JP2023114471A - Wooden steel composite member and wooden steel composite member manufacturing method - Google Patents

Wooden steel composite member and wooden steel composite member manufacturing method Download PDF

Info

Publication number
JP2023114471A
JP2023114471A JP2022016769A JP2022016769A JP2023114471A JP 2023114471 A JP2023114471 A JP 2023114471A JP 2022016769 A JP2022016769 A JP 2022016769A JP 2022016769 A JP2022016769 A JP 2022016769A JP 2023114471 A JP2023114471 A JP 2023114471A
Authority
JP
Japan
Prior art keywords
steel
wooden
wood
force
wooden member
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2022016769A
Other languages
Japanese (ja)
Inventor
悠実 松本
Yumi Matsumoto
ヘス ペク
Hess Paek
裕貴 中島
Hirotaka Nakajima
将和 池田
Masakazu Ikeda
健一 町田
Kenichi Machida
泰介 長島
Taisuke Nagashima
周平 丸谷
Shuhei Maruya
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Forestry Co Ltd
Original Assignee
Sumitomo Forestry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Forestry Co Ltd filed Critical Sumitomo Forestry Co Ltd
Priority to JP2022016769A priority Critical patent/JP2023114471A/en
Publication of JP2023114471A publication Critical patent/JP2023114471A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Rod-Shaped Construction Members (AREA)

Abstract

To obtain a wooden steel composite member having high load bearing capacity, which allows a steel member and a wooden member to adequately bear a force in axial direction from an initial period and effectively uses a load bearing capacity of the wooden member.SOLUTION: A wooden steel composite member comprises: a steel member 2 that supports a force in an axial direction; a wooden member 1 that is assembled along the axial direction of the steel member and supports the force in the axial direction along with the steel member; and a member end plate 3 that is fitted to both ends of the steel member 2 and the wooden member 1 so as to be capable of transmitting the force in the axial direction to both the steel member and wooden member. The member end plate 3 is pressure-welded to an end face of the wooden member 1, and compression force is introduced into the wooden member 1 in the axial direction. The steel member 2 is joined to the member end plate by welding or bolts and tensile force is introduced. The wooden steel composite member can be manufactured by pressing the member end plate 3 against the end face of the wooden member 1 and joining the steel member 2 to the member end plate 3 in a state in which the compression force is applied to the wooden member.SELECTED DRAWING: Figure 1

Description

本発明は、建築物等に使用する構造用の部材であって、木質の部材と鋼からなる部材とを組み合わせ、双方の部材によって主に軸線方向の荷重を支持する木鋼複合部材に関するものである。 TECHNICAL FIELD The present invention relates to a structural member used in buildings, etc., and relates to a wood-steel composite member in which a wooden member and a steel member are combined to support a load mainly in the axial direction. be.

森林資源の有効な活用を図るために、中規模・大規模の建築物、又は中層・高層の建築物の木造化が試みられている。しかし、中層・高層の建築物では柱等に大きな軸線方向の力が作用し、木質部材によって大きな軸線方向の力を支持しようとすると断面が過大になりやすい。このため、例えば特許文献1及び特許文献2には、木質部材を鋼部材と組み合わせ、複合部材として用いることが提案されている。 Attempts have been made to make medium- and large-scale buildings, or middle-rise and high-rise buildings of wooden construction, in order to effectively utilize forest resources. However, in middle-rise and high-rise buildings, a large axial force acts on columns and the like, and if an attempt is made to support the large axial force with wooden members, the cross section tends to become excessively large. For this reason, Patent Documents 1 and 2, for example, propose combining wooden members with steel members and using them as composite members.

特許文献1には、角型の鋼管の周囲を木質材で囲った複合柱が提案されている。この複合柱では、鋼管の形状に合わせて木質材を複数に分割して加工し、これらの木質材を鋼管の周囲を囲むように接着接合するものである。そして、鋼管の端部には鋼からなる木口プレートを設ける点が記載されている。
また、特許文献2には、矩形の木質材からなる心材の周囲に鋼支持部材を沿わせた複合柱が開示されている。この複合柱では、木質の心材と鋼支持部材とを一体に組み合わせ、端面に鋼からなる仕口部を当接するものとなっている。
Patent Literature 1 proposes a composite column in which a rectangular steel pipe is surrounded by a wooden material. In this composite column, a wooden material is divided into a plurality of pieces according to the shape of the steel pipe and processed, and these wooden materials are adhesively joined so as to surround the steel pipe. Further, it is described that a butt plate made of steel is provided at the end of the steel pipe.
Further, Patent Document 2 discloses a composite column in which a steel support member is arranged around a core material made of a rectangular wooden material. In this composite column, a wooden core material and a steel support member are integrally combined, and a joint made of steel is abutted on the end face.

特開2017-89329号公報JP 2017-89329 A 特開2020-122323号公報JP 2020-122323 A

しかしながら、特許文献1に提案されている複合柱は、両端部に設けられた木口プレートの間で分割した木質材を組み合わせ、接着するものであり、木質材の加工精度によって木口プレートと木質材の端面との間に隙間が生じやすい。このような隙間が生じていると複合柱に軸線方向の力が作用する初期に力が木質材に負担されず、鋼管のみに作用する。そして、その後に大きな軸線方向の力が作用したときに、木質材の負担する軸線方向の力が小さくなってしまう。このため、木質材は構造部材として有効に機能していないことになる。
また、特許文献2に記載されている複合柱でも、木質の芯材と鋼支持部材とを組み合わせたときに、木質材の加工が正確になされていないと同様に鋼支持部材の負荷が大きくなる。
However, the composite column proposed in Patent Document 1 combines and adheres divided wooden materials between end plates provided at both ends. A gap is likely to occur between the end face. When such a gap is generated, the force in the axial direction is not borne by the wooden material at the initial stage of acting on the composite column, and acts only on the steel pipe. Then, when a large axial force acts thereafter, the axial force borne by the wooden material becomes smaller. Therefore, the wooden material does not function effectively as a structural member.
Also, in the composite column described in Patent Document 2, when a wooden core material and a steel support member are combined, the load on the steel support member increases if the wood material is not processed accurately. .

さらに、鋼部材と木質の部材とを組み合わせて軸線方向の力を負担しようとすると、鋼と木質材とでは弾性係数が大きく異なっており、軸線方向の力は鋼部材と木質の部材との軸方向の剛性比によって負担され、鋼部材に大きな圧縮応力度が生じる。このため、木質材は軸線方向の圧縮力に対して耐荷力が有効に利用されないことがある。 Furthermore, when trying to bear the axial force by combining a steel member and a wooden member, there is a large difference in the modulus of elasticity between the steel and the wooden member, and the axial force will be A large degree of compressive stress occurs in the steel member, which is borne by the directional stiffness ratio. For this reason, the load-bearing capacity of the wooden material may not be effectively used against the compressive force in the axial direction.

本発明は、上記のような事情に鑑みてなされたものであり、本発明の目的は、軸線方向の力が鋼部材と木質部材とに適切に負荷される木鋼複合部材を提供すること、及び軸線方向の力が鋼部材と木質部材とに適切に負荷される木鋼複合部材の製造方法を提供することである。 The present invention has been made in view of the circumstances as described above, and an object of the present invention is to provide a wood-steel composite member in which an axial force is appropriately applied to the steel member and the wooden member. Another object of the present invention is to provide a method for manufacturing a wood-steel composite member in which an axial force is appropriately applied to the steel member and the wooden member.

上記課題を解決するために、請求項1に係る発明は、 軸線方向の力を支持する鋼部材と、 前記鋼部材の軸線方向に沿って組み合わされ、該鋼部材とともに軸線方向の力を支持する木質部材と、 前記鋼部材及び前記木質部材の両端部に取り付けられ、前記鋼部材と前記木質部材との双方に軸線方向の力を伝達することが可能に取り付けられた材端部材と、を有し、 前記材端部材は、前記木質部材の端面に向けて押し付けられ、該木質部材には軸線方向に圧縮力が導入されており、 前記鋼部材は前記材端部材に溶接又はボルトで接合され、引張力が導入されている木鋼複合部材を提供する。 In order to solve the above-mentioned problems, the invention according to claim 1 includes: a steel member supporting an axial force; and a steel member combined along the axial direction of the steel member to support the axial force together with the steel member. a wooden member; and end members attached to both ends of the steel member and the wooden member so as to be capable of transmitting axial force to both the steel member and the wooden member. and the end member is pressed against the end face of the wooden member, a compressive force is introduced in the axial direction of the wooden member, and the steel member is welded or bolted to the end member. , to provide a wood-steel composite member in which a tensile force is introduced.

この木鋼複合部材では、木質部材が材端部材に圧接されていることにより、軸線方向の外力の作用初期から木質部材と鋼部材とに適切に負荷され、鋼部材に集中して軸線方向の力が負荷されるのが回避される。また、あらかじめ木質部材に圧縮力が導入され、鋼部材に引張力が導入されていることにより、木質部材の耐荷力を有効に利用して耐荷力の大きい木鋼複合部材とすることが可能となる。 In this wood-steel composite member, since the wooden member is pressed against the end member, the external force in the axial direction is appropriately applied to the wooden member and the steel member from the beginning of the action, and the axial force is concentrated on the steel member. Force loading is avoided. In addition, by introducing compressive force into the wooden members and tensile force into the steel members in advance, it is possible to effectively utilize the load-bearing capacity of the wooden members to create wood-steel composite members with high load-bearing capacity. Become.

請求項2に係る発明は、請求項1に記載の木鋼複合部材において、 前記木質部材は、単一の中実断面を有するものであり、 前記鋼部材は、前記木質部材の外周部に複数に分散して組み合わされているものとする。 The invention according to claim 2 is the wood-steel composite member according to claim 1, wherein the wooden member has a single solid cross section, and the steel member has a plurality of are distributed and combined.

この木鋼複合部材では、木質部材としてあらかじめ一体として加工した製材、集成材、単板積層材(LVL:Laminated Veneer Lumber)等を用いることができ、鋼部材と組み合わせるときに木質部材を貼り合わせる加工等が不要となる。したがって効率よく鋼部材と組み合わせることができる。また、鋼部材が木質部材の外周部で複数に分散され、それぞれが軽量となって作業性が良好となる。 In this wood-steel composite member, it is possible to use sawn lumber, laminated lumber, laminated veneer lumber (LVL), etc., which have been processed in advance as a wooden member, and when combining with the steel member, it is possible to bond the wooden member together. etc. becomes unnecessary. Therefore, it can be efficiently combined with a steel member. In addition, the steel members are dispersed in a plurality of parts at the outer peripheral portion of the wooden member, so that each member is light in weight and workability is improved.

請求項3に係る発明は、請求項1に記載の木鋼複合部材において、 前記木質部材は、前記鋼部材の周囲を囲むものとする。 The invention according to claim 3 is the wood-steel composite member according to claim 1, wherein the wooden member surrounds the steel member.

