JP2023094684A - 温度調整装置 - Google Patents

温度調整装置 Download PDF

Info

Publication number
JP2023094684A
JP2023094684A JP2021210130A JP2021210130A JP2023094684A JP 2023094684 A JP2023094684 A JP 2023094684A JP 2021210130 A JP2021210130 A JP 2021210130A JP 2021210130 A JP2021210130 A JP 2021210130A JP 2023094684 A JP2023094684 A JP 2023094684A
Authority
JP
Japan
Prior art keywords
cooling
battery
flow path
batteries
channel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2021210130A
Other languages
English (en)
Inventor
等 木野
Hitoshi Kino
直樹 山口
Naoki Yamaguchi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyoda Gosei Co Ltd
Original Assignee
Toyoda Gosei Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyoda Gosei Co Ltd filed Critical Toyoda Gosei Co Ltd
Priority to JP2021210130A priority Critical patent/JP2023094684A/ja
Publication of JP2023094684A publication Critical patent/JP2023094684A/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Secondary Cells (AREA)

Abstract

【課題】電池パックにおける電池の劣化を抑制可能な技術を提供する。【解決手段】温度調整装置(100)は、絶縁層(400)と、絶縁層(400)を挟んで複数の電池(Bt)とは反対側に位置し、冷却媒体の流路(112)の少なくとも一部を形成する流路形成部材(110)と、を備える。流路は、複数の電池(Bt)のうちの互いに異なる1以上の電池(Bt)の底面に対して、絶縁層(400)を挟んで対向し、互いに並んで配置されている複数の冷却流路(f1~f10)と、共通流入路(112a)と、共通排出路(112b)と、を有する。複数の冷却流路(f1~f10)のうちの少なくとも2つの冷却流路(f1~f10)における流入口(g1~g10)のうち、上流側冷却流路(f1~f10)の流入口(g1~g10)は、下流側冷却流路(f1~f10)の流入口(g1~g10)に比べて小さい。【選択図】図13

