JP2023114198A - Construction method for banking - Google Patents

Construction method for banking Download PDF

Info

Publication number
JP2023114198A
JP2023114198A JP2022016413A JP2022016413A JP2023114198A JP 2023114198 A JP2023114198 A JP 2023114198A JP 2022016413 A JP2022016413 A JP 2022016413A JP 2022016413 A JP2022016413 A JP 2022016413A JP 2023114198 A JP2023114198 A JP 2023114198A
Authority
JP
Japan
Prior art keywords
fluidized soil
bag
stage
embankment
construction method
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2022016413A
Other languages
Japanese (ja)
Inventor
啓介 太田
Keisuke Ota
進 中島
Susumu Nakajima
佳孝 冨田
Yoshitaka Tomita
健太 杉山
Kenta Sugiyama
翔太 ▲高▼木
Shota Takagi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Railway Technical Research Institute
Original Assignee
Railway Technical Research Institute
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Railway Technical Research Institute filed Critical Railway Technical Research Institute
Priority to JP2022016413A priority Critical patent/JP2023114198A/en
Publication of JP2023114198A publication Critical patent/JP2023114198A/en
Pending legal-status Critical Current

Links

Images

Abstract

To provide a construction method for banking which enables simple and quick construction using fluidized soil, and has durability against external factors such as stagnation of rainwater and dryness.SOLUTION: In a construction method for banking, a bag body 2a is arranged on the outer periphery of a banking construction place, the inside of the bag body 2a is filled with a filer to form a bag body form 2, the bag body form 2 is built up to a first-stage height, then first-stage fluidized soil 3 is installed up to a top end height of the bag body form 2, the first-stage fluidized soil 3 is cured to a predetermined uniaxial compressive strength, then the bag body form 2 is installed on the first-stage fluidized soil 3 similarly to the first stage, the bag body form 2 is built up to a second-stage height and the second-stage fluidized soil 3 is installed, the above operation is repeatedly performed and the fluidized soil 3 is installed up to a predetermined height, and then the upper end of the top layer of the fluidized soil 3 is covered with a protective layer 4 having a drainage and water retention and load dispersion effect.SELECTED DRAWING: Figure 2

Description

本発明は、鉄道等の用途に用いられる盛土の施工方法に関し、詳しくは、流動化処理土を用いた盛土の施工方法に関する。 TECHNICAL FIELD The present invention relates to an embankment construction method for use in railways and the like, and more particularly to an embankment construction method using fluidized soil.

例えば鉄道用の盛土は、その性質上、狭隘部等の作業性の悪い場所での施工や、夜間等の限られた時間での施工が要求されることが多く、施工の省力化や迅速化が要求される。また、近年では、集中豪雨等の被害が増加していることから、崩壊した盛土の早期復旧に対する需要も増している。 For example, due to the nature of embankment for railways, it is often required to work in places with poor workability such as narrow spaces, and to work in limited hours such as at night. is required. Moreover, in recent years, due to the increase in damage caused by torrential rains and the like, there is an increasing demand for early restoration of collapsed embankments.

建設発生土などに水やセメント等の固化材を混ぜ合わせた流動化処理土は、高い流動性と充填性を有しており、流動化処理土を盛土材として用いることで、土質材料を使用した場合と比べて、盛土施工の省力化や迅速化を図ることができる。 Fluidized soil, which is made by mixing solidifying materials such as water and cement with soil generated from construction, has high fluidity and filling properties. Compared to the case where it is done, it is possible to save labor and speed up embankment construction.

流動化処理土を使用して盛土を施工する場合、流動化処理土打設時の流出を防ぐために、側面に型枠を設けることが必要である。従来、型枠として、大型土のうやPC擁壁が用いられている。ところが、大型土のうはあくまでも仮設材であり、恒久構造物としては使用できないため、大型土のうを用いた場合は、流動化処理土の硬化後に大型土のうを撤去し、法面を施工する必要がある。一方、PC擁壁は、運搬や製作の関係から大きさに制限があり、大型のPC擁壁を製作する場合には長期間を要する。したがって、これらの方法では、流動化処理土を盛土材として使用した場合の施工の省力化や迅速化という利点を十分に活かすことができない。 When constructing an embankment using the fluidized soil, it is necessary to provide a formwork on the side to prevent outflow during the placement of the fluidized soil. Conventionally, large sandbags and PC retaining walls have been used as formwork. However, large sandbags are only temporary materials and cannot be used as permanent structures. Therefore, when large sandbags are used, it is necessary to remove the large sandbags after the fluidized soil has hardened and construct a slope. On the other hand, PC retaining walls are limited in size due to transportation and manufacturing, and it takes a long time to manufacture a large PC retaining wall. Therefore, in these methods, it is not possible to make full use of the advantages of labor saving and speeding up construction when the fluidized soil is used as the embankment material.

流動化処理土を用いた盛土の施工方法として、例えば特許文献1には、複数の箱体または袋体に充填物を充填した堰堤内に流動化処理土を打設する盛土の施工方法が開示されている。 As an embankment construction method using fluidized soil, for example, Patent Document 1 discloses an embankment construction method in which fluidized soil is poured into a dam in which a plurality of boxes or bags are filled with a filler. It is

特開2002-21083号公報Japanese Patent Application Laid-Open No. 2002-21083

ところが、流動化処理土は、雨水等の滞水、外気による乾燥といった外的要因によって劣化する特性がある。例えば鉄道用盛土として長期的に列車荷重を支持する性能を確保するためには、これらの外的要因から防護し、耐久性を向上させる手段が必要である。 However, fluidized soil has the property of deteriorating due to external factors such as stagnant water such as rainwater and drying due to outside air. For example, in order to ensure the long-term performance of railroad embankments to support the train load, it is necessary to protect them from these external factors and improve their durability.

