JP2023107708A - 睡眠状態判定装置、睡眠状態判定方法およびプログラム - Google Patents

睡眠状態判定装置、睡眠状態判定方法およびプログラム Download PDF

Info

Publication number
JP2023107708A
JP2023107708A JP2022019104A JP2022019104A JP2023107708A JP 2023107708 A JP2023107708 A JP 2023107708A JP 2022019104 A JP2022019104 A JP 2022019104A JP 2022019104 A JP2022019104 A JP 2022019104A JP 2023107708 A JP2023107708 A JP 2023107708A
Authority
JP
Japan
Prior art keywords
sleep state
sleep
vibration signal
body motion
rate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2022019104A
Other languages
English (en)
Inventor
正巳 鐘ヶ江
Masami Kanegae
久一 新関
Kyuichi Niizeki
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
HEALTH SENSING CO Ltd
Original Assignee
HEALTH SENSING CO Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by HEALTH SENSING CO Ltd filed Critical HEALTH SENSING CO Ltd
Priority to JP2022019104A priority Critical patent/JP2023107708A/ja
Priority to PCT/JP2023/002765 priority patent/WO2023140390A1/ja
Publication of JP2023107708A publication Critical patent/JP2023107708A/ja
Pending legal-status Critical Current

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/02Detecting, measuring or recording pulse, heart rate, blood pressure or blood flow; Combined pulse/heart-rate/blood pressure determination; Evaluating a cardiovascular condition not otherwise provided for, e.g. using combinations of techniques provided for in this group with electrocardiography or electroauscultation; Heart catheters for measuring blood pressure
    • A61B5/024Detecting, measuring or recording pulse rate or heart rate
    • A61B5/0245Detecting, measuring or recording pulse rate or heart rate by using sensing means generating electric signals, i.e. ECG signals
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/08Detecting, measuring or recording devices for evaluating the respiratory organs
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/103Detecting, measuring or recording devices for testing the shape, pattern, colour, size or movement of the body or parts thereof, for diagnostic purposes
    • A61B5/11Measuring movement of the entire body or parts thereof, e.g. head or hand tremor, mobility of a limb
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/103Detecting, measuring or recording devices for testing the shape, pattern, colour, size or movement of the body or parts thereof, for diagnostic purposes
    • A61B5/11Measuring movement of the entire body or parts thereof, e.g. head or hand tremor, mobility of a limb
    • A61B5/113Measuring movement of the entire body or parts thereof, e.g. head or hand tremor, mobility of a limb occurring during breathing
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/16Devices for psychotechnics; Testing reaction times ; Devices for evaluating the psychological state

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Animal Behavior & Ethology (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Biophysics (AREA)
  • Pathology (AREA)
  • Physics & Mathematics (AREA)
  • Biomedical Technology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Medical Informatics (AREA)
  • Molecular Biology (AREA)
  • Surgery (AREA)
  • General Health & Medical Sciences (AREA)
  • Physiology (AREA)
  • Cardiology (AREA)
  • Dentistry (AREA)
  • Oral & Maxillofacial Surgery (AREA)
  • Child & Adolescent Psychology (AREA)
  • Signal Processing (AREA)
  • Pulmonology (AREA)
  • Developmental Disabilities (AREA)
  • Educational Technology (AREA)
  • Hospice & Palliative Care (AREA)
  • Psychiatry (AREA)
  • Psychology (AREA)
  • Social Psychology (AREA)
  • Measurement Of The Respiration, Hearing Ability, Form, And Blood Characteristics Of Living Organisms (AREA)
  • Measuring Pulse, Heart Rate, Blood Pressure Or Blood Flow (AREA)

Abstract

【課題】リアルタイムに精度よく離床/覚醒/睡眠を判定する睡眠状態判定装置を提供する。【解決手段】睡眠ポリソムノグラフによる離床/覚醒/睡眠の情報を教師データとし、その教師データと同期する体動信号、呼吸数、心拍数、位相コヒーレンスを入力データとして睡眠状態判定モデルを作成し、この判定モデルにセンサが検出した生体振動信号から取得した体動信号、呼吸数、心拍数、位相コヒーレンスを入力して離床/覚醒/睡眠の睡眠状態を判定する。【選択図】図1

