JP2023105327A - 車載用充電器 - Google Patents

車載用充電器 Download PDF

Info

Publication number
JP2023105327A
JP2023105327A JP2022006061A JP2022006061A JP2023105327A JP 2023105327 A JP2023105327 A JP 2023105327A JP 2022006061 A JP2022006061 A JP 2022006061A JP 2022006061 A JP2022006061 A JP 2022006061A JP 2023105327 A JP2023105327 A JP 2023105327A
Authority
JP
Japan
Prior art keywords
transistor
voltage
resistor
circuit
gate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2022006061A
Other languages
English (en)
Inventor
和思 中山
Kazushi Nakayama
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2022006061A priority Critical patent/JP2023105327A/ja
Publication of JP2023105327A publication Critical patent/JP2023105327A/ja
Pending legal-status Critical Current

Links

Images

Landscapes

  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)
  • Dc-Dc Converters (AREA)

Abstract

【課題】ブリッジ回路による昇圧後の直流電圧の変動を抑える車載用充電器を提供する。【解決手段】車載用充電器2のブリッジ回路21は、第1のトランジスタ31と、第2のトランジスタ32と、第3のトランジスタ33と、第4のトランジスタ34とを備えている。また、ブリッジ回路21は、ブートストラップ回路16と第1のトランジスタ31の制御端子との間に接続されている第1の抵抗35と、ブートストラップ回路16と第2のトランジスタ32の制御端子との間に接続されている第2の抵抗36と、ブートストラップ回路16と第3のトランジスタ33の制御端子との間に接続されている第3の抵抗37と、ブートストラップ回路16と第4のトランジスタ34の制御端子との間に接続されている第4の抵抗38と、を備えている。【選択図】図2