この木鋼複合部材では、鋼部材を複合部材の中心に集中することができ、木質部材に導入される圧縮力と鋼部材の引張力とがつり合った状態で木質部材の断面には均等に近い状態で圧縮力を導入することが容易となる。 In this wood-steel composite member, the steel members can be concentrated in the center of the composite member, and the compressive force introduced into the wooden member and the tensile force of the steel member are balanced, and the cross-section of the wooden member is evenly distributed. It becomes easier to introduce compressive forces in close proximity.

請求項4に係る発明は、請求項1から請求項3までのいずれかに記載の木鋼複合部材において、 前記木質部材と前記材端部材との間には、該木質部材と該材端部材との間で硬化した圧力均等化層が介挿されているものとする。 The invention according to claim 4 is the wood-steel composite member according to any one of claims 1 to 3, wherein: between the wooden member and the end member, A cured pressure equalizing layer shall be interposed between the

この木鋼複合部材では、木質部材に圧縮力を導入するときの初期から確実に材端部材から力が伝達され、木質部材の端面に均等に近い状態で所定の圧縮力を正確に導入することが可能となる。
なお、圧力均等化層には、柔軟な状態で木質部材の端面に塗り付けることができ、後に硬化する材料を用いることができる。例えば合成樹脂等による接着剤、セメントペースト、モルタル、石膏、樹脂モルタル等を用いることができる。
In this wood and steel composite member, the force is reliably transmitted from the end member from the initial stage when the compressive force is introduced to the wooden member, and the predetermined compressive force is accurately introduced in a nearly uniform state to the end surface of the wooden member. becomes possible.
For the pressure equalizing layer, a material that can be applied to the end surface of the wooden member in a flexible state and hardened later can be used. For example, synthetic resin adhesive, cement paste, mortar, gypsum, resin mortar, and the like can be used.

請求項5に係る発明は、 木質部材と鋼部材とを、双方の軸線をほぼ平行に組み合わせる工程と、 前記木質部材の両端面に材端部材を当接し、該材端部材を介して該木質部材に軸線方向の圧縮力を導入する工程と、 前記木質部材に圧縮力が導入されている状態で、前記材端部材と前記鋼部材とを、該材端部材から該鋼部材に軸線方向の力の伝達が可能となるように接合する工程と、を含む木鋼複合部材の製造方法を提供するものである。 The invention according to claim 5 comprises a step of combining a wooden member and a steel member with their axes substantially parallel to each other; introducing an axial compressive force to the member; and axially moving the end member and the steel member from the end member to the steel member while the wooden member is under the compressive force. and joining to enable force transmission.

この方法では、木質部材と鋼部材とを組み合わせ、木質部材には圧縮力が、鋼部材には引張力が導入された状態で材端部材が接合され、材端部材から木質部材と鋼部材との双方に軸線方向の力が適切に伝達される複合部材とすることが可能となる。 In this method, a wooden member and a steel member are combined, and the end members are joined in a state in which compressive force is introduced to the wooden member and tensile force is introduced to the steel member, and the wooden member and the steel member are joined from the end member. It is possible to make a composite member in which the force in the axial direction is appropriately transmitted to both of the .

請求項6に係る発明は、請求項5に記載の木鋼複合部材の製造方法において、 前記木質部材に軸線方向の圧縮力を導入する工程は、前記材端部材を介して前記木質部材に反力を負荷し、前記鋼部材を引張するものであり、 前記材端部材と前記鋼部材とを接合する工程は、該鋼部材に引張力が導入された状態で該材端部材と接合するものとする。 The invention according to claim 6 is the method for manufacturing a wood-steel composite member according to claim 5, wherein the step of introducing a compressive force in the axial direction to the wooden member is applied to the wooden member through the end member. A force is applied to pull the steel member, and the step of joining the end member and the steel member includes joining the end member to the end member while a tensile force is applied to the steel member. and

この方法では、簡単な設備で木質部材に圧縮力を導入し、この状態で鋼部材を材端部材と接合することが可能となる。 In this method, it is possible to introduce a compressive force to the wood member with simple equipment and join the steel member to the end member in this state.

請求項7に係る発明は、請求項6に記載の木鋼複合部材の製造方法において、 前記鋼部材を引張する工程は、前記材端部材が有する鋼板を貫通するボルトを前記鋼部材にナットを介して係止するか又は前記ボルトを前記鋼部材に設けられたネジ穴にねじ込み、該ボルトをねじ込む力によって前記鋼部材を軸線方向に引き寄せるものとする。 The invention according to claim 7 is the method for manufacturing a wood-steel composite member according to claim 6, wherein the step of pulling the steel member includes inserting a bolt penetrating through the steel plate of the end member and attaching a nut to the steel member. Alternatively, the bolt is screwed into a screw hole provided in the steel member, and the force of screwing the bolt draws the steel member in the axial direction.

この方法では、ボルトをねじ込むときにボルトの軸線方向に生じる力によって鋼部材に引張力を導入するとともに、木質部材には圧縮力を導入し、さらに当該ボルトによって材端部材と鋼部材を接合することができ、効率のよい作業が可能となる。 In this method, a tensile force is introduced into the steel member by the force generated in the axial direction of the bolt when the bolt is screwed in, and a compressive force is introduced into the wooden member, and the end member and the steel member are joined by the bolt. It is possible to work efficiently.

請求項8に係る発明は、 木質部材と鋼部材とを、双方の軸線をほぼ平行にして組み合わせ、前記木質部材の両端面に対向して材端部材を配置して該材端部材を前記鋼部材と接合する工程と、 前記木質部材の端面と前記材端部材との間にくさびを押し込み、前記木質部材に圧縮力を、前記鋼部材に引張力を導入する工程と、を含む木鋼複合部材の製造方法を提供するものである。 In the invention according to claim 8, a wooden member and a steel member are combined so that their axes are substantially parallel, and the end members are arranged so as to face both end surfaces of the wooden member, and the end members are connected to the steel member. A wood and steel composite comprising the steps of: joining with a member; and inserting a wedge between the end face of the wooden member and the end member to introduce compressive force to the wooden member and tensile force to the steel member. A method for manufacturing a member is provided.

この方法では、材端部材と鋼部材とを接合した後に、木質部材に圧縮力を導入し、鋼部材に引張力を導入することができる。したがって、鋼部材と木質部材とを組み合わせ、木質部材に圧縮力を導入した状態では、鋼部材と材端部材を接合するための溶接又はボルト締めが難しい条件でも、あらかじめ木質部材に圧縮力が導入し、鋼部材に引張力を導入した複合部材とすることが可能となる。 In this method, after joining the end member and the steel member, a compressive force can be introduced into the wood member and a tensile force can be introduced into the steel member. Therefore, when a steel member and a wooden member are combined and a compressive force is introduced into the wooden member, even under conditions where welding or bolting for joining the steel member and the end member is difficult, the compressive force is introduced into the wooden member in advance. Then, it becomes possible to make a composite member in which a tensile force is introduced into the steel member.

請求項9に係る発明は、 材端部材を木質部材の両端面に当接するように配置する工程と、 前記木質部材と平行に加熱した鋼部材を配置し、該鋼部材の両端部を前記材端部材に接合する工程と、 前記鋼部材の温度を降下させ、該鋼部材の収縮によって前記材端部材を前記木質部材の端面に圧接させる工程と、を含む木鋼複合部材の製造方法を提供するものである。 The invention according to claim 9 comprises a step of arranging end members so as to abut against both end surfaces of a wooden member; A method for manufacturing a wood-steel composite member, comprising the steps of: joining to an end member; and lowering the temperature of the steel member to press the end member against the end surface of the wooden member by contraction of the steel member. It is something to do.

この方法では、加熱した鋼部材の温度が降下することにより、木質部材には圧縮力が導入され、鋼部材に上記圧縮力に対応する引張力が導入される。したがって、力の付与によって木質部材に圧縮力を導入することが難しい条件であっても、あらかじめ木質部材に圧縮力が導入され、鋼部材に引張力が導入された複合部材とすることが可能となる。 In this method, a compressive force is introduced into the wooden member by lowering the temperature of the heated steel member, and a tensile force corresponding to the compressive force is introduced into the steel member. Therefore, even under conditions where it is difficult to introduce a compressive force into the wooden member by applying force, it is possible to create a composite member in which a compressive force is introduced into the wooden member in advance and a tensile force is introduced into the steel member. Become.

以上説明したように、本発明の木鋼複合部材では、軸線方向の力の作用初期から鋼部材と木質部材とに適切に負荷されるとともに、木質部材の耐荷力を有効に利用して耐荷力の大きな木鋼複合部材とすることができる。また、本発明の木鋼複合部材の製造方法では、木質部材の耐荷力を有効に利用して大きな耐荷力を有する木鋼複合部材を得ることができる。 As described above, in the wood-steel composite member of the present invention, an appropriate load is applied to the steel member and the wooden member from the beginning of the action of the force in the axial direction, and the load-bearing capacity of the wooden member is effectively utilized. can be a large wood and steel composite member. Further, in the method for manufacturing a wood-steel composite member of the present invention, a wood-steel composite member having a large load-bearing capacity can be obtained by effectively utilizing the load-bearing capacity of the wooden member.