Description

発明の詳細な説明
本発明は、シート状のセンサが設置されたマット上に横たわる動物の体動情報や生体情報から、動物の離床、覚醒、睡眠の状態を判定する装置又は方法に関する。
ヒトの睡眠状態を判定する方法として、睡眠ポリソムノグラフ(PSG; Polysomnography)や、アクチグラフ(Actigraph)等が周知である。
睡眠ポリソムノグラフは、医療機関での計測や医療機関から機器を借りてきて計測が行われるが、脳波や心電図、筋電図、眼電図などの複数のセンサが必要であり、取り扱いが煩雑である。また、複数のセンサを身体の各所に固定する必要があり、センサによる拘束で動きが制限される、睡眠中の無意識の動作によってセンサが外れるという問題がある。
また、アクチグラフ方式は、過去と将来のデータに基づいて現在の状態を判定するのでリアルタイム性に問題があることが指摘されている(特許文献1)。
アクチグラフ方式の問題を解決するために、特許文献2には、チューブ状の体動検知手段を用いたリアルタイムな睡眠判定装置が開示されている。しかし、体動検知部が面でないので、マットの大きさよりも小さな動物を対象とする場合、その動物が体動検知手段の外側に存在し、体動がないので睡眠と判定するする恐れがある。
特開2010-264193 特開2008-142238
発明が解決しようとする課題
このような問題点を解決するために、本発明は、シート状の振動センサから取得した信号から、体動信号、呼吸数、心拍数、心拍間隔の変動と呼吸パターンの瞬時位相差の位相コヒーレンス(λ)を取得してリアルタイムに精度よく離床/覚醒/睡眠を判定する睡眠状態判定装置を提供する。
課題を解決するための手段
動物の生体振動信号を検出するセンサ部と、
センサ部が出力する生体振動信号を受信する生体振動信号受信部と、
前記生体振動信号から体動信号を出力する体動信号検出部と、
前記生体振動信号から呼吸数を出力する呼吸数検出部と、
前記生体振動信号から心拍数を検出する心拍数検出部と、
前記生体振動信号から検出した心拍間隔の変動の瞬時位相と呼吸パターンの瞬時位相の瞬時位相差から位相コヒーレンスを算出する位相コヒーレンス算出部と、
睡眠状態を判定する睡眠状態判定器を備え、
前記睡眠状態判定器は、睡眠ポリソムノグラフによる離床/睡眠/覚醒の情報を教師データとし、前記教師データと同期した体動信号、呼吸数、心拍数、心拍間隔の変動と呼吸パターンの瞬時位相差から算出された位相コヒーレンスを入力データとして機械学習することにより睡眠状態判定モデルを構築し、被験動物の前記体動信号、前記呼吸数、前記心拍数、前記位相コヒーレンスを入力して前記被験動物の睡眠状態が離床/睡眠/覚醒のいずれかを判定する。
さらには、前記睡眠状態判定器は、弱学習器(決定木)をシリーズに備えたアダプティブブースティングにより睡眠状態判定モデルを構築する。
また、前記睡眠状態判定器は、前記体動信号、前記呼吸数、前記心拍数、前記位相コヒーレンスそれぞれの過去2~20個のデータを入力して睡眠状態判定を行う。
発明の効果
シート状の圧電センサを設置したマットに横たわるだけで、その動物の覚醒/睡眠または離床/覚醒/睡眠の状態をリアルタイムに把握することができる。
睡眠状態判定装置の概略ブロック図 ある被験者の過去8個のデータによる睡眠状態判定例。(A)上側はPSGによる判定、下側は本発明により判定された睡眠状態、(B)は判定結果と真値(実測値)の混同行列 過去8個のデータによる睡眠状態判定例のKappa係数の平均値 過去8個のデータによる睡眠状態判定例のROC曲線。(A)は睡眠のROC曲線、(B)は覚醒のROC曲線、(C)は離床のROC曲線 全被験者の過去8個のデータによる判定結果と真値(実測値)の混同行列 過去8個のデータによる睡眠状態判定モデルの予測子の重要度 ある被験者の過去2個のデータによる睡眠状態判定例。(A)上側はPSGによる判定、下側は本発明により判定された睡眠状態、(B)は判定結果と真値(実測値)の混同行列 過去2個のデータによる睡眠状態判定例のKappa係数の平均値 過去2個のデータによる睡眠状態判定例のROC曲線。(A)は睡眠のROC曲線、(B)は覚醒のROC曲線、(C)は離床のROC曲線 全被験者の過去2個のデータによる判定結果と真値(実測値)の混同行列 過去2個のデータによる睡眠状態判定モデルの予測子の重要度
センサ部3は、動物の生体振動を検出し、生体振動信号を出力する。たとえば、センサ部3は、シート状の圧電センサであり、動物が横たわるマットに設置され、体動、心拍(心臓の拍動による心弾動)、呼吸のほか、発声に基づく生体振動信号を出力するが、外部環境等に基づく振動に起因する信号が含まれる場合がある。なお、センサ部3は、シート状の圧電センサに限られるわけではない。
