JP2023107365A - Faucet member and manufacturing method of the same - Google Patents

Faucet member and manufacturing method of the same Download PDF

Info

Publication number
JP2023107365A
JP2023107365A JP2022008533A JP2022008533A JP2023107365A JP 2023107365 A JP2023107365 A JP 2023107365A JP 2022008533 A JP2022008533 A JP 2022008533A JP 2022008533 A JP2022008533 A JP 2022008533A JP 2023107365 A JP2023107365 A JP 2023107365A
Authority
JP
Japan
Prior art keywords
base material
rough surface
decorative layer
decorative
faucet member
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2022008533A
Other languages
Japanese (ja)
Inventor
伸二 元矢
Shinji Motoya
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanei Ltd
Original Assignee
Sanei Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanei Ltd filed Critical Sanei Ltd
Priority to JP2022008533A priority Critical patent/JP2023107365A/en
Publication of JP2023107365A publication Critical patent/JP2023107365A/en
Pending legal-status Critical Current

Links

Images

Abstract

To provide a faucet member capable of making adhered dirt on a surface less noticeable.SOLUTION: A faucet member 1 comprises: a base material body 2; and a decorative layer 3 formed on a predetermined surface of the base material body 2. The base material body 2 is configured such that a base material rough surface 2A having myriad fine unevennesses is formed over an entire predetermined surface. The decorative layer 3 is configured such that a decorative rough surface 3A, which comprises myriad fine unevennesses dependent on an uneven shape of the base material rough surface 2A, is formed on the base material rough surface 2A.SELECTED DRAWING: Figure 2

Description

本発明は、水栓部材及びその製造方法に関する。詳しくは、母材本体と、母材本体の表面上に成膜される加飾層と、を有する水栓部材及びその製造方法に関する。 TECHNICAL FIELD The present invention relates to a faucet member and a manufacturing method thereof. More specifically, the present invention relates to a faucet member having a base material body and a decorative layer formed on the surface of the base material body, and a manufacturing method thereof.

特許文献1には、屋内水まわり環境で用いられる水まわり用部材の防汚性を高める技術が開示されている。具体的には、基材の表面に化学的非反応性に優れたDLC被膜層が成膜されることで、水まわり用部材の表面に水垢が付着しても簡便に取り除けるようになっている。 Patent Literature 1 discloses a technique for enhancing antifouling properties of a plumbing member used in an indoor plumbing environment. Specifically, by forming a DLC coating layer with excellent chemical non-reactivity on the surface of the base material, even if water scale adheres to the surface of the plumbing member, it can be easily removed. .

特開2016-172923号公報JP 2016-172923 A

特許文献1に記載の技術では、水垢や指紋等の汚れの付着自体を防止することができないため、表面に付着した汚れが目立ちやすい。そこで、本発明は、表面に付着した汚れを目立たせにくくすることが可能な水栓部材を提供する。 The technique described in Patent Document 1 cannot prevent the adhesion of stains such as water stains and fingerprints, so the stains attached to the surface tend to be conspicuous. SUMMARY OF THE INVENTION Accordingly, the present invention provides a faucet member capable of making dirt adhered to the surface less noticeable.

上記課題を解決するために、本発明の水栓部材及びその製造方法は次の手段をとる。すなわち、本発明の第1の発明は、水栓部材であって、母材本体と、前記母材本体の所定表面上に成膜される加飾層と、を有し、前記母材本体の前記所定表面の全域に、無数の微細な凹凸を備える母材粗面が形成され、前記加飾層が、前記母材粗面上に前記母材粗面の凹凸形状に依存した無数の微細な凹凸を備える加飾粗面が形成された構成とされる、水栓部材である。 In order to solve the above problems, the faucet member and the method for manufacturing the same of the present invention take the following measures. That is, a first aspect of the present invention is a faucet member comprising a base material body and a decorative layer formed on a predetermined surface of the base material body, A base material rough surface having a myriad of fine irregularities is formed over the entire predetermined surface, and the decorative layer is formed on the base material rough surface with a myriad of fine irregularities depending on the uneven shape of the base material rough surface. The faucet member has a decorative rough surface with unevenness.

第1の発明によれば、母材粗面の凹凸形状に依存して加飾層の表面に形成される加飾粗面により、加飾層の表面に付着した水垢や指紋等の汚れを目立たせにくくすることができる。 According to the first invention, dirt such as water stains and fingerprints adhering to the surface of the decorative layer is removed by the decorative rough surface formed on the surface of the decorative layer depending on the uneven shape of the rough surface of the base material. It can be made difficult to stand.

本発明の第2の発明は、上記第1の発明において、加飾層が、金属製の中間被膜の表面にta-Cに分類されるDLC被膜が積層されて成るDLC被膜層、又はニッケルめっきの表面にクロムめっきが積層されて成るニッケル-クロムめっき被膜層とされる、水栓部材である。 A second aspect of the present invention is the first aspect, wherein the decorative layer is a DLC coating layer formed by laminating a DLC coating classified as ta-C on the surface of the metal intermediate coating, or nickel plating It is a faucet member having a nickel-chromium plating film layer formed by laminating chromium plating on the surface of the faucet member.

第2の発明によれば、加飾層をta-Cに分類されるDLC被膜を含むDLC被膜層により形成することにより、加飾層を耐摩耗性、絶縁性、耐熱性及び化学的非反応性等の外観維持性能に優れた高密度かつ硬質な被膜層として形成することができる。また、加飾層をニッケル-クロムめっき被膜層により形成することにより、加飾層を耐食性、耐変色性及び耐候性等の外観維持性能に優れた被膜層として形成することができる。 According to the second invention, the decorative layer is formed of a DLC coating layer including a DLC coating classified as ta-C, so that the decorative layer has wear resistance, insulation, heat resistance and chemical non-reactivity. It can be formed as a high-density and hard coating layer with excellent appearance maintenance performance such as elasticity. Further, by forming the decorative layer from a nickel-chromium plating film layer, the decorative layer can be formed as a film layer excellent in appearance maintenance performance such as corrosion resistance, discoloration resistance and weather resistance.

本発明の第3の発明は、上記第1又は第2の発明において、前記加飾粗面が、最大高さ5~100μm、凹凸の平均間隔10~500μm、及び凹凸数10~100個/mm2の凹凸形状とされる、水栓部材である。 A third invention of the present invention is the first or second invention, wherein the decorative rough surface has a maximum height of 5 to 100 μm, an average spacing of unevenness of 10 to 500 μm, and a number of unevenness of 10 to 100/mm. It is a faucet member that has the uneven shape of 2 .

第3の発明によれば、加飾粗面が上記凹凸形状から成ることにより、加飾層の表面に付着した水垢や指紋等の汚れをより効果的に目立たせにくくすることができる。 According to the third aspect of the invention, since the decorative rough surface has the uneven shape, stains such as water stains and fingerprints adhering to the surface of the decorative layer can be more effectively made inconspicuous.