本発明の第1の実施形態である木鋼複合部材の側面図、拡大した平面図及び拡大した断面図である。1 is a side view, an enlarged plan view, and an enlarged cross-sectional view of a wood and steel composite member according to a first embodiment of the present invention; FIG. 図1に示す木鋼複合柱の端部の構造を示す拡大した側面図である。FIG. 2 is an enlarged side view showing the structure of the end portion of the wood and steel composite column shown in FIG. 1; 図1に示す木鋼複合柱の組み立て図である。It is an assembly drawing of the wood-steel composite column shown in FIG. 木質部材に圧縮力が導入され、鋼部材に引張力が導入された木鋼複合柱の軸線方向の耐荷力を説明する図である。FIG. 4 is a diagram for explaining the load-bearing capacity in the axial direction of a wood-steel composite column in which compressive force is introduced into wooden members and tensile force is introduced into steel members; 本発明の第2の実施形態である木鋼複合柱の側面図、拡大した平面図及び拡大した断面図である。FIG. 4A is a side view, an enlarged plan view, and an enlarged cross-sectional view of a wood and steel composite column according to a second embodiment of the present invention; 図5に示す木鋼複合柱の端部の構造を示す拡大した側面図である。FIG. 6 is an enlarged side view showing the structure of the end portion of the wood and steel composite column shown in FIG. 5; 図5に示す木鋼複合柱の組み立て図である。FIG. 6 is an assembly drawing of the wood and steel composite column shown in FIG. 5 ; 図5に示す木鋼複合柱の木質部材に圧縮力を導入した状態で鋼部材を材端部材と接合する方法を示す概略図である。FIG. 6 is a schematic view showing a method of joining a steel member to an end member in a state in which a compressive force is introduced to the wood member of the wood-steel composite column shown in FIG. 5 ; 本発明の第3の実施形態及び第4の実施形態である木鋼複合柱の端部の構造を示す側面図である。FIG. 4 is a side view showing the structure of the end portion of the wood and steel composite column according to the third and fourth embodiments of the present invention; 本発明の木鋼複合柱で採用することができる他の断面構成の例を示す概略断面図である。FIG. 4 is a schematic cross-sectional view showing an example of another cross-sectional configuration that can be employed in the wood and steel composite column of the present invention; 本発明の第5の実施形態である木鋼複合柱の端部の側面図及び断面図である。FIG. 5A is a side view and a cross-sectional view of an end portion of a wood-steel composite column according to a fifth embodiment of the present invention; 図11に示す木鋼複合柱の木質部材に圧縮力を導入し、鋼部材に引張力を導入する状態を示す端部の側面図及び断面図である。FIG. 12 is a side view and cross-sectional view of an end portion showing a state in which a compressive force is introduced into the wooden member of the wood-steel composite column shown in FIG. 11 and a tensile force is introduced into the steel member. 本発明の第6の実施形態である木鋼複合柱の側面図、拡大した平面図及び拡大した断面図である。FIG. 10 is a side view, an enlarged plan view, and an enlarged cross-sectional view of a wood and steel composite column according to a sixth embodiment of the present invention; 図13に示す木鋼複合柱の組み立て図である。FIG. 14 is an assembly drawing of the wood and steel composite column shown in FIG. 13; 図13に示す木鋼複合柱の木質部材に圧縮力を導入した状態で鋼部材を材端部材と接合する方法を示す概略図である。FIG. 14 is a schematic diagram showing a method of joining the steel member to the end member in a state in which a compressive force is applied to the wooden member of the wood-steel composite column shown in FIG. 13 ; 本発明の第7の実施形態である木鋼複合柱の平面図及び端部の側面図である。FIG. 10 is a plan view and an end side view of a wood and steel composite column according to a seventh embodiment of the present invention; 本発明の第8の実施形態である木鋼複合柱の端部の側面図及び断面図である。FIG. 11 is a side view and a cross-sectional view of an end portion of a wood-steel composite column according to an eighth embodiment of the present invention;

以下、本発明の実施の形態を図に基づいて説明する。
図1は本発明の第1の実施形態である木鋼複合部材であって、柱として使用されるものの側面図、拡大した平面図及び拡大した断面図である。また、図2はこの木鋼複合柱の端部を拡大して示す側面図であり、(a)図は木質部材、鋼部材及び材端部材である材端プレートの接合が完了した状態、(b)図は材端プレートを鋼部材と接合する状態を示すものである。図3は同じ木鋼複合柱の木質部材、鋼部材及び材端プレートを接合する要領を示す概略斜視図である。
この木鋼複合柱は、断面がほぼ正方形で中実の木質部材1と、木質部材1の側面に形成された軸線方向の溝11に嵌め入れられた複数の鋼部材2と、木質部材1及び鋼部材2の両端部に接合され、木質部材1と鋼部材2との双方に軸線方向の力を伝達することが可能となった材端プレート3と、で主要部が構成されている。
BEST MODE FOR CARRYING OUT THE INVENTION Embodiments of the present invention will be described below with reference to the drawings.
FIG. 1 is a side view, an enlarged plan view, and an enlarged cross-sectional view of a wood and steel composite member used as a column according to a first embodiment of the present invention. FIG. 2 is an enlarged side view showing the end of this wood-steel composite column, (a) shows a state in which the joining of the wooden member, the steel member, and the end plate, which is the end member, has been completed; b) The figure shows the state where the end plate is joined to the steel member. FIG. 3 is a schematic perspective view showing how to join the wooden members, steel members and end plates of the same wood-steel composite column.
This wood-steel composite column comprises a solid wooden member 1 having a substantially square cross section, a plurality of steel members 2 fitted in axial grooves 11 formed in the side surface of the wooden member 1, the wooden member 1 and The main part is composed of end plates 3 joined to both ends of the steel member 2 and capable of transmitting axial force to both the wooden member 1 and the steel member 2 .

木質部材1は、複数の小断面の木材を貼り合わせた集成材が用いられており、構造物の一部として軸線方向の力を負担することができるものである。また、原木から切り出された製材を用いるものであってもよい。
この木質部材1の4つの側面のほぼ中央部には、それぞれ軸線方向の溝11が全長にわたって形成されている。この溝11は、鋼部材2の断面形状に対応するものであり、鋼部材2がぴったりと嵌め入れることができるように形成されている。
The wooden member 1 is made of laminated lumber obtained by pasting together a plurality of wooden pieces of small cross section, and can bear the force in the axial direction as a part of the structure. Alternatively, lumber cut from raw wood may be used.
Axial grooves 11 are formed over the entire length of each of the four side surfaces of the wooden member 1 at substantially the center thereof. This groove 11 corresponds to the cross-sectional shape of the steel member 2, and is formed so that the steel member 2 can be tightly fitted.

鋼部材2は、構造用鋼を用いることができ、鋼板から帯状に切り出したものである。この鋼部材2は、幅の狭い周面つまり鋼板の厚さ方向の面が木質部材1の側面と平行となり、幅の広い面が木質部材1に形成された溝11の深さ方向となるように、木質部材1に形成された4つの溝内にそれぞれ嵌め入れられている。そして、鋼部材2の幅の狭い面は木質部材1の側面とほぼ同一面上となっている。
鋼部材2の端面には軸線方向にボルト穴21が設けられており、内周面には雌ねじが切削されている。
Structural steel can be used for the steel member 2, which is cut out from a steel plate into strips. The steel member 2 is arranged such that the narrow peripheral surface, that is, the surface in the thickness direction of the steel plate is parallel to the side surface of the wooden member 1, and the wide surface is in the depth direction of the groove 11 formed in the wooden member 1. In addition, they are fitted in four grooves formed in the wooden member 1 respectively. The narrow surface of the steel member 2 is substantially flush with the side surface of the wooden member 1. - 特許庁
A bolt hole 21 is provided in the end surface of the steel member 2 in the axial direction, and a female thread is cut on the inner peripheral surface.

材端プレート3は、木質部材1の端面に当接される第1の鋼板31と、該第1の鋼板31と間隔をあけて平行に配置された第2の鋼板32と、第1の鋼板31と第2の鋼板32とを一体に結合する連結部材33と、を有するものである。
第1の鋼板31は、木質部材1の断面寸法とほぼ対応する矩形の板材からなり、図2(b)に示すように木質部材1の溝11に嵌め入れられた鋼部材2と対応する位置にはボルトを挿通する貫通孔34が形成されている。この貫通孔34に挿通したボルト35を鋼部材2の端面に形成したボルト穴21にねじ込み、図2(a)に示すように締め付けることによって材端プレート3と鋼部材2を接合するものである。
The end plate 3 includes a first steel plate 31 that abuts on the end face of the wooden member 1, a second steel plate 32 that is spaced apart from the first steel plate 31 and arranged in parallel, and the first steel plate. 31 and a connecting member 33 for connecting the second steel plate 32 integrally.
The first steel plate 31 is made of a rectangular plate material that substantially corresponds to the cross-sectional dimensions of the wooden member 1, and as shown in FIG. is formed with a through hole 34 through which a bolt is inserted. A bolt 35 inserted through the through hole 34 is screwed into a bolt hole 21 formed in the end surface of the steel member 2 and tightened as shown in FIG. .

第2の鋼板32は、第1の鋼板31より大きい矩形となっており、他の構造部材と接合するためのボルトを挿通する複数の貫通孔36が設けられている。
連結部材33は、鋼からなる矩形断面の管状部材であり、第1の鋼板31と第2の鋼板32との間で双方を平行にして連結するものである。第1の鋼板31との接合及び第2の鋼板32との接合は溶接によるものである。
The second steel plate 32 has a rectangular shape larger than that of the first steel plate 31, and is provided with a plurality of through holes 36 for inserting bolts for joining with other structural members.
The connecting member 33 is a tubular member made of steel and having a rectangular cross section, and connects the first steel plate 31 and the second steel plate 32 in parallel. The joining with the first steel plate 31 and the joining with the second steel plate 32 are by welding.

上記木質部材1、鋼部材2及び材端プレート3は、図3に示すように組み立てることができる。
図3(a)に示すように4つの側面のそれぞれに形成された溝11に鋼部材2を嵌め入れる。このときの鋼部材2は木質部材1より短くなっており、木質部材1の端面より鋼部材2の端面が所定長だけ後退している。そして、図3(b)に示すように材端プレート3を木質部材1の端面に当接する。このとき鋼部材2の端面と材端プレート3との間には、図2(b)に示すように所定の大きさの間隙37が生じている。そして、材端プレート3が有する第1の鋼板の貫通孔34に挿通したボルト35を鋼部材2の端面に形成したボルト穴21にねじ込み、鋼部材2を材端プレート3に引き寄せて、図2(a)に示すように鋼部材2の端面が材端プレート3に当接されるまで締め込む。これにより、鋼部材2には引張力が導入されるとともに、木質部材1には材端プレート3から圧縮力が導入される。
なお、木質部材1の端面と第1の鋼板31との間には、木質部材の端面の凹凸等によって隙間が生じないように、後に硬化する樹脂等を塗布しておくことができる。
The wooden member 1, the steel member 2 and the end plate 3 can be assembled as shown in FIG.
As shown in FIG. 3(a), the steel members 2 are fitted into the grooves 11 formed on each of the four side surfaces. At this time, the steel member 2 is shorter than the wooden member 1, and the end surface of the steel member 2 is retreated from the end surface of the wooden member 1 by a predetermined length. Then, as shown in FIG. 3(b), the end plate 3 is brought into contact with the end face of the wooden member 1. Then, as shown in FIG. At this time, a gap 37 having a predetermined size is formed between the end face of the steel member 2 and the material end plate 3, as shown in FIG. 2(b). Then, the bolts 35 inserted through the through holes 34 of the first steel plate of the end plate 3 are screwed into the bolt holes 21 formed in the end face of the steel member 2, and the steel member 2 is drawn toward the end plate 3, and as shown in FIG. As shown in (a), the end face of the steel member 2 is tightened until it abuts against the material end plate 3 . As a result, a tensile force is introduced into the steel member 2 and a compressive force is introduced into the wood member 1 from the end plate 3 .
A resin or the like that hardens later can be applied between the end surface of the wooden member 1 and the first steel plate 31 so that a gap is not formed due to unevenness of the end surface of the wooden member.

このように接合されることにより、木鋼複合柱に軸線方向の力が作用するとき、初期状態から鋼部材2と木質部材1との双方に軸線方向の力が負荷され、複合部材として適切に荷重を支持するものとなる。つまり荷重の作用する初期状態で鋼部材2のみが荷重を負担して木質部材1の支持する荷重が低減するのが回避される。 By joining in this way, when an axial force acts on the wood-steel composite column, the axial force is applied to both the steel member 2 and the wooden member 1 from the initial state, and the composite member is properly formed. It will support the load. That is, it is avoided that the load supported by the wooden member 1 is reduced in the initial state where the load acts, because only the steel member 2 bears the load.