Description

本開示は、車載用充電器に関するものである。
交流直流変換部から出力された直流電圧を昇圧するブリッジ回路を有し、ブリッジ回路による昇圧後の直流電圧によって車載用バッテリを充電させる車載用充電器がある(特許文献1を参照)。当該ブリッジ回路は、第1のトランジスタと第2のトランジスタと第3のトランジスタと第4のトランジスタとを備えている。第1のトランジスタと第3のトランジスタとは、高電位側のトランジスタであり、第2のトランジスタと第4のトランジスタとは、低電位側のトランジスタである。第1のトランジスタと第2のトランジスタとが直列に接続されており、第3のトランジスタと第4のトランジスタとが直列に接続されている。当該車載用充電器は、第1のトランジスタ、第2のトランジスタ、第3のトランジスタ及び第4のトランジスタにおけるそれぞれの開閉状態を制御する制御回路を備えている。
制御回路は、第1のトランジスタ及び第4のトランジスタのそれぞれを閉状態から開状態に遷移させ、かつ、第2のトランジスタ及び第3のトランジスタのそれぞれを開状態から閉状態に遷移させる第1の制御を行う。また、制御回路は、第1のトランジスタ及び第4のトランジスタのそれぞれを開状態から閉状態に遷移させ、かつ、第2のトランジスタ及び第3のトランジスタのそれぞれを閉状態から開状態に遷移させる第2の制御を行う。
制御回路は、第1のトランジスタ、又は、第3のトランジスタのいずれかを開状態から閉状態に遷移させるときには、第1のゲート閾値電圧よりも高い第1のゲート電圧を、第1のトランジスタのゲート端子、又は、第3のトランジスタのゲート端子のいずれかに与える。制御回路は、第2のトランジスタ、又は、第4のトランジスタのいずれかを開状態から閉状態に遷移させるときには、第2のゲート閾値電圧よりも高い第2のゲート電圧を、第2のトランジスタのゲート端子、又は、第4のトランジスタのゲート端子のいずれかに与える。
第1のトランジスタが閉状態であるときは、第1のトランジスタのソース端子に印加される電圧は、交流直流変換部から出力された直流電圧と同電位になる。また、第3のトランジスタが閉状態であるときは、第3のトランジスタのソース端子に印加される電圧は、交流直流変換部から出力された直流電圧と同電位になる。このため、第1のゲート閾値電圧は、当該直流電圧よりも数ボルト高い電圧である。
一方、第2のトランジスタのソース端子に印加される電圧は、直流電圧の基準電位である。また、第4のトランジスタのソース端子に印加される電圧は、直流電圧の基準電位である。このため、第2のゲート閾値電圧は、直流電圧の基準電位よりも数ボルト高い電圧である。
国際公開第2017/179200号
特許文献1に開示されている車載用充電器では、第1のゲート閾値電圧と第2のゲート閾値電圧とが異なり、第1のゲート電圧と第2のゲート電圧とが異なる。このため、第1の制御、あるいは、第2の制御が行われるとき、第1のゲート電圧が第1のゲート閾値電圧よりも高くなる立ち上がりタイミング(以下「第1のタイミング」という)と、第2のゲート電圧が第2のゲート閾値電圧よりも高くなる立ち上がりタイミング(以下「第2のタイミング」という)と異なることがある。第1のタイミングと第2のタイミングとが異なれば、第1のトランジスタが閉状態になるタイミングと第4のトランジスタが閉状態になるタイミングとの間にずれが生じ、また、第2のトランジスタが閉状態になるタイミングと第3のトランジスタが閉状態になるタイミングとの間にずれが生じる。
上記のように閉状態になるタイミングにずれが生じることで、スイッチング損失に差が生じてしまうことがあるという課題があった。
本開示は、上記のような課題を解決するためになされたもので、スイッチング損失の差を抑えることができる車載用充電器を得ることを目的とする。
本開示に係る車載用充電器は、第1の直流電圧を昇圧するブリッジ回路を有し、ブリッジ回路による昇圧後の直流電圧である第2の直流電圧によってバッテリを充電させる電力変換回路と、ブリッジ回路を制御する制御回路とを備えている。また、車載用充電器のブリッジ回路は、第1の直流電圧が入力端子に印加される第1のトランジスタと、第1のトランジスタの出力端子と入力端子が接続され、出力端子の電位が第1の直流電圧の基準電位である第2のトランジスタと、第1の直流電圧が入力端子に印加される第3のトランジスタと、第3のトランジスタの出力端子と入力端子が接続され、出力端子の電位が基準電位である第4のトランジスタと、制御回路と第1のトランジスタの制御端子との間に接続されている第1の抵抗と、制御回路と第2のトランジスタの制御端子との間に接続されている第2の抵抗と、制御回路と第3のトランジスタの制御端子との間に接続されている第3の抵抗と、制御回路と第4のトランジスタの制御端子との間に接続されている第4の抵抗とを備えている。
本開示によれば、スイッチング損失の差を抑えることができる。
実施の形態1に係る車載用充電器2を示す構成図である。 実施の形態1に係る車載用充電器2に含まれているブリッジ回路21及びブートストラップ回路16を示す構成図である。 第1のゲート電圧Vg及び第4のゲート電圧Vgにおけるそれぞれの立ち上がり波形と立ち下がり波形とを示す説明図である。 抵抗値調整後の、第1のゲート電圧Vg及び第4のゲート電圧Vgにおけるそれぞれの立ち上がり波形と立ち下がり波形とを示す説明図である。 4つのトランジスタ31~34におけるそれぞれのソース端子の電位を基準電位とした場合の、第1のゲート電圧Vg及び第4のゲート電圧Vgにおけるそれぞれの立ち上がり波形と立ち下がり波形とを示す説明図である。 4つのトランジスタ31~34におけるそれぞれのソース端子の電位を基準電位とした場合の抵抗値調整後の、第1のゲート電圧Vg及び第4のゲート電圧Vgにおけるそれぞれの立ち上がり波形と立ち下がり波形とを示す説明図である。
以下、本開示をより詳細に説明するために、本開示を実施するための形態について、添付の図面に従って説明する。
実施の形態1.
図1は、実施の形態1に係る車載用充電器2を示す構成図である。
図2は、実施の形態1に係る車載用充電器2に含まれているブリッジ回路21及びブートストラップ回路16を示す構成図である。
図1において、系統電源1は、例えば、ショッピングセンサーに設置されている充電用電源、ガソリンスタンドに設置されている充電用電源、あるいは、家庭に設置されている充電用電源である。
系統電源1は、交流電力を車載用充電器2に供給する。
車載用充電器2は、交流直流変換器(以下「AC/DCコンバータ」という)11、電力変換回路(以下「DC/DCコンバータ」という)12、直流電圧計13、電解コンデンサ14及び制御回路15を備えている。
車載用充電器2は、系統電源1から出力された交流電力を直流電力に変換する。
車載用充電器2は、変換後の直流電力の直流電圧である第1の直流電圧を昇圧し、昇圧後の直流電圧である第2の直流電圧によってバッテリ3を充電させる。
バッテリ3は、例えば、電気自動車のモータ、あるいは、車両に実装されている電子機器に供給するための直流電力を充電する。
AC/DCコンバータ11は、系統電源1から出力された交流電力を直流電力に変換する。
AC/DCコンバータ11は、直流電力をDC/DCコンバータ12に出力する。
DC/DCコンバータ12は、ブリッジ回路21、変圧回路22、整流回路23及び平滑回路24を備えている。
DC/DCコンバータ12は、AC/DCコンバータ11から出力された直流電力の直流電圧である第1の直流電圧を昇圧する。
DC/DCコンバータ12は、昇圧後の直流電圧である第2の直流電圧によってバッテリ3を充電させる。
ブリッジ回路21は、図2に示すように、4つのトランジスタと、4つの抵抗とを備えている。
4つのトランジスタのそれぞれは、例えば、Nチャネル型のMOSFET(Metal Oxide Semiconductor Field Effect Transistor)によって実現される。ただし、これは一例に過ぎず、4つのトランジスタのそれぞれは、Nチャネル型のMOSFET以外のトランジスタによって実現されるものであってもよい。
4つのトランジスタは、第1のトランジスタ31と、第2のトランジスタ32と、第3のトランジスタ33と、第4のトランジスタ34とである。
4つの抵抗は、第1の抵抗35と、第2の抵抗36と、第3の抵抗37と、第4の抵抗38とである。