本発明の第4の発明は、上記第1から第3のいずれかの発明において、前記母材本体が、50%以上の銅を含有し、残部が、鉛、亜鉛、錫、鉄、ニッケル、及びアンチモンからなる銅合金である、水栓部材である。 A fourth invention of the present invention is any one of the first to third inventions, wherein the base material body contains 50% or more of copper, and the balance is lead, zinc, tin, iron, nickel, and antimony.

第4の発明によれば、上記成分の銅合金から成る母材本体の表面に付着した水垢や指紋等の汚れを適切に目立たせにくくすることができる。 According to the fourth invention, stains such as water stains and fingerprints adhering to the surface of the base material main body made of the copper alloy of the above components can be appropriately made inconspicuous.

本発明の第5の発明は、水栓部材の製造方法であって、母材本体の所定表面の全域にブラスト処理を施すことで無数の微細な凹凸を備える母材粗面を形成するブラスト処理工程と、前記母材粗面に別のブラスト処理を施すことで前記母材粗面を鏡面仕上げする鏡面仕上げ処理工程と、前記母材本体の前記所定表面上に加飾層を成膜することで前記母材粗面上に前記母材粗面の凹凸形状に依存した無数の微細な凹凸を備える加飾粗面を備えた前記加飾層を形成する加飾層成膜工程と、を有する、水栓部材の製造方法である。 A fifth invention of the present invention is a method for manufacturing a faucet member, wherein the entire predetermined surface of the base material body is subjected to blasting treatment to form a rough surface of the base material having countless fine irregularities. a mirror-finishing step of mirror-finishing the rough surface of the base material by applying another blasting treatment to the rough surface of the base material; and forming a decorative layer on the predetermined surface of the main body of the base material. a decorating layer forming step of forming the decorating layer on the rough surface of the base material, the decorating layer having a decorative rough surface having an infinite number of fine unevenness depending on the uneven shape of the rough surface of the base material. and a method for manufacturing a faucet member.

第5の発明によれば、母材粗面の凹凸形状に依存して加飾層の表面に形成される加飾粗面により、加飾層の表面に付着した水垢や指紋等の汚れを目立たせにくくすることができる。 According to the fifth invention, the decorative rough surface formed on the surface of the decorative layer depending on the uneven shape of the rough surface of the base material removes stains such as water stains and fingerprints adhering to the surface of the decorative layer. It can be made difficult to stand.

本発明の実施形態に係る水栓部材を模式的に示す平面図である。1 is a plan view schematically showing a faucet member according to an embodiment of the present invention; FIG. 水栓部材の断面構造を模式的に示す断面図である。It is a sectional view showing typically the section structure of a faucet member. 水栓部材の製造方法を示す工程図である。It is process drawing which shows the manufacturing method of a faucet member.

以下に、本発明を実施するための形態について、図面を用いて説明する。 EMBODIMENT OF THE INVENTION Below, the form for implementing this invention is demonstrated using drawing.

(水栓部材1)
始めに、本発明の実施形態に係る水栓部材1及びその製造方法について説明する。本実施形態に係る水栓部材1は、図1に示すように、屋内の水まわり環境で使用される水栓金具の本体部材として構成される。なお、水栓部材1は、水栓金具の配管であっても良い。水栓部材1は、図2に示すように、銅合金製の母材本体2と、母材本体2の表面に成膜された加飾層3と、を備える。
(faucet member 1)
First, a faucet member 1 according to an embodiment of the present invention and a method for manufacturing the same will be described. A faucet member 1 according to the present embodiment, as shown in FIG. 1, is configured as a main body member of a faucet fitting used in an indoor wet environment. In addition, the faucet member 1 may be a pipe of a faucet fitting. The faucet member 1 includes a base material body 2 made of a copper alloy and a decorative layer 3 formed on the surface of the base material body 2, as shown in FIG.

加飾層3は、水栓部材1の用途に応じて、DLC被膜層又はニッケル-クロムめっき被膜層のどちらかが選択的に適用される構成とされる。DLC被膜層は、金属製の中間被膜の表面にta-Cに分類されるDLC被膜が積層されて成る被膜層である。ニッケル-クロムめっき被膜層は、ニッケルめっきの表面にクロムめっきが積層されて成る被膜層である。 The decorative layer 3 is configured to selectively apply either a DLC coating layer or a nickel-chromium plating coating layer depending on the application of the faucet member 1 . The DLC coating layer is a coating layer formed by laminating a DLC coating classified as ta-C on the surface of a metallic intermediate coating. The nickel-chromium plating coating layer is a coating layer formed by laminating chromium plating on the surface of nickel plating.

母材本体2は、銅を主成分とする銅合金からなる。具体的には、母材本体2は、50%以上の銅を含有し、残部が、鉛、亜鉛、錫、鉄、ニッケル、及びアンチモンからなる銅合金からなる。なお、母材本体2は、純銅、真鍮、青銅、白銅、あるいは洋白からなるものであってもよい。母材本体2の具体的な形状は特に限定されず、円管や角管等の管形状の他、円柱や角柱等の柱形状や球形状、あるいは箱形状や板形状からなるものであってもよい。 The base material main body 2 is made of a copper alloy containing copper as a main component. Specifically, the base material body 2 is made of a copper alloy containing 50% or more of copper and the balance being lead, zinc, tin, iron, nickel, and antimony. The base material body 2 may be made of pure copper, brass, bronze, cupronickel, or nickel silver. The specific shape of the base material body 2 is not particularly limited, and may be tubular such as a circular tube or square tube, a columnar shape such as a circular column or a square column, a spherical shape, a box shape, or a plate shape. good too.

母材本体2は、図3に示すように、鋳造後に切削加工されて所定形状に形作られた後、表面がバフ研磨されて所定の表面粗さに仕上げられる(前工程S1)。その後、母材本体2は、鉛除去処理工程S2を経てブラスト処理工程S3にかけられて、その表面全体に無数の微細な凹凸を備える粗面となる母材粗面2Aが形成される(図2参照)。その後、母材本体2は、その表面に成膜される加飾層3のタイプによっては、鏡面仕上げ処理工程S4にかけられて、母材粗面2A全体が凹凸形状を残したまま鏡のように磨かれた状態に仕上げられる。 As shown in FIG. 3, the base material main body 2 is cut after being cast into a predetermined shape, and then buffed to a predetermined surface roughness (pre-process S1). After that, the base material main body 2 is subjected to a lead removal treatment step S2 and then to a blasting treatment step S3 to form a base material rough surface 2A, which is a rough surface having countless fine irregularities on the entire surface (see FIG. 2). reference). After that, depending on the type of the decorative layer 3 formed on the surface of the base material body 2, the base material main body 2 is subjected to a mirror-finishing treatment step S4 so that the rough surface 2A of the base material as a whole remains like a mirror while leaving the uneven shape. Finished in a polished state.