本発明は上記事情に鑑みてなされたものであり、流動化処理土を用いて、簡易且つ迅速な施工が可能であり、雨水等の滞水や乾燥等の外的要因に対する耐久性を有する盛土の施工方法を提供することを目的とする。 The present invention has been made in view of the above circumstances, and embankments that can be constructed easily and quickly using fluidized soil and have durability against external factors such as stagnant rainwater and drying. The purpose is to provide a construction method for

上記問題を解決するため、本発明は、流動化処理土を用いた盛土の施工方法であって、盛土施工場所の外周に袋体を配置し、前記袋体の内部に充填材を充填して袋体型枠を形成し、前記袋体型枠を1段目の高さまで積み上げた後、前記袋体型枠の天端高さまで1段目の流動化処理土を打設し、前記1段目の流動化処理土が所定の一軸圧縮強度に硬化した後、前記1段目の流動化処理土の上に、前記1段目と同様に、袋体型枠を設置し、前記袋体型枠を2段目の高さまで積み上げて2段目の流動化処理土を打設し、これを繰り返して所定の高さまで前記流動化処理土を打設した後、前記流動化処理土の最上層の上端を、排水・保水および荷重分散効果を有する保護層で覆うことを特徴としている。 In order to solve the above problems, the present invention provides a method for constructing an embankment using fluidized treated soil, in which a bag is arranged on the outer periphery of the embankment construction site, and a filler is filled inside the bag. After forming a bag form and stacking the bag form to the height of the first stage, the first level of fluidized soil is cast to the height of the top of the bag form, and the first level of fluidization is performed. After the treated soil has hardened to a predetermined uniaxial compressive strength, a bag form is placed on the first stage fluidized soil in the same manner as the first stage, and the bag form is placed on the second stage. The second layer of fluidized soil is piled up to the height of , and this is repeated until the fluidized soil is placed to a predetermined height, and then the top of the top layer of the fluidized soil is drained.・It is characterized by being covered with a protective layer that has water retention and load distribution effects.

前記保護層は、透水性の異なる二種類の層で構成され、前記流動化処理土の直上に透水性が高い下層、その上に透水性が低い上層を設けることが好ましい。 The protective layer is composed of two types of layers with different water permeability, and it is preferable to provide a lower layer with high water permeability immediately above the fluidized soil and an upper layer with low water permeability thereon.

前記流動化処理土は、一軸圧縮強度の28日強度が600kPa以上でもよい。 The fluidized soil may have a 28-day unconfined compressive strength of 600 kPa or more.

打設した前記流動化処理土の硬化時の一軸圧縮強度は、小型FWD試験で前記流動化処理土の地盤反力係数を計測し、地盤反力係数と変形係数との関係から変形係数を求め、変形係数と一軸圧縮強度との関係から、前記流動化処理土の一軸圧縮強度を求めてもよい。 The unconfined compressive strength of the placed fluidized soil when hardening is obtained by measuring the ground reaction force coefficient of the fluidized soil in a small FWD test, and obtaining the deformation coefficient from the relationship between the ground reaction force coefficient and the deformation coefficient. , the uniaxial compressive strength of the fluidized soil may be obtained from the relationship between the deformation coefficient and the uniaxial compressive strength.

一端を前記袋体型枠に固定し、他端を前記流動化処理土内に定着させる棒状補強材を設けてもよい。 A rod-shaped reinforcing member may be provided, one end of which is fixed to the bag formwork and the other end of which is fixed in the fluidized soil.

前記袋体は合成繊維製でもよい。 The bag may be made of synthetic fibers.

前記充填材がコンクリートでもよい。 The filler may be concrete.

前記1段目の流動化処理土が所定の一軸圧縮強度に硬化した後、1段目の前記袋体型枠を解体し、解体した前記袋体型枠の袋体を前記1段目の流動化処理土の上に設置し、前記袋体の内部に充填材を充填し袋体型枠を形成して2段目の流動化処理土を打設し、これを繰り返して所定の高さまで前記流動化処理土を打設してもよい。 After the first-stage fluidized soil has hardened to a predetermined uniaxial compressive strength, the first-stage bag mold is dismantled, and the bag of the dismantled bag-body mold is subjected to the first-stage fluidization treatment. Place it on top of the soil, fill the inside of the bag with a filler to form a bag form, place the second stage of fluidized soil, and repeat this until the fluidized soil reaches a predetermined height. Soil may be placed.

前記盛土の法面に擁壁を設けてもよい。また、前記盛土は、鉄道用盛土でもよい。 A retaining wall may be provided on the slope of the embankment. Moreover, the embankment may be a railway embankment.

本発明によれば、流動化処理土を用いて、雨水の滞水や乾燥等の外的要因に対する耐久性を有し、鉄道等の用途で用いることができる盛土を簡易且つ迅速に施工することができる。 According to the present invention, using fluidized soil, embankment that has durability against external factors such as stagnant rainwater and drying and can be used for railroads and the like can be constructed simply and quickly. can be done.

本発明で用いられる袋体型枠の一例を示す斜視図である。1 is a perspective view showing an example of a bag form used in the present invention; FIG. 本発明の実施形態にかかる盛土の施工手順の例を説明する断面図である。It is a sectional view explaining an example of a construction procedure of embankment concerning an embodiment of the present invention. 地盤反力係数KP.FWD値と変形係数E50との関係を示すグラフである。Ground reaction force coefficient K P. 10 is a graph showing the relationship between FWD value and deformation coefficient E50. 一軸圧縮強度qと変形係数E50との関係を示すグラフである。Fig. 3 is a graph showing the relationship between the unconfined compressive strength q u and the modulus of deformation E50 ; 鉄道用盛土の施工例を示す断面図である。It is sectional drawing which shows the construction example of the embankment for railways. 急勾配の盛土を施工する際の補強方法の例を示す斜視図である。FIG. 4 is a perspective view showing an example of a reinforcement method when constructing a steep slope embankment. 急勾配の盛土の施工例を示す断面図である。It is a sectional view showing an example of construction of embankment with a steep slope. 先端に定着部を設けた定着用鉄筋の例を示す斜視図である。FIG. 3 is a perspective view showing an example of a fixing reinforcing bar having a fixing portion at its tip; 複数の定着用鉄筋の先端に長尺の定着部材を取り付けた例を示す斜視図である。FIG. 4 is a perspective view showing an example in which long fixing members are attached to the ends of a plurality of fixing reinforcing bars; 本発明の異なる実施形態にかかる盛土の施工手順の例を説明する断面図である。It is sectional drawing explaining the example of the construction procedure of the embankment concerning different embodiment of this invention.