生体振動信号受信部21は、センサ部3が出力する生体振動信号を受信する。センサ部3と生体振動信号受信部21は、ケーブルや無線等の通信手段により結合される。
体動信号検出部22は、生体振動信号を入力して体動信号を出力する。生体振動信号は、心拍情報や呼吸情報等に関する信号も含んでいるが、体動信号は心拍情報や呼吸情報に関する信号と比べて大きな信号である。体動信号検出部22は、体動信号を適切な振幅の信号に変換して体動信号を出力する。また、体動信号はパルス状なので、微分処理をして得られた立ち上がりエッジを所定時間計数して、所定時間の体動数を出力することもできる。
呼吸数検出部23は、生体振動信号を入力して呼吸数を出力する。生体振動信号に含まれる呼吸情報信号は、体動信号と比較して遥かに小さいので(通常1/100より小さい)、呼吸数を算出するために、次に示すような処理が必要である。
生体振動信号の強度をn乗(nは2以上の整数であり、nが奇数の場合は絶対値を取る)して強調処理した後、0.5Hz以下の周波数範囲の通過域を有するローパスフィルタ(LPF)を通過させてもよい。呼吸波形抽出手段33のLPFの遮断周波数は、0.3、0.4、0.6、0.7Hz、0.8Hzであってもよい。
また、ローパスフィルタ(LPF)の代わりにバンドパスフィルタ(BPF)を通過させてもよい。バンドパスフィルタの下限周波数は十分に低い周波数であればよく、例えば0.1Hzでよい。
このようにして得られた周期的な呼吸波形のピークを計数することで呼吸数を算出することができる。
心拍数検出部24は、生体振動信号を入力して、心拍信号を抽出し、心拍数を算出する。生体振動信号に含まれる心拍信号は、体動信号と比較して遥かに小さいので(通常1/100より小さい)、心拍信号を抽出し、心拍数を算出するために、次に示すような処理が必要である。
(1)生体振動信号を1~4HzのBPFで処理し、所定時間における周期的なピーク数を計数する。BPFは1~4Hzに限られるわけではなく、下限周波数が0.5Hz以上、0.6Hz以上、0.7Hz以上、0.8Hz以上、0.9Hz又は1Hz以上、上限周波数が10Hz以下、8Hz以下、6Hz以下、5Hz以下、3Hz以下であってもよい。
(2)生体振動信号をn乗強調処理(nは2以上の整数であり、nが奇数の場合は絶対値を取る)した後BPF処理し、所定時間における周期的なピーク数を計数する。
(3)生体振動信号をウェーブレット変換し、所定時間における周期的なピーク数を計数する。
位相コヒーレンス算出部25は、心拍間隔の変動の瞬時位相と呼吸パターンの瞬時位相の瞬時位相差として位相コヒーレンスを算出する。
位相コヒーレンス算出部は、心拍に関する情報および呼吸に関する情報を含む生体情報を取得する生体情報取得手段、呼吸パターンを抽出する呼吸波形抽出手段、心拍間隔の変動を算出する心拍間隔算出手段、呼吸パターンと心拍間隔の変動との間の瞬時位相差の位相コヒーレンスを算出する位相コヒーレンス算出手段とを含む。詳しくは、WO2017/141976(本出願人の先願)を参照されたい。
睡眠状態判定器26は、まず、被験動物を除く動物のPSG出力を教師データとし、体動信号、呼吸数、心拍数、位相コヒーレンス(λ)を入力データとして、離床/睡眠/覚醒の判定に関して機械学習を行う。
機械学習には、弱学習器(決定木)をシリーズにつないだアダプティブブースティングを用いる。
次に、被験動物の体動信号、呼吸数、心拍数、位相コヒーレンス(λ)を入力して、その動物の離床/睡眠/覚醒の判定をする。
なお、PSGの出力が30秒に1回であることに合わせて、各データは30秒に1個取得する。
離床/睡眠/覚醒は、過去のn個のデータを用いて判定するので、最初の30*n秒以降、30秒毎に判定結果を出力することができる。
nは、2以上のリアルタイム性を確保できる数値(~20)をいろいろ試した結果、8前後が適当であることが分かったが、これに限るわけではない。
まず、138人の被験者のデータを用いて、図1に示す睡眠状態判定装置の機械学習を行う。睡眠状態判定層装置2の睡眠状態判定器26には、弱学習器(決定木)をシリーズにつないだアダプティブブースティングを用いる。
教師データはPSGによる判定結果であり、入力データは、PSGと同一時系列の体動信号、呼吸数、心拍数、位相コヒーレンス(λ)である。