Description

本開示は、電池パックにおける複数の電池の温度を調整するための温度調整装置に関する。
複数の電池を有する電池パックにおいて、電池の寿命延長等を目的として電池パックを冷却することが行われることがある。特許文献1には、電池パック(バッテリーモジュール組立体)を冷却する冷却システムが開示されている。この冷却システムは、所定の間隔を空けて並んだ2枚の冷却板により異常昇温時に各電池において発生するガスを排出する排出口を形成すると共に、2枚の冷却板の間に冷媒またはグリコール等の作動流体を流すことにより、各電池を冷却している。
特開2019-129149号公報
しかし、特許文献1の冷却システムでは、各電池が互いに同様にして冷却されているため、複数の電池において温度のバラツキが生じた場合に複数の電池間における温度差が解消されない。このため、相対的に温度が高い電池の内部抵抗が相対的に小さくなり、これにより、かかる電池に大きな電流が偏って流れて劣化が加速するおそれがある。上述の「複数の電池における温度のバラツキ」は、例えば、複数の電池のうち、他の電池により囲まれた位置に配置されている電池の温度は相対的に高くなり、他方、電池パックの端部に位置する電池の温度は相対的に低くなる等の理由により生じ得る。このようなことから、電池パックにおける電池の劣化抑制には、更なる改善の余地があった。
本開示は、上述の課題の少なくとも一部を解決するためになされたものであり、以下の形態として実現することが可能である。
(1)本開示の一形態によれば、軸方向を揃えて配置された複数の電池を有する電池パックにおける前記複数の電池の温度を調整するための温度調整装置が提供される。この温度調整装置は、前記複数の電池の底部と接して配置される絶縁層と、前記絶縁層を挟んで前記複数の電池とは反対側に位置し、冷却媒体の流路の少なくとも一部を形成する流路形成部材と、を備え、前記流路は、少なくとも前記絶縁層を介して前記複数の電池の底面に対向する複数の冷却流路であって、前記複数の電池のうちの互いに異なる1以上の電池の底面に対して、前記絶縁層を挟んで対向し、互いに並んで配置されている複数の冷却流路と、前記複数の冷却流路に接続され、前記複数の冷却流路に前記冷却媒体を流入させる共通流入路と、前記複数の冷却流路から排出される前記冷却媒体を集めて排出する共通排出路と、を有し、前記複数の冷却流路のうちの少なくとも2つの前記冷却流路における前記共通流入路との接続部を構成する流入口のうち、前記共通流入路の上流側に位置する前記冷却流路である上流側冷却流路の前記流入口は、前記共通流入路の下流側に位置する前記冷却流路である下流側冷却流路の前記流入口に比べて小さい。
この形態の温度調整装置によれば、複数の冷却流路のうちの少なくとも2つの冷却流路における流入口のうち、上流側冷却流路の流入口は、下流側冷却流路の流入口に比べて小さいので、共通流入路を流れる冷却媒体が、上流側冷却流路に過度に偏って流入し、下流側冷却流路を流れる冷却媒体が過度に少なくなることを抑制できる。これにより、複数の電池同士における冷却性に偏りが生じることを抑制して、複数の電池同士における温度バラツキを抑制できる。
(2)上記形態の温度調整装置において、前記複数の冷却流路は、互いに予め定められた距離だけ離れて並んで配置された複数の仕切り部により構成され、各前記仕切り部のうち、複数の仕切り部は、前記共通流入路側の端部において前記流入口を形成する突出部を有し、前記下流側冷却流路の前記流入口を形成する前記突出部は、前記上流側冷却流路の前記流入口を形成する前記突出部に比べて、前記共通流入路を流れる前記冷却媒体の流れ方向に対してより大きな角度で突出していてもよい。
この形態の温度調整装置によれば、下流側冷却流路の流入口を形成する突出部は、上流側冷却流路の流入口を形成する突出部に比べて、共通流入路を流れる冷却媒体の流れ方向に対してより大きな角度で突出しているので、下流側冷却流路への冷却媒体の流入を上流側冷却流路に比べてより促進できる。このため、複数の電池同士における冷却性に偏りが生じることをより抑制できる。
(3)上記形態の温度調整装置において、前記絶縁層と前記冷却流路とに挟まれ、前記絶縁層に比べて熱伝導率が高い材料により形成されている伝熱層を、さらに備えてもよい。
この形態の温度調整装置によれば、絶縁層と冷却流路とに挟まれ、絶縁層に比べて熱伝導率が高い材料により形成されている伝熱層を備えるので、伝熱層と同じ厚みの層を絶縁層により形成する構成に比べて、電池の熱を短時間のうちに流路内の冷却媒体に伝えることができる。
(4)上記形態の温度調整装置において、前記流路形成部材は、前記伝熱層に比べて熱伝導率が低い材料により形成されていてもよい。
この形態の温度調整装置によれば、流路形成部材は、伝熱層に比べて熱伝導率が低い材料により形成されているので、流路内の冷却媒体の熱が電池の熱とは異なる熱、例えば、流路形成部材の外部空間の大気の熱と交換されてしまうことを抑制し、電池の熱をより多く冷却媒体に吸収させることができる。
(5)上記形態の温度調整装置において、各前記冷却流路に沿って複数の前記電池が配置され、且つ、前記共通流入路から前記共通排出路までの各前記冷却流路に沿った中心位置を中心として各前記冷却流路に沿って複数の前記電池が対称に配置されており、各前記冷却流路は、各前記冷却流路における前記冷却媒体の流れ方向と直交する断面積が、前記共通流入路および前記共通排出路から前記中心位置に向かう方向に次第に減少する断面積漸減部を有してもよい。
この形態の温度調整装置によれば、各冷却流路は、各冷却流路における冷却媒体の流れ方向と直交する断面積が、共通流入路および共通排出路から中心位置に向かう方向に次第に減少する断面積漸減部を有するので、中心位置に向かうにつれて次第に冷却媒体の流速を増加させて冷却性を向上させることができる。ここで、冷却流路に沿った中心位置を中心として各冷却流路に沿って複数の電池が対称に配置されているため、中心位置に向かうほど使用状態における電池の温度が高くなり得る。よって、電池温度がより高くなり得る部位において冷却媒体の流速をより高くして冷却性を向上できるので、電池の劣化をより抑制できる。
(6)上記形態の温度調整装置において、前記複数の冷却流路の断面積であって前記絶縁層において前記底面に接する面と平行な断面の断面積のうち、前記複数の電池のうちの第1電池に対応する冷却流路の断面積は、前記複数の電池のうちの使用状態において前記第1電池よりも低温になる第2電池に対応する冷却流路の断面積よりも大きくてもよい。
この形態の温度調整装置によれば、複数の電池のうち、使用状態において第2電池に比べて高温となる第1電池に対応する冷却流路の断面積は、第2電池に対応する冷却流路の断面積よりも大きいので、第1電池の底部において冷却流路から受け取る熱量を増大して冷却性能を向上できる。このため、使用状態における第1電池と第2電池との間の温度差を抑制し、電池パック全体としての劣化を抑制できる。
(7)上記形態の温度調整装置において、前記共通流入路と前記共通排出路とは、互いに平行に直線状に設けられ、前記複数の電池は、前記共通流入路および前記共通排出路と平行な方向に並んだ電池列を含み、前記第1電池は、前記第2電池と比べて前記電池列における中心位置により近い位置に配置されていてもよい。
この形態の温度調整装置によれば、複数の電池が共通流入路および共通排出路と平行な方向に並んだ電池列を含むような配置において、第2電池よりも温度が高くなる第1電池をより冷却させることができ、電池パック全体としての電池の劣化を抑制できる。
本開示は、温度調整装置以外の種々の形態で実現することも可能である。例えば、電池パックと温度調整装置とが一体化された電池構造体や、電池パックの温度調整方法等の形態で実現することができる。
本開示の一実施形態としての温度調整装置と、温度調整装置による温度調整の対象となる電池パックとを分解して示す分解斜視図である。 バスバーモジュールを分解して示す分解斜視図である。 流路形成部材の詳細構成を示す斜視図である。 流路形成部材の詳細構成を示す平面図である。 図4に示すV-V断面線での流路形成部材の断面を示す断面図である。 流路形成部材の断面図である。 ヒータ付伝熱層の詳細構成を示す平面図である。 ヒータ付伝熱層の詳細構成を示す底面図である。 図7に示す部分領域を拡大して示す説明図である。 絶縁層、ヒータ付伝熱層および流路形成部材の断面構成を模式的に示す断面図である。 第2実施形態の流路形成部材の構成を示す斜視図である。 流路形成部材の詳細構成を示す平面図である。 流路形成部材の詳細構成を示す断面図である。 他の実施形態1における仕切り部および突出部の一部を模式的に示す説明図である。 他の実施形態2における仕切り部および突出部の一部を模式的に示す説明図である。 他の実施形態3における仕切り部の一部を模式的に示す説明図である。
A.第1実施形態:
A1.全体装置構成および電池パック10の詳細構成:
図1は、本開示の一実施形態としての温度調整装置100と、温度調整装置100による温度調整の対象となる電池パック10とを分解して示す分解斜視図である。温度調整装置100は、電池パック10の底部に接して配置されており、電池パック10に含まれる複数の電池Btの温度を調整する。
電池パック10は、電池列群500と、絶縁部材600と、バスバーモジュール700と、アッパーケース800とを備える。電池パック10は、バスバーモジュール700によって並列および直列に接続された多数の電池Btから外部へと給電する。
図1には、相互に直交するXYZ軸が図示されている。本実施形態では、+X方向および-X方向を「X軸方向」と総称する。同様に、+Y方向および-Y方向を「Y軸方向」と、+Z方向および-Z方向を「Z軸方向」と、それぞれ総称する。X軸方向は、電池の列方向とも呼ぶ。Y軸方向は、電池の列方向と直交する方向である。Z軸方向は、円柱状の電池Btの軸線と平行であり、「電池の軸方向」とも呼ぶ。
電池列群500は、軸方向を揃えて配置されている複数の電池Btからなる。図1に示すように、電池列群500においては、X軸方向に複数の電池Btが配列されている。本実施形態では、電池列群500は、X軸方向の電池列がY方向に3列並んで構成されている。なお、電池列群500の電池列の数は、本実施形態の作用効果を損なわない限り、3列に限らず任意の数としてもよい。各電池列における隣合う2つの電池の側面間に形成される凹部に、隣の電池列における電池の側面の腹部分が位置するように、3つの電池列は配列されている。これにより、隣合う電池列同士において、Z軸方向に見て正極Btpの中心点の位置同士は、Z軸方向に見た電池Btの半径に相当する長さだけ互いにX軸方向にずれている。