以下、本発明の実施の形態を、図を参照して説明する。なお、本明細書および図面において、実質的に同一の機能構成を有する要素においては、同一の符号を付することにより重複説明を省略する。 BEST MODE FOR CARRYING OUT THE INVENTION Hereinafter, embodiments of the present invention will be described with reference to the drawings. In the present specification and drawings, elements having substantially the same functional configuration are denoted by the same reference numerals, thereby omitting redundant description.

図1は、本発明で用いられる袋体型枠2の一例を示す。袋体型枠2は、盛土を施工する場所の外周に袋体2aを配置した後、コンクリート等の充填材を注入口2bから袋体2aの内部に充填して形成される。袋体型枠2は、盛土施工後、そのまま盛土の本体構造物として使用できるものとし、袋体2aは耐候性および強度に優れた例えば合成繊維等を材料とすることが好ましい。また、充填材を充填する前の袋体2aは、例えば折りたたんで、人力で運搬および設置が可能な重量であることが好ましい。 FIG. 1 shows an example of a bag form 2 used in the present invention. The bag formwork 2 is formed by arranging the bag 2a on the outer circumference of the site where the embankment is to be constructed, and then filling the interior of the bag 2a with a filler such as concrete through the inlet 2b. The bag formwork 2 can be used as the main structure of the embankment as it is after construction of the embankment, and the bag body 2a is preferably made of, for example, synthetic fibers that are excellent in weather resistance and strength. In addition, it is preferable that the bag body 2a before being filled with the filler has a weight that can be folded, for example, and transported and installed manually.

以下、図2に基づいて、本発明の実施形態にかかる盛土の施工方法の手順の一例について説明する。本実施形態は、鉄道用盛土の施工方法とする。 An example of the procedure of the embankment construction method according to the embodiment of the present invention will be described below with reference to FIG. This embodiment is a construction method for embankment for railways.

先ず、例えば合成繊維製の袋体2aを現場の所定位置に設置し、コンクリート等の充填材を袋体2aに充填して、図1に示す形に整形し、袋体型枠2を形成する。充填材は、例えばポンプ車等により圧入する。充填材を充填した袋体型枠2は、高さが例えば500mm程度である。幅は、流動化処理土打設時の側圧に抵抗できる寸法とし、例えば1,000~4,000mm程度で、施工する盛土の幅や高さ、充填材の単位体積重量等に応じて決められる。袋体型枠2の長手方向の寸法は特に制限されないが、盛土の長手方向に沿って配置される長尺形状、例えば50m程度としてもよい。 First, for example, a synthetic fiber bag 2a is placed at a predetermined position on site, filled with a filler such as concrete, and shaped into the shape shown in FIG. The filling material is press-fitted by, for example, a pump truck or the like. The bag mold 2 filled with the filler has a height of, for example, about 500 mm. The width is a dimension that can resist the lateral pressure during the placement of the fluidized soil, for example, about 1,000 to 4,000 mm. . The longitudinal dimension of the bag formwork 2 is not particularly limited, but it may have a long shape arranged along the longitudinal direction of the embankment, for example, about 50 m.

次に、充填材を充填した袋体型枠2の上に、別の袋体2aを重ねて設置し、同様に充填材を充填して袋体型枠2を形成する。そして、例えば2体の袋体型枠2を重ねたところで、充填材が硬化するまで養生を行う。充填材として呼び強度24N/mmのコンクリートを使用した場合には、1日程度の養生を行うとよい。同様にして、図2(a)に示すように、盛土の両端側に、例えば2m程度の高さまで袋体型枠2を積み上げる。図2(a)の実施形態では、高さ500mmの袋体型枠を4段重ねている。 Next, another bag 2a is placed on top of the bag form 2 filled with the filler, and the bag form 2 is formed by similarly filling the bag with the filler. Then, for example, when the two bag molds 2 are superimposed, curing is performed until the filler hardens. When concrete with a nominal strength of 24 N/mm 2 is used as the filler, curing for about one day is recommended. Similarly, as shown in FIG. 2(a), the bag formwork 2 is piled up on both ends of the embankment to a height of, for example, about 2 m. In the embodiment of FIG. 2( a ), four tiers of 500 mm high bag forms are stacked.

その後、1段目としての所定高さまで積み上げられた袋体型枠2同士の間に、袋体型枠2の天端高さまで、流動化処理土3を打設する(図2(b))。流動化処理土3は、建設発生土などに水やセメント等の固化材を混ぜ合わせた一般的なものを用いればよい。従来、鉄道の盛土材料として流動化処理土を使用する際、流動化処理土の設計基準強度に関する明確な規定は無く、例えばトンネルインバート部では、十分な安全性を考慮し、一軸圧縮強度6,000kPa程度のものを使用していた。ところが、近年、本発明者らの実験的研究により、流動化処理土による盛土に保護層を設けることにより、流動化処理土の一軸圧縮強度qを600kPa程度以上とすれば、列車荷重の繰返し作用に耐えうる構造となることが確認されている。本実施形態では、28日強度で1,200kPaの配合の流動化処理土3を用いることとする。 After that, the fluidized soil 3 is placed between the bag forms 2 stacked up to a predetermined height as the first stage, up to the top height of the bag forms 2 (Fig. 2(b)). As the fluidized soil 3, general soil obtained by mixing solidifying material such as water and cement with soil generated from construction may be used. Conventionally, when using fluidized soil as an embankment material for railways, there are no clear regulations regarding the design standard strength of fluidized soil. A pressure of about 000 kPa was used. However, in recent years, experimental research by the present inventors has shown that if the unconfined compressive strength qu of the fluidized soil is increased to about 600 kPa or more by providing a protective layer on the embankment of the fluidized soil, the repeated train load will increase. It has been confirmed that the structure can withstand the action. In this embodiment, the fluidized soil 3 having a composition of 1,200 kPa with a strength of 28 days is used.

打設した流動化処理土3は、袋体型枠2の重量などに応じて決められる一軸圧縮強度強度になるまで硬化させる。本実施形態では、一軸圧縮強度が50kPa程度となるまで硬化させる。例えば28日強度が1,200kPaの配合とした場合、通常は、材齢1日程度で50kPa以上となる。 The placed fluidized treated soil 3 is hardened until it reaches a uniaxial compressive strength determined according to the weight of the bag form 2 and the like. In this embodiment, the material is cured until the unconfined compressive strength reaches approximately 50 kPa. For example, when the 28-day strength is 1,200 kPa, the strength is usually 50 kPa or more at about 1 day of age.