上記にように木質部材1には圧縮力が導入され、鋼部材2には引張力が導入された状態で材端プレート3が接合されている木鋼複合柱では、軸線方向の力が作用する初期状態から鋼部材2と木質部材1との双方に軸線方向の力が適切に負荷されるとともに、以下に説明するように木質部材1の耐荷力を有効に利用して大きな荷重を支持することができる木鋼複合柱とすることができる。
木質部材1及び鋼部材2の双方に軸力が導入されていない状態で材端プレート3が接合された木鋼複合柱では、図4(a)に示すように、軸線方向の荷重が作用すると、荷重の載荷初期から双方の部材に軸線方向の力が付加される。そして、材端プレート3によって木質部材1と鋼部材2とのひずみ量は同じに維持されるので、木質部材1と鋼部材2とのそれぞれに負荷される軸線方向の力は、双方の軸方向の剛性比によって分配される。つまり、軸線方向に作用する荷重が増加すると、木質部材の軸方向の剛性EwAwと鋼部材の軸方向の剛性EsAsとの比で荷重が負担される。ここでEwは木質部材の弾性係数、Awは木質部材の断面積、Esは鋼部材の弾性係数、Asは鋼部材の断面積である。
そして、軸線方向の荷重が増大し、木質部材1又は鋼部材2のいずれかの圧縮応力度が許容応力度に達するまでの荷重を支持することができる。図4(a)に示すように、一般に木質部材が許容応力度に達するときのひずみεwa1は鋼部材が許容応力度に達するときのひずみεsa1より大きくなっている。したがって、鋼部材の圧縮応力度が許容応力度に達したときに、鋼部材はPsaの軸力を負担し、木質部材の圧縮応力度は許容応力度に達しておらず、木質部材はPw1の軸力を負担する。この木質部材が負担する軸力Pw1は木質部材が許容応力度に達したときの負担する軸力Pwaより小さくなる。
As described above, in a wood-steel composite column in which a compressive force is introduced to the wooden member 1 and a tensile force is introduced to the steel member 2, the end plate 3 is joined, and a force in the axial direction acts. An axial force is appropriately applied to both the steel member 2 and the wooden member 1 from the initial state, and a large load is supported by effectively utilizing the load-bearing capacity of the wooden member 1 as described below. It can be a wood and steel composite column.
In a wood-steel composite column in which the end plates 3 are joined in a state where no axial force is applied to both the wooden member 1 and the steel member 2, as shown in FIG. , an axial force is applied to both members from the initial stage of load application. Since the strain amounts of the wooden member 1 and the steel member 2 are maintained to be the same by the end plate 3, the axial force applied to each of the wooden member 1 and the steel member 2 is distributed by the stiffness ratio of That is, when the load acting in the axial direction increases, the load is borne by the ratio between the axial stiffness EwAw of the wooden member and the axial stiffness EsAs of the steel member. Here, Ew is the modulus of elasticity of the wooden member, Aw is the cross-sectional area of the wooden member, Es is the modulus of elasticity of the steel member, and As is the cross-sectional area of the steel member.
Then, the load in the axial direction increases, and the load can be supported until the compressive stress of either the wooden member 1 or the steel member 2 reaches the allowable stress. As shown in FIG. 4(a), the strain .epsilon.wa1 when the wooden member reaches the allowable stress is generally larger than the strain .epsilon.sa1 when the steel member reaches the allowable stress. Therefore, when the compressive stress of the steel member reaches the allowable stress, the steel member bears the axial force of Psa, the compressive stress of the wooden member does not reach the allowable stress, and the wooden member is Pw1. Bear the axial force. The axial force Pw1 borne by the wooden member becomes smaller than the axial force Pwa borne when the wooden member reaches the allowable stress level.

一方、図4(b)に示すように木質部材に圧縮力Pso、鋼部材に引張力Psoが導入された状態で材端プレートが接合されていると、木質部材の圧縮力と鋼部材の引張力が内力としてつり合った状態で、Pwo=Psoとなっている。そして、外力として軸線方向の力が作用すると、木質部材の軸方向の剛性EwAwと鋼部材の軸方向の剛性EsAsとの比でそれぞれの負担する軸力が増加する。鋼部材の圧縮応力度が許容応力度に達したときに、鋼部材はPsaの軸力を負担し、木質部材はPw2の軸力を負担している。この木質部材が負担する軸力Pw2は、図4(a)に示す無応力状態から荷重が載荷された場合の軸力Pw1より大きくなる。したがって、木鋼複合柱は、Psa+Pw2の軸力を支持することができるものとなり、木質部材に圧縮力、鋼部材に引張力が導入された状態で材端プレートと接合された状態としておくことにより、大きな耐荷力を有する木鋼複合柱とすることができる。 On the other hand, as shown in Fig. 4(b), when the end plates are joined with the compressive force Pso introduced into the wooden member and the tensile force Pso introduced into the steel member, the compressive force of the wooden member and the tensile force of the steel member Pwo = Pso when the forces are balanced as internal forces. Then, when a force in the axial direction acts as an external force, the axial force to be borne by each increases according to the ratio between the axial rigidity EwAw of the wooden member and the axial rigidity EsAs of the steel member. When the compressive stress of the steel member reaches the allowable stress, the steel member bears the axial force of Psa, and the wooden member bears the axial force of Pw2. The axial force Pw2 borne by this wooden member becomes larger than the axial force Pw1 when a load is applied from the no-stress state shown in FIG. 4(a). Therefore, the wood and steel composite column can support the axial force of Psa + Pw2. , can be wood and steel composite columns with large load-bearing capacity.

なお、上記のように木質部材1の周囲に複数の鋼部材2が組み合わされた木鋼複合柱では、図1(d)に示すように鋼部材2が木質部材1の側面と平行な方向(図1(d)中における矢印A、Bの方向)へ座屈すること、及び木質部材1の中心に向かう方向(図1(d)中における矢印Cの方向)へ座屈することは、木質部材1の拘束によって抑止される。そして、木質部材1の溝から抜け出して木質部材1から離れる方向(図1(d)中における矢印Dの方向)への座屈は、鋼部材2の木質部材1から離れる方向への曲げ剛性を、木質部材1の側面に沿った方向への曲げ剛性より大きく設定することにより生じにくくなる。つまり、同じ断面積であっても鋼部材2の木質部材1から離れる方向への座屈に対する細長比が小さくなる。また、溝11の深さを大きくして、鋼部材2の木質部材1から離れる方向への曲げ剛性を大きくすることもでき、細長比を小さくすることが可能である。特に、鋼部材2が木質部材1から離れる方向への座屈に対する細長比が、限界細長比より小さくなるように設定することにより、木鋼複合柱に生じる圧縮応力度が弾性範囲内に抑えられている状態では鋼部材2の座屈は生じないものとなる。 In a wood-steel composite column in which a plurality of steel members 2 are assembled around a wooden member 1 as described above, the steel member 2 is parallel to the side surface of the wooden member 1 as shown in FIG. Buckling in the directions of arrows A and B in FIG. restrained by the constraint of The buckling of the wooden member 1 in the direction away from the wooden member 1 (the direction of arrow D in FIG. 1(d)) increases the bending rigidity of the steel member 2 in the direction away from the wooden member 1. , is set to be greater than the bending rigidity in the direction along the side surface of the wooden member 1, the occurrence of this becomes less likely. That is, even if the cross-sectional area is the same, the slenderness ratio with respect to the buckling of the steel member 2 in the direction away from the wooden member 1 becomes small. Further, it is possible to increase the bending rigidity of the steel member 2 in the direction away from the wooden member 1 by increasing the depth of the groove 11, thereby reducing the slenderness ratio. In particular, by setting the slenderness ratio for buckling of the steel member 2 in the direction away from the wooden member 1 to be smaller than the limit slenderness ratio, the degree of compressive stress generated in the wood-steel composite column is suppressed within the elastic range. In this state, buckling of the steel member 2 does not occur.

また、鋼部材2が木質部材1から離れる方向に座屈するのを、木質部材1に鋼部材2を留め付ける手段によって抑止することもできる。留め付ける手段には次のようなものを採用することができる。
(1)鋼部材2に設けられた貫通孔に挿通され、木質部材1にねじ込まれるビス又はラグスクリューによって留め付けるもの。
(2)木質部材1の鋼部材2が嵌め入れられた部分の側方から設けられたピン孔にドリフトピン又はボルトを挿入し、鋼部材2に設けられた貫通孔に挿通させることによって鋼部材2を木質部材1に留め付けるもの。
(3)木質部材1の周囲を囲むように取り付けられた鋼ベルトによって留め付けるもの。
(4)木質部材1の鋼部材2が嵌め入れられた部分の両側に架け渡すように固定された鋼板材によって鋼部材2を留め付けるもの。
In addition, it is possible to prevent the steel member 2 from buckling away from the wooden member 1 by means for fastening the steel member 2 to the wooden member 1 . The following can be adopted as fastening means.
(1) A screw or lag screw that is inserted through a through hole provided in the steel member 2 and screwed into the wooden member 1 to fasten.
(2) A drift pin or bolt is inserted into a pin hole provided from the side of the portion of the wooden member 1 in which the steel member 2 is fitted, and is inserted through a through hole provided in the steel member 2, whereby the steel member is 2 is fastened to the wooden member 1.
(3) Fastened by a steel belt attached so as to surround the wooden member 1 .
(4) The steel member 2 is fastened by steel plates fixed so as to span both sides of the portion of the wooden member 1 in which the steel member 2 is fitted.

図5は本発明の第2の実施形態である木鋼複合柱の側面図、拡大した平面図及び拡大した断面図である。また、図6はこの木鋼複合柱の端部を拡大して示す側面図である。図7は同じ木鋼複合柱の木質部材、鋼部材及び材端部材である材端プレートを接合する要領を示す概略斜視図である。
この木鋼複合柱は、図1に示す木鋼複合柱と同様に断面がほぼ正方形で中実の木質部材41と、木質部材41の側面に形成された軸線方向の溝に嵌め入れられた複数の鋼部材42と、木質部材41及び鋼部材42の両端部に接合され、木質部材41と鋼部材42との双方に軸線方向の力を伝達することが可能となった材端プレート43と、で主要部が構成されている。
FIG. 5 is a side view, an enlarged plan view, and an enlarged cross-sectional view of a wood and steel composite column according to a second embodiment of the present invention. Also, FIG. 6 is a side view showing an enlarged end of this wood-steel composite column. FIG. 7 is a schematic perspective view showing a procedure for joining wood members, steel members, and end plates, which are end members, of the same wood-steel composite column.
Similar to the wood and steel composite column shown in FIG. and a material end plate 43 joined to both end portions of the wooden member 41 and the steel member 42 and capable of transmitting axial force to both the wooden member 41 and the steel member 42; The main part is composed of

木質部材41は、図1に示す木鋼複合柱と同じものが用いられている。鋼部材42も、図1に示す木鋼複合柱と同様のものが用いられ、同様の態様で木質部材に形成された溝に嵌め入れられている。ただし、この木鋼複合柱では鋼部材42が木質部材41より長さが大きくなっており、木質部材41と組み合わせたときに、図7に示すように木質部材41の端面より突き出しており、この突き出した部分に材端プレート43が接合される。 The wooden member 41 used is the same as the wooden steel composite column shown in FIG. The steel member 42 is also similar to the wood-steel composite column shown in FIG. 1, and is fitted in a groove formed in the wooden member in a similar manner. However, in this wood-steel composite column, the steel member 42 is longer than the wooden member 41, and when combined with the wooden member 41, it protrudes from the end face of the wooden member 41 as shown in FIG. A material end plate 43 is joined to the projecting portion.