体動信号は、体動信号検出部22が生体振動信号を10秒窓でサンプリングし、その窓を5秒ずつずらしながら体動の有無を判定し、6個のデータを平均して30秒毎に取得する。例えば、0を体動なし、1を体動ありとして、6個のデータが0,0,1,1,0,0であれば体動信号は1/3となる。この30秒は、PSGの出力が30秒毎であることに合わせるものである。
呼吸数は、呼吸数検出部23が、30秒間における呼吸波形のピーク数をカウントして出力する。
心拍数は、心拍数検出部24が、30秒間における心拍波形のピーク数をカウントして出力する。
位相コヒーレンスは、位相コヒーレンス算出部25が、30秒毎に算出結果を出力する。
睡眠状態判定器26は、過去のデータn個(に基づいて現在の睡眠状態を判定する。従って、最初の数分(nが8の場合、4分(30秒*8))は睡眠状態が出力されないが、それ以降は、30秒毎にリアルタイムの睡眠状態が出力される。
[過去8個のデータに基づく離床/睡眠/覚醒の判定例]
まず、138人の被験者のPSGによって判定された実測値を教師データとして、それらと同一時系列の体動信号、呼吸数、心拍数、位相コヒーレンス(λ)を入力データとして、弱学習器をシリーズにつないだアンサンブル学習器(アダプティブブースティング)による機械学習を行った。Leave-one-out法による交差検証を行うため、学習は検証用の被験者1名を除いた137人のデータで行った。
次に、検証用被験者の体動信号、呼吸数、心拍数、位相コヒーレンス(λ)それぞれ過去8個のデータをアンサンブル学習器に入力して離床/睡眠/覚醒の判定を行った。
図2はある被験者の睡眠状態の判定例である。(A)の上側がPSGによる判定例(真値)で、Lは離床、Sは睡眠、Wは覚醒である。同図の下側が、本アンサンブル学習器の判定結果を示し、一致率は0.937、Kappa係数は0.768であり、「かなり一致する」判定をしていると言える。
図2(B)は、本判定の混同行列である。
図3は、本判定例(判定数138例)における一致度とKappa係数を示すが、Kappa係数の平均値は0.490±0.134(標準偏差)、一致度の平均値は0.882±0.057(標準偏差)と良好である。判定例全体における、Kappa係数の平均値が0.490±0.134なので、本睡眠状態判定装置は「適度に一致する」判定をすることができると言える。
図4(A)は、睡眠の判定に関するROC曲線(Receiver Operating Characteristic curve)を示す。横軸は偽陽性率であり実際は睡眠でないのに誤って睡眠と判定した割合を示す。縦軸は真陽性率であり実際は陽性であるものを正しく睡眠と判定した割合を示す。睡眠の場合、真陽性率は0.98、偽陽性率は0.53である。
AUC(Area Under the Curve)は、ROC曲線の下側の面積で判定器の性能を評価する指標である。AUCは0.5~1の値を取り、1に近いほど優れた判定がされているということができる。睡眠の場合、AUCは0.87である。
図4(B)は、覚醒の判定に関するROC曲線(Receiver Operating Characteristic curve)を示す。横軸は偽陽性率であり実際は覚醒でないのに誤って覚醒と判定した割合を示す。縦軸は真陽性率であり実際は覚醒であるものを正しく覚醒と判定した割合を示す。覚醒の場合、真陽性率は0.42、偽陽性率は0.02である。
AUCについての説明は、図4(A)の場合と同様であるが、覚醒の場合のAUCは0.86である。
図4(C)は、離床の判定に関するROC曲線(Receiver Operating Characteristic curve)を示す。横軸は偽陽性率であり実際は離床でないのに誤って離床と判定した割合を示す。縦軸は真陽性率であり実際は離床であるものを正しく離床と判定した割合を示す。離床の場合、真陽性率は0.99、偽陽性率は0.00である。
AUCについての説明は、図4(A)の場合と同様であるが、覚醒の場合のAUCは1.00であり、離床を完璧に判定するモデルが構築されていると言える。
図5左側は、本判定例全体(判定数138例)の混同行列である。
1が睡眠、2が覚醒、3が離床である。
右側のTPRは真陽性率で、実際に睡眠、覚醒、離床であるものを正しく睡眠、覚醒、離床と判定した割合である。
FNRは偽陽性率で実際は睡眠、覚醒、離床でないのに、誤って睡眠、覚醒、離床と判定した割合を示す。
図6は本アンサンブル学習器の予測子の寄与度を示すが、体動信号(BM)と心拍数(HR)および位相コヒーレンス(λ)は直近の過去1つのデータの寄与度が高く、また体動信号は過去のデータの影響も高いことを示している。
[過去2個のデータに基づく離床/睡眠/覚醒の判定例]