一軸圧縮試験を行うには、専用の試験機が必要であり、時間も要するうえ、一軸圧縮試験を行うための供試体は数に限りがあり、現場状況を反映した試験を行うことが難しいという問題がある。そこで、本実施形態では、打設後の流動化処理土3の強度を現場で簡易に確認する方法として、小型FWD試験を用いる。先ず、小型FWD試験により地盤反力係数KP.FWD値を計測し、地盤反力係数KP.FWD値と変形係数E50との関係から、図3に示すように変形係数E50が求められる。さらに、予め確認された一軸圧縮強度qと変形係数E50との関係から、図4に示すように一軸圧縮強度qが求められる。こうして求められた一軸圧縮強度qにより、流動化処理土3の強度を把握することができる。 Uniaxial compression testing requires a dedicated testing machine, takes time, and the number of test specimens for uniaxial compression testing is limited, making it difficult to conduct tests that reflect on-site conditions. There's a problem. Therefore, in this embodiment, a small FWD test is used as a method for easily confirming the strength of the fluidized treated soil 3 after placement on site. First, the ground reaction force coefficient KP . The FWD value is measured, and the ground reaction force coefficient K P. From the relationship between the FWD value and the deformation coefficient E50 , the deformation coefficient E50 is obtained as shown in FIG. Furthermore , the unconfined compressive strength qu is obtained as shown in FIG . The strength of the fluidized soil 3 can be grasped from the uniaxial compressive strength qu thus obtained.

流動化処理土3が所定の強度に硬化したことが確認されると、その上に、2段目として、所定の傾斜が得られる位置に袋体型枠2を上述の方法と同様にして積み上げ(図2(c))、さらに、28日強度が1,200kPaの配合の流動化処理土3を、袋体型枠2の天端高さまで打設する(図2(d))。本実施形態では、一度に打設する流動化処理土3の1段の高さを2mとし、図2(e)、(f)に示すように、3段に分けて袋体型枠2の積み上げおよび流動化処理土3の打設を繰り返す。なお、最上段の流動化処理土3を打設する際には、盛土施工後に試験する一軸圧縮試験用供試体を採取しておく。 When it is confirmed that the fluidized treated soil 3 has hardened to a predetermined strength, as the second stage, the bag formwork 2 is piled up at a position where a predetermined inclination can be obtained in the same manner as described above ( Fig. 2(c)), furthermore, the fluidized treated soil 3 with a 28-day strength of 1,200 kPa is placed up to the height of the top of the bag formwork 2 (Fig. 2(d)). In this embodiment, the height of one stage of the fluidized treated soil 3 that is placed at one time is set to 2 m, and as shown in FIGS. And the placement of the fluidized treated soil 3 is repeated. In addition, when placing the uppermost fluidized soil 3, a specimen for the uniaxial compression test to be tested after embankment construction is taken.

図2(f)に示すように3段目の流動化処理土3の打設が終了した後、流動化処理土3の上に、鉄道の軌道等を設けるための重機作業が行われる。本実施形態において、この重機作業を行う際、流動化処理土3の上で一般的な敷き均しや転圧機械が作業できる強度として、流動化処理土3の一軸圧縮強度qを100kPa以上とする。28日強度が1,200kPaの配合の流動化処理土3の場合、通常、2日程度の養生で、一軸圧縮強度qが100kPa以上になる。 As shown in FIG. 2( f ), after the placement of the third layer of fluidized soil 3 is completed, heavy machinery work is carried out to lay railroad tracks and the like on top of the fluidized soil 3 . In this embodiment, when performing this heavy machinery work, the unconfined compressive strength qu of the fluidized soil 3 is 100 kPa or more as a strength that allows general spreading and rolling machines to work on the fluidized soil 3. and In the case of the fluidized soil 3 having a 28-day strength of 1,200 kPa, the uniaxial compressive strength qu is usually 100 kPa or more after curing for about 2 days.

2日程度養生した最上段の流動化処理土3の一軸圧縮強度qが100kPaに達していない場合には、さらに1日程度養生を行い、再度小型FWD試験を行って流動化処理土3の一軸圧縮強度qを確認する。所定の強度発現を確認できるまで、これを繰り返す。 If the unconfined compressive strength qu of the uppermost fluidized soil 3 that has been cured for about 2 days has not reached 100 kPa, it is cured for about another day, and then the small FWD test is performed again to test the fluidized soil 3. Check the unconfined compressive strength q u . This is repeated until a predetermined intensity expression can be confirmed.

一軸圧縮強度qが100kPa以上になっていることが確認されたら、最上層の流動化処理土3の上面に、雨水の滞水の防止や乾燥からの防護、および列車荷重等の分散のために、保護層4を施工する。本実施形態において、保護層4は、図2(g)に示すように、透水性が異なる二種類の層5,6を重ねて形成し、流動化処理土3の直上の下層5を透水性が高い例えば粗い礫層とし、上層6を粒子の細かい砂層とする。このように上層6の透水性を低くすることで、上層6や、上層6と下層5との境界での排水を促進し、下層5を介して流動化処理土3に雨水が浸漬しにくくなる。保護層4全体の厚さは、例えば300mm程度とする。保護層4は、流動化処理土3の過剰な乾燥を防いだり、列車等の荷重の分散効果を持たせたりすることもできる。保護層4は、少なくとも流動化処理土3の上面を覆う範囲に設けられ、図5(a)に示すように袋体型枠2の上面を覆ってもよい。こうして、流動化処理土3の上面は保護層4で保護され、側面は袋体型枠2で保護された盛土10が形成される。 When it is confirmed that the unconfined compressive strength qu is 100 kPa or more, the upper surface of the fluidized soil 3 of the uppermost layer is covered with water to prevent rainwater from accumulating, to protect against drying, and to disperse the train load, etc. , a protective layer 4 is applied. In this embodiment, as shown in FIG. For example, a coarse gravel layer is used, and the upper layer 6 is a fine-grained sand layer. By reducing the water permeability of the upper layer 6 in this way, drainage is promoted at the upper layer 6 and the boundary between the upper layer 6 and the lower layer 5, and rainwater is less likely to soak into the fluidized soil 3 through the lower layer 5. . The thickness of the entire protective layer 4 is, for example, approximately 300 mm. The protective layer 4 can also prevent excessive drying of the fluidized soil 3 and can have an effect of dispersing the load of a train or the like. The protective layer 4 is provided in a range covering at least the upper surface of the fluidized treated soil 3, and may cover the upper surface of the bag mold 2 as shown in FIG. 5(a). In this way, an embankment 10 is formed in which the upper surface of the fluidized treated soil 3 is protected by the protective layer 4 and the side surface is protected by the bag formwork 2 .