材端プレート43は、図1に示す木鋼複合柱と同様に、木質部材41の端面に当接される第1の鋼板51と、該第1の鋼板51と間隔をあけて平行に配置された第2の鋼板52と、第1の鋼板51と第2の鋼板52とを一体に結合する連結部材53と、を有するものである。
この木鋼複合柱では、第1の鋼板51の鋼部材42と対応する位置には矩形の切り欠き54が設けられている。そして、図7に示すように鋼部材42が切り欠き54内に挿通され、第1の鋼板51が設けられた位置を越えて第2の鋼板52側へ突き出し、先端が第2の鋼板52に溶接で接合されるものとなっている。
The material end plate 43 is arranged in parallel with a first steel plate 51 that abuts on the end face of the wooden member 41 and with a gap therebetween, in the same manner as the wood-steel composite column shown in FIG. and a connecting member 53 for integrally connecting the first steel plate 51 and the second steel plate 52 .
In this wood-steel composite column, a rectangular notch 54 is provided at a position corresponding to the steel member 42 of the first steel plate 51 . Then, as shown in FIG. 7, the steel member 42 is inserted into the notch 54 and protrudes toward the second steel plate 52 beyond the position where the first steel plate 51 is provided. It is joined by welding.

鋼部材42と材端プレート43との接合は、図7に示すように木質部材41の溝に鋼部材42が嵌め入れられた状態で、材端プレート43を木質部材41の端面に対向させ、当接させる。そして、木質部材41に圧縮力が導入された状態で鋼部材42と材端プレート43の第2の鋼板52とを溶接によって接合する。
木質部材41に圧縮力が作用した状態で鋼部材42と材端プレート43とを接合する方法は、例えば図8(a)又は図8(b)に示す方法を採用することができる。
The steel member 42 and the end plate 43 are joined together by placing the end plate 43 against the end face of the wooden member 41 with the steel member 42 fitted in the groove of the wooden member 41 as shown in FIG. abut. Then, the steel member 42 and the second steel plate 52 of the end plate 43 are joined by welding while the compressive force is applied to the wooden member 41 .
As a method for joining the steel member 42 and the end plate 43 while the wooden member 41 is under compression, the method shown in FIG. 8(a) or 8(b), for example, can be adopted.

図8(a)に示す方法では、2つの材端プレート43を木質部材41の両端面に当接する。このとき材端プレート43と鋼部材42とは接合されておらず、材端プレート43の第2の鋼板52と鋼部材42の端面との間には、木質部材41に導入する圧縮力で生じる変形量に相当する間隙を設けておく。そして、両端の材端プレート43に外力を付与して木質部材41の端面に押し付ける。これにより木質部材41に軸線方向の圧縮力を導入する。鋼部材42は、木質部材41に圧縮力が作用した状態を維持したまま、材端プレート43の第2の鋼板52と溶接W1によって接合する。溶接の完了後、外力を除荷することにより鋼部材42には引張力が導入され、木質部材41の圧縮力と釣り合った状態となる。
なお、図5に示す木鋼複合柱で、鋼部材42は第2の鋼板52に溶接接合されているが、溶接による熱で木質部材41を損傷しないときには、第1の鋼板51も切り欠き54の周辺部で鋼部材42と溶接で接合することができる。
In the method shown in FIG. 8( a ), two end plates 43 are brought into contact with both end surfaces of the wooden member 41 . At this time, the end plate 43 and the steel member 42 are not joined, and the compressive force introduced to the wooden member 41 causes a gap between the second steel plate 52 of the end plate 43 and the end surface of the steel member 42 . A gap corresponding to the amount of deformation is provided. Then, an external force is applied to the end plates 43 at both ends to press them against the end surfaces of the wooden member 41 . This introduces an axial compressive force to the wooden member 41 . The steel member 42 is joined to the second steel plate 52 of the end plate 43 by welding W1 while maintaining the state in which the compressive force acts on the wooden member 41 . After welding is completed, a tensile force is introduced into the steel member 42 by removing the external force, and the compressive force of the wooden member 41 is balanced.
In the wood-steel composite column shown in FIG. 5, the steel member 42 is welded to the second steel plate 52. If the wood member 41 is not damaged by the heat of welding, the first steel plate 51 also has a notch 54. can be welded to the steel member 42 at the periphery of the .

上記外力は、木鋼複合柱を製作する工場等に固定構造として2つの反力ブロックを設け、これら反力ブロックに反力を作用させて材端プレート43を木質部材41の両端面に押し付けるように外力を負荷することができる。また、木鋼複合柱の両端で材端プレート43と対向するように2つの反力板を設置し、これらの反力板を引張部材で連結した状態としておき、反力板に反力を作用させて材端プレート43を木質部材41に押し付けることもできる。 The above external force is generated by providing two reaction blocks as a fixed structure in a factory or the like that manufactures wood and steel composite columns, and applying reaction force to these reaction blocks to press the end plates 43 against both end surfaces of the wooden member 41. can be loaded with an external force. In addition, two reaction plates are installed at both ends of the wood and steel composite column so as to face the end plates 43, and these reaction plates are connected by tension members, and reaction force is applied to the reaction plates. It is also possible to press the end plate 43 against the wooden member 41.

また、図8(b)に示す方法では、材端プレート43の第2の鋼板52と対向するように反力板55を設置し、第2の鋼板52に設けられた開口を貫通するように延長された鋼部材42と連結する。そして、反力板55と材端プレート43との間にジャッキ56を介装して、鋼部材42に反力を作用させながら材端プレート43を木質部材41の端面に押し付ける。これにより、木質部材41には圧縮力が導入されるとともに鋼部材42には引張力が導入される。この状態で、材端プレート43の第2の鋼板52と鋼部材42とを溶接W2によって接合する。その後、鋼部材42の第2の鋼板52より突出する部分は切断する。なお、材端プレート43を木質部材41に押し付けるジャッキ56に代えて太径のボルトを用い、ねじ込む力によって材端プレート43を木質部材41に押し付けることもできる。 Moreover, in the method shown in FIG. 8B, a reaction plate 55 is installed so as to face the second steel plate 52 of the material end plate 43, and the opening provided in the second steel plate 52 is penetrated. It connects with the elongated steel member 42 . A jack 56 is interposed between the reaction plate 55 and the end plate 43 to press the end plate 43 against the end surface of the wooden member 41 while applying a reaction force to the steel member 42 . As a result, compressive force is introduced into the wooden member 41 and tensile force is introduced into the steel member 42 . In this state, the second steel plate 52 of the material end plate 43 and the steel member 42 are joined by welding W2. After that, the portion of the steel member 42 protruding from the second steel plate 52 is cut. Instead of the jack 56 for pressing the end plate 43 against the wooden member 41, a bolt having a large diameter can be used to press the end plate 43 against the wooden member 41 by a screwing force.

図8(a)及び図8(b)に示す方法によって材端プレートを木質部材の端面に押し付けるときに、鋼部材42の両端が材端プレート43に接合されていない状態で双方の材端プレート43を木質部材41の両端に押し付けてもよいし、一方の材端プレートはあらかじめ鋼部材と接合しておき、他方の材端プレートを木質部材の端面に押し付けて木質部材に圧縮力を導入するものであってもよい。そして、木質部材に圧縮力が導入された状態で鋼部材を他方の材端プレートに接合するものである。 When the end plates are pressed against the end faces of the wooden member by the method shown in FIGS. 43 may be pressed against both ends of the wooden member 41, or one end plate may be joined to the steel member in advance, and the other end plate may be pressed against the end face of the wooden member to introduce a compressive force to the wooden member. can be anything. Then, the steel member is joined to the other end plate while compressive force is applied to the wooden member.

図5に示す木鋼複合柱では、鋼部材42は端面を第2の鋼板52に突き合わせて溶接接合するものとなっているが、鋼部材は他の形態で材端プレートと接合することができ、例えば図9に示すような接合形態とすることができる。
図9(a)に示す木鋼複合柱は本発明の第3の実施形態であって、図5に示す木鋼複合柱と同様に木質部材61の側面に形成された溝に、帯状の鋼部材62が嵌め入れられたものである。そして、材端プレート63は、図5に示す木鋼複合柱で用いられている材端プレートと同じ第1の鋼板64、第2の鋼板65及び連結部材66を有するものであるが、これらの他に第1の鋼板64と第2の鋼板65と間に設けられた4つの連結板67を備えている。これらの連結板67は、第1の鋼板64の切り欠きを通過して突き出している鋼部材62の端部に沿った位置に設けられ、第1の鋼板64及び第2の鋼板65に溶接で接合されている。そして、鋼部材62はこれらの連結板67に重ね合わされ、双方の対応する位置に設けられた貫通孔に挿通された高力ボルト68によって接合されている。このような木鋼複合柱でも、図5に示す木鋼複合柱と同様な手段で木質部材61に圧縮力、鋼部材62に引張力を導入した状態で材端プレート63を接合することができる。
In the wood-steel composite column shown in FIG. 5, the steel member 42 is welded with the end face butted against the second steel plate 52, but the steel member can be joined to the end plate in another form. , for example, a joining form as shown in FIG.
The wood and steel composite column shown in FIG. 9(a) is a third embodiment of the present invention. A member 62 is fitted. The end plate 63 has the same first steel plate 64, second steel plate 65 and connecting member 66 as the end plate used in the wood-steel composite column shown in FIG. In addition, four connecting plates 67 are provided between the first steel plate 64 and the second steel plate 65 . These connecting plates 67 are provided at positions along the ends of the steel members 62 protruding through the notches of the first steel plate 64 and can be welded to the first steel plate 64 and the second steel plate 65. are spliced. The steel member 62 is superimposed on these connecting plates 67 and joined by high-strength bolts 68 inserted through through-holes provided at corresponding positions. Even in such a wood-steel composite column, the end plates 63 can be joined in a state in which compressive force is introduced to the wooden member 61 and tensile force is introduced to the steel member 62 by means similar to those of the wood-steel composite column shown in FIG. .