図2に示すブリッジ回路21では、説明の便宜上、4つのトランジスタのそれぞれが、Nチャネル型のMOSFETであるとしている。
第1のトランジスタ31と第2のトランジスタ32とは、直列に接続されており、第3のトランジスタ33と第4のトランジスタ34とは、直列に接続されている。
第1のトランジスタ31及び第2のトランジスタ32を含む直列回路と、第3のトランジスタ33及び第4のトランジスタ34を含む直列回路とは、並列に接続されている。
第1のトランジスタ31の入力端子であるドレイン端子は、AC/DCコンバータ11の一方の出力端子と接続されている。第1のトランジスタ31のドレイン端子は、AC/DCコンバータ11から出力された第1の直流電圧が印加される。
第1のトランジスタ31の出力端子であるソース端子は、第2のトランジスタ32の入力端子であるドレイン端子及び変圧回路22の入力側の一端のそれぞれと接続されている。
第2のトランジスタ32のドレイン端子は、第1のトランジスタ31のソース端子及び変圧回路22の入力側の一端のそれぞれと接続されている。
第2のトランジスタ32の出力端子であるソース端子は、AC/DCコンバータ11の他方の出力端子と接続されている。第2のトランジスタ32のソース端子の電位は、第1の直流電圧の基準電位である。
第3のトランジスタ33の入力端子であるドレイン端子は、AC/DCコンバータ11の一方の出力端子と接続されている。第3のトランジスタ33のドレイン端子は、AC/DCコンバータ11から出力された第1の直流電圧が印加される。
第3のトランジスタ33の出力端子であるソース端子は、第4のトランジスタ34の入力端子であるドレイン端子及び変圧回路22の入力側の他端のそれぞれと接続されている。
第4のトランジスタ34のドレイン端子は、第3のトランジスタ33のソース端子及び変圧回路22の入力側の他端のそれぞれと接続されている。
第4のトランジスタ34の出力端子であるソース端子は、AC/DCコンバータ11の他方の出力端子と接続されている。第4のトランジスタ34のソース端子の電位は、第1の直流電圧の基準電位である。
第1の抵抗35の一端は、制御回路15に含まれているブートストラップ回路16のドライバ回路45aと接続されている。
第1の抵抗35の他端は、第1のトランジスタ31の制御端子であるゲート端子と接続されている。
第2の抵抗36の一端は、ブートストラップ回路16のドライバ回路46aと接続されている。
第2の抵抗36の他端は、第2のトランジスタ32の制御端子であるゲート端子と接続されている。
第3の抵抗37の一端は、ブートストラップ回路16のドライバ回路45bと接続されている。
第3の抵抗37の他端は、第3のトランジスタ33の制御端子であるゲート端子と接続されている。
第4の抵抗38の一端は、ブートストラップ回路16のドライバ回路46bと接続されている。
第4の抵抗38の他端は、第4のトランジスタ34の制御端子であるゲート端子と接続されている。
第1の抵抗35、第2の抵抗36、第3の抵抗37及び第4の抵抗38のそれぞれは、固定抵抗であってもよいし、可変抵抗であってもよい。
第1の抵抗35、第2の抵抗36、第3の抵抗37及び第4の抵抗38のそれぞれが可変抵抗であれば、それぞれの抵抗の抵抗値は、例えば、車載用充電器2の組立時に、スイッチング損失の差が抑制されるように調整が済んでいる。
また、第1の抵抗35、第2の抵抗36、第3の抵抗37及び第4の抵抗38のそれぞれが固定抵抗であれば、それぞれの抵抗は、スイッチング損失の差が抑制される抵抗値を有するものが用いられる。
変圧回路22は、例えば、一次巻線と二次巻線とが鉄心に巻回されている変圧器によって実現される。一次巻線は、変圧回路22の入力側であり、二次巻線は、変圧回路22の出力側である。
変圧回路22の一次巻線の一端は、第1のトランジスタ31のソース端子及び第2のトランジスタ32のドレイン端子のそれぞれと接続されている。
変圧回路22の一次巻線の他端は、第3のトランジスタ33のソース端子及び第4のトランジスタ34のドレイン端子のそれぞれと接続されている。
変圧回路22の二次巻線は、整流回路23と接続されている。
変圧回路22では、一次巻線の一端に印加されている電圧と一次巻線の他端に印加されている電圧との電位差に比例する電圧が二次巻線の両端に現れる。
整流回路23は、例えば、ダイオードによって実現される。
整流回路23は、変圧回路22の二次巻線の両端に現れている電圧を整流し、第2の直流電圧として、整流後の電圧を平滑回路24に出力する。
平滑回路24は、鉄心に巻線が巻回されているコイル25とコンデンサ26とを有するLCフィルタによって実現される。
平滑回路24は、整流回路23から出力された第2の直流電圧に重畳されているリップル成分を抑圧する。
平滑回路24は、リップル成分抑圧後の第2の直流電圧によってバッテリ3を充電させる。
直流電圧計13は、AC/DCコンバータ11から出力された直流電力の直流電圧である第1の直流電圧を計測する。
直流電圧計13は、第1の直流電圧の計測値を制御回路15に出力する。
電解コンデンサ14の一端は、AC/DCコンバータ11から出力された第1の直流電圧が印加される。
電解コンデンサ14の他端の電位は、第1の直流電圧の基準電位である。
電解コンデンサ14は、車載用充電器2の安定化のために設けられている。
制御回路15は、ブートストラップ回路16を備えている。
制御回路15は、直流電圧計13から出力された第1の直流電圧の計測値に基づいて、AC/DCコンバータ11及びDC/DCコンバータ12のそれぞれを制御する。
ブートストラップ回路16は、第1のトランジスタ31、第2のトランジスタ32、第3のトランジスタ33及び第4のトランジスタ34におけるそれぞれのゲート端子に印加するゲート電圧を制御することで、DC/DCコンバータ12を制御する。
ブートストラップ回路16は、第1の電源部41a,41b、ダイオード42a,42b、第2の電源部43a,43b及びマイコン44a,44bを備えている。
第1の電源部41a,41bのそれぞれは、駆動電圧を出力する電源である。
ダイオード42aは、例えば、ファストリカバリーダイオードによって実現される。
ダイオード42aによって順方向ドロップ電圧が生じるため、ダイオード42aから出力される電圧は、第1の電源部41aから出力された駆動電圧よりも順方向ドロップ電圧だけ低い電圧になる。
ダイオード42bは、例えば、ファストリカバリーダイオードによって実現される。
ダイオード42bによって順方向ドロップ電圧が生じるため、ダイオード42bから出力される電圧は、第1の電源部41bから出力された駆動電圧よりも順方向ドロップ電圧だけ低い電圧になる。
第2の電源部43aは、例えば、バイパスコンデンサによって実現される。
第2の電源部43aは、ダイオード42aから出力された電圧を安定化させる。
第2の電源部43bは、例えば、バイパスコンデンサによって実現される。
第2の電源部43bは、ダイオード42bから出力された電圧を安定化させる。
マイコン44aは、ドライバ回路45a及びドライバ回路46aを有している。
ドライバ回路45aは、制御回路15から、第1のPWM(Pulse Width Modulation)信号が与えられる。第1のPWM信号に含まれているパルスの間隔及びパルス幅のそれぞれは、例えば、第1の直流電圧の計測値に応じて決定される。
ドライバ回路45aは、第1のPWM信号の信号レベルがH(Hight)レベルであるとき、第2の電源部43aにより発生された電圧を用いて、第1のトランジスタ31のゲート端子に印加する第1のゲート電圧として、第1のトランジスタ31の第1のゲート閾値電圧(閾値電圧)よりも高い電圧を生成する。第1のゲート閾値電圧は、例えば、電解コンデンサ14の両端に印加されている第1の直流電圧に対して、数ボルトが加算された電圧である。第1のゲート電圧は、第2の電源部43aから、第1の抵抗35を介して出力された電圧と、電解コンデンサ14の両端に印加されている第1の直流電圧との合成電圧である。
ドライバ回路45aは、第1のPWM信号の信号レベルがL(Low)レベルであるとき、第1のトランジスタ31のゲート端子に印加する第1のゲート電圧として、第1のゲート閾値電圧よりも低い電圧を生成する。
ドライバ回路46aは、制御回路15から、第2のPWM信号が与えられる。第2のPWM信号に含まれているパルスの間隔及びパルス幅のそれぞれは、例えば、第1の直流電圧の計測値に応じて決定される。