さらに、鉄道用盛土として用いる際には、図5に示すように、保護層4の上面に、砕石路盤7および軌道8を施工する。そして、最上段の流動化処理土3を打設する際に採取した一軸圧縮試験用供試体に対して一軸圧縮試験を行い、流動化処理土3の一軸圧縮強度qが所定強度、すなわち、本実施形態では1,200kPa以上となっていることを確認する。一軸圧縮強度qが確認された後、試験列車の走行等により、列車走行に関する支持性能を確保できていることを確認し、列車走行を開始する。 Furthermore, when used as a railway embankment, as shown in FIG. Then, a uniaxial compression test is performed on the specimen for the uniaxial compression test taken when placing the uppermost fluidized soil 3, and the uniaxial compression strength qu of the fluidized soil 3 is a predetermined strength, that is, In this embodiment, it is confirmed that the pressure is 1,200 kPa or more. After confirming the unconfined compressive strength qu , run a test train, etc., to confirm that the support performance for running the train has been secured, and then start running the train.

以上のように、本実施形態によれば、人力で運搬および設置が可能な袋体2aを盛土10の範囲に沿って配置し、袋体2aに、ポンプ車等により充填材を圧入することで、簡易に袋体型枠2の設置を行うことができる。さらに、設置した袋体型枠2をそのまま本体構造として使用することができるので、型枠の撤去や法面工を省略することができる。したがって、工期を短縮して迅速に盛土を施工することができる。また、袋体型枠2の充填材としてコンクリートを使用すれば、法面の防草効果も期待できる。 As described above, according to the present embodiment, the bags 2a that can be transported and installed manually are arranged along the range of the embankment 10, and the filling material is press-fitted into the bags 2a by a pump truck or the like. , the bag formwork 2 can be easily installed. Furthermore, since the installed bag body formwork 2 can be used as it is as the main body structure, removal of the formwork and slope work can be omitted. Therefore, the construction period can be shortened and the embankment can be constructed quickly. In addition, if concrete is used as the filling material for the bag formwork 2, a weed control effect on the slope can be expected.

また、流動化処理土3の上面に保護層4を施工することで、雨水の滞水や外気による乾燥等の外的要因から流動化処理土3を保護し、流動化処理土3の耐久性を向上させるとともに、列車荷重の分散効果も期待できる。したがって、従来、例えばトンネルインバート部では28日強度qu28が6,000kPa程度の流動化処理土が使用されていたが、より低強度な流動化処理土(qu28=600kPa以上、例えば1200kPa)が適用可能になり、汎用性が向上する。流動化処理土3の側面は、連続した袋体型枠2を残置することで、外的要因から保護することができる。 In addition, by constructing a protective layer 4 on the upper surface of the fluidized soil 3, the fluidized soil 3 is protected from external factors such as stagnant rainwater and drying due to the outside air, and the durability of the fluidized soil 3 In addition to improving the load distribution of the train, the effect of dispersing the train load can also be expected. Therefore, conventionally, for example, in the tunnel invert section, fluidized soil with a 28-day strength qu28 of about 6,000 kPa was used, but a lower strength fluidized soil ( qu28 = 600 kPa or more, for example, 1200 kPa) was used. It becomes applicable and improves versatility. The side surface of the fluidized treated soil 3 can be protected from external factors by leaving the continuous bag formwork 2 thereon.

さらに、小型FWD試験により流動化処理土3の強度を確認することで、従来の一軸圧縮試験による強度の確認よりも簡易かつ適切なタイミングで流動化処理土3の強度を評価することが可能となる。したがって、保護層4や軌道8などの流動化処理土3上の作業を適切なタイミングで行うことが可能となり、迅速に盛土10を施工することができる。 Furthermore, by confirming the strength of the fluidized soil 3 by the small FWD test, it is possible to evaluate the strength of the fluidized soil 3 at an easier and more appropriate timing than confirmation of the strength by the conventional uniaxial compression test. Become. Therefore, work on the fluidized soil 3 such as the protective layer 4 and the track 8 can be performed at appropriate timing, and the embankment 10 can be constructed quickly.

図6は、本発明の異なる実施形態を示し、法勾配が急勾配の場合の袋体型枠2の施工手順を示す。 FIG. 6 shows a different embodiment of the present invention, showing the construction procedure of the bag formwork 2 when the slope is steep.

先ず、図2の例と同様に、袋体2aを現場の所定位置に設置し、袋体2aの注入口2bから、コンクリート等の充填材を充填して、袋体型枠2を形成する(図6(a))。 First, as in the example of FIG. 2, the bag body 2a is installed at a predetermined position on site, and a filling material such as concrete is filled from the injection port 2b of the bag body 2a to form the bag formwork 2 (FIG. 6(a)).

本実施形態では、袋体型枠2に、流動化処理土3に定着させる棒状補強材を取り付けることで、袋体型枠2と流動化処理土3とを一体化させる。これにより、袋体型枠2の地震等による倒壊を防止し、流動化処理土3による急勾配の盛土10の安定性を向上させることができる。本実施形態では、棒状部材として、定着用鉄筋22を用いる。先ず、図6(b)に示すように、袋体型枠2の、盛土の外側となる面に、長手方向に適宜間隔で、鉛直方向に固定用鉄筋21を配置する。その後、この固定用鉄筋21に固定されるとともに流動化処理土3に定着される定着用鉄筋22を配置する。定着用鉄筋22は、一端側が曲げ加工されており、この曲げ加工部22aを固定用鉄筋21に引っ掛けて、他端側は水平方向に延びるように配置する(図6(c))。そして、この定着用鉄筋22の上に、次の袋体2aを設置し、充填材を充填して袋体型枠2を形成する(図6(d))。 In this embodiment, the bag mold 2 and the fluidized soil 3 are integrated by attaching rod-shaped reinforcing members to the bag mold 2 to fix the fluidized soil 3 . As a result, collapse of the bag formwork 2 due to an earthquake or the like can be prevented, and the stability of the steep embankment 10 formed by the fluidized treated soil 3 can be improved. In this embodiment, a fixing reinforcing bar 22 is used as the rod-shaped member. First, as shown in FIG. 6(b), fixing reinforcing bars 21 are arranged vertically at suitable intervals in the longitudinal direction on the outer surface of the embankment of the bag formwork 2 . After that, a fixing reinforcing bar 22 fixed to the fixing reinforcing bar 21 and fixed to the fluidized soil 3 is arranged. One end of the fixing reinforcing bar 22 is bent, and the bent portion 22a is hooked to the fixing reinforcing bar 21, and the other end is arranged to extend horizontally (FIG. 6(c)). Then, the next bag body 2a is placed on the fixing reinforcing bar 22, and the filling material is filled to form the bag formwork 2 (FIG. 6(d)).