具体的には、加飾層3がDLC被膜層により形成される場合には、母材本体2が鏡面仕上げ処理工程S4にかけられて、母材粗面2A全体が鏡面仕上げされる。しかし、加飾層3がニッケル-クロムめっき被膜層により形成される場合には、母材本体2の鏡面仕上げ処理工程S4は省略される。その理由は、母材本体2にニッケル-クロムめっきを施す場合、母材本体2がニッケルめっきの工程内でアルカリ洗浄にかけられて加工変質層が除去されるように表面仕上げされるためである。 Specifically, when the decorative layer 3 is formed of a DLC coating layer, the base material main body 2 is subjected to a mirror-finishing step S4 to mirror-finish the entire rough surface 2A of the base material. However, when the decorative layer 3 is formed of a nickel-chromium plating film layer, the mirror-finishing step S4 of the base material main body 2 is omitted. The reason for this is that when the base material body 2 is plated with nickel-chromium, the base material body 2 is subjected to alkali cleaning in the nickel plating process, and the surface is finished so that the work-affected layer is removed.

その後、母材本体2は、加飾層3のタイプによっては、洗浄処理工程S5にかけられて、その表面に付着した汚れが取り除かれて洗浄される。具体的には、加飾層3がDLC被膜層により形成される場合には、母材本体2が洗浄処理工程S5にかけられて、母材粗面2A全体に付着した汚れが除去される。しかし、加飾層3がニッケル-クロムめっき被膜層により形成される場合には、母材本体2の洗浄処理工程S5は省略される。その理由は、前述した鏡面仕上げ処理工程S4を省略する理由と同じである。 After that, depending on the type of the decorative layer 3, the base material main body 2 is subjected to a cleaning treatment step S5 to remove dirt adhering to its surface and to clean it. Specifically, when the decorative layer 3 is formed of a DLC coating layer, the base material main body 2 is subjected to a cleaning treatment step S5 to remove dirt adhering to the entire base material rough surface 2A. However, when the decorative layer 3 is formed of a nickel-chromium plating film layer, the cleaning treatment step S5 of the base material main body 2 is omitted. The reason is the same as the reason for omitting the mirror finishing step S4.

更にその後、母材本体2は、加飾層成膜工程S6にかけられて、その母材粗面2A上にDLC被膜層又はニッケル-クロムめっき被膜層から成る加飾層3が一体的に成膜される。それにより、母材粗面2A上に、母材粗面2Aの凹凸形状に依存した無数の微細な凹凸を備える粗面となる加飾粗面3Aを備えた加飾層3が形成される。その結果、加飾粗面3Aから成る水栓部材1の表面を、水垢や指紋等の汚れが付着してもこれらの汚れが目立ちにくい構成とすることができる。以下、各工程について詳細を説明する。 Furthermore, after that, the base material main body 2 is subjected to a decorative layer forming step S6, and a decorative layer 3 made of a DLC coating layer or a nickel-chromium plating coating layer is integrally formed on the base material rough surface 2A. be done. As a result, the decorative layer 3 is formed on the base material rough surface 2A, and has a decorative rough surface 3A which is a rough surface having innumerable fine unevenness depending on the uneven shape of the base material rough surface 2A. As a result, the surface of the faucet member 1 made up of the decorative rough surface 3A can have a configuration in which even if stains such as water stains and fingerprints adhere to the surface, the stains are less noticeable. Each step will be described in detail below.

(ブラスト処理工程S3)
ブラスト処理工程S3では、母材本体2の表面にブラスト処理を行い、母材本体2の表面全体に、最大高さ5~100μm、凹凸の平均間隔10~500μm、及び凹凸数10~100個/mm2の凹凸形状から成る母材粗面2Aを形成する。なお、母材本体2の表面の一部領域にのみ母材粗面2Aを形成したい場合には、その他の領域に図示しない樹脂製又はゴム製のシートから成るマスキング材を貼り付けてブラスト処理を行えばよい。それにより、母材本体2のマスキング材を貼り付けた箇所以外の表面領域にのみ、母材粗面2Aを形成することができる。
(Blasting step S3)
In the blasting step S3, the surface of the base material body 2 is blasted, and the entire surface of the base material body 2 has a maximum height of 5 to 100 μm, an average unevenness interval of 10 to 500 μm, and a number of unevennesses of 10 to 100/ A rough surface 2A of the base material is formed with irregularities of mm 2 . If it is desired to form the base material rough surface 2A only on a partial area of the surface of the base material main body 2, a masking material made of a resin or rubber sheet (not shown) is attached to the other area and blasting is performed. Do it. Thereby, the rough surface 2A of the base material can be formed only in the surface region of the base material main body 2 other than the portion where the masking material is adhered.

上記ブラスト処理により、母材本体2が複雑な形状の表面を有していても、表面全体に無数の微細な凹凸が並ぶ母材粗面2Aを形成することが可能となる。ブラスト処理に用いるブラスト装置としては、例えば、エアーを用いてメディア(研削材)を投射するエアーブラスト装置(コンプレッサ式、ブロア式等)や、メディアをモータの回転駆動によって投げ付けるショットブラスト装置が挙げられる。 By the above blasting, even if the base material main body 2 has a surface with a complicated shape, it is possible to form the base material rough surface 2A in which countless fine irregularities are arranged over the entire surface. Examples of the blasting device used for blasting include an air blasting device (compressor type, blower type, etc.) that projects media (abrasive material) using air, and a shot blasting device that throws media by rotating a motor. be done.

ブラスト処理により形成する母材粗面2Aの深さや表面粗さは、メディアの粒径や形状、材質、投射圧、投射密度、投射時間等の調整によって適宜制御することができる。メディアの材質としては、例えば、ジルコニウムやアルミナ(白色、褐色)、炭化ケイ素(緑色、黒色)、硅砂、鉄、銅、ステンレス、亜鉛、アルミニウム、ガーネット、樹脂、ガラス等が挙げられる。また、メディアは、弾性母材に微細な砥粒をコートした構成からなるものであっても良い。 The depth and surface roughness of the base material rough surface 2A formed by blasting can be appropriately controlled by adjusting the particle size, shape, material, projection pressure, projection density, projection time, and the like of media. Examples of media materials include zirconium, alumina (white, brown), silicon carbide (green, black), silica sand, iron, copper, stainless steel, zinc, aluminum, garnet, resin, and glass. Also, the media may be composed of an elastic base material coated with fine abrasive grains.