ドライバ回路46aに与えられる第2のPWM信号の信号レベルは、ドライバ回路45aに与えられる第1のPWM信号の信号レベルと逆になっている。即ち、ドライバ回路45aに与えられる第1のPWM信号の信号レベルがHレベルであれば、ドライバ回路46aに与えられる第2のPWM信号の信号レベルは、Lレベルである。ドライバ回路45aに与えられる第1のPWM信号の信号レベルがLレベルであれば、ドライバ回路46aに与えられる第2のPWM信号の信号レベルは、Hレベルである。ここでは、ドライバ回路46aに与えられる第2のPWM信号の信号レベルが、ドライバ回路45aに与えられる第1のPWM信号の信号レベルと逆になっている例を示している。ただし、これは一例に過ぎず、第1のPWM信号及び第2のPWM信号の双方がLレベルになる期間も存在する。
ドライバ回路46aは、第2のPWM信号の信号レベルがHレベルであるとき、第1の電源部41aから出力された駆動電圧を用いて、第2のトランジスタ32のゲート端子に印加する第2のゲート電圧として、第2のトランジスタ32の第2のゲート閾値電圧(閾値電圧)よりも高い電圧を生成する。第2のゲート閾値電圧は、例えば、第1の直流電圧の基準電位に対して、数ボルトが加算された電圧である。第2のゲート電圧は、第1の電源部41aから、第2の抵抗36を介して出力された電圧である。
ドライバ回路46aは、第2のPWM信号の信号レベルがLレベルであるとき、第2のトランジスタ32のゲート端子に印加する第2のゲート電圧として、第2のゲート閾値電圧よりも低い電圧を生成する。
マイコン44bは、ドライバ回路45b及びドライバ回路46bを有している。
ドライバ回路45bは、制御回路15から、第2のPWM信号が与えられる。
ドライバ回路45bに与えられる第2のPWM信号は、ドライバ回路46aに与えられる第2のPWM信号と同じである。
ドライバ回路45bは、第2のPWM信号の信号レベルがHレベルであるとき、第2の電源部43bにより発生された電圧を用いて、第3のトランジスタ33のゲート端子に印加する第3のゲート電圧として、第3のトランジスタ33の第3のゲート閾値電圧(閾値電圧)よりも高い電圧を生成する。第3のゲート閾値電圧は、第1のトランジスタ31の第1のゲート閾値電圧と同じである。第3のゲート電圧は、第2の電源部43bから、第3の抵抗37を介して出力された電圧と、電解コンデンサ14の両端に印加されている第1の直流電圧との合成電圧である。
ドライバ回路45bは、第2のPWM信号の信号レベルがLレベルであるとき、第3のトランジスタ33のゲート端子に印加する第3のゲート電圧として、第3のゲート閾値電圧よりも低い電圧を生成する。
ドライバ回路46bは、制御回路15から、第1のPWM信号が与えられる。
ドライバ回路46bに与えられる第1のPWM信号は、ドライバ回路45aに与えられる第1のPWM信号と同じである。
ドライバ回路46bは、第1のPWM信号の信号レベルがHレベルであるとき、第1の電源部41bから出力された駆動電圧を用いて、第4のトランジスタ34のゲート端子に印加する第4のゲート電圧として、第4のトランジスタ34の第4のゲート閾値電圧(閾値電圧)よりも高い電圧を生成する。第4のゲート閾値電圧は、第2のトランジスタ32の第2のゲート閾値電圧と同じである。第4のゲート電圧は、第1の電源部41bから、第4の抵抗38を介して出力された電圧である。
ドライバ回路46bは、第1のPWM信号の信号レベルがLレベルであるとき、第4のトランジスタ34のゲート端子に印加する第4のゲート電圧として、第4のゲート閾値電圧よりも低い電圧を生成する。
次に、図1に示す車載用充電器2の動作について説明する。
AC/DCコンバータ11は、系統電源1から交流電力を受けると、交流電力を直流電力に変換する。
AC/DCコンバータ11は、直流電力をDC/DCコンバータ12に出力する。
DC/DCコンバータ12は、AC/DCコンバータ11から直流電力を受けると、直流電力の直流電圧である第1の直流電圧Vを昇圧する。
DC/DCコンバータ12は、昇圧後の直流電圧である第2の直流電圧Vによってバッテリ3を充電させる。バッテリ3が、例えば、電気自動車のモータに電力を供給するためのバッテリであれば、DC/DCコンバータ12は、モータの駆動に必要な電圧まで、第1の直流電圧Vを昇圧する。
直流電圧計13は、第1の直流電圧Vを計測し、第1の直流電圧Vの計測値を制御回路15に出力する。
制御回路15は、直流電圧計13から、第1の直流電圧Vの計測値を取得する。
制御回路15は、第1の直流電圧Vの計測値が所望の電圧値になるように、AC/DCコンバータ11を制御する。
制御回路15のブートストラップ回路16は、バッテリ3が、例えば、電気自動車のモータに電力を供給するためのバッテリであれば、第2の直流電圧Vがモータの駆動に必要な電圧になるように、DC/DCコンバータ12のブリッジ回路21を制御する。
以下、ブートストラップ回路16によるブリッジ回路21の制御を具体的に説明する。
ブートストラップ回路16は、制御回路15から、第1のPWM信号及び第2のPWM信号のそれぞれを取得する。
第1のPWM信号は、第1のトランジスタ31及び第4のトランジスタ34のそれぞれを制御するための信号であり、第2のPWM信号は、第2のトランジスタ32及び第3のトランジスタ33のそれぞれを制御するための信号である。
第1のPWM信号の信号レベルがHレベルであれば、第1のPWM信号は、第1のトランジスタ31及び第4のトランジスタ34のそれぞれを開状態から閉状態に遷移させる旨を示している。第1のPWM信号の信号レベルがLレベルであれば、第1のPWM信号は、第1のトランジスタ31及び第4のトランジスタ34のそれぞれを閉状態から開状態に遷移させる旨を示している。
また、第2のPWM信号の信号レベルがHレベルであれば、第2のPWM信号は、第2のトランジスタ32及び第3のトランジスタ33のそれぞれを開状態から閉状態に遷移させる旨を示している。第2のPWM信号の信号レベルがLレベルであれば、第2のPWM信号は、第2のトランジスタ32及び第3のトランジスタ33のそれぞれを閉状態から開状態に遷移させる旨を示している。
第1の電源部41aは、駆動電圧Vdをドライバ回路46aに印加し、第1の電源部41bは、駆動電圧Vdをドライバ回路46bに印加する。
第1の電源部41aから出力された駆動電圧Vdは、ダイオード42aによって順方向ドロップ電圧vfが生じる。このため、ダイオード42aから第2の電源部43aに出力される駆動電圧Vdは、駆動電圧Vdよりも順方向ドロップ電圧vfだけ低い電圧(Vd-vf)になる。
また、第1の電源部41bから出力された駆動電圧Vdは、ダイオード42bによって順方向ドロップ電圧vfが生じる。このため、ダイオード42bから第2の電源部43bに出力される駆動電圧Vdは、駆動電圧Vdよりも順方向ドロップ電圧vfだけ低い電圧(Vd-vf)になる。
車載用充電器2が扱う電圧は、高電圧である。このため、ダイオード42a,42bとして、高耐圧なダイオードであるファストリカバリーダイオードが使用される。ダイオード42a,42bが高耐圧なダイオードであるため、ダイオード42a,42bによる順方向ドロップ電圧Vfは、高耐圧ではないダイオードによる順方向ドロップ電圧Vfよりも大きくなる。
第2の電源部43aは、ダイオード42aから出力された駆動電圧Vdを安定化させる。
第2の電源部43aは、安定化後の駆動電圧Vdをドライバ回路45aに印加する。
第2の電源部43bは、ダイオード42bから出力された駆動電圧Vdを安定化させる。
第2の電源部43bは、安定化後の駆動電圧Vdをドライバ回路45bに印加する。
ドライバ回路45aは、制御回路15から、第1のPWM信号が与えられる。
ドライバ回路45aは、第1のPWM信号の信号レベルがHレベルであるとき、第2の電源部43aによる安定化後の駆動電圧Vdを用いて、第1のトランジスタ31のゲート端子に印加する第1のゲート電圧Vgとして、第1のトランジスタ31の第1のゲート閾値電圧Vthよりも高い電圧を生成する。この場合の第1のゲート電圧Vgは、第2の電源部43aから、第1の抵抗35を介して出力された電圧VdR1(=Vd-第1の抵抗35による電圧降下)と第1の直流電圧Vとの合成電圧VdR1+Vであり、Vg>Vthである。