まず、138人の被験者のPSGによって判定された実測値を教師データとして、それらと同一時系列の体動信号、呼吸数、心拍数、位相コヒーレンス(λ)を入力データとして、弱学習器をシリーズにつないだアンサンブル学習器(アダプティブブースティング)による機械学習を行った。Leave-one-out法による交差検証を行うため学習は検証用の被験者1名を除いた137人のデータで行った。
次に、検証用被験者の体動信号、呼吸数、心拍数、位相コヒーレンス(λ)それぞれ過去2個のデータをアンサンブル学習器に入力して離床/睡眠/覚醒の判定を行った。
図7は、ある被験者の睡眠状態の判定例である。(A)の上側がPSGによる判定例(真値)で、Lは離床、Sは睡眠、Wは覚醒である。同図の下側が、本アンサンブル学習器の判定結果で、真値との一致率は0.900、Kappa係数は0.634である。Kappa係数は0.634であるので、「かなり一致する」判定をしていると言える。
図7(B)は、本判定の混同行列である。
図8は、本判定例(判定数138例)における一致度とKappa係数を示すが、Kappa係数の平均値は0.420±0.124(標準偏差)、一致度の平均値は0.872±0.060(標準偏差)と良好であり。判定例全体におけるKappa係数の平均値が0.420±0.124(標準偏差)なので、本睡眠状態判定装置は「適度に一致する」判定をすることができると言える。
図9(A)は、睡眠の判定に関するROC曲線(Receiver Operating Characteristic curve)を示す。横軸は偽陽性率であり実際は睡眠でないのに誤って睡眠と判定した割合を示す。縦軸は真陽性率であり実際は陽性であるものを正しく睡眠と判定した割合を示す。睡眠の場合、真陽性率は0.98、偽陽性率は0.63である。
AUC(Area Under the Curve)は、ROC曲線の下側の面積で判定器の性能を評価する指標である。AUCは0.5~1の値を取り、1に近いほど優れた判定がされているということができる。睡眠のAUCは0.81である。
図9(B)は、覚醒の判定に関するROC曲線(Receiver Operating Characteristic curve)を示す。横軸は偽陽性率であり実際は覚醒でないのに誤って覚醒と判定した割合を示す。縦軸は真陽性率であり実際は覚醒であるものを正しく覚醒と判定した割合を示す。覚醒の場合、真陽性率は0.31、偽陽性率は0.02である。
AUCについての説明は図9(A)の場合と同様であるが、覚醒のAUCは0.80である。
図9(C)は、離床の判定に関するROC曲線(Receiver Operating Characteristic curve)を示す。横軸は偽陽性率であり実際は離床でないのに誤って離床と判定した割合を示す。縦軸は真陽性率であり実際は離床であるものを正しく離床と判定した割合を示す。離床の場合、真陽性率は0.99、偽陽性率は0.00である。
AUCについての説明は図9(A)の場合と同様であるが、離床のAUCは1.00であり、離床を完璧に判定するモデルが構築されていると言える。
図10左側は、本判定例全体(判定数138例)の混同行列である。
1が睡眠、2が覚醒、3が離床である。
右側のTPRは真陽性率で、実際に睡眠、覚醒、離床であるものを正しく睡眠、覚醒、離床と判定した割合である。
FNRは偽陽性率で実際は睡眠、覚醒、離床でないのに、誤って睡眠、覚醒、離床と判定した割合を示す。
図11は本アンサンブル学習器の予測子の寄与度を示すが、体動信号(BM)は過去2つのデータが、心拍数(HR)と位相コヒーレンス(λ)は過去1つのデータの寄与度が高いことを示している。
このように、本発明によれば、シート状の圧電センサを備えたベッドに横たわっている人を拘束することなく、その人の離床/覚醒/睡眠の状態をリアルタイムで精度良く判定することができる。
よって、高齢者介護施設等において、終日ベッドに横たわっている人が、寝ているのか目覚めているのかをリアルタイムで把握できるので、被介護者の睡眠を阻害することなく介入することができ、介護者の負担も減らすことに寄与できる。
また、新生児や乳幼児に本手法を適用すれば覚醒/睡眠の状態をリアルタイムで確認できるので、新生児や乳幼児の発達障害・睡眠障害等の生育上の問題を早期に発見し解決することに寄与することができる。
1 睡眠状態判定装置
2 睡眠状態判定部
21 生体振動信号受信部
22 体動信号検出部
23 呼吸数検出部
24 心拍数検出部
25 位相コヒーレンス(λ)算出部
26 睡眠状態判定器
3 センサ部