メディアの形状としては、例えば、球状または鋭角状のものが挙げられる。メディアの粒径としては、例えば、5μm~2mmのものが挙げられる。メディアの投射圧は、0.1~0.5MPaが好ましい。なお、ブラスト処理は、母材粗面2Aを適度な表面粗さに仕上げる観点から、粒径が600μmのジルコニウムから成るメディアを用いて、母材粗面2Aへの投射を投射圧0.3MPaで15秒間行うことが特に好ましい。 The shape of the media includes, for example, a spherical shape or an acute angle shape. The particle size of the media is, for example, 5 μm to 2 mm. The media projection pressure is preferably 0.1 to 0.5 MPa. From the viewpoint of finishing the base material rough surface 2A to an appropriate surface roughness, the blasting process uses a medium made of zirconium with a particle size of 600 μm and blasts the base material rough surface 2A at a projection pressure of 0.3 MPa. 15 seconds is particularly preferred.

(鏡面仕上げ処理工程S4)
鏡面仕上げ処理工程S4では、母材本体2の母材粗面2A全体に、更に粒径の小さなメディアを用いた別のブラスト処理(鏡面仕上げ処理)を行い、母材本体2の表面(母材粗面2A)全体を鏡のように磨いた状態に仕上げる。この鏡面仕上げ処理により、先のバフ研磨やブラスト処理によって母材本体2の表面に付いた細かな傷を除去する。
(Mirror finish treatment step S4)
In the mirror-finishing step S4, the entire base material rough surface 2A of the base material body 2 is subjected to another blasting treatment (mirror-finishing treatment) using a medium having a smaller particle size, so that the surface of the base material body 2 (base material Rough surface 2A) is polished to a mirror-like finish. This mirror-finishing treatment removes fine scratches on the surface of the base material main body 2 due to the previous buffing or blasting treatment.

鏡面仕上げ処理工程S4では、母材本体2の母材粗面2A全体を2μm以下の均一な深さの研削量で研削する。したがって、先のブラスト処理工程S3により母材本体2に母材粗面2Aを形成した後に、母材粗面2A全体に鏡面仕上げ処理を行っても、母材粗面2Aの凹凸模様が消えることはない。 In the mirror finishing step S4, the entire base material rough surface 2A of the base material main body 2 is ground with a uniform depth of grinding of 2 μm or less. Therefore, even if the entire base material rough surface 2A is mirror-finished after the base material rough surface 2A is formed on the base material main body 2 in the previous blasting step S3, the uneven pattern of the base material rough surface 2A will disappear. no.

鏡面仕上げ処理により仕上げられる母材本体2の表面粗さは、メディアの粒径や形状、材質、投射圧、投射密度、投射時間等の調整によって適宜制御することができる。なお、鏡面仕上げ処理は、母材粗面2Aを適度な表面粗さに仕上げる観点から、粒径が0.5mmの母材の周囲に粒径が1μmのSDC:金属被覆合成ダイヤモンドの砥粒を担持させたメディアを用いて、母材粗面2Aへの投射を投射圧0.2MPaで5~15分間行うことが特に好ましい。 The surface roughness of the base material main body 2 finished by mirror finishing can be appropriately controlled by adjusting the particle size, shape, material, projection pressure, projection density, projection time, etc. of the media. In addition, from the viewpoint of finishing the base material rough surface 2A to an appropriate surface roughness, the mirror finish treatment is performed by adding abrasive grains of SDC: metal-coated synthetic diamond with a grain size of 1 μm around a base material with a grain size of 0.5 mm. It is particularly preferable to perform projection onto the base material rough surface 2A at a projection pressure of 0.2 MPa for 5 to 15 minutes using the supported medium.

詳しくは、母材本体2が青銅から成る場合には、メディアの投射を5~15分間行い、母材本体2が黄銅から成る場合には、メディアの投射を8~15分間行うと良い。上記の方法で鏡面仕上げ処理工程S4を行うことで、母材本体2の温度上昇を抑えて鏡面仕上げを行うことができ、加飾層3を形成する前に行う処理工程として好適である。 Specifically, when the base material body 2 is made of bronze, the medium is projected for 5 to 15 minutes, and when the base material body 2 is made of brass, the medium is projected for 8 to 15 minutes. By performing the mirror-finishing step S4 by the above method, the temperature rise of the base material body 2 can be suppressed and the mirror-finishing can be performed.

(洗浄処理工程S5)
洗浄処理工程S5では、炭化水素系の洗浄液を用いた洗浄方法により、母材本体2の表面に付着する汚れを取り除いて洗浄する。なお、洗浄処理工程S5は、水系洗浄液、準水系洗浄液、もしくは塩素・臭素・フッ素系の溶剤系洗浄液を用いた洗浄方法により、母材本体2の表面を洗浄する工程であっても良い。
(Washing treatment step S5)
In the cleaning treatment step S5, dirt adhering to the surface of the base material main body 2 is removed and cleaned by a cleaning method using a hydrocarbon-based cleaning liquid. The cleaning step S5 may be a step of cleaning the surface of the base material body 2 by a cleaning method using an aqueous cleaning liquid, a semi-aqueous cleaning liquid, or a chlorine-, bromine-, or fluorine-based solvent-based cleaning liquid.

洗浄処理工程S5では、先ず、粗洗浄として、水洗浄により母材本体2の表面に付着した研磨材を除去する処理を行う。次に、本洗浄として、エマルジョン洗浄により母材本体2の表面を洗浄する処理を行う。このエマルジョン洗浄では、超音波により水を振動させる超音波洗浄方法と、洗浄槽の内部を真空近くまで減圧したり腹圧したりするのを繰り返す真空洗浄方法と、が組み合わされて洗浄が行われる。 In the cleaning process step S5, first, as rough cleaning, a process of removing abrasive adhering to the surface of the base material main body 2 by water cleaning is performed. Next, as main cleaning, a process of cleaning the surface of the base material body 2 by emulsion cleaning is performed. In this emulsion cleaning, cleaning is performed by combining an ultrasonic cleaning method in which water is vibrated by ultrasonic waves and a vacuum cleaning method in which the inside of a cleaning tank is repeatedly decompressed to near vacuum and pressure is applied internally.

エマルジョン洗浄に超音波洗浄方法が組み合わされることで、母材本体2に付着している汚れを効果的に洗浄することが可能となる。また、エマルジョン洗浄に真空洗浄方法が組み合わされることで、大気圧下では洗浄できない止まり穴や袋穴の中まで洗浄液を行き渡らせて、母材本体2の細かい隙間まで効果的に洗浄することが可能となる。特に、真空洗浄方法と超音波洗浄方法とが組み合わされることで、大気圧下と比べて超音波の効果がより高くなるため、より効果的な洗浄を行うことが可能となる。なお、上記洗浄方法に加えて、あるいは上記洗浄方法に代えて、エマルジョン洗浄に脱気洗浄方法、回転洗浄方法、揺動洗浄方法、あるいはシャワー洗浄方法を組み合わせても良い。 By combining the emulsion cleaning with the ultrasonic cleaning method, it becomes possible to effectively clean the stain adhering to the base material body 2 . In addition, by combining the emulsion cleaning method with the vacuum cleaning method, it is possible to effectively clean small gaps in the base material body 2 by spreading the cleaning liquid even into blind holes and blind holes that cannot be cleaned under atmospheric pressure. becomes. In particular, by combining the vacuum cleaning method and the ultrasonic cleaning method, the effect of the ultrasonic waves is higher than that under atmospheric pressure, so that cleaning can be performed more effectively. In addition to or instead of the cleaning method described above, emulsion cleaning may be combined with a degassing cleaning method, a rotary cleaning method, an oscillation cleaning method, or a shower cleaning method.