ドライバ回路45aは、第1のPWM信号の信号レベルがLレベルであるとき、第1のトランジスタ31のゲート端子に印加する第1のゲート電圧Vgとして、第1のゲート閾値電圧Vthよりも低い電圧を生成する。この場合の第1のゲート電圧Vgは、例えば、0[V]の電圧であり、Vg<Vthである。
ドライバ回路46aは、制御回路15から、第2のPWM信号が与えられる。
ドライバ回路46aは、第2のPWM信号の信号レベルがHレベルであるとき、第1の電源部41aから出力された駆動電圧Vdを用いて、第2のトランジスタ32のゲート端子に印加する第2のゲート電圧Vgとして、第2のトランジスタ32の第2のゲート閾値電圧Vthよりも高い電圧を生成する。この場合の第2のゲート電圧Vgは、第1の電源部41aから、第2の抵抗36を介して出力された電圧VdR2(=Vd-第2の抵抗36による電圧降下)と第1の直流電圧Vの基準電位Vとの合成電圧VdR2+Vであり、Vg>Vthである。第1の直流電圧Vの基準電位Vが0[V]であれば、Vg=VdR2である。Vth>Vthであるため、Vg>Vgである。
ドライバ回路46aは、第2のPWM信号の信号レベルがLレベルであるとき、第2のトランジスタ32のゲート端子に印加する第2のゲート電圧Vgとして、第2のゲート閾値電圧Vthよりも低い電圧を生成する。この場合の第2のゲート電圧Vgは、例えば、0[V]の電圧であり、Vg<Vthである。
ドライバ回路45bは、制御回路15から、第2のPWM信号が与えられる。
ドライバ回路45bは、第2のPWM信号の信号レベルがHレベルであるとき、第2の電源部43bによる安定化後の駆動電圧Vdを用いて、第3のトランジスタ33のゲート端子に印加する第3のゲート電圧Vgとして、第3のトランジスタ33の第3のゲート閾値電圧Vthよりも高い電圧を生成する。この場合の第3のゲート電圧Vgは、第2の電源部43bから、第3の抵抗37を介して出力された電圧VdR3(=Vd-第3の抵抗37による電圧降下)と第1の直流電圧Vとの合成電圧VdR3+Vであり、Vg>Vthである。Vg=Vg、Vth=Vthである。
ドライバ回路45bは、第2のPWM信号の信号レベルがLレベルであるとき、第3のトランジスタ33のゲート端子に印加する第3のゲート電圧Vgとして、第3のゲート閾値電圧Vthよりも低い電圧を生成する。この場合の第3のゲート電圧Vgは、例えば、0[V]の電圧であり、Vg<Vthである。
ドライバ回路46bは、制御回路15から、第1のPWM信号が与えられる。
ドライバ回路46bは、第1のPWM信号の信号レベルがHレベルであるとき、第1の電源部41bから出力された駆動電圧Vdを用いて、第4のトランジスタ34のゲート端子に印加する第4のゲート電圧Vgとして、第4のトランジスタ34の第4のゲート閾値電圧Vthよりも高い電圧を生成する。この場合の第4のゲート電圧Vgは、第1の電源部41bから、第4の抵抗38を介して出力された電圧VdR4(=Vd-第4の抵抗38による電圧降下)と第1の直流電圧Vの基準電位Vとの合成電圧VdR4+Vであり、Vg>Vthである。第1の直流電圧Vの基準電位Vが0[V]であれば、Vg=VdR4である。Vth>Vthであるため、Vg>Vgである。
ドライバ回路46bは、第1のPWM信号の信号レベルがLレベルであるとき、第4のトランジスタ34のゲート端子に印加する第4のゲート電圧Vgとして、第4のゲート閾値電圧Vthよりも低い電圧を生成する。この場合の第4のゲート電圧Vgは、例えば、0[V]の電圧であり、Vg<Vthである。
これにより、第1のPWM信号の信号レベルがHレベルであり、かつ、第2のPWM信号の信号レベルがLレベルであるとき、第1のトランジスタ31と第4のトランジスタ34とが閉状態になり、第2のトランジスタ32と第3のトランジスタ33とが開状態になる。
また、第1のPWM信号の信号レベルがLレベルであり、かつ、第2のPWM信号の信号レベルがHレベルであるとき、第1のトランジスタ31と第4のトランジスタ34とが開状態になり、第2のトランジスタ32と第3のトランジスタ33とが閉状態になる。
しかしながら、ブートストラップ回路16が、第1のトランジスタ31と第4のトランジスタ34とを開状態から閉状態に遷移させるとき、第1のゲート電圧Vgと第4のゲート電圧Vgとが異なり、かつ、第1のゲート閾値電圧Vthと第4のゲート閾値電圧Vthとが異なる。
また、ブートストラップ回路16が、第2のトランジスタ32と第3のトランジスタ33とを開状態から閉状態に遷移させるとき、第2のゲート電圧Vgと第3のゲート電圧Vgとが異なり、かつ、第2のゲート閾値電圧Vthと第3のゲート閾値電圧Vthとが異なる。
このため、図3に示すように、第1のゲート電圧Vgが第1のゲート閾値電圧Vthよりも高くなるタイミングと、第4のゲート電圧Vgが第4のゲート閾値電圧Vthよりも高くなるタイミングとの間にずれを生じることがある。
また、第2のゲート電圧Vgが第2のゲート閾値電圧Vthよりも高くなるタイミングと、第3のゲート電圧Vgが第3のゲート閾値電圧Vthよりも高くなるタイミングとの間にずれを生じることがある。
図3は、第1のゲート電圧Vg及び第4のゲート電圧Vgにおけるそれぞれの立ち上がり波形と立ち下がり波形とを示す説明図である。
第3のゲート電圧Vgの立ち上がり波形は、第1のゲート電圧Vgの立ち上がり波形と同じであり、第3のゲート電圧Vgの立ち下がり波形は、第1のゲート電圧Vgの立ち下がり波形と同じである。
第4のゲート電圧Vgの立ち上がり波形は、第2のゲート電圧Vgの立ち上がり波形と同じであり、第4のゲート電圧Vgの立ち下がり波形は、第2のゲート電圧Vgの立ち下がり波形と同じである。
図3において、第1のゲート閾値電圧Vth及び第4のゲート閾値電圧Vthのそれぞれは、直流電圧の基準電位を基準にした電位である。第1のゲート閾値電圧Vth、第2のゲート閾値電圧Vth、第3のゲート閾値電圧Vth及び第4のゲート閾値電圧Vthのそれぞれが、4つのトランジスタ31~34におけるそれぞれのソース端子の電位を基準電位とすれば、第1のゲート閾値電圧Vthと、第2のゲート閾値電圧Vthと、第3のゲート閾値電圧Vthと、第4のゲート閾値電圧Vthとは、同電位である。
図5は、4つのトランジスタ31~34におけるそれぞれのソース端子の電位を基準電位とした場合の、第1のゲート電圧Vg及び第4のゲート電圧Vgにおけるそれぞれの立ち上がり波形と立ち下がり波形とを示す説明図である。
図5の例では、4つのトランジスタ31~34のソース端子の電位を基準電位としているため、第4のゲート電圧Vgが、第1のゲート電圧Vgよりも高くなっている。
第1のゲート電圧Vgの立ち上がり波形及び立ち下がり波形のそれぞれは、第1のトランジスタ31の寄生容量と、第1の抵抗35の抵抗値とから定まる時定数の傾きを有している。
第2のゲート電圧Vgの立ち上がり波形及び立ち下がり波形のそれぞれは、第2のトランジスタ32の寄生容量と、第2の抵抗36の抵抗値とから定まる時定数の傾きを有している。
第3のゲート電圧Vgの立ち上がり波形及び立ち下がり波形のそれぞれは、第3のトランジスタ33の寄生容量と、第3の抵抗37の抵抗値とから定まる時定数の傾きを有している。
第4のゲート電圧Vgの立ち上がり波形及び立ち下がり波形のそれぞれは、第4のトランジスタ34の寄生容量と、第4の抵抗38の抵抗値とから定まる時定数の傾きを有している。
図3の例では、第1のゲート電圧Vgが第1のゲート閾値電圧Vthよりも高くなるタイミングが、ΔtUPの時間だけ、第4のゲート電圧Vgが第4のゲート閾値電圧Vthよりも高くなるタイミングよりも遅れている。
図3では、便宜上、第1のゲート電圧Vgが第1のゲート閾値電圧Vthよりも低くなるタイミングと、第4のゲート電圧Vgが第4のゲート閾値電圧Vthよりも低くなるタイミングとのずれが、無視できる程度に小さい例を示している。
したがって、ブートストラップ回路16が、第1のトランジスタ31と第4のトランジスタ34とを開状態から閉状態に遷移させるときに、第1のトランジスタ31が閉状態に遷移するタイミングと、第4のトランジスタ34が閉状態に遷移するタイミングとの間にずれが生じることがある。
また、ブートストラップ回路16が、第2のトランジスタ32と第3のトランジスタ33とを開状態から閉状態に遷移させるときに、第2のトランジスタ32が閉状態に遷移するタイミングと、第3のトランジスタ33が閉状態に遷移するタイミングとの間にずれが生じることがある。