各電池Btは、円柱状の外観形状を有し、軸方向の一端(+Z方向の端部)に正極Btpが形成されている。本実施形態では、正極Btpが形成されている電池Btの一端部において、その外周縁部には負極Btnも形成されている。より具体的には、正極Btpが形成されている一端部とは反対の他端部の全体と、電池Btの側面全体と、一端部の外周縁部とを連続して覆うように負極が形成されている。なお、電池Btの側面における負極は、樹脂等の絶縁性を有する部材により被覆されている。図示されているとおり、各電池Btの向きは互いに同じである。本実施形態では、複数の電池Btは、互いに並列接続された2つの電池Btから成る複数の電池セットが直列接続された構成を有する。各電池セットは、列方向(X軸方向)に並ぶ2つの電池Btからなる。図1では、2つの電池セットBsaおよびBsbが例示されている。
絶縁部材600は、絶縁性材料からなる薄板状の部材であり、隣り合う電池セットの境界部分に配置されて絶縁壁として機能する。このため、電池列群500は、絶縁部材600により各電池セットに仕切られている。絶縁部材600は、例えば、樹脂や絶縁紙等により形成されている。
図2は、バスバーモジュール700を分解して示す分解斜視図である。図1に示すように、バスバーモジュール700は、複数の電池Btに対して軸方向(+Z方向)に重ねて配置されている。バスバーモジュール700は、上述した電池セット内における2つの電池Bt同士の電気的接続(並列接続)を実現すると共に、複数の電池セットの電気的接続(直列接続)を実現する。図2に示すように、バスバーモジュール700は、バスバー710と、絶縁体720を備える。バスバー710は、金属製の薄板で形成されている。バスバーモジュール700は、バスバー710を、インサート成形や後接着、後溶着、もしくは爪嵌合等により樹脂材料からなる絶縁体720に埋設することにより製造される。絶縁体720は、例えば、ポリブチレンテレフタレート(PBT)、PBTベースのポリエステルエラストマーなどにより形成されてもよい。なお、図2において、図示の便宜上、バスバー710を絶縁体720の上側に示しているが、例えば、インサート成形によって、バスバーモジュール700が形成されると、バスバーモジュール700における領域の位置によって、バスバー710と絶縁体720の軸方向の上下の位置関係が異なることも生じ得る。図1および図2に示すように、バスバーモジュール700は、総合正極電極TP1と、総合負極電極TN1とを備える。総合正極電極TP1は、各電池Btの正極Btpと電気的に接続されている。同様に、総合負極電極TN1は、各電池Btの負極Btnと電気的に接続されている。総合正極電極TP1および総合負極電極TN1は、電池パック10の電気出力を取り出すための端子として機能する。
図1に示すアッパーケース800は、絶縁部材600およびバスバーモジュール700が組み付けられた電池列群500を覆う。アッパーケース800は、電池列群500を覆った状態で、温度調整装置100の-Z方向に配置される図示しない取付板に対して、ボルトにより固定される。これにより、電池パック10と温度調整装置100とは一体化される。アッパーケース800および図示しない取付板は、いずれも樹脂により形成されている。
A2.温度調整装置100の詳細構成:
温度調整装置100は、内部に冷却媒体が流れることにより、電池列群500の温度を調整する。図1に示すように、温度調整装置100は、流路形成部材110と、シール部材200と、ヒータ付伝熱層300と、絶縁層400とを備える。温度調整装置100に流れる冷却媒体としては、例えば、純水や車両等に用いられるクーラント、さらには、空気や窒素ガスなどの気体であってもよい。
図3は、流路形成部材110の詳細構成を示す斜視図である。図4は、流路形成部材110の詳細構成を示す平面図である。図5および図6は、流路形成部材110の断面図である。図5は、図4に示すV-V断面線での流路形成部材110の断面を示し、図6は、図4におけるVI-VI断面線での流路形成部材110の断面を示している。
図3および図4に示すように、流路形成部材110は、本体部111、流入部191、流出部192を備える。本体部111は、中央部分に多数のリブが設けられた略矩形の板状部材により構成されている。
本体部111には、外縁壁部113と、9つの仕切り部P1~P9とが形成されている。外縁壁部113は、厚み方向(Z軸方向)に突出し、内部に冷却媒体の流路112を形成する。図6に示すように、外縁壁部113の+Z方向端面には、-Z方向に窪むシール溝114が形成されている。シール溝114は、シール部材200を収容する。9つの仕切り部P1~P9は、図3および図4に示すように、いずれもY軸方向に延設されてY軸方向の中央において屈曲した互いに同様な形状を有する。かかる形状は、図1に示すように電池Btの底部の配列に合わせた形状である。図5に示すように、各仕切り部P1~P9は、+Z方向に凸となるリブにより構成されている。図3および図4に示すように、各仕切り部P1~P9における-Y方向端部のY軸方向の位置は、互いに略等しく、いずれも外縁壁部113の-Y方向の端部よりも+Y方向に位置している。このため、各仕切り部P1~P9と外縁壁部113の-Y方向の端部との間には、X軸方向に延設された共通流入路112aが形成されている。共通流入路112aは、後述の10個の冷却流路f1~f10に冷却媒体を流入させる。また、図3および図4に示すように、各仕切り部P1~P9における+Y方向端部のY軸方向の位置は、互いに略等しく、いずれも外縁壁部113の+Y方向の端部よりも-Y方向に位置している。このため、各仕切り部P1~P9と外縁壁部113の+Y方向の端部との間には、X軸方向に延設された共通排出路112bが形成されている。共通排出路112bは、後述する10個の冷却流路f1~f10から排出される冷却媒体を集めて流出部192へと排出する。共通流入路112aおよび112bは、互いに平行に直線状に設けられている。なお、図3および図4では、共通流入路112aにおける冷却媒体の流れ方向(以下、単に「流れ方向」とも呼ぶ)における上流側と下流側とを両方向の矢印にて表している。流れ方向は、+X方向と平行な方向である。
図4および図5に示すように、隣合う仕切り部同士の間には、冷却媒体が流れる冷却流路f1~f10が形成されている。具体的には、図5に示すように、外縁壁部113と第1仕切り部P1との間には、第1冷却流路f1が形成されている。同様に、第1仕切り部P1と第2仕切り部P2との間には第2冷却流路f2が形成され、第2仕切り部P2と第3仕切り部P3との間には第3冷却流路f3が形成され、第3仕切り部P3と第4仕切り部P4との間には第4冷却流路f4が形成され、第4仕切り部P4と第5仕切り部P5との間には第5冷却流路f5が形成され、第5仕切り部P5と第6仕切り部P6との間には第6冷却流路f6が形成され、第6仕切り部P6と第7仕切り部P7との間には第7冷却流路f7が形成され、第7仕切り部P7と第8仕切り部P8との間には第8冷却流路f8が形成され、第8仕切り部P8と第9仕切り部P9との間には第9冷却流路f9が形成され、第9仕切り部P9と外縁壁部113との間には第10冷却流路f10が形成されている。各冷却流路f1~f10は、隣合う仕切り部同士の間の「溝部」ということもできる。
図4に示すように、各仕切り部P1~P9のX軸方向の幅は、Y軸方向に沿って一定である。したがって、各冷却流路f1~f10のX軸方向の幅は、それぞれY軸方向に沿って一定である。しかし、そのX軸方向の幅は、冷却流路f1~f10同士で必ずしも同じではない。図5に示すように、第1冷却流路f1のX軸方向の幅と、第10冷却流路f10のX軸方向の幅とは、互いに幅d1で互いに等しい。また、第2冷却流路f2のX軸方向の幅と、第9冷却流路f9のX軸方向の幅とは、幅d2で互いに等しい。また、第3冷却流路f3のX軸方向の幅と、第8冷却流路f8のX軸方向の幅とは、幅d3で互いに等しい。また、第4冷却流路f4のX軸方向の幅と、第7冷却流路f7のX軸方向の幅とは、幅d4で互いに等しい。また、第5冷却流路f5のX軸方向の幅と、第6冷却流路f6のX軸方向の幅とは、幅d5で互いに等しい。本実施形態では、上述の幅d1~d5については、下記式(1)に示す大小関係が成立している。
d1<d3<d3<d4<d5 ・・・(1)
冷却流路f1~f10のX軸方向の幅d1~d5について、上記式(1)に示す大小関係に設定されているのは、以下の理由からである。冷却流路f1~f10のX軸方向の幅d1~d5が上記式(1)に示す関係を満たすことにより、各冷却流路f1~f10のX-Y平面と平行な断面積(以下、単に「断面積」と呼ぶこともある)の大小関係について、下記式(2)が成立する。
S1,S10<S2,S9<S3,S8<S4,S7<S5,S6 ・・・(2)
上記式(2)において、Sn(nは、1~10の整数)は、第n冷却流路fnの断面積を示す。つまり、各冷却流路f1~f10のうち、X軸方向に沿って中央部に位置する第5冷却流路f5および第6冷却流路f6の断面積が最も大きく、より端部に位置するほど、断面積が小さい。ここで、各冷却流路f1~f10のうち、X軸方向に沿って中央部に位置する第5冷却流路f5および第6冷却流路f6は、他の冷却流路と比べて、図1に示す電池列群500の各電池列における中心位置により近い位置に対応する位置に配置されている。使用状態において、各電池列における中心位置により近い位置は、各電池からの放熱により、中心位置からより遠い位置、換言すると電池列における端部位置に比べて温度が高くなる。したがって、冷却流路f1~f10のX軸方向の幅d1~d5について、上記式(1)に示す大小関係に設定することにより、より温度が高い位置に対応して断面積がより大きな冷却流路を設けることができ、これにより、より温度が高くなる位置の電池Btをより冷却させることができる。他方、各電池列における中心位置からより遠い位置は、中心位置により近い位置に比べて温度が低い。したがって、冷却流路f1~f10のX軸方向の幅d1~d5について、上記式(1)に示す大小関係に設定することにより、温度が低い位置に対応して断面積がより小さな冷却流路を設けられることができ、電池Btを過度に冷却することを抑制できると共に、より高温となる位置により多くの冷却媒体を供給できる。このように、冷却流路f1~f10のX軸方向の幅d1~d5について、上記式(1)に示す大小関係に設定することにより、使用状態においてより高温となる電池Btに対応する冷却流路の断面積をより大きくし、かかる電池Btの底部において冷却流路から受け取る熱量を増大させて冷却性能を向上させることにより、電池Bt間の温度差を抑制し、電池パック10全体としての劣化を抑制するようにしている。