脱気洗浄方法を組み合わせることで、超音波洗浄方法を用いた際の超音波の効きを更に高めることが可能となる。回転洗浄方法・揺動洗浄方法を組み合わせることで、洗浄液の流れを物理的に作り出して洗浄効果を更に高めることができる。また、超音波が母材本体2の表面に均等に当たりやすくなる。また、その他にも、洗浄液の流れを物理的に作り出す方法として、水を循環させたりバブリングさせたりする方法が挙げられる。また、シャワー洗浄方法を組み合わせることで、母材本体2に対して洗浄液を上からだけでなく、横や下からもかけて、適切な洗浄を行うことが可能となる。なお、その他の洗浄方法として、高圧ジェット洗浄方法、スプレー洗浄方法、あるいはブラシ洗浄方法等が挙げられる。 By combining the degassing cleaning method, it becomes possible to further enhance the effect of ultrasonic waves when using the ultrasonic cleaning method. By combining the rotary cleaning method and the oscillating cleaning method, it is possible to physically create a flow of the cleaning liquid and further enhance the cleaning effect. Also, the ultrasonic waves tend to hit the surface of the base material body 2 evenly. In addition, as a method of physically creating a flow of the cleaning liquid, there is a method of circulating or bubbling the water. Moreover, by combining the shower cleaning method, it becomes possible to wash the base material body 2 appropriately by spraying the cleaning liquid not only from above but also from the sides and below. Other cleaning methods include a high-pressure jet cleaning method, a spray cleaning method, a brush cleaning method, and the like.

上記洗浄により、母材本体2の表面に付着していた油などの汚れは、洗浄液に溶解して、洗浄液全体へと拡散される。また、母材本体2に付着している汚れは、洗浄液に溶解して洗浄液へと置換される。次に、洗浄処理工程S5では、すすぎ洗浄として、母材本体2の表面をベーパー洗浄する処理を行う。ベーパー洗浄では、洗浄液を沸騰させた蒸気で洗浄することで、母材本体2の表面に残る汚れを更に高精度に洗浄する。 As a result of the cleaning, dirt such as oil adhering to the surface of the base material body 2 is dissolved in the cleaning liquid and diffused throughout the cleaning liquid. In addition, dirt adhering to the base material body 2 is dissolved in the cleaning liquid and replaced with the cleaning liquid. Next, in the cleaning process step S5, the surface of the base material main body 2 is subjected to vapor cleaning as rinsing cleaning. In the vapor cleaning, dirt remaining on the surface of the base material main body 2 is cleaned with higher accuracy by cleaning with steam obtained by boiling the cleaning liquid.

次に、洗浄処理工程S5では、乾燥処理として、母材本体2の表面に残る洗浄液を乾燥させる処理を行う。この乾燥処理は、いわゆる真空乾燥により行われる。真空乾燥は、洗浄槽の内部を真空近くまで減圧することで、洗浄液の沸点を急激に下げて、洗浄液を突沸乾燥させる公知の方法である。真空乾燥を用いることで、先のベーパー洗浄により加温された洗浄槽内の減圧によって洗浄液の突沸乾燥を効果的に促すことができ、母材本体2上にシミなどを残さないように適切に乾燥処理することができる。 Next, in the cleaning process step S5, as a drying process, a process for drying the cleaning liquid remaining on the surface of the base material body 2 is performed. This drying treatment is performed by so-called vacuum drying. Vacuum drying is a known method in which the boiling point of the cleaning liquid is rapidly lowered by reducing the pressure in the cleaning tank to near vacuum, thereby bumping and drying the cleaning liquid. By using vacuum drying, it is possible to effectively accelerate the bumping drying of the cleaning liquid by reducing the pressure in the cleaning tank heated by the previous vapor cleaning. Can be dry processed.

なお、乾燥処理は、熱風乾燥あるいは吸引乾燥によって行われても良い。熱風乾燥は、熱風を洗浄槽の内部に送り込むことで、母材本体2の表面を乾燥させる公知の方法である。吸引乾燥は、圧縮された熱風を洗浄槽の内部に送り込むと同時に、吸引ブロアで反対側から引き抜くことで、母材本体2の表面を乾燥させる公知の方法である。熱風乾燥及び吸引乾燥は、真空乾燥が行えない水系洗浄液を用いた洗浄槽にも適用することが可能である。 The drying treatment may be performed by hot air drying or suction drying. Hot air drying is a known method for drying the surface of the base material body 2 by sending hot air into the cleaning tank. Suction drying is a known method for drying the surface of the base material main body 2 by sending compressed hot air into the cleaning tank and at the same time drawing it out from the opposite side with a suction blower. Hot-air drying and suction drying can also be applied to a cleaning tank using an aqueous cleaning liquid that cannot be vacuum-dried.

(加飾層成膜工程S6)
加飾層成膜工程S6では、母材本体2の母材粗面2A上にDLC被膜層又はニッケル-クロムめっき被膜層から成る加飾層3を一体的に成膜する。以下では、先ず、母材粗面2A上にDLC被膜層を成膜するDLC被膜層成膜工程について説明する。
(Decorative layer forming step S6)
In the decorative layer forming step S6, the decorative layer 3 made of a DLC coating layer or a nickel-chromium plating coating layer is integrally formed on the base material rough surface 2A of the base material main body 2. As shown in FIG. Below, first, the DLC coating layer forming process for forming a DLC coating layer on the base material rough surface 2A will be described.

DLC被膜層成膜工程では、先ず、母材本体2の母材粗面2A全域に金属製の中間被膜を成膜する中間被膜成膜工程を行う。次いで、成膜した中間被膜全域にta-Cに分類されるDLC被膜を成膜するDLC被膜成膜工程を行う。すなわち、DLC被膜層成膜工程は、中間被膜を成膜する中間被膜成膜工程と、DLC被膜を成膜するDLC被膜成膜工程と、から成る。 In the DLC coating layer deposition step, first, an intermediate coating deposition step of forming a metal intermediate coating over the entire base material rough surface 2A of the base material main body 2 is performed. Next, a DLC film forming step is performed to form a DLC film classified as ta-C over the entire intermediate film that has been formed. That is, the DLC coating layer forming process includes an intermediate coating forming process for forming an intermediate coating and a DLC coating forming process for forming a DLC coating.