図9(b)に示す木鋼複合柱は本発明の第4の実施形態であって、木質部材71及び鋼部材72は、図5に示す木鋼複合柱と同じ断面形状となっており、材端プレート73も同様に第1の鋼板74と第2の鋼板75と連結部材76とを有するものである。この木鋼複合柱では、鋼部材72の端部にフランジ部72aが設けられており、このフランジ部72aを第2の鋼板75に当接し、ボルト77で接合するものである。鋼部材72が有するフランジ部72aには複数のボルト孔が設けられ、これらのボルト孔の内周面には雌ねじが形成されている。材端プレート73の第2の鋼板75には、当接されたフランジ部72aのボルト孔に対応する位置に貫通孔が設けられ、ボルト77をこれらの貫通孔に挿通し、フランジ部72aのボルト孔にねじ込み、締め付けることによって接合するものである。
鋼部材72は、材端プレート73の第1の鋼板74を木質部材71の端面に当接した状態で、フランジ部72aが第2の鋼板75と所定の間隙を開けて対向するように長さを調性しておき、上記ボルト77を締め付けることによって鋼部材のフランジ部72aを第2の鋼板75に当接させる。このようにフランジ部72aを第2の鋼板75と接合することにより鋼部材72に引張力を導入し、木質部材71に圧縮力を導入することができる。
なお、ボルトはフランジ部72aに設けられたボルト穴にねじ込むのに代えて、フランジ部72aに設けた貫通孔にボルトを挿通し、ナットをねじり合わせて締め付けるものであってもよい。
The wood and steel composite column shown in FIG. 9B is a fourth embodiment of the present invention, and the wooden member 71 and the steel member 72 have the same cross-sectional shape as the wood and steel composite column shown in FIG. The end plate 73 also has a first steel plate 74 , a second steel plate 75 and a connecting member 76 . In this wood-steel composite column, a flange portion 72 a is provided at the end of a steel member 72 . A flange portion 72a of the steel member 72 is provided with a plurality of bolt holes, and internal threads are formed on the inner peripheral surfaces of these bolt holes. The second steel plate 75 of the material end plate 73 is provided with through holes at positions corresponding to the bolt holes of the flange portion 72a with which it abuts. It is joined by screwing into the hole and tightening.
The steel member 72 has a length such that the flange portion 72a faces the second steel plate 75 with a predetermined gap in a state in which the first steel plate 74 of the end plate 73 is in contact with the end surface of the wooden member 71. are adjusted, and the flange portion 72a of the steel member is brought into contact with the second steel plate 75 by tightening the bolt 77. As shown in FIG. By joining the flange portion 72 a to the second steel plate 75 in this manner, tensile force can be introduced to the steel member 72 and compressive force can be introduced to the wooden member 71 .
Instead of screwing the bolt into the bolt hole provided in the flange portion 72a, the bolt may be inserted through a through hole provided in the flange portion 72a and tightened by twisting a nut.

図1、図5及び図9に示す木鋼複合柱では、ボルトを締め付ける力又はジャッキ等を用いて加力することによって木質部材に圧縮力、鋼部材に引張力を導入するものとなっているが、これらの木鋼複合柱では、上記のように加力する手段に代えて、又は上記のように加力する手段と併せて、鋼部材の加熱による伸長及び収縮作用を用いて木質部材に圧縮力、鋼部材に引張力を導入することもできる。
これは鋼部材を加熱し、伸長した状態で木質部材に嵌め合わせ、木質部材の端面に当接された材端プレートと接合するものである。接合は加力する場合と同様に行うことができる。加熱された鋼部材は材端プレートと接合された後に温度が低下し、収縮することによって木質部材には圧縮力が導入され、鋼部材には引張力が導入される。
In the wood and steel composite columns shown in FIGS. 1, 5 and 9, compressive force is applied to the wooden member and tensile force is introduced to the steel member by applying force using a bolt tightening force or a jack or the like. However, in these wood-steel composite columns, instead of or in combination with the means for applying force as described above, the elongation and contraction of the steel members due to heating are used to extend the wooden members. Compressive forces can also be introduced into steel members.
In this method, a steel member is heated, stretched, fitted to a wooden member, and joined to an end plate abutting the end face of the wooden member. Joining can be performed in the same manner as in the case of applying force. After the heated steel member is joined to the end plate, the temperature drops and shrinkage introduces compressive force into the wooden member and tensile force into the steel member.

なお、以上に説明した木鋼複合柱では、木質部材の周辺に分散して複数の鋼部材を組み合わせ、それぞれの鋼部材は帯状の鋼板として幅の広い面が木質部材に設けられた溝の深さ方向となるように嵌め入れたものとなっているが、鋼部材は他の断面形状のものを使用することもできる。例えば、図10(a)に示すように木質部材81の溝に嵌め入れられたときに、木質部材の表面に沿った位置で軸線方向に連続するフランジ部82aを有し、断面がT字状となった鋼部材82を採用することができる。また、図10(b)に示すように、鋼部材84が木質部材83の側面に沿った方向に長辺を有する矩形断面となったものを採用することもできる。さらに、本発明の木鋼複合柱は、図10(c)に示すように木質部材に形成された溝に嵌め入れられるのではなく、鋼部材86が木質部材85の表面に当接されたもの、図10(d)に示すように断面がL形となった鋼部材88が木質部材87の角部を覆うように組み合わされたものとすることもできる。 In the wood-steel composite column described above, a plurality of steel members are combined dispersedly around a wooden member. The steel members are fitted in the vertical direction, but steel members with other cross-sectional shapes can also be used. For example, as shown in FIG. 10(a), when it is fitted in the groove of the wooden member 81, it has a flange portion 82a that continues in the axial direction along the surface of the wooden member and has a T-shaped cross section. can be adopted. Further, as shown in FIG. 10(b), the steel member 84 may have a rectangular cross section with long sides extending along the side surfaces of the wooden member 83. As shown in FIG. Furthermore, the wood-steel composite column of the present invention is not fitted in a groove formed in the wooden member as shown in FIG. Alternatively, as shown in FIG. 10(d), a steel member 88 having an L-shaped cross section may be assembled so as to cover the corners of the wooden member 87. FIG.

図11は、本発明の第5の実施形態である木鋼複合柱の端部を示す側面図及び断面図である。
この木鋼複合柱は、図5に示す木鋼複合柱と同じ構造を有する材端プレート93及び鋼部材92を有し、木質部材91と鋼部材92とを組み合わせた断面の構成も同じものとなっている。この木鋼複合柱でも、木質部材91には圧縮力が導入され、鋼部材92には引張力が導入されているが、これらの圧縮力及び引張力は、木質部材91の端面と材端プレート93との間に押し込まれたくさび94によって導入されたものである。
FIG. 11 is a side view and cross-sectional view showing an end portion of a wood-steel composite column according to a fifth embodiment of the present invention.
This wood-steel composite column has end plates 93 and steel members 92 having the same structure as the wood-steel composite column shown in FIG. It's becoming Compressive force is applied to the wooden member 91 and tensile force is applied to the steel member 92 in this wood-steel composite column. 93, introduced by a wedge 94 wedged in between.

この木鋼複合部材の組み立ては次のように行うことができる。
鋼部材92は引張力が導入される前に材端プレート93と接合され、図12に示すように木質部材91は材端プレート93との間に間隙98を設けて鋼部材92と組み合わされる。木質部材91の端面は、対向する一対の側面から断面の中心に向かって上記間隙を徐々に狭くするように傾斜したものとなっており、傾斜面に鋼板95が取り付けられている。そして、2方向から鋼部材92の位置を避け、それぞれ2つのくさび94を中心に向かって押し込む。これによって木質部材91と材端プレート93との間隙を押し広げ、鋼部材92には引張力を導入し、木質部材91には圧縮力を導入するものである。押し込まれたくさび94には、押し込む方向に貫通孔96が設けられており、対向するように押し込まれた2つのくさびの双方の貫通孔にボルト97が挿通され、くさび94が抜け出さないように連結される。
The wood and steel composite member can be assembled as follows.
The steel member 92 is joined to the end plate 93 before the tensile force is introduced, and the wooden member 91 is combined with the steel member 92 with a gap 98 between the end plate 93 and the wood member 91 as shown in FIG. The end faces of the wooden member 91 are inclined so as to gradually narrow the gap from a pair of opposing side faces toward the center of the cross section, and steel plates 95 are attached to the inclined faces. Then, avoiding the position of the steel member 92 from two directions, the two wedges 94 are respectively pushed toward the center. As a result, the gap between the wooden member 91 and the end plate 93 is widened, and tensile force is introduced to the steel member 92 and compressive force is introduced to the wooden member 91 . A through-hole 96 is provided in the pushed wedge 94 in the pushing direction, and a bolt 97 is inserted through the through-holes of both of the two wedges pushed in so as to face each other, and the wedge 94 is connected so as not to come off. be done.

図13は、本発明の第6の実施形態である木鋼複合柱の側面図、拡大した平面図及び拡大した断面図であり、図14は同じ木鋼複合柱の木質部材、鋼部材及び材端部材である材端プレートを接合する要領を示す概略斜視図である。
この木鋼複合柱では、鋼部材102を芯材として周囲を囲むように木質部材101を組み合わせたものであり、両端には鋼部材102及び木質部材101の双方に軸線方向の力が伝達されるように材端プレート103が接合されている。
FIG. 13 is a side view, an enlarged plan view and an enlarged cross-sectional view of a wood and steel composite column according to a sixth embodiment of the present invention, and FIG. 14 is a wooden member, steel member and material of the same wood and steel composite column. It is a schematic perspective view which shows the point which joins the material end plate which is an end member.
In this wood-steel composite column, a steel member 102 is used as a core material, and wooden members 101 are combined so as to surround the periphery. The material end plate 103 is joined as shown in FIG.

鋼部材102は、図13(d)に示すように十字状の断面を有するものであり、鋼板を溶接接合して形成されている。木質部材101は、図14(a)に示すように、2分割したものを貼り合わせて鋼部材を囲むものであり、鋼部材102と対向する部分は鋼部材102の形状に対応するようにあらかじめ加工されたものである。鋼部材102を囲むように一体化された木質部材101の断面の外形はほぼ正方形となっており、軸線方向の長さは鋼部材102より短くなっている。したがって、木質部材101の端面からは鋼部材102が突き出しており、この突き出した部分に材端プレート103が接合されている。 The steel member 102 has a cross-shaped cross section as shown in FIG. 13(d), and is formed by welding steel plates together. As shown in FIG. 14( a ), the wooden member 101 is divided into two pieces that are pasted together to surround the steel member. It is processed. The wooden member 101 integrated so as to surround the steel member 102 has a substantially square cross-sectional shape, and has a shorter axial length than the steel member 102 . Therefore, the steel member 102 protrudes from the end face of the wooden member 101, and the end plate 103 is joined to this protruding portion.