各電池列における中心位置により近い位置の電池は、本開示における「第1電池」に相当し、より遠い位置の電池は、本開示における「第2電池」に相当する。
ここで、仕切り部P1~P9のうち、流れ方向の上流側の一部の仕切り部は、突出部を有する。具体的には、図3および図4に示すように、第2仕切り部P2は、第2突出部t2を有する。同様に、第3仕切り部P3は第3突出部t3を、第4仕切り部P4は第4突出部t4を、第5仕切り部P5は第5突出部t5を、第6仕切り部P6は第6突出部t6を、第7仕切り部P7は第7突出部t7を、第8仕切り部P8は第8突出部t8を、第9仕切り部P9は第9突出部t9を、それぞれ有する。なお、「第1突出部」は説明の便宜上(各仕切り部の順序と突出部の順序とを一致させるために)、存在しない。各突出部t2~t9は、各仕切り部P2~P9における共通流入路112a側の端部(+Y方向端部)において、冷却流路f3~f10の流入口を形成する。各突出部t2~t9は、いずれも同様な構成を有する。そこで、突出部t2の構成を代表して説明する。第2突出部t2は、第2仕切り部P2における+Y方向の端部において、-X方向に延びる薄板状の部位として形成されている。第2突出部t2の高さ(Z軸方向の寸法)は、第2仕切り部P2における他の部分の高さと等しい。そして、第2突出部t2の-X方向の端面と、第3仕切り部P3の+X方向の面との間の開口が、第3冷却流路f3への流入口g3として機能する。なお、同様に、各冷却流路f1~f10への流入口g1~g2、g4~g10がそれぞれ形成されている。
本実施形態では、各突出部t2~t19の突出量、すなわち、-X方向への突き出し量は均一ではない。また、後述するように、各冷却流路f1~f10の幅は均一ではない。これらにより、各流入口g1~g10の大きさは均一ではない。具体的には、流れ方向の上流側の6つの流入口g5~g10では、より上流側に位置する流入口の大きさは、より下流側に位置する流入口の大きさに比べて小さくなるように構成されている。換言すると、流入口g10、g9、g8、g7、g6、g5の順序で次第に流入口の大きさが大きくなるように構成されている。また、流れ方向の下流側の4つの流入口g1~g4では、互いにほぼ等しい大きさとなるように構成されている。なお、「流入口の大きさ」とは、本実施形態では、冷却媒体の流れ方向に対して直交する断面積の大きさを意味する。このように、本実施形態では、流れ方向の上流側において、より上流側に位置する流入口の大きさは、より下流側に位置する流入口の大きさに比べて小さくなるように構成されている理由について説明する。単一の共通流入路112aに対して、互いに並んで配置された複数の冷却流路が上流側から下流側に向かって順番に接続された構成において冷却媒体を共通流入路112aに流入させると、流入口の大きさが互いに均一な構成においては、上流側の一部の冷却流路に過剰に冷却媒体が流入し、下流側の冷却流路にはほとんど冷却媒体が流入しない事象が生じることを、本願発明者は見いだした。そこで、本実施形態のように、流れ方向の上流側において、より上流側に位置する流入口の大きさを、より下流側に位置する流入口の大きさに比べて小さくなるように構成することにより、共通流入路112aを流れる冷却媒体が、上流側の冷却流路に過度に偏って流入し、下流側の冷却流路を流れる冷却媒体が過度に少なくなることを抑制できる。これにより、複数の電池Bt同士における冷却性に偏りが生じることを抑制して、複数の電池Bt同士における温度バラツキを抑制できるからである。
図1および図4に示す流入部191は、共通流入路112aに連通し、冷却媒体を共通流入路112aに供給する。流出部192は、共通排出路112bに連通し、共通排出路112bから排出される冷却媒体を、本体部111の外部へと排出する。
流路形成部材110は、ヒータ付伝熱層300の伝熱層310に比べて熱伝導率が低い材料により形成されている。これにより、流路112内の冷却媒体の熱が電池Btの熱とは異なる熱、例えば、流路形成部材110の外部空間の大気の熱と交換されてしまうことを抑制し、電池Btの熱をより多く吸収させることができる。
図1に示すシール部材200は、シール溝114に圧入されており、流路112からの冷却媒体の漏洩を抑制する。シール部材200は、例えば、ブチルゴム等のエラストマにより形成されている。
図7は、ヒータ付伝熱層300の詳細構成を示す平面図である。図8は、ヒータ付伝熱層300の詳細構成を示す底面図である。ヒータ付伝熱層300は、電池Btの熱を流路112内の冷却媒体に伝えて冷却させる機能と、電池列群500を加熱する機能とを有する。図7および図8に示すように、ヒータ付伝熱層300は、伝熱層310と、ヒータ320と、絶縁部材360とを備えている。
伝熱層310は、伝熱性に優れた材料により形成された薄板部材により構成されている。本実施形態では、伝熱層310は、アルミニウムにより形成されている。なお、アルミニウムに代えて、銅や銀など、絶縁層400に比べて熱伝導率が高い任意の種類の材料により形成されてもよい。
ヒータ320は、電池列群500を各電池Btの底部において加熱する。本実施形態では、ヒータ320は、太さが一様でない電熱線により構成されている。太さのバリエーションについては、後述する。図7に示すように、ヒータ320は、入口加熱部331と、出口加熱部332と、合計10個の流路加熱部341~350とを備える。
入口加熱部331は、共通流入路112aに対応する位置に配置され、共通流入路112aを加熱する。出口加熱部332は、共通排出路112bに対応する位置に配置され、共通排出路112bを加熱する。第1流路加熱部341は、第1冷却流路f1に対応する位置に配置されて第1冷却流路f1を加熱する。同様に、第2流路加熱部342は、第2冷却流路f2に対応する位置に配置されて第2冷却流路f2を加熱する。第3流路加熱部343は、第3冷却流路f3に対応する位置に配置されて第3冷却流路f3を加熱する。第4流路加熱部344は、第4冷却流路f4に対応する位置に配置されて第4冷却流路f4を加熱する。第5流路加熱部345は、第5冷却流路f5に対応する位置に配置されて第5冷却流路f5を加熱する。第6流路加熱部346は、第6冷却流路f6に対応する位置に配置されて第6冷却流路f6を加熱する。第7流路加熱部347は、第7冷却流路f7に対応する位置に配置されて第7冷却流路f7を加熱する。第8流路加熱部348は、第8冷却流路f8に対応する位置に配置されて第8冷却流路f8を加熱する。第9流路加熱部349は、第9冷却流路f9に対応する位置に配置されて第9冷却流路f9を加熱する。第10流路加熱部350は、第10冷却流路f10に対応する位置に配置されて第10冷却流路f10を加熱する。
図9は、図7に示す部分領域Ar1を拡大して示す説明図である。図9に示すように、絶縁部材360は、-Z方向にヒータ付伝熱層300を見たときに、ヒータ320の外縁(側面)を囲むように配置されている。これにより、ヒータ320と、伝熱層310とが電通することを抑制できる。また、図8に示すように、絶縁部材360は、+Z方向にヒータ付伝熱層300を見たときに、ヒータ320全体を覆うように配置されている。これにより、ヒータ320が直接的に流路112内の冷却媒体に接することを抑制できる。本実施形態において、絶縁部材360は、樹脂により形成されている。
ここで、10個の流路加熱部341~350(電熱線)の断面積の大小関係について説明する。本実施形態では、流路加熱部341~350の断面積s1~s10は、下記式(3)に示す大小関係が成立している。
s4<s3,s5<s2,s6<s1,s7~s10 ・・・(3)
断面積s1は、第1流路加熱部341の断面積を示す。また、断面積s2は第2流路加熱部342の断面積を、断面積s3は第3流路加熱部343の断面積を、断面積s4は第4流路加熱部344の断面積を、断面積s5は第5流路加熱部345の断面積を、断面積s6は第6流路加熱部346の断面積を、断面積s7は第7流路加熱部347の断面積を、断面積s8は第8流路加熱部348の断面積を、断面積s9は第9流路加熱部349の断面積を、断面積s10は第10流路加熱部350の断面積を、それぞれ示す。このような構成とすることにより、図1に示す電池列群500の各電池列における中心位置からより遠い位置に配置されている電池Bt、例えば、X方向端部に配置された電池Btに対応する第1流路加熱部341および第10流路加熱部350の断面積を、中心位置により近い位置に配置された電池Btに対応する第4流路加熱部344、第5流路加熱部345、第6流路加熱部346等の断面積よりも大きくして、X方向端部においてより多くの熱を電池Btに加えることができる。ここで、電池列群500の各電池列における中心位置からより遠い位置に配置されている電池Btは、より近い位置に配置されている電池Btに比べて低温化し易い。したがって上記構成により、このような低温化し易い電池Btの温度低下を抑制でき、過度な温度低下に起因する電池Btの劣化を抑制できる。
図10は、絶縁層400、ヒータ付伝熱層300および流路形成部材110の断面構成を模式的に示す断面図である。絶縁層400は、樹脂により形成された薄板部材により構成されている。図10に示すように、絶縁層400と、伝熱層310と、絶縁部材360と、第2流路加熱部342とは、Z軸方向に沿って電池Btと第2冷却流路f2内を流れる冷却媒体との間に介在している。したがって、絶縁層400と、伝熱層310と、絶縁部材360と、第2流路加熱部342とは、介在層450を構成しているといえる。
図10に示すように、第2流路加熱部342は、-Z方向およびZ軸方向を樹脂製の絶縁部材360により覆われ、また、+Z方向を樹脂製の絶縁層400により覆われている。このため、第2流路加熱部342から電池Btまたは冷却媒体への通電は抑制される。