Claims (5)

  1. 動物の生体振動信号を検出するセンサ部と、
    センサ部が出力する生体振動信号を受信する生体振動信号受信部と、
    前記生体振動信号から体動信号を出力する体動信号検出部と、
    前記生体振動信号から呼吸数を出力する呼吸数検出部と、
    前記生体振動信号から心拍数を検出する心拍数検出部と、
    前記生体振動信号から検出した心拍間隔の変動の瞬時位相と呼吸パターンの瞬時位相の瞬時位相差から位相コヒーレンスを算出する位相コヒーレンス算出部と、
    睡眠状態を判定する睡眠状態判定器を備え、
    前記睡眠状態判定器は、睡眠ポリソムノグラフによる離床/睡眠/覚醒の情報を教師データとし、前記教師データと同期した体動信号、呼吸数、心拍数、心拍間隔の変動の瞬時位相と呼吸パターンの瞬時位相の瞬時位相差から算出された位相コヒーレンスを入力データとして機械学習することにより睡眠状態判定モデルを構築し、被験動物の前記体動信号、前記呼吸数、前記心拍数、前記位相コヒーレンスを入力して前記被験動物の睡眠状態が離床/睡眠/覚醒のいずれかを判定することを特徴とする睡眠状態判定装置。
  2. 前記睡眠状態判定器は、弱学習器(決定木)をシリーズに備えたアダプティブブースティングにより睡眠状態判定モデルを構築することを特徴とする請求項1に記載の睡眠状態判定装置。
  3. 前記睡眠状態判定器は、前記体動信号、前記呼吸数、前記心拍数、前記位相コヒーレンスそれぞれの過去2~20個のデータを入力して睡眠状態判定を行うことを特徴とする請求項1に記載の睡眠状態判定装置。
  4. センサ部が出力する生体振動信号を受信するステップと、
    前記生体振動信号から体動信号検出部が体動信号を検出し、呼吸数検出部が呼吸数を検出し、心拍数検出部が心拍数を検出し、位相コヒーレンス算出部が生体振動信号から検出した心拍間隔の変動の瞬時位相と呼吸パターンの瞬時位相の瞬時位相差から位相コヒーレンスを算出するステップと、
    睡眠状態判定器が、睡眠ポリソムノグラフによる離床/睡眠/覚醒の情報を教師データとし、前記教師データと同期した体動信号、呼吸数、心拍数、心拍間隔の変動の瞬時位相と呼吸パターンの瞬時位相の瞬時位相差から算出された位相コヒーレンスを入力データとして機械学習することにより睡眠状態判定モデルを構築するステップと、
    被験動物の前記体動信号、前記呼吸数、前記心拍数、前記位相コヒーレンスを入力して前記被験動物の睡眠状態が離床/睡眠/覚醒のいずれかを判定するステップを備えることを特徴とする睡眠状態判定方法。
  5. コンピュータを、
    センサ部が出力する生体振動信号を受信する手段、
    前記生体振動信号から体動信号を出力する手段、
    前記生体振動信号から呼吸数を出力する手段、
    前記生体振動信号から心拍数を検出する手段、
    前記生体振動信号から検出した心拍間隔の変動の瞬時位相と呼吸パターンの瞬時位相の瞬時位相差から位相コヒーレンス位相コヒーレンスを算出する手段、
    睡眠ポリソムノグラフによる離床/睡眠/覚醒の情報を教師データとし、前記教師データと同期した体動信号、呼吸数、心拍数、心拍間隔の変動の瞬時位相と呼吸パターンの瞬時位相の瞬時位相差から算出された位相コヒーレンスを入力データとして機械学習することにより睡眠状態判定モデルを構築する手段、
    被験動物の前記体動信号、前記呼吸数、前記心拍数、前記位相コヒーレンスを入力して前記被験動物の睡眠状態が離床/睡眠/覚醒のいずれかを判定する手段として機能させることを特徴とする睡眠状態判定プログラム。
JP2022019104A 2022-01-24 2022-01-24 睡眠状態判定装置、睡眠状態判定方法およびプログラム Pending JP2023107708A (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2022019104A JP2023107708A (ja) 2022-01-24 2022-01-24 睡眠状態判定装置、睡眠状態判定方法およびプログラム
PCT/JP2023/002765 WO2023140390A1 (ja) 2022-01-24 2023-01-23 睡眠状態判定装置、睡眠状態判定方法およびプログラム