中間被膜は、母材本体2とその表面に成膜されるDLC被膜との間に介在して、これらの密着性を向上させるための中間層として機能する。中間被膜は、母材本体2の母材粗面2A上に直接成膜される。中間被膜には、ニッケル、チタン、クロム、タングステン、またはケイ素からなる群より選択される少なくとも1種の金属を用いることができる。 The intermediate coating is interposed between the base material body 2 and the DLC coating formed on its surface, and functions as an intermediate layer for improving the adhesion therebetween. The intermediate coating is formed directly on the base material rough surface 2A of the base material main body 2 . At least one metal selected from the group consisting of nickel, titanium, chromium, tungsten, or silicon can be used for the intermediate coating.

中間被膜は、上記群より選択される1種の金属からなる単層構造からなるものであっても良く、2種以上の金属の積層構造からなるものであっても良い。なお、中間被膜は、母材本体2及びDLC被膜との密着性に優れ、かつ耐食性に優れたチタンからなることが特に好ましい。 The intermediate coating may have a single layer structure composed of one metal selected from the above group, or may have a laminated structure composed of two or more metals. It is particularly preferable that the intermediate coating be made of titanium, which has excellent adhesion to the base material body 2 and the DLC coating, and excellent corrosion resistance.

中間被膜は、中間被膜成膜工程において、PVD法(物理蒸着法)に分類されるスパッタリング法により母材本体2の母材粗面2A上に積層状に成膜される。中間被膜成膜工程では、先ず、アルゴンイオンを用いたイオンボンバードメント処理が行われ、母材本体2の母材粗面2Aに表出する酸化膜や水酸化膜などの不動態被膜が除去される。 The intermediate coating is deposited on the base material rough surface 2A of the base material main body 2 in a layered manner by a sputtering method classified as a PVD method (physical vapor deposition method) in the intermediate coating film forming process. In the intermediate film forming step, first, an ion bombardment treatment using argon ions is performed to remove a passive film such as an oxide film or a hydroxide film exposed on the base material rough surface 2A of the base material main body 2. be.

次いで、スパッタリング法により、不活性ガス(アルゴンガス)の導入された真空中で、陰極ターゲット(成膜材料)にマイナスの電圧を印加してグロー放電を発生させ、ガスイオンを成膜材料に衝突させることで叩き出した成膜材料の粒子を母材本体2の表面に付着・堆積させて緻密な薄膜を形成する。中間被膜をスパッタリング法で成膜することで、母材本体2を液体や高温気体にさらすことなく母材本体2の母材粗面2A上に緻密でかつ密着性の高い均一な厚さの薄膜を成膜することができる。 Next, by sputtering, in a vacuum containing an inert gas (argon gas), a negative voltage is applied to the cathode target (film-forming material) to generate glow discharge, and gas ions collide with the film-forming material. Particles of the film-forming material beaten out are deposited on the surface of the base material body 2 to form a dense thin film. By forming the intermediate coating by a sputtering method, a thin film of uniform thickness which is dense and highly adhesive is formed on the base material rough surface 2A of the base material body 2 without exposing the base material body 2 to liquid or high-temperature gas. can be deposited.

なお、中間被膜は、スパッタリング法の他、アークイオンプレーティング法により、母材本体2の母材粗面2A上に成膜される構成であっても良い。アークイオンプレーティング法は、真空中で成膜材料を蒸発させ、アーク放電によりイオン化(電離)させたプラス電荷の成膜材料を、マイナス電荷が印加された母材本体2の表面に引き寄せて成膜する公知の方法である。 The intermediate coating may be formed on the base material rough surface 2A of the base material main body 2 by an arc ion plating method other than the sputtering method. In the arc ion plating method, a film-forming material is evaporated in a vacuum, and the positively-charged film-forming material ionized (ionized) by arc discharge is attracted to the surface of the base material main body 2 to which a negative charge is applied. It is a known method for film formation.

DLC被膜は、DLC被膜成膜工程において、PVD法(物理蒸着法)に分類される真空アーク蒸着法により、母材本体2の母材粗面2A上に成膜された中間被膜の表面に均一な厚さを持つ形に積層状に成膜される。DLC被膜は、上記真空アーク蒸着法により、DLC(ダイヤモンドライクカーボン)の中では最もSP-3構造の比率が高く、最も高密度でかつ硬質な特徴を備えるとされるta-Cに分類される被膜として形成される。ta-Cは、SP-3構造の比率が50%~90%で、かつ、水素含有量が5質量%以下のアモルファスカーボンである。 The DLC coating is formed uniformly on the surface of the intermediate coating formed on the base material rough surface 2A of the base material main body 2 by a vacuum arc deposition method classified as a PVD method (physical vapor deposition method) in the DLC coating deposition process. The film is deposited in layers in a shape having a sufficient thickness. The DLC coating is classified as ta-C, which is said to have the highest SP-3 structure ratio among DLC (diamond-like carbon), the highest density and hard characteristics by the vacuum arc deposition method. Formed as a coating. ta-C is amorphous carbon with a ratio of SP-3 structure of 50% to 90% and a hydrogen content of 5% by mass or less.

詳しくは、DLC被膜は、真空アーク蒸着法の中でも特に表面の欠陥を少なく成膜できる手法として知られる公知のFCVA法(フィルタード陰極真空アーク法)により成膜される。FCVA法は、真空アーク蒸着法によりta-C被膜をワークに蒸着する際、陰極ターゲットの蒸発源である固体黒鉛から放出され得る電気的に中性な蒸発粒子であるドロップレット(SP-2構造あるいはそれに近い組成構造を持つマクロパーティカル)をプラズマの輸送中にプラズマからフィルタリングして、被膜に付着させにくくすることができる公知の手法である。 More specifically, the DLC film is formed by a known FCVA method (filtered cathode vacuum arc method), which is known as a method capable of forming a film with few surface defects, among vacuum arc deposition methods. In the FCVA method, droplets (SP-2 structure or macroparticles having a similar composition structure) can be filtered out of the plasma during transport of the plasma, making it difficult for them to adhere to the film.