なお、図10に示す絶縁層400には、+Z方向に図示しない電池Btが配置されている。このとき、電池Btと絶縁層400との間に伝熱性を有する接着剤を配置し、電池Btと絶縁層400とを互いに固定してもよい。これにより、電池パック10に加わる振動や荷重によって電池パック10の構成要素同士の位置ずれが生じることを抑制できる。このような接着剤としては、例えば、エポキシ系接着剤やシリコン系接着剤等を用いてもよい。
以上説明した第1実施形態の温度調整装置100によれば、流れ方向の上流側において、より上流側に位置する流入口の大きさは、より下流側に位置する流入口の大きさに比べて小さくなるように構成されているので、共通流入路112aを流れる冷却媒体が、上流側の冷却流路に過度に偏って流入し、下流側の冷却流路を流れる冷却媒体が過度に少なくなることを抑制できる。これにより、複数の電池Bt同士における冷却性に偏りが生じることを抑制して、複数の電池Bt同士における温度バラツキを抑制できる。
また、複数の電池Btのうち、使用状態においてより高温となる電池Btに対応する冷却流路の断面積は、より低温になる電池Btに対応する冷却流路の断面積よりも大きいので、より高温となる電池Btの底部において冷却流路から受け取る熱量を増大して冷却性能を向上できる。このため、使用状態における複数の電池Bt間の温度差を抑制し、電池パック10全体としての劣化を抑制できる。
また、絶縁層400と冷却流路f1~f10とに挟まれ、絶縁層400に比べて熱伝導率が高い材料により形成されている伝熱層310を備えるので、伝熱層310と同じ厚みの層を絶縁層400により形成する構成に比べて、電池Btの熱を短時間のうちに流路112内の冷却媒体に伝えることができる。
また、流路形成部材110は、伝熱層310に比べて熱伝導率が低い材料により形成されているので、流路112内の冷却媒体の熱が電池Btの熱とは異なる熱、例えば、流路形成部材110の外部空間の大気の熱と交換されてしまうことを抑制し、電池Btの熱をより多く冷却媒体に吸収させることができる。
また、複数の電池Btが共通流入路112aおよび共通排出路112bと平行な方向に並んだ電池列を含むような配置において、使用状態において温度がより高くなる電池Btをより冷却させることができ、電池パック10全体としての電池の劣化を抑制できる。
また、流路112は、溝部を有する流路形成部材110と、介在層450との2つの部材により形成できるので、1つの部材により形成する構成に比べて、流路を複雑な形状に形成できる。このため、流路112の形状の自由度を向上でき、温度調整に適した流路を形成し易くできる。具体的には、各冷却流路f1~f10の形状を、電池列群500における電池の並びに応じた形状にでき、緻密な温度制御が可能となる。
また、ヒータ320は、絶縁部材によって覆われた状態で流路112に接して配置されているので、ヒータ320を介した短絡が生じることを抑制しつつ、ヒータ320を流路112から離れて配置する構成に比べて、温度調整装置100を小型化できる。
また、使用状態においてより低温になる電池Btの底部において加熱する加熱量は、より高温になる電池Btの底部において加熱する加熱量よりも大きいので、複数の電池Bt間の温度バラツキを抑制できる。
また、使用状態においてより低温になる電池Btの底部と絶縁層400を挟んで対向する冷却流路に対応する流路加熱部(電熱線)の断面積は、より高温になる電池Btの底部と絶縁層400を挟んで対向する冷却流路に対応する流路加熱部(電熱線)の断面積よりも大きいので、より低温になる電池Btに対する加熱量をより高温になる電池Btに対する加熱量に比べて大きくでき、複数の電池Bt間の温度バラツキを抑制できる。
B.第2実施形態:
図11は、第2実施形態の流路形成部材110aの構成を示す斜視図である。図12は、流路形成部材110aの詳細構成を示す平面図である。図13は、流路形成部材110aの詳細構成を示す断面図である。図13は、図12に示すXII-XII断面による断面を示している。第2実施形態の温度調整装置100は、流路形成部材110に代えて図11に示す流路形成部材110aを備える点において、第1実施形態の温度調整装置100と異なる。第2実施形態の温度調整装置100におけるその他の構成は、第1実施形態の温度調整装置100と同じであるので、同一の構成要素は同一の符号を付し、その詳細な説明を省略する。
図11~図13に示す第2実施形態の流路形成部材110aは、本体部111に代えて本体部111aを備える点においてのみ第1実施形態の110と異なる。第1実施形態の本体部111では、各冷却流路f1~f10に相当する部分は、図4および図6に示すようにY軸方向の全体に亘って平坦であった。これに対して、第2実施形態の本体部111aは、図11および図13に示すように平坦ではない。本体部111aは、-Z方向の底部に一対の下部平坦部121、一対の斜面部122、および上部平坦部123を備える。一対の下部平坦部121は、共通流入路112aおよび共通排出路112bを形成する。一対の斜面部122は、一対の下部平坦部121に連続し、いずれも冷却流路におけるY軸方向の中心位置に向かうにつれて+Z方向に位置するような斜面を形成する。また、一対の斜面部122は、上部平坦部123を挟んでいる。したがって、各斜面部122は、Y軸方向の一端において下部平坦部121に連続し、他端において上部平坦部123に連続する。本実施形態では、各斜面部122と下部平坦部121との接続部分、および各斜面部122と上部平坦部123との接続部分は、いずれも面取りされており、いわゆるRが付けられている。このような一対の下部平坦部121、一対の斜面部122および上部平坦部123の構造は、例えば、本体部111aを屈曲加工することにより形成される。
本体部111aが上述のような屈曲形状を有することにより、各冷却流路f1~f10における冷却媒体の流れ方向と直交する断面積は、一定ではなくなる。具体的には、一対の斜面部122においては、かかる断面積は、共通流入路112aおよび共通排出路112b(一対の下部平坦部121)から冷却流路のY軸方向の中心位置に向かうにつれて減少する。そして、上部平坦部123に対応する部分において最小となる。ここで、同じ量の冷却媒体が通過するとき、断面積が小さいほど冷却媒体の流速は大きくなる。このため、各冷却流路f1~f10では、Y軸方向の中心位置に向かうにつれて冷却媒体の流速が増大し、上部平坦部123に対応する部分において最大となる。冷却媒体の流速が大きいほど、冷却性が高い。そして、図1に示すように、Y軸方向に3つの電池列が並んでいる構成においては、Y軸方向の中心位置(中央の電池列)により近い位置の電池Btほど温度が高くなる。したがって、上記構成とすることにより、温度がより高い電池Btにおいて冷却性をより高めることができ、電池パック10全体としての劣化を抑制できる。
各冷却流路f1~f10において、一対の斜面部122に対応する部分は、本開示における「断面積漸減部」に相当する。
以上説明した第2実施形態の温度調整装置100は、第1実施形態の温度調整装置100と同様な効果を奏する。加えて、各冷却流路f1~f10は、各冷却流路f1~f10における冷却媒体の流れ方向と直交する断面積が、共通流入路112aおよび共通排出路112bから冷却流路f1~10に沿った中心位置に向かう方向に次第に減少する断面積漸減部を有するので、中心位置に向かうにつれて次第に冷却媒体の流速を増加させて冷却性を向上させることができる。ここで、冷却流路に沿った中心位置を中心として各冷却流路f1~f10に沿って複数の電池Btが対称に配置されているため、中心位置に向かうほど使用状態における電池Btの温度が高くなり得る。よって、電池温度がより高くなり得る部位において冷却媒体の流速をより高くして冷却性を向上できるので、電池Btの劣化をより抑制できる。
また、各斜面部122と下部平坦部121との接続部分、および各斜面部122と上部平坦部123との接続部分は、いずれも面取りされており、いわゆるRが付けられているので、各接続部分における流路抵抗を低減できる。
C.他の実施形態:
(C1)他の実施形態1:図14は、他の実施形態1における仕切り部および突出部の一部を模式的に示す説明図である。他の実施形態1の温度調整装置100は、突出部の構成においてのみ、第1実施形態の温度調整装置100と異なる。図14では、流れ方向における一部の仕切り部である4つの仕切り部P(n)、P(n+1)、P(n+2)、P(n+3)と、各仕切り部P(n)~P(n+3)が有する突出部t(n)、t(n+1)、t(n+2)、t(n+3)を表している。第1実施形態では、各突出部t(2)~t(9)は、いずれも-X方向に突出していた。これに対して、他の実施形態1の突出部t(n)~t(n+3)のうちの少なくとも一部は、流れ方向に対して0度よりも大きな角度で突出している。そして、図14に示すように、流れ方向の下流側の突出部は、上流側の突出部と比べてより大きな角度で突出している。具体的には、突出部t(n)と流れ方向とがなす角度θ(n)は、上流側の隣に位置する突出部(t+1)と流れ方向とがなす角度θ(n+1)よりも大きい。また、角度θ(n+1)は、上流側の隣に位置する突出部(t+2)と流れ方向とがなす角度θ(n+2)よりも大きい。また、角度θ(n+2)は、上流側の隣に位置する突出部(t+3)と流れ方向とがなす角度θ(n+3)よりも大きい。このとき、突出部t(n)と仕切り部P(n+1)との間の流入口g(n+1)の大きさは、上流側の隣に位置する突出部t(n+1)と仕切り部P(n+2)との間の流入口g(n+2)の大きさよりも大きい。同様に、流入口g(n+2)の大きさは、上流側の隣に位置する突出部t(n+2)と仕切り部P(n+3)との間の流入口g(n+3)の大きさよりも大きい。以上の構成を有する他の実施形態1の温度調整装置100は、第1実施形態の温度調整装置100と同様な効果を有する。加えて、下流側の冷却流路の流入口を形成する突出部は、上流側の冷却流路の流入口を形成する突出部に比べて、流れ方向に対してより大きな角度で突出しているので、下流側の冷却流路への冷却媒体の流入を上流側の冷却流路に比べてより促進できる。このため、複数の電池Bt同士における冷却性に偏りが生じることをより抑制できる。なお、各突出部における流れ方向に対する突出する角度は、流れ方向の下流側に向かうにつれて段階的に大きくなってもよい。