第1のトランジスタ31が閉状態に遷移するタイミングと、第4のトランジスタ34が閉状態に遷移するタイミングとの間にずれが生じることで、スイッチング損失に差が生じる。また、第2のトランジスタ32が閉状態に遷移するタイミングと、第3のトランジスタ33が閉状態に遷移するタイミングとの間にずれが生じることで、スイッチング損失に差が生じる。スイッチング損失に差が生じることで、バッテリ3に供給する電力が損失する。
また、閉状態に遷移するタイミングにずれが生じることで、ブリッジ回路21による昇圧後の直流電圧である第2の直流電圧Vに変動が生じることがある。
ブートストラップ回路16が、第1のトランジスタ31と第4のトランジスタ34とを閉状態から開状態に遷移させるときに、閉状態のときの第1のゲート電圧Vgと閉状態のときの第4のゲート電圧Vgとが異なる。
また、ブートストラップ回路16が、第2のトランジスタ32と第3のトランジスタ33とを閉状態から開状態に遷移させるときに、閉状態のときの第2のゲート電圧Vgと閉状態のときの第3のゲート電圧Vgとが異なる。
閉状態のときの第1のゲート電圧Vgと閉状態のときの第4のゲート電圧Vgとが異なるため、第1のゲート電圧Vgが第1のゲート閾値電圧Vthよりも低くなる立ち下がりタイミングと、第4のゲート電圧Vgが第4のゲート閾値電圧Vthよりも低くなる立ち下がりタイミングとの間にずれを生じることがある。
また、閉状態のときの第2のゲート電圧Vgと閉状態のときの第3のゲート電圧Vgとが異なるため、第2のゲート電圧Vgが第2のゲート閾値電圧Vthよりも低くなる立ち下がりタイミングと、第3のゲート電圧Vgが第3のゲート閾値電圧Vthよりも低くなる立ち下がりタイミングとの間にずれを生じることがある。
したがって、ブートストラップ回路16が、第1のトランジスタ31と第4のトランジスタ34とを閉状態から開状態に遷移させるときに、第1のトランジスタ31が開状態に遷移するタイミングと、第4のトランジスタ34が開状態に遷移するタイミングとの間にずれを生じることがある。
また、ブートストラップ回路16が、第2のトランジスタ32と第3のトランジスタ33とを閉状態から開状態に遷移させるとき、第2のトランジスタ32が開状態に遷移するタイミングと、第3のトランジスタ33が開状態に遷移するタイミングとの間にずれを生じることがある。
第1のトランジスタ31が開状態に遷移するタイミングと、第4のトランジスタ34が開状態に遷移するタイミングとの間にずれが生じることで、スイッチング損失に差が生じる。
また、第2のトランジスタ32が開状態に遷移するタイミングと、第3のトランジスタ33が開状態に遷移するタイミングとの間にずれが生じることで、スイッチング損失に差が生じる。
また、開状態に遷移するタイミングにずれが生じることで、第2の直流電圧Vに変動が生じることがある。
図1に示す車載用充電器2では、タイミングのずれを解消する目的で、4つの抵抗がブートストラップ回路16に設けられている。
4つの抵抗である、第1の抵抗35、第2の抵抗36、第3の抵抗37及び第4の抵抗38のそれぞれが可変抵抗であれば、それぞれの抵抗の抵抗値は、タイミングのずれが解消されるように、例えば、車載用充電器2の組立時に調整されている。
また、第1の抵抗35、第2の抵抗36、第3の抵抗37及び第4の抵抗38のそれぞれが固定抵抗であれば、それぞれの抵抗として、タイミングのずれが解消されるような抵抗値を有するものが用いられる。
ブートストラップ回路16が、第1のトランジスタ31と第4のトランジスタ34とを開状態から閉状態に遷移させるときに、例えば、図3に示すように、第1のゲート電圧Vgが第1のゲート閾値電圧Vthよりも高くなるタイミングが、第4のゲート電圧Vgが第4のゲート閾値電圧Vthよりも高くなるタイミングよりも遅れている場合を想定する。
この場合、図4に示すように、第1のゲート電圧Vgが第1のゲート閾値電圧Vthよりも高くなるタイミングを早めて、ΔtUP=0になるように、第1の抵抗35の抵抗値が、第4の抵抗38の抵抗値よりも小さい値に調整されている。
あるいは、第4のゲート電圧Vgが第4のゲート閾値電圧Vthよりも高くなるタイミングを遅らせて、ΔtUP=0になるように、第4の抵抗38の抵抗値が、第1の抵抗35の抵抗値よりも大きい値に調整されている。
図4は、抵抗値調整後の、第1のゲート電圧Vg及び第4のゲート電圧Vgにおけるそれぞれの立ち上がり波形と立ち下がり波形とを示す説明図である。
図4では、ΔtUP=0である例を示している。しかし、厳密にΔtUP=0である必要はなく、実用上問題のない範囲で、ΔtUPが0に近い時間であってもよい。
第2の抵抗36及び第3の抵抗37についても、第1の抵抗35及び第4の抵抗38と同様に、抵抗値が調整されている。
上記のように、4つの抵抗の抵抗値が調整されていることで、タイミングのずれを解消して、スイッチング損失の差を抑制することができる。
4つのトランジスタ31~34におけるそれぞれのソース端子の電位を基準電位とした場合、抵抗値調整後の、第1のゲート電圧Vg及び第4のゲート電圧Vgにおけるそれぞれの立ち上がり波形と立ち下がり波形とは、図6のようになる。
図6は、4つのトランジスタ31~34におけるそれぞれのソース端子の電位を基準電位とした場合の抵抗値調整後の、第1のゲート電圧Vg及び第4のゲート電圧Vgにおけるそれぞれの立ち上がり波形と立ち下がり波形とを示す説明図である。
一方、第1のゲート電圧Vgが第1のゲート閾値電圧Vthよりも高くなるタイミングが、第4のゲート電圧Vgが第4のゲート閾値電圧Vthよりも高くなるタイミングよりも早くなっていれば、第1のゲート電圧Vgが第1のゲート閾値電圧Vthよりも高くなるタイミングを遅らせるために、第1の抵抗35の抵抗値が、第4の抵抗38の抵抗値よりも大きい値に調整されている。
あるいは、第4のゲート電圧Vgが第4のゲート閾値電圧Vthよりも高くなるタイミングを早めるために、第4の抵抗38の抵抗値が、第1の抵抗35の抵抗値よりも小さい値に調整されている。
第2の抵抗36及び第3の抵抗37についても、第1の抵抗35及び第4の抵抗38と同様に、抵抗値が調整されている。
以上の実施の形態1では、第1の直流電圧を昇圧するブリッジ回路21を有し、ブリッジ回路21による昇圧後の直流電圧である第2の直流電圧によってバッテリ3を充電させるDC/DCコンバータ12と、ブリッジ回路21を制御する制御回路15とを備えるように、車載用充電器2を構成した。また、車載用充電器2のブリッジ回路21は、第1の直流電圧が入力端子に印加される第1のトランジスタ31と、第1のトランジスタ31の出力端子と入力端子が接続され、出力端子の電位が第1の直流電圧の基準電位である第2のトランジスタ32と、第1の直流電圧が入力端子に印加される第3のトランジスタ33と、第3のトランジスタ33の出力端子と入力端子が接続され、出力端子の電位が基準電位である第4のトランジスタ34とを備えている。また、ブリッジ回路21は、制御回路15と第1のトランジスタ31の制御端子との間に接続されている第1の抵抗35と、制御回路15と第2のトランジスタ32の制御端子との間に接続されている第2の抵抗36と、制御回路15と第3のトランジスタ33の制御端子との間に接続されている第3の抵抗37と、制御回路15と第4のトランジスタ34の制御端子との間に接続されている第4の抵抗38とを備えている。したがって、車載用充電器2は、スイッチング損失の差を抑えることができる。
なお、本開示は、実施の形態の任意の構成要素の変形、もしくは実施の形態の任意の構成要素の省略が可能である。
1 系統電源、2 車載用充電器、3 バッテリ、11 AC/DCコンバータ、12 DC/DCコンバータ(電力変換回路)、13 直流電圧計、14 電解コンデンサ、15 制御回路、16 ブートストラップ回路、21 ブリッジ回路、22 変圧回路、23 整流回路、24 平滑回路、25 コイル、26 コンデンサ、31 第1のトランジスタ、32 第2のトランジスタ、33 第3のトランジスタ、34 第4のトランジスタ、35 第1の抵抗、36 第2の抵抗、37 第3の抵抗、38 第4の抵抗、41a,41b 第1の電源部、42a,42b ダイオード、43a,43b 第2の電源部、44a,44b マイコン、45a,45b,46a,46b ドライバ回路。

