged diameter part is formed at the lower end of the inner wall (inner wall side of the drainage channel) to expand the inner diameter of the furnace lid. The upper portion of the enlarged diameter portion was inclined downward, and the lower portion 10 of the enlarged diameter portion was cylindrical. (Amount of setback)/(Height of molten metal surface) was 0.20.
As a result, the drainage water level was 120.0 mm, and the ratio of the visible molten steel area was evaluated as 76%. No heat cracks occurred on the inner wall of the furnace cover.

1 排水路
1A 排水口
2 外周排水溝
3 炉蓋吊アーム
4 分岐部
5 非分岐部
7 内壁
8 外壁
9 拡径部
10 拡径部の下部
10A 拡径部の上部
10B 拡径部の内径が最大となる位置
11 底壁
12 セットバック
13 ノズル
14 溶鋼面(溶融金属面)
15 排水路に溜まる冷却水(排水溜まり水)
16 排水溜まり水の水面高さから視野に入る溶鋼(溶融金属)の表面積:可視溶鋼面積
17 溶鋼(溶融金属面)が容器の縁に遮られる面積
18 排水溜まり水の水位高さ
19 容器の開口部の上端面から溶鋼面(溶融金属面)までの距離
20 容器
1 Drainage channel 1A Drain port 2 Peripheral drainage groove 3 Furnace lid suspension arm 4 Branched part 5 Non-branched part 7 Inner wall 8 Outer wall 9 Expanded diameter part 10 Lower part of expanded diameter part 10A Upper part of expanded diameter part 10B The inner diameter of the expanded diameter part is maximum 11 bottom wall 12 setback 13 nozzle 14 molten steel surface (molten metal surface)
15 Cooling water accumulated in the drainage channel (drainage accumulated water)
16 Surface area of molten steel (molten metal) that can be seen from the water surface height of the drainage pool: Visible molten steel area 17 Area where the molten steel (molten metal surface) is blocked by the edge of the container 18 Water level height of the drainage pool 19 Opening of the container Distance from the upper end surface of the part to the molten steel surface (molten metal surface) 20 Container

Claims (7)