材端プレート103は、木質部材101の端面に当接される第1の鋼板111と、該第1の鋼板111と間隔をあけて平行に配置された第2の鋼板112と、第1の鋼板111と第2の鋼板112とを一体に結合する連結部材113と、を有するものである。
第1の鋼板111は、木質部材101の断面寸法とほぼ対応する矩形の鋼板材からなり、鋼部材102と対応する位置には、鋼部材102の断面形状に対応する十字型の貫通孔114が形成されている。この貫通孔114に鋼部材102が挿通され、先端部が第2の鋼板112に溶接で接合されている。
連結部材113は、角型の鋼管からなるものであり、第1の鋼板111の4つの角部にそれぞれ設けられ、第1の鋼板111と第2の鋼板112とに両端が溶接で接合され、第1の鋼板111と第2の鋼板112とが平行となるように連結している。
The end plate 103 includes a first steel plate 111 that abuts on the end surface of the wooden member 101, a second steel plate 112 that is spaced apart from the first steel plate 111 and arranged in parallel, and the first steel plate. 111 and a connecting member 113 for integrally connecting the second steel plate 112 .
The first steel plate 111 is made of a rectangular steel plate material having a cross-sectional dimension substantially corresponding to that of the wooden member 101 , and a cross-shaped through hole 114 corresponding to the cross-sectional shape of the steel member 102 is formed at a position corresponding to the steel member 102 . formed. The steel member 102 is inserted through the through-hole 114 and its tip is welded to the second steel plate 112 .
The connecting member 113 is made of a square steel pipe, is provided at each of the four corners of the first steel plate 111, and has both ends joined to the first steel plate 111 and the second steel plate 112 by welding, The first steel plate 111 and the second steel plate 112 are connected so as to be parallel.

この木鋼複合柱の木質部材101及び鋼部材102に材端プレート103が接合されたときに、木質部材101に圧縮力が導入され、鋼部材102に引張力が導入された状態とするには、次のような方法を採用することができる。
図15(a)に示すように、2つの材端プレート103を木質部材101の両端面に当接し、製作を行う工場等に固定して設けた反力ブロック104に反力を作用させ、ジャッキ105等を用いて材端プレート103を木質部材101の端面に押し付ける。これにより木質部材101に軸線方向の圧縮力を導入する。このとき材端プレート103と鋼部材102とは接合されておらず、材端プレート103の第2の鋼板112と鋼部材102の端面との間には、木質部材101に導入する圧縮力で生じる変形量に相当する間隙を設けておく。そして、木質部材101に圧縮力が作用した状態を維持したまま、鋼部材102と第2の鋼板112とを溶接W3によって接合する。溶接の完了後、外力を除荷することにより鋼部材102には引張力が導入され、木質部材101の圧縮力と釣り合った状態となる。
When the end plate 103 is joined to the wooden member 101 and the steel member 102 of the wood-steel composite column, a compressive force is introduced into the wooden member 101 and a tensile force is introduced into the steel member 102. , the following method can be adopted.
As shown in FIG. 15(a), two end plates 103 are brought into contact with both end surfaces of the wooden member 101, and a reaction force is applied to a reaction block 104 fixedly provided in a manufacturing factory or the like to effect jacking. 105 or the like is used to press the end plate 103 against the end face of the wooden member 101 . This introduces an axial compressive force to the wooden member 101 . At this time, the end plate 103 and the steel member 102 are not joined, and the compressive force introduced to the wooden member 101 causes a gap between the second steel plate 112 of the end plate 103 and the end face of the steel member 102. A gap corresponding to the amount of deformation is provided. Then, the steel member 102 and the second steel plate 112 are joined by welding W3 while maintaining the state in which the compressive force acts on the wooden member 101 . After the welding is completed, a tensile force is introduced into the steel member 102 by removing the external force, and the compressive force of the wooden member 101 is balanced.

また、図15(b)に示すように、木鋼複合柱の両端で材端プレート103と対向するように2つの反力板106を設置し、これらの反力板106を引張部材107で連結した状態としておき、反力板106に反力を作用させて材端プレート103を木質部材101に押し付けることもできる。 Also, as shown in FIG. 15(b), two reaction plates 106 are installed at both ends of the wood-steel composite column so as to face the end plates 103, and these reaction plates 106 are connected by tension members 107. It is also possible to press the end plate 103 against the wooden member 101 by applying a reaction force to the reaction plate 106 while keeping the state of the wood member 101 .

図16は、本発明の第7の実施形態である木鋼複合柱を示す平面図及び端部の側面図である。
この木鋼複合部材は、図13に示す木鋼複合柱と同じ断面構成となっており、十字型の鋼部材122の周囲を囲むように木質部材121が組み合わされている。材端プレート123も同様に第1の鋼板131と第2の鋼板132と連結部材133とを有するものであり、第1の鋼板131に設けられた十字型の貫通孔に鋼部材122が挿通され、先端が第2の鋼板132と対向している。
この木鋼複合柱では、鋼部材122の先端部と第2の鋼板132との接合が、第2の鋼板132を貫通する複数のボルト124によるものとなっている。これらのボルト124は、第2の鋼板132に設けられた貫通孔に挿通され、鋼部材122の端面から軸線方向に設けられたボルト穴の雌ねじにねじり合わされ、締め付けることによって接合するものである。
鋼部材122は、材端プレート123を木質部材121の端面に当接したときに、端面と第2の鋼板132との間に所定幅の隙間が生じるように長さを調整しておき、ボルト123を締め付けるのにともなって鋼部材122を引き寄せ、引張力を導入するとともに木質部材121に圧縮力を導入することができる。
FIG. 16 is a plan view and an end side view showing a wood and steel composite column according to a seventh embodiment of the present invention.
This wood-steel composite member has the same cross-sectional configuration as the wood-steel composite column shown in FIG. The material end plate 123 also has a first steel plate 131, a second steel plate 132, and a connecting member 133, and the steel member 122 is inserted through a cross-shaped through hole provided in the first steel plate 131. , the tip faces the second steel plate 132 .
In this wood-steel composite column, the tip of the steel member 122 and the second steel plate 132 are joined by a plurality of bolts 124 passing through the second steel plate 132 . These bolts 124 are inserted through through holes provided in the second steel plate 132, twisted into female threads of bolt holes provided in the axial direction from the end face of the steel member 122, and are joined by tightening.
The length of the steel member 122 is adjusted so that when the end plate 123 is brought into contact with the end face of the wooden member 121, a gap of a predetermined width is generated between the end face and the second steel plate 132. As 123 is tightened, steel member 122 can be drawn to introduce tensile force and compressive force to wooden member 121 .

図17は、本発明の第8の実施形態である木鋼複合柱の端部の側面図及び断面図である。
この木鋼複合柱は、くさび144を用いて木質部材141に圧縮力を、鋼部材142に引張力を導入したものである。
この木鋼複合柱の木質部材141と鋼部材142とを組み合わせた断面構成は図13に示す木鋼複合柱と同じになっており、材端プレート143も同じものが用いられているが、木質部材141の端面と材端プレート143の第1の鋼板151との間にくさび144が押し込まれている。木質部材141の端面は、対向する一対の側面から断面中心に向かって材端プレート143との間隔を徐々に狭くするように傾斜したものとなっており、傾斜面に鋼板145が取り付けられている。
この木鋼複合柱は、鋼部材142と材端プレート143とをあらかじめ溶接等によって接合し、鋼部材142を囲むように木質部材141を組み合わせた後、木質部材141の端面と材端プレート143の第1の鋼板151との間にくさび144を、図17(b)に示すように対向する2方向から押し込むことにより、木質部材141に圧縮力を導入し、鋼部材142に引張力を導入したものである。なお、符号146は、押し込まれたくさびが抜け出すのを抑止するためのボルトを示すものであり、くさび144に貫通孔を設けて4つのくさびを互いに連結している。
FIG. 17 is a side view and cross-sectional view of an end portion of a wood-steel composite column according to an eighth embodiment of the present invention.
In this wood-steel composite column, a wedge 144 is used to apply a compressive force to a wooden member 141 and a tensile force to a steel member 142 .
The cross-sectional configuration of this wood-steel composite column combining the wooden members 141 and steel members 142 is the same as that of the wood-steel composite column shown in FIG. A wedge 144 is pushed between the end face of the member 141 and the first steel plate 151 of the end plate 143 . The end faces of the wooden members 141 are inclined so as to gradually narrow the distance from the end plates 143 toward the center of the cross section from a pair of opposed side surfaces, and steel plates 145 are attached to the inclined faces. .
In this wood-steel composite column, the steel member 142 and the end plate 143 are joined in advance by welding or the like, and after combining the wood member 141 so as to surround the steel member 142, the end face of the wood member 141 and the end plate 143 are joined. By pushing a wedge 144 between the first steel plate 151 and the first steel plate 151 from two opposite directions as shown in FIG. It is. Reference numeral 146 denotes a bolt for preventing the pushed-in wedge from coming out, and a through hole is provided in the wedge 144 to connect the four wedges to each other.

なお、以上に説明した木鋼複合柱は本発明の実施の形態であって、本発明は以上に説明した実施形態に限定されることなく、本発明の範囲内で態様を変更して実施することができる。
例えば、上記の実施形態はいずれも柱として使用するものであるが、ブレース等の軸力が大きく作用する部材として用いることもできる。
The wood and steel composite column described above is an embodiment of the present invention, and the present invention is not limited to the embodiment described above, and can be implemented by changing the aspect within the scope of the present invention. be able to.
For example, although all of the above embodiments are used as columns, they can also be used as members, such as braces, on which a large axial force acts.