Claims (6)

  1. 第1の直流電圧を昇圧するブリッジ回路を有し、前記ブリッジ回路による昇圧後の直流電圧である第2の直流電圧によってバッテリを充電させる電力変換回路と、
    前記ブリッジ回路を制御する制御回路とを備え、
    前記ブリッジ回路は、
    前記第1の直流電圧が入力端子に印加される第1のトランジスタと、
    前記第1のトランジスタの出力端子と入力端子が接続され、出力端子の電位が前記第1の直流電圧の基準電位である第2のトランジスタと、
    前記第1の直流電圧が入力端子に印加される第3のトランジスタと、
    前記第3のトランジスタの出力端子と入力端子が接続され、出力端子の電位が前記基準電位である第4のトランジスタと、
    前記制御回路と前記第1のトランジスタの制御端子との間に接続されている第1の抵抗と、
    前記制御回路と前記第2のトランジスタの制御端子との間に接続されている第2の抵抗と、
    前記制御回路と前記第3のトランジスタの制御端子との間に接続されている第3の抵抗と、
    前記制御回路と前記第4のトランジスタの制御端子との間に接続されている第4の抵抗と
    を備えていることを特徴とする車載用充電器。
  2. 前記制御回路は、ブートストラップ回路を有しており、
    前記ブートストラップ回路は、
    駆動電圧を出力する第1の電源部と、
    前記第1の電源部から出力された駆動電圧よりも順方向ドロップ電圧だけ低い電圧を発生するダイオードと、
    前記ダイオードによって発生された電圧を安定化させる第2の電源部とを備えており、
    前記第1のトランジスタを開状態から閉状態に制御するとき、前記第2の電源部から出力された駆動電圧を、前記第1の抵抗を介して、前記第1のトランジスタの制御端子に印加し、
    前記第2のトランジスタを開状態から閉状態に制御するとき、前記第1の電源部から出力された駆動電圧を、前記第2の抵抗を介して、前記第2のトランジスタの制御端子に印加し、
    前記第3のトランジスタを開状態から閉状態に制御するとき、前記第2の電源部から出力された駆動電圧を、前記第3の抵抗を介して、前記第3のトランジスタの制御端子に印加し、
    前記第4のトランジスタを開状態から閉状態に制御するとき、前記第1の電源部から出力された駆動電圧を、前記第4の抵抗を介して、前記第4のトランジスタの制御端子に印加することを特徴とする請求項1記載の車載用充電器。
  3. 前記ブートストラップ回路は、
    前記第1のトランジスタと前記第4のトランジスタとを閉状態から開状態に遷移させるときに、前記第1のトランジスタの制御端子に印加される駆動電圧が前記第1のトランジスタの閾値電圧よりも高くなる立ち上がりタイミングが、前記第4のトランジスタの制御端子に印加される駆動電圧が前記第4のトランジスタの閾値電圧よりも高くなる立ち上がりタイミングよりも遅ければ、前記第1の抵抗として、前記第4の抵抗の抵抗値よりも抵抗値が小さい抵抗、あるいは、前記第4の抵抗として、前記第1の抵抗の抵抗値よりも抵抗値が大きい抵抗が用いられており、
    前記第1のトランジスタと前記第4のトランジスタとを閉状態から開状態に遷移させるときに、前記第1のトランジスタの制御端子に印加される駆動電圧が前記第1のトランジスタの閾値電圧よりも高くなる立ち上がりタイミングが、前記第4のトランジスタの制御端子に印加される駆動電圧が前記第4のトランジスタの閾値電圧よりも高くなる立ち上がりタイミングよりも早ければ、前記第1の抵抗として、前記第4の抵抗の抵抗値よりも抵抗値が大きい抵抗、あるいは、前記第4の抵抗として、前記第1の抵抗の抵抗値よりも抵抗値が小さい抵抗が用いられていることを特徴とする請求項2記載の車載用充電器。
  4. 前記ブートストラップ回路は、
    前記第2のトランジスタと前記第3のトランジスタとを閉状態から開状態に遷移させるときに、前記第2のトランジスタの制御端子に印加される駆動電圧が前記第2のトランジスタの閾値電圧よりも高くなる立ち上がりタイミングが、前記第3のトランジスタの制御端子に印加される駆動電圧が前記第3のトランジスタの閾値電圧よりも高くなる立ち上がりタイミングよりも遅ければ、前記第2の抵抗として、前記第3の抵抗の抵抗値よりも抵抗値が小さい抵抗、あるいは、前記第3の抵抗として、前記第2の抵抗の抵抗値よりも抵抗値が大きい抵抗が用いられており、
    前記第2のトランジスタと前記第3のトランジスタとを閉状態から開状態に遷移させるときに、前記第2のトランジスタの制御端子に印加される駆動電圧が前記第2のトランジスタの閾値電圧よりも高くなる立ち上がりタイミングが、前記第3のトランジスタの制御端子に印加される駆動電圧が前記第3のトランジスタの閾値電圧よりも高くなる立ち上がりタイミングよりも早ければ、前記第2の抵抗として、前記第3の抵抗の抵抗値よりも抵抗値が大きい抵抗、あるいは、前記第3の抵抗として、前記第2の抵抗の抵抗値よりも抵抗値が小さい抵抗が用いられていることを特徴とする請求項2記載の車載用充電器。
  5. 前記ダイオードがファストリカバリーダイオードであることを特徴とする請求項2記載の車載用充電器。
  6. 前記第1の抵抗、前記第2の抵抗、前記第3の抵抗及び前記第4の抵抗のそれぞれが可変抵抗であることを特徴とする請求項1記載の車載用充電器。
JP2022006061A 2022-01-19 2022-01-19 車載用充電器 Pending JP2023105327A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2022006061A JP2023105327A (ja) 2022-01-19 2022-01-19 車載用充電器