ドロップレットが被膜に付着されにくくなることで、被膜の表面を凹凸の少ない幾何学的均一性(平坦性)及び化学的均一性を担保した形に形成することができる。その結果、DLC被膜を、表面が平滑で、かつ、機械特性の低下しにくい形に形成することができる。DLC被膜は、上記FCVA法を用いて、表面の欠陥が20%以下となるように形成されることが好ましい。また、DLC被膜は、厚さが0.5~5.0μmで、かつ、被膜のビッカース硬さが1,500~5,000Hvに形成されることが好ましい。被膜の硬さは、被膜の厚みが数十nm~数十μmの場合には、ナノインデンテーション硬さで示されることがある。 Since the droplets are less likely to adhere to the film, the surface of the film can be formed in a shape that ensures geometric uniformity (flatness) and chemical uniformity with less unevenness. As a result, the DLC coating can be formed in a shape that has a smooth surface and does not easily deteriorate in mechanical properties. The DLC coating is preferably formed using the above FCVA method so that the surface defects are 20% or less. Also, the DLC film is preferably formed to have a thickness of 0.5 to 5.0 μm and a Vickers hardness of 1,500 to 5,000 Hv. The hardness of the coating is sometimes indicated by nanoindentation hardness when the coating has a thickness of several tens of nm to several tens of μm.

DLC被膜は、中間被膜を間に介して母材本体2上に設けられることで、母材本体2上に密着性良く成膜される。上記中間被膜にDLC被膜が積層されて成るDLC被膜層の成膜により、水栓部材1の表面には、図2に示すように、母材本体2の母材粗面2Aの凹凸形状に依存した無数の微細な凹凸を備える高密度、硬質、かつ、高い耐摩耗性を備える加飾粗面3Aを備えた加飾層3が形成される。DLC被膜及びその下層に形成される中間被膜は、それぞれ、上述した真空アーク蒸着法やスパッタリング法により、母材本体2の母材粗面2A上に均一な厚さを持つ形に積層状に成膜される。したがって、母材本体2に陥凹する母材粗面2Aの凹形状を深く設定しなくても、水栓部材1の表面、すなわち加飾粗面3Aに輪郭が鮮明な凹凸模様を形成することができる。 The DLC coating is formed on the base material body 2 with good adhesion by being provided on the base material body 2 with an intermediate coating interposed therebetween. By forming the DLC coating layer in which the DLC coating is laminated on the intermediate coating, the surface of the faucet member 1 is formed as shown in FIG. The decorative layer 3 is formed with a decorative rough surface 3A having a high density, hardness, and high abrasion resistance, which is provided with countless fine irregularities. The DLC coating and the intermediate coating formed thereunder are laminated in a form having a uniform thickness on the base material rough surface 2A of the base material main body 2 by the above-described vacuum arc deposition method or sputtering method. filmed. Therefore, even if the recessed shape of the base material rough surface 2A recessed into the base material main body 2 is not set deep, the surface of the faucet member 1, that is, the decorative rough surface 3A can be formed with an uneven pattern with a clear outline. can be done.

続いて、母材粗面2A上にニッケル-クロムめっき被膜層を成膜するニッケル-クロムめっき被膜層成膜工程について説明する。ニッケル-クロムめっき被膜層成膜工程では、母材本体2の表面全体に、ニッケルめっき処理とクロムめっき処理とをこの順に行い、ニッケルめっきとクロムめっきとを積層状に有するニッケル-クロムめっき被膜層を形成する。ニッケルめっきは、約7μmの厚さに形成されることが好ましい。クロムめっきは、0.2~0.4μmの厚さに形成されることが好ましい。 Next, a nickel-chromium plating film layer forming process for forming a nickel-chromium plating film layer on the rough surface 2A of the base material will be described. In the nickel-chromium plating film layer forming step, the entire surface of the base material body 2 is subjected to nickel plating treatment and chromium plating treatment in this order to form a nickel-chromium plating film layer having nickel plating and chromium plating in a laminated form. to form The nickel plating is preferably formed to a thickness of approximately 7 μm. Chrome plating is preferably formed to a thickness of 0.2 to 0.4 μm.

母材本体2は、その表面にニッケルめっきが積層状に設けられることで、耐食性が適切に高められる。また、母材本体2は、ニッケルめっきの表面にクロムめっきが更に積層状に設けられることで、耐傷付性が適切に高められると共に、金属光沢を有する見栄えの良い形に仕上げられる。なお、加飾層3は、ニッケル-クロムめっき被膜層に代えて、ニッケルめっきのみから成る被膜層、或いはクロムめっきのみから成る被膜層によって形成されるものであっても良い。ニッケルめっきは、母材本体2を構成する銅合金との密着性に優れ、硬質で、かつ、耐食性および耐熱性に優れた特徴を有する。クロムめっきは、ニッケルめっきの保護膜となるものであり、耐傷付性、光反射性、熱反射性および耐食性に優れる特徴を有する。 The corrosion resistance of the base material main body 2 is appropriately enhanced by providing nickel plating on the surface thereof in a laminated manner. In addition, the base material body 2 is provided with a layered chromium plating layer on the surface of the nickel plating, so that the scratch resistance is appropriately enhanced, and the base material body 2 is finished in a good-looking shape with metallic luster. Note that the decorative layer 3 may be formed of a coating layer made of only nickel plating or a coating layer made of only chromium plating instead of the nickel-chrome plating coating layer. Nickel plating has excellent adhesion to the copper alloy forming the base material body 2, is hard, and has excellent corrosion resistance and heat resistance. Chromium plating serves as a protective film for nickel plating and is characterized by excellent scratch resistance, light reflectivity, heat reflectivity and corrosion resistance.

上記ニッケル-クロムめっき被膜層の成膜により、水栓部材1の表面には、図2に示すように、母材本体2の母材粗面2Aの凹凸形状に依存した無数の微細な凹凸を備える耐食性、耐変色性及び耐候性等の外観維持性能に優れた加飾粗面3Aを備えた加飾層3が形成される。なお、ニッケルめっき及びクロムめっきのそれぞれの厚さは、加飾粗面3Aを母材粗面2Aの凹凸形状に依存した無数の微細な凹凸を備える形に形成可能な厚さであれば良く、特に限定されない。 Due to the formation of the nickel-chromium plating film layer, the surface of the faucet member 1, as shown in FIG. A decorative layer 3 having a decorative rough surface 3A excellent in appearance maintenance performance such as corrosion resistance, discoloration resistance and weather resistance is formed. The thickness of each of the nickel plating and the chrome plating may be any thickness that allows the decorative rough surface 3A to be provided with countless fine irregularities depending on the irregular shape of the base material rough surface 2A. It is not particularly limited.

《その他の実施形態について》
以上、本発明の実施形態を1つの実施形態を用いて説明したが、本発明は、上記実施形態に示した構成に限定されず、本発明の要旨を変更しない範囲内で種々の変更、追加、及び削除が可能なものである。例えば、本発明の水栓部材は、加飾層の表面に水垢や指紋等の汚れが付着しても目立ちにくくすることを目的としたものであれば良く、屋内外の水まわり環境で使用される水栓金具のハンドル等、水栓金具の本体部材や配管以外の部材にも適用することができるものである。
<<About other embodiments>>
As described above, the embodiment of the present invention has been described using one embodiment, but the present invention is not limited to the configuration shown in the above embodiment, and various modifications and additions can be made without changing the gist of the present invention. , and can be deleted. For example, the faucet member of the present invention may be used for the purpose of making stains such as water stains and fingerprints inconspicuous on the surface of the decorative layer, and is used indoors and outdoors around water. The present invention can also be applied to members other than the main body member of the faucet fitting and piping, such as the handle of the faucet fitting.