容器の開口部の上端面を覆う炉蓋内に設けられた中空の冷却室と、
前記冷却室内に内壁に向けて冷却水を噴射するために設けられたノズルと、
前記冷却室の下端部にその周方向に設けられた環状の排水路と、
前記排水路に接続された排水口と、
を備え、
前記排水路の内壁側の内径は、前記容器の開口部の内径より大きくなっており、前記内壁側の内径が最大となる位置より下部の前記排水路の内壁側は、内径が同一の円筒状であるか、又は下方へ向かい縮径している、炉蓋。
A hollow cooling chamber provided in the furnace lid covering the upper end surface of the opening of the container;
a nozzle provided for injecting cooling water toward the inner wall of the cooling chamber;
an annular drainage channel provided in the lower end of the cooling chamber in its circumferential direction;
a drain port connected to the drain channel;
with
The inner diameter of the inner wall side of the drainage channel is larger than the inner diameter of the opening of the container, and the inner wall side of the drainage channel below the position where the inner diameter of the inner wall side is the maximum is cylindrical with the same inner diameter. or downwardly tapering.
前記排水路の内壁側の内径が最大となる位置より上部の内壁側は、下方へ向かいその内径が大きくなる傾斜面となっている、請求項1に記載の炉蓋。 2. The furnace lid according to claim 1, wherein the inner wall side above the position where the inner wall side of the drainage channel has the maximum inner diameter forms an inclined surface whose inner diameter increases downward. 前記排水路の内壁側の内径が最大となる位置は、前記排水路に存在する冷却水の最大水位の水面より下方にある請求項1又は2に記載の炉蓋。 3. The furnace lid according to claim 1 or 2, wherein the position at which the inner wall side of the drainage channel has the maximum inner diameter is below the water surface of the maximum water level of the cooling water present in the drainage channel. さらに、前記排水路の分岐部に接続し、前記排水路より外側、かつ前記排水路より低い位置に配置される外周排水溝を有しており、少なくとも前記排水路の分岐部以外の内壁側の内径が、前記容器の開口部の内径より大きくなっている、請求項1から3のいずれか1項に記載の炉蓋。 Furthermore, it has an outer peripheral drainage ditch connected to the branched portion of the drainage channel, arranged outside the drainage channel and at a position lower than the drainage channel, and at least on the inner wall side other than the branched portion of the drainage channel. 4. Furnace lid according to any one of claims 1 to 3, wherein the inner diameter is larger than the inner diameter of the opening of the vessel. 前記排水路の内壁側の最大の内径は、前記排水路に存在する冷却水の最大水位の水面位置に基づいて設定される請求項1から4のいずれか1項に記載の炉蓋。 5. The furnace lid according to any one of claims 1 to 4, wherein the maximum inner diameter of the inner wall side of the drainage channel is set based on the water surface position of the maximum water level of the cooling water present in the drainage channel. 溶融金属が収容されている前記容器に前記炉蓋を取着する場合であって、炉蓋の内壁のセットバックは、式(1)を満足する請求項5に記載の炉蓋。
(セットバック量)/(溶融金属面の高さ)>0.10・・・式(1)
ここで、上記式(1)において、セットバック量とは、容器の開口部上端に対する排水路の内壁側の下端の外側へのずれ量、溶融金属面の高さとは、容器の開口部の上端面から溶融金属面までの距離をいう。
6. The furnace lid according to claim 5, wherein the setback of the inner wall of the furnace lid satisfies equation (1) when the furnace lid is attached to the vessel containing the molten metal.
(setback amount)/(height of molten metal surface)>0.10 Expression (1)
Here, in the above formula (1), the setback amount is the amount of outward displacement of the lower end of the inner wall side of the drainage channel with respect to the upper end of the opening of the container, and the height of the molten metal surface is the upper end of the opening of the container. It is the distance from the end face to the molten metal surface.
請求項1から6のいずれか1項に記載の炉蓋を用いて、前記冷却室内の内壁へ前記ノズルから冷却水を噴射することによって前記内壁を冷却し、前記内壁に噴射する冷却水を、排水路を介して排水口から前記炉蓋の外へ排水する炉蓋の冷却方法。 Using the furnace lid according to any one of claims 1 to 6, the inner wall is cooled by injecting cooling water from the nozzle to the inner wall in the cooling chamber, and the cooling water injected to the inner wall is A method for cooling a furnace lid, in which water is drained out of the furnace lid from a drain port through a drainage channel.
JP2022020113A 2022-02-14 2022-02-14 Furnace cover and furnace cover cooling method Pending JP2023117512A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2022020113A JP2023117512A (en) 2022-02-14 2022-02-14 Furnace cover and furnace cover cooling method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2022020113A JP2023117512A (en) 2022-02-14 2022-02-14 Furnace cover and furnace cover cooling method

Publications (1)

Publication Number Publication Date
JP2023117512A true JP2023117512A (en) 2023-08-24

Family

ID=87654325

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2022020113A Pending JP2023117512A (en) 2022-02-14 2022-02-14 Furnace cover and furnace cover cooling method

Country Status (1)

Country Link
JP (1) JP2023117512A (en)

Similar Documents

Publication Publication Date Title
RU2141085C1 (en) Arc furnace cover assembly
JP2023117512A (en) Furnace cover and furnace cover cooling method
JP5812289B2 (en) Water sealing device and dust discharging method
JP6835295B2 (en) Converter exhaust gas treatment equipment
US11656028B2 (en) Drain pump for a spray-cooled metallurgical furnace
CN106838946A (en) Anti-splash device and dragveyer
KR970005200B1 (en) Process and device for handling metals in a vacuum
KR101974567B1 (en) Apparatus for in vacuum degassing vessel
CN206582872U (en) Anti-splash device and dragveyer
JP3358483B2 (en) Furnace lid cooling device
US20230280096A1 (en) Spray-cooled furnace roof with gravity drain
JP6419680B2 (en) Method for cooling steelmaking slag
KR100949727B1 (en) Vacuum vessel for bubbling hot metal
FI122541B (en) Alasuutiili
KR101794593B1 (en) Apparatus for molten metal treatment
SU899275A1 (en) Apparatus for protecting metal being casted
JP2018189327A (en) Furnace cover of metallurgical furnace
JP6213298B2 (en) Dust removal method for converter skirt seal
KR100916065B1 (en) A submerged pipe for rh systen
JP5731706B1 (en) Ladle vacuum refining equipment for molten steel
KR101385738B1 (en) Device for protecting lower sticking materials on lower part of reaction tube for heat reduction for smelting magnesium alloy
SU1093712A1 (en) Apparatus for vacuum treatment of molten metal flow
JP2016516587A (en) Ladle bottom and ladle
RU2394196C1 (en) Melting furnace
JPS6311164Y2 (en)

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20230926