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2022006061A JP2023105327A (ja) 2022-01-19 2022-01-19 車載用充電器

Publications (1)

Publication Number Publication Date
JP2023105327A true JP2023105327A (ja) 2023-07-31

Family

ID=87468813

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2022006061A Pending JP2023105327A (ja) 2022-01-19 2022-01-19 車載用充電器

Country Status (1)

Country Link
JP (1) JP2023105327A (ja)

Similar Documents

Publication Publication Date Title
US10199944B2 (en) Systems and methods for flyback power converters with switching frequency and peak current adjustments
US7538525B2 (en) Power factor correction circuit
JP6209744B2 (ja) Dc/dcコンバータ
US9148061B2 (en) Systems and methods for constant voltage control and constant current control
US7633780B2 (en) Switching power supply apparatus with low loss synchronous rectification
US6914789B2 (en) Switching power supply apparatus with blanking pulse generator
US7800922B2 (en) Switching power supply unit
US10560030B2 (en) Cable compensation circuit and power supply including the same
US8325502B2 (en) Self-supply circuit and method for a voltage converter
KR100912414B1 (ko) 승압/강압 dc-dc 컨버터
US9030848B2 (en) DC to DC converter
US8451630B2 (en) Reset voltage circuit for a forward power converter
US20090284995A1 (en) Voltage detecting circuit and switching power source apparatus
US20100164456A1 (en) Control circuit and control method for switching regulator
JP2012100376A (ja) スイッチング電源装置
JP6559081B2 (ja) 電力変換装置
US7075806B2 (en) DC voltage conversion circuit
CN111033999A (zh) 功率因数改善电路及半导体装置
US6437518B1 (en) Lighting circuit for an electric discharge lamp
US20210006244A1 (en) Drive circuit
US11139740B2 (en) Systems and methods for power converters with self-regulated power supplies
JP2023105327A (ja) 車載用充電器
US11424691B2 (en) Switch driving device and switching power supply using the same
US20230216403A1 (en) Systems and methods for reducing power loss of power converters
US20230327664A1 (en) Switching circuit apparatus capable of controlling multiple switching elements to synchronously turn on and off with bootstrap circuit