1:木質部材, 2:鋼部材, 3:材端プレート,
11:木質部材に形成された溝,
21:ボルト穴,
31:第1の鋼板, 32:第2の鋼板, 33:連結部材, 34:第1の鋼板に設けられた貫通孔, 35:ボルト, 36:第2の鋼板に設けられた貫通孔, 37:材端プレートと鋼部材の端面との間隙,
41:木質部材, 42:鋼部材, 43:材端プレート,
51:第1の鋼板, 52:第2の鋼板, 53:連結部材, 54:第1の鋼板に設けられた切り欠き, 55:反力板, 56:ジャッキ,
61:木質部材, 62:鋼部材, 63:材端プレート, 64:第1の鋼板, 65:第2の鋼板, 66:連結部材, 67:第1の鋼板と第2の鋼板との間の連結板, 68:高力ボルト,
71:木質部材, 72:鋼部材, 72a:鋼部材の端部に設けられたフランジ部, 73:材端プレート, 74:第1の鋼板, 75:第2の鋼板, 76:連結部材, 77:ボルト
81:木質部材, 82:鋼部材, 82a:鋼部材の軸線方向に連続するフランジ部, 83:木質部材, 84:鋼部材, 85:木質部材, 86:鋼部材, 87:木質部材, 88:鋼部材,
91:木質部材, 92:鋼部材, 93:材端プレート, 94:くさび, 95:鋼板, 96:くさびに設けられた貫通孔, 97:ボルト, 98:木質部材と材端プレートとの間隙,
101:木質部材, 102:鋼部材, 103:材端プレート, 104:反力ブロック, 105:ジャッキ, 106:反力板, 107:引張部材,
111:第1の鋼板, 112:第2の鋼板, 113:連結部材, 114:第1の鋼板に設けられた貫通孔,
121:木質部材, 122:鋼部材, 123:材端プレート, 124:ボルト,
131:第1の鋼板, 132:第2の鋼板, 133:連結部材,
141:木質部材, 142:鋼部材, 143:材端プレート, 144:くさび, 145:鋼板, 146:くさびを連結するボルト,
151:第1の鋼板, 152:第2の鋼板, 153:連結部材
1: wooden member, 2: steel member, 3: end plate,
11: Grooves formed in wooden members,
21: bolt hole,
31: first steel plate, 32: second steel plate, 33: connecting member, 34: through hole provided in first steel plate, 35: bolt, 36: through hole provided in second steel plate, 37 : the gap between the end plate and the end face of the steel member,
41: wooden member, 42: steel member, 43: end plate,
51: first steel plate, 52: second steel plate, 53: connecting member, 54: notch provided in first steel plate, 55: reaction plate, 56: jack,
61: wooden member, 62: steel member, 63: end plate, 64: first steel plate, 65: second steel plate, 66: connecting member, 67: between first steel plate and second steel plate connecting plate, 68: high-strength bolt,
71: wooden member, 72: steel member, 72a: flange provided at the end of steel member, 73: end plate, 74: first steel plate, 75: second steel plate, 76: connecting member, 77 : bolt 81: wooden member 82: steel member 82a: flange portion continuous in the axial direction of the steel member 83: wooden member 84: steel member 85: wooden member 86: steel member 87: wooden member 88: Steel member,
91: wooden member, 92: steel member, 93: end plate, 94: wedge, 95: steel plate, 96: through hole provided in wedge, 97: bolt, 98: gap between wooden member and end plate,
101: wooden member, 102: steel member, 103: end plate, 104: reaction block, 105: jack, 106: reaction plate, 107: tensile member,
111: first steel plate, 112: second steel plate, 113: connecting member, 114: through hole provided in first steel plate,
121: wooden member, 122: steel member, 123: end plate, 124: bolt,
131: first steel plate, 132: second steel plate, 133: connecting member,
141: wooden member, 142: steel member, 143: end plate, 144: wedge, 145: steel plate, 146: bolt connecting wedges,
151: first steel plate, 152: second steel plate, 153: connecting member

Claims (9)

軸線方向の力を支持する鋼部材と、
前記鋼部材の軸線方向に沿って組み合わされ、該鋼部材とともに軸線方向の力を支持する木質部材と、
前記鋼部材及び前記木質部材の両端部に取り付けられ、前記鋼部材と前記木質部材との双方に軸線方向の力を伝達することが可能に取り付けられた材端部材と、を有し、
前記材端部材は、前記木質部材の端面に向けて押し付けられ、該木質部材には軸線方向に圧縮力が導入されており、
前記鋼部材は前記材端部材に溶接又はボルトで接合され、引張力が導入されていることを特徴とする木鋼複合部材。
a steel member supporting axial forces;
a wooden member combined along the axial direction of the steel member and supporting a force in the axial direction together with the steel member;
end members attached to both end portions of the steel member and the wooden member and capable of transmitting axial force to both the steel member and the wooden member;
The end member is pressed toward the end surface of the wooden member, and a compressive force is introduced in the axial direction of the wooden member,
A wood and steel composite member, wherein the steel member is welded or bolted to the end member, and a tensile force is introduced.
前記木質部材は、単一の中実断面を有するものであり、
前記鋼部材は、前記木質部材の外周部に複数に分散して組み合わされていることを特徴とする請求項1に記載の木鋼複合部材。
The wooden member has a single solid cross section,
2. The wood-steel composite member according to claim 1, wherein said steel member is combined with a plurality of said steel members dispersedly around the outer peripheral portion of said wooden member.
前記木質部材は、前記鋼部材の周囲を囲むものであることを特徴とする請求項1に記載の木鋼複合部材。 2. The wood-steel composite member according to claim 1, wherein the wooden member surrounds the steel member. 前記木質部材と前記材端部材との間には、該木質部材と該材端部材との間で硬化した圧力均等化層が介挿されていることを特徴とする請求項1から請求項3までのいずれかに記載の木鋼複合部材。 3. A pressure equalizing layer hardened between the wooden member and the end member is interposed between the wooden member and the end member. A wood and steel composite member according to any one of the preceding. 木質部材と鋼部材とを、双方の軸線をほぼ平行に組み合わせる工程と、
前記木質部材の両端面に材端部材を当接し、該材端部材を介して該木質部材に軸線方向の圧縮力を導入する工程と、
前記木質部材に圧縮力が導入されている状態で、前記材端部材と前記鋼部材とを、該材端部材から該鋼部材に軸線方向の力の伝達が可能となるように接合する工程と、を含むことを特徴とする木鋼複合部材の製造方法。
combining the wooden member and the steel member with their axes substantially parallel;
a step of bringing end members into contact with both end surfaces of the wooden member and introducing an axial compressive force to the wooden member through the end members;
a step of joining the end member and the steel member in a state in which a compressive force is introduced to the wooden member so that axial force can be transmitted from the end member to the steel member; A method for manufacturing a wood and steel composite member, comprising:
前記木質部材に軸線方向の圧縮力を導入する工程は、前記材端部材を介して前記木質部材に反力を負荷し、前記鋼部材を引張するものであり、
前記材端部材と前記鋼部材とを接合する工程は、該鋼部材に引張力が導入された状態で該材端部材と接合するものであることを特徴とする請求項5に記載の木鋼複合部材の製造方法。
The step of applying a compressive force in the axial direction to the wooden member includes applying a reaction force to the wooden member through the end member to pull the steel member,
6. The wood steel according to claim 5, wherein the step of joining the end member and the steel member joins the end member with a tensile force applied to the steel member. A method of manufacturing a composite member.
前記鋼部材を引張する工程は、前記材端部材が有する鋼板を貫通するボルトを前記鋼部材にナットを介して係止するか又は前記ボルトを前記鋼部材に設けられたネジ穴にねじ込み、該ボルトをねじ込む力によって前記鋼部材を軸線方向に引き寄せるものであることを特徴とする請求項6に記載の木鋼複合部材の製造方法。 The step of pulling the steel member includes locking a bolt penetrating the steel plate of the end member to the steel member via a nut or screwing the bolt into a screw hole provided in the steel member. 7. The method of manufacturing a wood-steel composite member according to claim 6, wherein the steel member is drawn axially by the force of screwing the bolt. 木質部材と鋼部材とを、双方の軸線をほぼ平行にして組み合わせ、前記木質部材の両端面に対向して材端部材を配置して該材端部材を前記鋼部材と接合する工程と、
前記木質部材の端面と前記材端部材との間にくさびを押し込み、前記木質部材に圧縮力を、前記鋼部材に引張力を導入する工程と、を含むことを特徴とする木鋼複合部材の製造方法。
a step of combining a wooden member and a steel member with their axes substantially parallel, arranging the end members so as to face both end faces of the wooden member, and joining the end members to the steel members;
and a step of inserting a wedge between the end surface of the wooden member and the end member to introduce a compressive force to the wooden member and a tensile force to the steel member. Production method.
材端部材を木質部材の両端面に当接するように配置する工程と、
前記木質部材と平行に加熱した鋼部材を配置し、該鋼部材の両端部を前記材端部材に接合する工程と、
前記鋼部材の温度を降下させ、該鋼部材の収縮によって前記材端部材を前記木質部材の端面に圧接させる工程と、を含むことを特徴とする木鋼複合部材の製造方法。
arranging the end members so as to abut against both end surfaces of the wooden member;
disposing a heated steel member parallel to the wood member and joining both ends of the steel member to the end members;
A method of manufacturing a composite wood and steel member, comprising: a step of lowering the temperature of the steel member, and contracting the steel member to bring the end member into pressure contact with the end face of the wooden member.
JP2022016769A 2022-02-05 2022-02-05 Wooden steel composite member and wooden steel composite member manufacturing method Pending JP2023114471A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2022016769A JP2023114471A (en) 2022-02-05 2022-02-05 Wooden steel composite member and wooden steel composite member manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2022016769A JP2023114471A (en) 2022-02-05 2022-02-05 Wooden steel composite member and wooden steel composite member manufacturing method

Publications (1)

Publication Number Publication Date
JP2023114471A true JP2023114471A (en) 2023-08-18

Family

ID=87569819

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2022016769A Pending JP2023114471A (en) 2022-02-05 2022-02-05 Wooden steel composite member and wooden steel composite member manufacturing method

Country Status (1)

Country Link
JP (1) JP2023114471A (en)

Similar Documents

Publication Publication Date Title
JP3577587B2 (en) Joining structure of steel using shear ring and joining method of the steel
US10954663B2 (en) Cylindrical sleeve-type steel-wood composite joint and the assembly method
JP2021011920A (en) Joining structure and joining method between members
JP2023114471A (en) Wooden steel composite member and wooden steel composite member manufacturing method
EP2868829B1 (en) Method for reinforcing a timber construction element by assembling a reinforcement module placed under post-tension
JP7266470B2 (en) Column base joint structure
JP2009228361A (en) Synthetic material for construction and its manufacturing method
JP2023114472A (en) Wooden steel composite member and wooden steel composite member manufacturing method
TWI787516B (en) Joint utilizing incomplete thread of male threaded portion
JP5370247B2 (en) Reinforcement structure and reinforcement method for H-shaped steel bolt joint joint
JP4861792B2 (en) Pressure bonding method and pressure bonding structure for precast concrete column / beam joint
JP3177731B2 (en) Reinforcement plate structure and joint member for structure and apparatus for manufacturing the same
JPH08120786A (en) Joint structure for wooden member
JP4865104B2 (en) Design method for composite structural beams
JP4029342B2 (en) Mechanical rebar joint
JP2015025299A (en) Crack extension prevention device and method
TWM594044U (en) Composite steel bar connector
JP2007309020A (en) Joining structure of steel frame cantilever beam and steel frame small beam
JP2839437B2 (en) Wood joint structure
JP7236283B2 (en) CLT panel
JP6921413B2 (en) Reinforcing bar joints and rebar assemblies, as well as precast reinforced concrete bodies
JP2024072466A (en) Friction joining method for wooden members and dismantling method thereof
JP7263958B2 (en) Column-beam connection structure and column-beam connection method
JP7487868B2 (en) Steel joint structure
JP5432977B2 (en) Precast member joint structure