1 水栓部材
2 母材本体
2A 母材粗面
3 加飾層
3A 加飾粗面
S1 前工程
S2 鉛除去処理工程
S3 ブラスト処理工程
S4 鏡面仕上げ処理工程
S5 洗浄処理工程
S6 加飾層成膜工程
1 faucet member 2 base material main body 2A base material rough surface 3 decorative layer 3A decorative rough surface S1 pre-process S2 lead removal process S3 blasting process S4 mirror finishing process S5 cleaning process S6 decorative layer forming process

Claims (5)

水栓部材であって、
母材本体と、前記母材本体の所定表面上に成膜される加飾層と、を有し、
前記母材本体の前記所定表面の全域に、無数の微細な凹凸を備える母材粗面が形成され、前記加飾層が、前記母材粗面上に前記母材粗面の凹凸形状に依存した無数の微細な凹凸を備える加飾粗面が形成された構成とされる、水栓部材。
A faucet member,
Having a base material body and a decorative layer formed on a predetermined surface of the base material body,
A base material rough surface having countless fine irregularities is formed over the entire predetermined surface of the base material main body, and the decorative layer is formed on the base material rough surface depending on the uneven shape of the base material rough surface. A faucet member having a decorative rough surface with countless fine unevenness.
前記加飾層が、金属製の中間被膜の表面にta-Cに分類されるDLC被膜が積層されて成るDLC被膜層、又はニッケルめっきの表面にクロムめっきが積層されて成るニッケル-クロムめっき被膜層とされる、請求項1に記載の水栓部材。 The decorative layer is a DLC coating layer obtained by laminating a DLC coating classified as ta-C on the surface of a metallic intermediate coating, or a nickel-chromium plating coating obtained by laminating chromium plating on a nickel-plated surface. 2. A faucet member according to claim 1, wherein the faucet member is layered. 前記加飾粗面が、最大高さ5~100μm、凹凸の平均間隔10~500μm、及び凹凸数10~100個/mm2の凹凸形状とされる、請求項1又は請求項2に記載の水栓部材。 The water according to claim 1 or claim 2, wherein the decorative rough surface has an uneven shape with a maximum height of 5 to 100 µm, an average spacing of unevenness of 10 to 500 µm, and a number of unevenness of 10 to 100/mm 2 . plug member. 前記母材本体が、50%以上の銅を含有し、残部が、鉛、亜鉛、錫、鉄、ニッケル、及びアンチモンからなる銅合金である、請求項1から請求項3のいずれか1項に記載の水栓部材。 4. The base metal body according to any one of claims 1 to 3, wherein the base metal body is a copper alloy containing 50% or more copper, the balance being lead, zinc, tin, iron, nickel and antimony. A faucet member as described. 水栓部材の製造方法であって、
母材本体の所定表面の全域にブラスト処理を施すことで無数の微細な凹凸を備える母材粗面を形成するブラスト処理工程と、
前記母材粗面に別のブラスト処理を施すことで前記母材粗面を鏡面仕上げする鏡面仕上げ処理工程と、
前記母材本体の前記所定表面上に加飾層を成膜することで前記母材粗面上に前記母材粗面の凹凸形状に依存した無数の微細な凹凸を備える加飾粗面を備えた前記加飾層を形成する加飾層成膜工程と、を有する、水栓部材の製造方法。
A method for manufacturing a faucet member,
A blasting step of forming a rough surface of the base material having countless fine irregularities by blasting the entire predetermined surface of the base material body;
a mirror-finishing step of mirror-finishing the rough surface of the base material by subjecting the rough surface of the base material to another blasting treatment;
By forming a decorative layer on the predetermined surface of the base material main body, the base material rough surface is provided with a decorative rough surface having innumerable fine unevenness depending on the uneven shape of the base material rough surface. and a decorative layer forming step of forming the decorative layer.
JP2022008533A 2022-01-24 2022-01-24 Faucet member and manufacturing method of the same Pending JP2023107365A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2022008533A JP2023107365A (en) 2022-01-24 2022-01-24 Faucet member and manufacturing method of the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2022008533A JP2023107365A (en) 2022-01-24 2022-01-24 Faucet member and manufacturing method of the same

Publications (1)

Publication Number Publication Date
JP2023107365A true JP2023107365A (en) 2023-08-03

Family

ID=87474661

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2022008533A Pending JP2023107365A (en) 2022-01-24 2022-01-24 Faucet member and manufacturing method of the same

Country Status (1)

Country Link
JP (1) JP2023107365A (en)

Similar Documents

Publication Publication Date Title
US6991515B2 (en) Ultra fine particle film forming method and apparatus
CN108130533A (en) One kind has high wear-resistant anti-corrosion hard seal ball valve and preparation method
TW200949013A (en) Ceramic sprayed member, making method, abrasive medium for use therewith
US8734907B2 (en) Coating of shield surfaces in deposition systems
JP2002275658A (en) Enhanced surface preparation process for application of ceramic coating
WO1995029271A1 (en) Slide member and method of its production
US20140242500A1 (en) Process For Cleaning Shield Surfaces In Deposition Systems
JP2023107365A (en) Faucet member and manufacturing method of the same
JP2023107368A (en) Cock member
JP2023068327A (en) Decorative member
JP5082113B2 (en) Carrier for holding object to be polished and method for manufacturing the same
US7368176B2 (en) Pre-plating surface treatments for enhanced galvanic-corrosion resistance
JP3996039B2 (en) Method for manufacturing ceramic base material with metal spray coating
JP2023075427A (en) Decorative member
JP4999264B2 (en) Thin film manufacturing apparatus and manufacturing method thereof
CN113305740B (en) Method for improving surface smoothness of artificial joint casting
CN103898468A (en) Method for repairing defects of metal coatings on surfaces of spare parts
JP2000127046A (en) Electrodeposition dresser for polishing by polisher
JP3024095B2 (en) Sandblasting surface treatment method
JP5082114B2 (en) Manufacturing method of carrier for holding object to be polished
JP5082116B2 (en) Method for manufacturing non-metallic carrier for holding object to be polished
JP2006316912A (en) Piston ring having ion plating film
US20060151434A1 (en) Selective surface texturing through the use of random application of thixotropic etching agents
JP5082115B2 (en) Carrier for holding object to be polished and method for manufacturing the same
JP2007180399A (en) Metal-ceramics circuit board and manufacturing method thereof