こうして、袋体型枠2同士の間に定着用鉄筋22が挟まれ、定着用鉄筋22が水平方向に延びた状態で固定される。同様にして、各段の袋体型枠2の上に定着用鉄筋22を配置する(図6(e))。袋体型枠2が、例えば2mの所定高さまで積み上げられたら(図6(f))、図2(b)と同様に、袋体型枠2の天端高さまで流動化処理土3を打設する。定着用鉄筋22の径や本数(設置間隔)、流動化処理土3への定着長さは、地震等に対して盛土10が恒久構造物として安定して耐え得る強度を満たすように設計される。 In this way, the fixing reinforcing bars 22 are sandwiched between the bag-body molds 2 and fixed in a state in which the fixing reinforcing bars 22 extend in the horizontal direction. Similarly, fixing reinforcing bars 22 are arranged on each stage of the bag formwork 2 (FIG. 6(e)). When the bag formwork 2 is piled up to a predetermined height of, for example, 2 m (Fig. 6(f)), the fluidized soil 3 is placed up to the height of the top of the bag formwork 2 in the same manner as in Fig. 2(b). . The diameter and number (installation intervals) of the anchoring reinforcing bars 22 and the anchoring length to the fluidized soil 3 are designed so that the embankment 10 can stably withstand earthquakes as a permanent structure. .

上記工程を繰り返し、所望する盛土高さに達したら、図7に示すように、袋体型枠2の外側に、法面の勾配に応じて、コンクリート等により擁壁9を構築し、積み上げた複数の袋体型枠2を一体化させる。比較的勾配が緩い場合には、擁壁9の代わりに、紫外線や雨水等に対する耐候性を有する吹きつけ材や面状または網目状の補強材を敷設してもよい。なお、網目状の補強材の場合には、表面に露出する鉄筋21、22を保護する手段が別途必要である。 When the above steps are repeated and the desired embankment height is reached, as shown in FIG. The bag body formwork 2 is integrated. If the slope is relatively gentle, instead of the retaining wall 9, a sprayed material having weather resistance against ultraviolet rays, rainwater, etc., or a planar or mesh-like reinforcing material may be laid. In addition, in the case of the mesh-like reinforcing material, means for protecting the reinforcing bars 21 and 22 exposed on the surface is separately required.

さらに、流動化処理土3の強度を確認した後、図2(g)に示した実施形態と同様に、流動化処理土3の上に保護層4を施工する。 Furthermore, after confirming the strength of the fluidized soil 3, a protective layer 4 is constructed on the fluidized soil 3 in the same manner as in the embodiment shown in FIG. 2(g).

流動化処理土を用いて急勾配の盛土を施工する場合、従来、PC擁壁などの強固な壁面の施工が必要とされていたが、PC擁壁は製作に時間を要し、運搬に制限があるという問題があった。また、急勾配の盛土施工に大型土のうを使用する場合には、急勾配に対応した施工時の安定性を確保するための対策を講じる必要があった。一方、図6に示す実施形態によれば、急勾配の法面を有する盛土に関しては、袋体型枠2間に棒状の補強材を配置して流動化処理土3を打設することで、盛土10の構造の安定性を増すことができる。さらに、法面表層に、擁壁9の構築または面状補強材等を敷設することにより複数の袋体型枠2を一体化させることで、盛土10の安定性が向上する。このように補強した盛土10は、用地面積が限られている場合や、既存の急勾配の法面を有する盛土を復旧する場合等、十分な面積が確保できない場合に適用することができる。 Conventionally, when constructing a steep slope embankment using fluidized soil, it was necessary to construct a strong wall surface such as a PC retaining wall. There was a problem that there is In addition, when using large sandbags for embankment construction on a steep slope, it was necessary to take measures to ensure stability during construction corresponding to the steep slope. On the other hand, according to the embodiment shown in FIG. 6, for the embankment having a steep slope, a rod-shaped reinforcing material is arranged between the bag-body forms 2 and the fluidized treated soil 3 is placed to place the embankment. 10 can increase the stability of the structure. Furthermore, the stability of the embankment 10 is improved by integrating a plurality of bag forms 2 by constructing a retaining wall 9 or laying a planar reinforcing material or the like on the slope surface layer. The embankment 10 reinforced in this way can be applied when a sufficient area cannot be secured, such as when the land area is limited or when restoring an existing embankment with a steep slope.

なお、定着用鉄筋22と流動化処理土3との定着を強固にするために、定着用鉄筋22の先端に、図8に例示するような矩形または円形の板状の定着部22bを設けてもよい。あるいは、複数の定着用鉄筋22の先端を長尺の定着部材23、例えば図9に示すようにL型アングル等に取り付けてもよい。 In order to strengthen the fixation of the fixing reinforcing bar 22 and the fluidized treated soil 3, a rectangular or circular plate-like fixing portion 22b as illustrated in FIG. 8 is provided at the tip of the fixing reinforcing bar 22. good too. Alternatively, the tips of the plurality of fixing reinforcing bars 22 may be attached to a long fixing member 23, such as an L-shaped angle as shown in FIG.

また、図10は、本発明のさらに異なる実施形態にかかる盛土10の施工方法の手順を示す。 Moreover, FIG. 10 shows the procedure of the construction method of the embankment 10 concerning still another embodiment of this invention.