(C2)他の実施形態2:図15は、他の実施形態2における仕切り部および突出部の一部を模式的に示す説明図である。他の実施形態2の温度調整装置100は、仕切り部の構成においてのみ、第1実施形態の温度調整装置100と異なる。図15では、流れ方向における一部の仕切り部である3つの仕切り部P(n)、P(n+1)、P(n+2)を表している。なお、nは、2~7の整数である。各仕切部P(n)、P(n+1)、P(n+2)は、第1実施形態と同様に突出部を有する。具体的には、仕切り部P(n)は、突出部t(n)を有する。同様に、仕切り部P(n+1)は突出部t(n+1)を、仕切り部P(n+2)は突出部t(n+2)を、それぞれ有する。第1実施形態では、各突出部t2~t9の流れ方向に沿った突出量(X軸方向の突出量)は、均一ではなかった。これに対して、他の実施形態2では、各突出部t(n)~t(n+2)の突出量は互いに等しい。このため、各突出部t(n)~t(n+2)と、隣合う仕切り部P(n)~(n+2)との間の距離u(n)、u(n+1)、u(n+2)は、互いに等しい。また、第1実施形態では、各突出部t2~t9の高さ(Z軸方向の寸法)は、各仕切り部P2~P9における他の部分の高さと等しかった。これに対して、他の実施形態2では、突出部t(n)~t(n+2)の高さは、各仕切り部P(n)~P(n+2)の高さとは異なる。また、突出部t(n)~t(n+2)の高さh(n)、h(n+1)、h(n+2)は、互いに異なる。具体的には、より上流側に位置する突出部の高さはより下流側に位置する突出部の高さよりも高い。すなわち、高さh(n+2)、h(n+1)、h(n)の順番に、次第に高さが小さくなっている。以上のような構成により、3つの流入口g(n)、g(n+1)、g(n+2)のうち、最も上流に位置する流入口g(n+2)が最も小さく、流入口g(n+1)が2番目に小さく、流入口g(n)が最も大きい。以上の構成を有する他の実施形態2の温度調整装置100は、第1実施形態の温度調整装置100と同様な効果を有する。
(C3)他の実施形態3:図16は、他の実施形態3における仕切り部の一部を模式的に示す説明図である。他の実施形態3の温度調整装置100は、仕切り部の構成においてのみ、第1実施形態の温度調整装置100と異なる。図16では、流れ方向における一部の仕切り部である4つの仕切り部P(n)、P(n+1)、P(n+2)、P(n+4)を表している。なお、nは、1~5の整数である。他の実施形態3における各仕切り部P(n)~P(n+4)は、薄板状の突出部を有していない。各仕切り部P(n)~P(n+4)の幅(X軸方向の寸法)は、各冷却流路における冷却媒体の流れ方向(おおよそ+Y方向)の上流側においては、+Y方向に向かうにつれて次第に大きくなっている。このため、流れ方向において、最も上流側の流入口g(n+2)が最も小さく、流入口g(n+1)が2番目に小さく、最も下流側の流入口g(n)が最も大きい。以上の構成を有する他の実施形態3の温度調整装置100は、第1実施形態の温度調整装置100と同様な効果を有する。
(C4)他の実施形態4:各実施形態において、伝熱層310を省略してもよい。かかる構成においては、伝熱層310に相当する部分を、絶縁層400および絶縁部材360と同様な材料により構成にしてもよい。
(C5)他の実施形態5:各実施形態では、流路形成部材110、110aは、伝熱層310の熱伝導率よりも低い熱伝導率の材料により形成されていたが、本開示はこれに限定されない。流路形成部材110、110aを、伝熱層310の熱伝導率以上の熱伝導率を有する材料により形成してもよい。
(C6)他の実施形態6:第2実施形態では、断面積漸減部は、共通流入路112aおよび共通排出路112bから冷却流路f1~10に沿った中心位置に向かう方向に断面積が次第に減少する部分として構成されていたが、本開示はこれに限定されない。各冷却流路f1~f10に沿って配置された電池Btのうち、最も高温となる電池Btが、中心位置からずれた位置の電池Btである場合には、かかる電池に対応する位置に対して共通流入路112aおよび共通排出路112bから向かう方向に断面積が次第に減少する部分として、断面積漸減部を構成してもよい。
(C7)他の実施形態7:各実施形態では、各冷却流路f1~f10のうち、X軸方向に沿って中央部に位置する第5冷却流路f5および第6冷却流路f6の断面積が最も大きく、より端部に位置するほど、断面積が小さかったが、本開示はこれに限定されない。例えば、電池列群500に対して+X方向の近傍に何らかの熱源が存在するために、使用状態において、電池列群500において+X方向の端部が最も高温となり、-X方向に沿って次第に低温とする構成においては、第1冷却流路f1の断面積(X-Y平面と平行な断面積)を最も大きくし、-X方向に沿って次第に断面積を減少させてもよい。また、各実施形態における冷却流路f1~f10の断面積の大きさの段階は、5段階であったが、2以上の任意の段階であってもよい。
(C8)他の実施形態8:第2実施形態では、各斜面部122と下部平坦部121との接続部分、および各斜面部122と上部平坦部123との接続部分は、いずれも面取りされており、いわゆるRが付けられていたが、本開示はこれに限定されない。これらの接続部分のうちの少なくとも一部においては、面取りされておらず、いわゆるRが付けられていなくてもよい。
(C9)他の実施形態9:第2実施形態において、上部平坦部123を省略してもよい。すなわち、一対の斜面部122が連続し、X軸方向に見た断面において、下部平坦部121から山型となる断面形状の構造であってもよい。
(C10)他の実施形態10:各実施形態では、流路形成部材110と介在層450とは互いに別体に構成されていたが、これに代えて、これらを単一部材により構成してもよい。かかる構成においては、シール部材200を省略できる。
(C11)他の実施形態11:各実施形態において、各冷却流路f1~f10の断面積(X-Y平面と平行な断面積、換言すると、絶縁層400と平行な断面積)を互いに等しくしてもよい。また、各実施形態において、使用状態においてより低温になる電池Btの底部と絶縁層400を挟んで対向する冷却流路に対応する流路加熱部(電熱線)の断面積は、より高温になる電池Btの底部と絶縁層400を挟んで対向する冷却流路に対応する流路加熱部(電熱線)の断面積よりも大きかったが、これらを互いに等しくしてもよい。
(C12)他の実施形態12:各実施形態において、各流路加熱部(電熱線)の断面積は、各冷却流路f1~f10に沿って一定であったが、本開示はこれに限定されない。各冷却流路f1~10に沿った中心位置から共通流入路112aおよび共通排出路112bに向かって断面積が次第に増大してもよい。各冷却流路f1~10において、共通流入路112aおよび共通排出路112b近傍が最も温度が低い部分であるため、かかる部分の流路加熱部(電熱線)の断面積を最大とすることにより、より効率的に各冷却流路f1~f10を加熱できる。
(C13)他の実施形態13:各実施形態において、絶縁層400を絶縁塗装膜により構成してもよい。かかる構成においては、ヒータ付伝熱層300の+Z方向の面を、カチオン塗装することにより、絶縁層400を形成してもよい。
(C14)他の実施形態14:各実施形態の温度調整装置100、100aは、あくまでも例示であり、種々変更可能である。例えば、各実施形態において、ヒータ320は電熱線により構成されていたが、面状ヒータにより構成されてもよい。また、各実施形態では、流れ方向の下流側の4つの流入口g1~g4では、互いにほぼ等しい大きさとなるように構成されていたが、上流側の6つの流入口g5~g10と同様に、より上流側に位置する流入口の大きさがより下流側に位置する流入口の大きさに比べて小さくなるように構成されていてもよい。また、流側の6つの流入口g5~g10において、下流側に向かうにつれて段階的に流入口の大きさが大きくなる構成であってもよい。また、流側の6つの流入口g5~g10のうちの一部の流入口については、下流側の流入口と同様に互いにほぼ等しい大きさとなるように構成されていてもよい。すなわち、一般には、複数の冷却流路f1~f10のうちの少なくとも2つの冷却流路における流入口g1~g10のうち、共通流入路112aの上流側に位置する冷却流路(上流側冷却流路)の流入口は、共通流入路112aの下流側に位置する冷却流路(下流側冷却流路)の流入口に比べて小さい任意の構成を、本開示において採用してもよい。
本開示は、上記各実施形態に限られるものではなく、その趣旨を逸脱しない範囲において種々の構成で実現することができる。例えば、発明の概要の欄に記載した形態中の技術的特徴に対応する各実施形態中の技術的特徴は、上述の課題の一部又は全部を解決するために、あるいは、上述の効果の一部又は全部を達成するために、適宜、差し替えや、組み合わせを行うことが可能である。また、その技術的特徴が本明細書中に必須なものとして説明されていなければ、適宜、削除することが可能である。
10…電池パック、30…制御部、31…チラー、32…ポンプ、33…循環流路、40…冷却媒体循環部、100…温度調整装置、100a…温度調整装置、110…流路形成部材、110a…流路形成部材、111…本体部、111a…本体部、112…流路、112a…共通流入路、112b…共通排出路、113…外縁壁部、114…シール溝、121…下部平坦部、122…斜面部、123…上部平坦部、191…流入部、192…流出部、200…シール部材、300…ヒータ付伝熱層、310…伝熱層、320…ヒータ、331…入口加熱部、332…出口加熱部、341~350…流路加熱部、360…絶縁部材、400…絶縁層、450…介在層、500…電池列群、600…絶縁部材、700…バスバーモジュール、710…バスバー、720…絶縁体、800…アッパーケース、900…監視ユニット、910…第1温度センサ、920…第2温度センサ、930…電流電圧センサ、Ar1…部分領域、Bp…電池、Bsa…電池セット、Bsb…電池セット、Bt…電池、Btn…負極、Btp…正極、P1~P9…仕切り部、TN1…総合負極電極、TP1…総合正極電極、Tth1…第1閾値温度、Tth2…第2閾値温度、Tth3…第3閾値温度、Tth4…第4閾値温度、V1…入口弁、V2…出口弁、d1~d5…幅、f1~f10…冷却流路、g1~g10…流入口、s1~s10…断面積、t2~t9…突出部、u(n)~u(n+2)…距離