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2022019104A JP2023107708A (ja) 2022-01-24 2022-01-24 睡眠状態判定装置、睡眠状態判定方法およびプログラム

Publications (1)

Publication Number Publication Date
JP2023107708A true JP2023107708A (ja) 2023-08-03

Family

ID=87348350

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2022019104A Pending JP2023107708A (ja) 2022-01-24 2022-01-24 睡眠状態判定装置、睡眠状態判定方法およびプログラム

Country Status (2)

Country Link
JP (1) JP2023107708A (ja)
WO (1) WO2023140390A1 (ja)

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6599723B2 (ja) * 2015-10-01 2019-10-30 ヘルスセンシング株式会社 生体情報取得装置及び信号処理方法
JP2019010437A (ja) * 2017-06-30 2019-01-24 ヤマハ株式会社 判定装置、及び判定方法

Also Published As

Publication number Publication date
WO2023140390A1 (ja) 2023-07-27

Similar Documents

Publication Publication Date Title
Paalasmaa et al. Adaptive heartbeat modeling for beat-to-beat heart rate measurement in ballistocardiograms
RU2637610C2 (ru) Устройство мониторинга для мониторинга физиологического сигнала
EP3355784B1 (en) Biometric information monitoring system
CN111493874B (zh) 一种人体呼吸频率测量系统及配备该测量系统的智能座椅
JP5070701B2 (ja) 寝具に加わる被験者の荷重変化により得られる呼吸信号の解析方法および装置
Chen et al. Machine-learning enabled wireless wearable sensors to study individuality of respiratory behaviors
EP3329891B1 (en) Physical condition detecting device, physical condition detecting method and bed system
CN113473910A (zh) 睡眠监测系统和方法
Cenci et al. Non-contact monitoring of preterm infants using RGB-D camera
Nizami et al. Comparing time and frequency domain estimation of neonatal respiratory rate using pressure-sensitive mats
Levy et al. Smart cradle for baby using FN-M16P Module
Geertsema et al. Automated non-contact detection of central apneas using video
JP2011104248A (ja) 呼吸信号の解析装置
Jayatilaka et al. Non-contact infant sleep apnea detection
US11291406B2 (en) System for determining a set of at least one cardio-respiratory descriptor of an individual during sleep
Pouyan et al. Sleep state classification using pressure sensor mats
WO2023140390A1 (ja) 睡眠状態判定装置、睡眠状態判定方法およびプログラム
Roshan Fekr et al. Movement analysis of the chest compartments and a real-time quality feedback during breathing therapy
WO2022269936A1 (ja) 睡眠状態推定システム
JP2005160650A (ja) 無呼吸症候群判定装置
WO2017211396A1 (en) System and method for measuring life parameters during sleep
WO2023176948A1 (ja) 無呼吸低呼吸指標推定装置、方法およびプログラム
Walsh et al. Non-contact under-mattress sleep monitoring
US20230009478A1 (en) Estimation of tidal volume using load cells on a hospital bed
Guillodo et al. Sleep monitoring and wearables: A systematic review of clinical trials and future applications