袋体2aを現場の所定位置に設置し、充填材を充填して、袋体型枠2を形成する(図10(a))。本実施形態では、充填材として水を用いる。充填材を充填した袋体型枠2は、高さおよび幅が例えば1,500mm程度である。 The bag body 2a is installed at a predetermined position on site and filled with a filler to form the bag formwork 2 (FIG. 10(a)). In this embodiment, water is used as the filler. The bag mold 2 filled with the filler has a height and a width of about 1,500 mm, for example.

その後、袋体型枠2同士の間に、袋体型枠2の天端高さ以下の高さ、例えば1,000mmの高さまで、流動化処理土3を打設する(図10(b))。流動化処理土3は、前述の実施形態と同様のものを用いればよい。 After that, the fluidized soil 3 is placed between the bag forms 2 to a height equal to or lower than the height of the top of the bag form 2, for example, to a height of 1,000 mm (Fig. 10(b)). The fluidized soil 3 may be the same as in the above-described embodiment.

流動化処理土3を打設して1日程度養生して所定の強度になった後、1段目の袋体型枠2から水を抜き取り、袋体型枠2を解体する(図10(c))。そして、解体した袋体型枠2の袋体2aを、1段目の流動化処理土3の上に設置し、充填材を充填して、袋体型枠2を形成する(図10(d))。その後、1段目と同様に流動化処理土3を打設し(図10(e))、1日程度養生した後、袋体型枠2から水を抜き取り、袋体型枠2を解体する(図10(f))。 After placing the fluidized treated soil 3 and curing it for about one day until it reaches a predetermined strength, the water is drained from the bag form 2 on the first stage, and the bag form 2 is dismantled (Fig. 10(c) ). Then, the bag body 2a of the dismantled bag body form 2 is placed on the fluidized treated soil 3 of the first stage, and the filling material is filled to form the bag body form 2 (Fig. 10(d)). . After that, the fluidized treated soil 3 is placed in the same manner as in the first stage (Fig. 10(e)), and after curing for about one day, the water is drained from the bag form 2, and the bag form 2 is dismantled (Fig. 10(f)).

同様の工程を繰り返し、所定の高さまで流動化処理土3を積み上げる(図10(g))。流動化処理土3の一軸圧縮強度qが所定の強度を満たすことが確認されたら、最上層の流動化処理土3の上面に、透水性が異なる二種類の層5,6を重ねて形成した保護層4を施工する。さらに、流動化処理土3の側面に、コンクリート等により擁壁9を構築し、積み上げた複数段の流動化処理土3を一体化させる。鉄道用盛土として用いる際には、保護層4の上面に、砕石路盤7および軌道8を施工する(図10(h))。 The same process is repeated to pile up the fluidized soil 3 to a predetermined height (Fig. 10(g)). When it is confirmed that the uniaxial compressive strength qu of the fluidized soil 3 satisfies a predetermined strength, two types of layers 5 and 6 with different water permeability are formed on the top surface of the fluidized soil 3, which is the uppermost layer. Then, a protective layer 4 is applied. Further, a retaining wall 9 is constructed from concrete or the like on the side surface of the fluidized soil 3 to integrate the stacked fluidized soil 3 in multiple stages. When used as a railway embankment, a crushed roadbed 7 and a track 8 are constructed on the upper surface of the protective layer 4 (FIG. 10(h)).

本実施形態では、袋体型枠2の充填材として水を用い、各段で同じ袋体型枠2を繰り返し使用するため、低コストで盛土を施工することができる。 In this embodiment, water is used as the filling material for the bag formwork 2, and the same bag formwork 2 is repeatedly used in each stage, so embankment can be constructed at low cost.

以上、本発明の好適な実施形態について説明したが、本発明はかかる例に限定されない。当業者であれば、特許請求の範囲に記載された技術的思想の範疇内において、各種の変更例または修正例に想到しうることは明らかであり、それらについても当然に本発明の技術的範囲に属するものと了解される。 Although the preferred embodiments of the present invention have been described above, the present invention is not limited to such examples. It is obvious that a person skilled in the art can conceive various modifications or modifications within the scope of the technical idea described in the claims, and these are also within the technical scope of the present invention. be understood to belong to

本発明は、鉄道等の用途に用いられる盛土の施工方法として有用である。 INDUSTRIAL APPLICABILITY The present invention is useful as an embankment construction method for use in railways and the like.

2 袋体型枠
3 流動化処理土
4 保護層
9 擁壁
10 盛土
21 固定用鉄筋
22 定着用鉄筋
2 Bag Formwork 3 Fluidized Soil 4 Protective Layer 9 Retaining Wall 10 Embankment 21 Fixing Reinforcement 22 Fixing Reinforcement

Claims (10)