Claims (7)

  1. 軸方向を揃えて配置された複数の電池を有する電池パックにおける前記複数の電池の温度を調整するための温度調整装置であって、
    前記複数の電池の底部と接して配置される絶縁層と、
    前記絶縁層を挟んで前記複数の電池とは反対側に位置し、冷却媒体の流路の少なくとも一部を形成する流路形成部材と、
    を備え、
    前記流路は、
    少なくとも前記絶縁層を介して前記複数の電池の底面に対向する複数の冷却流路であって、前記複数の電池のうちの互いに異なる1以上の電池の底面に対して、前記絶縁層を挟んで対向し、互いに並んで配置されている複数の冷却流路と、
    前記複数の冷却流路に接続され、前記複数の冷却流路に前記冷却媒体を流入させる共通流入路と、
    前記複数の冷却流路から排出される前記冷却媒体を集めて排出する共通排出路と、
    を有し、
    前記複数の冷却流路のうちの少なくとも2つの前記冷却流路における前記共通流入路との接続部を構成する流入口のうち、前記共通流入路の上流側に位置する前記冷却流路である上流側冷却流路の前記流入口は、前記共通流入路の下流側に位置する前記冷却流路である下流側冷却流路の前記流入口に比べて小さい、
    温度調整装置。
  2. 請求項1に記載の温度調整装置において、
    前記複数の冷却流路は、互いに予め定められた距離だけ離れて並んで配置された複数の仕切り部により構成され、
    各前記仕切り部のうち、複数の仕切り部は、前記共通流入路側の端部において前記流入口を形成する突出部を有し、
    前記下流側冷却流路の前記流入口を形成する前記突出部は、前記上流側冷却流路の前記流入口を形成する前記突出部に比べて、前記共通流入路を流れる前記冷却媒体の流れ方向に対してより大きな角度で突出している、
    温度調整装置。
  3. 請求項1または請求項2に記載の温度調整装置において、
    前記絶縁層と前記冷却流路とに挟まれ、前記絶縁層に比べて熱伝導率が高い材料により形成されている伝熱層を、さらに備える、温度調整装置。
  4. 請求項3に記載の温度調整装置において、
    前記流路形成部材は、前記伝熱層に比べて熱伝導率が低い材料により形成されている、温度調整装置。
  5. 請求項1から請求項4までのいずれか一項に記載の温度調整装置において、
    各前記冷却流路に沿って複数の前記電池が配置され、且つ、前記共通流入路から前記共通排出路までの各前記冷却流路に沿った中心位置を中心として各前記冷却流路に沿って複数の前記電池が対称に配置されており、
    各前記冷却流路は、各前記冷却流路における前記冷却媒体の流れ方向と直交する断面積が、前記共通流入路および前記共通排出路から前記中心位置に向かう方向に次第に減少する断面積漸減部を有する、温度調整装置。
  6. 請求項1から請求項5までのいずれか一項に記載の温度調整装置において、
    前記複数の冷却流路の断面積であって前記絶縁層において前記底面に接する面と平行な断面の断面積のうち、前記複数の電池のうちの第1電池に対応する冷却流路の断面積は、前記複数の電池のうちの使用状態において前記第1電池よりも低温になる第2電池に対応する冷却流路の断面積よりも大きい、
    温度調整装置。
  7. 請求項6に記載の温度調整装置において、
    前記共通流入路と前記共通排出路とは、互いに平行に直線状に設けられ、
    前記複数の電池は、前記共通流入路および前記共通排出路と平行な方向に並んだ電池列を含み、
    前記第1電池は、前記第2電池と比べて前記電池列における中心位置により近い位置に配置されている、温度調整装置。
JP2021210130A 2021-12-24 2021-12-24 温度調整装置 Pending JP2023094684A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2021210130A JP2023094684A (ja) 2021-12-24 2021-12-24 温度調整装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2021210130A JP2023094684A (ja) 2021-12-24 2021-12-24 温度調整装置