流動化処理土を用いた盛土の施工方法であって、
盛土施工場所の外周に袋体を配置し、前記袋体の内部に充填材を充填して袋体型枠を形成し、
前記袋体型枠を1段目の高さまで積み上げた後、前記袋体型枠の天端高さまで1段目の流動化処理土を打設し、
前記1段目の流動化処理土が所定の一軸圧縮強度に硬化した後、
前記1段目の流動化処理土の上に、前記1段目と同様に、袋体型枠を設置し、前記袋体型枠を2段目の高さまで積み上げて2段目の流動化処理土を打設し、
これを繰り返して所定の高さまで前記流動化処理土を打設した後、
前記流動化処理土の最上層の上端を、排水・保水および荷重分散効果を有する保護層で覆うことを特徴とする、盛土の施工方法。
An embankment construction method using fluidized soil,
placing a bag on the outer periphery of the embankment construction site, filling the inside of the bag with a filler to form a bag form,
After stacking the bag formwork to the height of the first stage, pour the fluidized soil of the first stage up to the height of the crown of the bag formwork,
After the first-stage fluidized soil has hardened to a predetermined uniaxial compressive strength,
On top of the fluidized soil of the first stage, a bag formwork is installed in the same manner as the first stage, and the bag formwork is piled up to the height of the second stage to form the fluidized soil of the second stage. cast,
After repeating this and placing the fluidized soil up to a predetermined height,
A method of constructing an embankment, characterized in that the upper end of the uppermost layer of the fluidized soil is covered with a protective layer having drainage, water retention and load distribution effects.
前記保護層は、透水性の異なる二種類の層で構成され、前記流動化処理土の直上に透水性が高い下層、その上に透水性が低い上層を設けることを特徴とする、請求項1に記載の盛土の施工方法。 Claim 1, wherein the protective layer is composed of two types of layers with different water permeability, and a lower layer with high water permeability is provided immediately above the fluidized soil, and an upper layer with low water permeability is provided thereon. The embankment construction method described in . 前記流動化処理土は、一軸圧縮強度の28日強度が600kPa以上であることを特徴とする、請求項1または2のいずれか一項に記載の盛土の施工方法。 3. The embankment construction method according to claim 1, wherein the fluidized soil has a 28-day unconfined compressive strength of 600 kPa or more. 打設した前記流動化処理土の硬化時の一軸圧縮強度は、
小型FWD試験で前記流動化処理土の地盤反力係数を計測し、
地盤反力係数と変形係数との関係から変形係数を求め、
変形係数と一軸圧縮強度との関係から、前記流動化処理土の一軸圧縮強度を求めることを特徴とする、請求項1~3のいずれか一項に記載の盛土の施工方法。
The unconfined compressive strength at the time of hardening of the poured fluidized soil is
Measuring the ground reaction force coefficient of the fluidized soil in a small FWD test,
Obtain the deformation coefficient from the relationship between the ground reaction force coefficient and the deformation coefficient,
The embankment construction method according to any one of claims 1 to 3, wherein the uniaxial compressive strength of the fluidized soil is obtained from the relationship between the deformation coefficient and the uniaxial compressive strength.
一端を前記袋体型枠に固定し、他端を前記流動化処理土内に定着させる棒状補強材を設けることを特徴とする、請求項1~4のいずれか一項に記載の盛土の施工方法。 The embankment construction method according to any one of claims 1 to 4, characterized by providing a rod-shaped reinforcing member whose one end is fixed to the bag formwork and whose other end is fixed in the fluidized soil. . 前記袋体は合成繊維製であることを特徴とする、請求項1~5のいずれか一項に記載の盛土の施工方法。 The embankment construction method according to any one of claims 1 to 5, wherein the bag is made of synthetic fiber. 前記充填材がコンクリートであることを特徴とする、請求項1~6のいずれか一項に記載の盛土の施工方法。 The embankment construction method according to any one of claims 1 to 6, wherein the filler is concrete. 前記1段目の流動化処理土が所定の一軸圧縮強度に硬化した後、
1段目の前記袋体型枠を解体し、解体した前記袋体型枠の袋体を前記1段目の流動化処理土の上に設置し、前記袋体の内部に充填材を充填し袋体型枠を形成して2段目の流動化処理土を打設し、
これを繰り返して所定の高さまで前記流動化処理土を打設することを特徴とする、請求項1~4のいずれか一項に記載の盛土の施工方法。
After the first-stage fluidized soil has hardened to a predetermined uniaxial compressive strength,
The bag body form of the first stage is dismantled, the bag of the dismantled bag form is placed on the fluidized soil of the first stage, and the inside of the bag is filled with a filler to form a bag. A frame is formed and the second layer of fluidized soil is placed,
The embankment construction method according to any one of claims 1 to 4, characterized in that this process is repeated to place the fluidized soil up to a predetermined height.
前記盛土の法面に擁壁を設けることを特徴とする、請求項1~8のいずれか一項に記載の盛土の施工方法。 The embankment construction method according to any one of claims 1 to 8, characterized in that a retaining wall is provided on the slope of the embankment. 前記盛土は、鉄道用盛土であることを特徴とする、請求項1~9のいずれか一項に記載の盛土の施工方法。 The embankment construction method according to any one of claims 1 to 9, wherein the embankment is a railway embankment.
JP2022016413A 2022-02-04 2022-02-04 Construction method for banking Pending JP2023114198A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2022016413A JP2023114198A (en) 2022-02-04 2022-02-04 Construction method for banking

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2022016413A JP2023114198A (en) 2022-02-04 2022-02-04 Construction method for banking

Publications (1)

Publication Number Publication Date
JP2023114198A true JP2023114198A (en) 2023-08-17

Family

ID=87569142

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2022016413A Pending JP2023114198A (en) 2022-02-04 2022-02-04 Construction method for banking

Country Status (1)

Country Link
JP (1) JP2023114198A (en)

Similar Documents

Publication Publication Date Title
NL8700512A (en) FOUNDATION AND METHOD FOR MAKING THEREOF
US20100325819A1 (en) Bridge approach and abutment construction and method
CN113186766A (en) Shallow soft soil foundation foam light soil embankment structure and construction method
Puppala et al. Recommendations for design, construction, and maintenance of bridge approach slabs.
KR100975113B1 (en) Curb element concrete placing apparatus and the method of construction Thereof
US6808156B2 (en) Method and apparatus for molding concrete into a bridge or other structure
JP2023114198A (en) Construction method for banking
JP5129105B2 (en) Pre-packed block roadbed and its construction method
JPS63233120A (en) Foundation work for wooden building
JP2005155145A (en) Construction method for reinforced earth retaining wall and structure of the reinforced earth retaining wall
CN114837088A (en) Construction method of bearing platform on highway
CN112663418A (en) Pile-supported high embankment and construction method
JP6710586B2 (en) Gate type structure and construction method thereof
EP2356287B1 (en) Monolithic foundation system
JP2678861B2 (en) Concrete pouring method for mass concrete structure
DoR Technical specifications
RU151365U1 (en) DESIGN OF WATERPROOFING STRUCTURE WITH APPLICATION OF POLYMERIC BINDERS
RU2812390C1 (en) Method for constructing reinforced concrete road surface from reinforced concrete sleepers and reinforced concrete road surface from reinforced concrete sleepers laid in this way (embodiments)
RU2783072C1 (en) Method for preparing the base of a cylindrical tank on soft soils
CN212129795U (en) Dampproofing anti ground structure that splits
DE102017129705A1 (en) Method for producing an attachment of a terrain jump by means of a support body, supporting body and its use
JP3640452B2 (en) Scouring prevention method for foundations on water structures
CN216809531U (en) Riverbed scouring comprehensive protection structure
JPH11140859A (en) Method for improving weak ground
CN220908429U (en) Novel bridge bench back backfill structure

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20240321