Publications (1)

Publication Number Publication Date
JP2023094684A true JP2023094684A (ja) 2023-07-06

Family

ID=87002258

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2021210130A Pending JP2023094684A (ja) 2021-12-24 2021-12-24 温度調整装置

Country Status (1)

Country Link
JP (1) JP2023094684A (ja)

Similar Documents

Publication Publication Date Title
JP4659699B2 (ja) 電池モジュール
JP6134120B2 (ja) 電池ブロック及びそれを有する電池モジュール
KR100839374B1 (ko) 전지 모듈
JP4415570B2 (ja) 集合電池
KR100658715B1 (ko) 전지 모듈
JP4242665B2 (ja) 組電池の冷却装置及び二次電池
CN104835980B (zh) 电池组
US20110039142A1 (en) Battery pack with improved heat dissipation efficiency
US20160111762A1 (en) Electrical storage apparatus
US20230207925A1 (en) Battery pack
KR101606456B1 (ko) 전지모듈
JP2006093144A (ja) 二次電池および二次電池モジュール
JP2017126418A (ja) バッテリーパック温度制御・給電システム
JP5096842B2 (ja) 電池格納ユニット
JP5285489B2 (ja) 組電池装置
WO2013080338A1 (ja) 電池ブロック及びそれを有する電池モジュール
JP6542462B2 (ja) 電池装置
US20230231221A1 (en) Tab Cooling for Batteries
JP2023094684A (ja) 温度調整装置
KR100578889B1 (ko) 전지 모듈
KR100805114B1 (ko) 이차 전지 모듈
JP5692132B2 (ja) 蓄電装置
EP3896779B1 (en) Battery pack
JP2023044132A (ja) 温度調整装置
JP2023044136A (ja) 温度調整装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20231225