JP2023094502A - Method for producing natural N-acetylglucosamine - Google Patents

Method for producing natural N-acetylglucosamine Download PDF

Info

Publication number
JP2023094502A
JP2023094502A JP2022025369A JP2022025369A JP2023094502A JP 2023094502 A JP2023094502 A JP 2023094502A JP 2022025369 A JP2022025369 A JP 2022025369A JP 2022025369 A JP2022025369 A JP 2022025369A JP 2023094502 A JP2023094502 A JP 2023094502A
Authority
JP
Japan
Prior art keywords
chitin
acetylglucosamine
producing
medium
tainanensis
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2022025369A
Other languages
Japanese (ja)
Other versions
JP7319405B2 (en
Inventor
陳錦坤
Chin-Kun Chen
李筱萍
Hsiao-Ping Lee
李信毅
Hsin-Yi Lee
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
CPC Corp Taiwan
Original Assignee
CPC Corp Taiwan
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by CPC Corp Taiwan filed Critical CPC Corp Taiwan
Publication of JP2023094502A publication Critical patent/JP2023094502A/en
Application granted granted Critical
Publication of JP7319405B2 publication Critical patent/JP7319405B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Preparation Of Compounds By Using Micro-Organisms (AREA)
  • Saccharide Compounds (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)

Abstract

To provide a method for producing natural N-acetylglucosamine.SOLUTION: A method for producing N-acetylglucosamine of the present invention comprises: (a) providing a Chitinibacter tainanensis strain; (b) inoculating a Chitinibacter tainanensis strain into a liquid medium containing chitin, diammonium hydrogen phosphate, and yeast extract, so that the concentration of the diammonium hydrogen phosphate in the liquid medium is 1.9 mg/mL and the concentration of the yeast extract in the liquid medium is 1.5 mg/mL; and (c) fermenting the Chitinibacter tainanensis strain in an environment at 30°C and decomposing chitin as N-acetylglucosamine, the method for producing N-acetylglucosamine being able to improve the yield of natural N-acetylglucosamine.SELECTED DRAWING: None

Description

本発明はN-アセチルグルコサミンの生産方法に関し、特に、微生物から天然型N-アセチルグルコサミンを生産する、N-アセチルグルコサミンの生産方法に関する。 TECHNICAL FIELD The present invention relates to a method for producing N-acetylglucosamine, and particularly to a method for producing natural N-acetylglucosamine from microorganisms.

N-アセチルグルコサミン(N-acetylglucosamine,NAG)は、人体において重要な生理的機能を持つアミノ糖(Aminosugar)の一種であり、人体の細胞の重要な構成要素であるグリコサミノグリカン(Glycosamino-glycan,GAG)、糖タンパク質(Glycoprotein)、プロテオグリカン(Proteoglycan)の合成に関与している。 N-acetylglucosamine (NAG) is a kind of amino sugar that has important physiological functions in the human body, and is a glycosamino-glycan that is an important constituent of human cells. , GAG), glycoproteins, and proteoglycans.

NAGの生産工程については、現在、主にグルコースやキチンを原料として使用しているが、そのうちキチンが一般的にNAGの製造に使用されている。キチンからNAGを製造する場合、主に3つの方法がある。 Currently, glucose and chitin are mainly used as raw materials for the NAG production process, and chitin is generally used for the production of NAG. There are three main methods for producing NAG from chitin.

第一の方法は化学的方法で、強酸でキチンを高温下で加水分解してグルコサミンを生成した後、酸無水物と前記グルコサミンを作用させ、さらに前述の作用させた反応物をアセチル基と結合させてN-アセチルグルコサミンを生産する方法である。しかしながら、化学的方法で製造されたNAGは、化学薬剤残留の問題がある可能性がある。 The first method is a chemical method, in which chitin is hydrolyzed with a strong acid at a high temperature to produce glucosamine, then acid anhydride and said glucosamine are allowed to act, and the above-mentioned reactant is combined with an acetyl group. It is a method of producing N-acetylglucosamine by allowing However, NAG produced by chemical methods can have chemical agent residue problems.

第二の方法は酵素法であり、キチンエンドヌクレアーゼ、キチンエキソヌクレアーゼ、N-アセチルグルコサミニダーゼ等の酵素を通じ、キチンを加水分解してNAGを生産する方法である。酵素法で生産されるNAGは天然型NAGであり、天然型NAGは安全性と純度が高く、化学物質の残留がないという利点があるが、酵素法によるNAGの生産は生産コストがより高い。 The second method is an enzymatic method in which chitin is hydrolyzed through enzymes such as chitin endonuclease, chitin exonuclease and N-acetylglucosaminidase to produce NAG. The NAG produced by the enzymatic method is natural NAG, and the natural NAG has the advantages of high safety, high purity, and no residue of chemical substances, but the production cost of NAG by the enzymatic method is higher.

第三の方法は生体内変換法であり、これは微生物を利用してキチンを分解してNAGとするもので、この方法で生産されるNAGも天然型NAGであり、生産コストも比較的低い。 The third method is the biotransformation method, which uses microorganisms to decompose chitin into NAG. The NAG produced by this method is also natural NAG, and the production cost is relatively low. .

しかしながら、生体内変換法を使用してNAGを生産するとき、このプロセスの収率は微生物の生長条件と発酵状況の影響を受ける。例えば、発酵環境で微生物に適量の窒素源を与えることで、微生物が生長し、キチンをNAGに分解することができる。現在、一般的に微生物に使用される窒素源はトリプトンと酵母エキスであるが、NAG生産工程において、微生物の収率をさらに高めるために、より良い窒素源の処方を提供することが課題となっている。 However, when producing NAG using biotransformation methods, the yield of this process is affected by microbial growth conditions and fermentation conditions. For example, by providing an appropriate amount of nitrogen source to microorganisms in a fermentation environment, the microorganisms can grow and decompose chitin into NAG. At present, tryptone and yeast extract are commonly used nitrogen sources for microorganisms, but in the NAG production process, the challenge is to provide better nitrogen source formulations to further increase the yield of microorganisms. ing.

本発明の目的は、上述の問題を解決するために、N-アセチルグルコサミン生産方法を提供することにある。 An object of the present invention is to provide a method for producing N-acetylglucosamine in order to solve the above problems.

本発明のN-アセチルグルコサミン生産方法は、(a)Chitinibacter tainanensis菌株を提供する工程と、(b)Chitinibacter tainanensis菌株を、キチン、リン酸水素二アンモニウム及び酵母エキスを含む液体培地に接種し、当該液体培地中における当該リン酸水素二アンモニウムの濃度が1.9mg/mL、当該液体培地中における当該酵母エキスの濃度が1.5mg/mLとする工程と、(c)30℃の環境下でChitinibacter tainanensis菌株を発酵させ、キチンをN-アセチルグルコサミンとして分解させる工程と、を含む。 The method for producing N-acetylglucosamine of the present invention includes (a) a step of providing a Chitinibacter tainanensis strain; A step of setting the concentration of the diammonium hydrogen phosphate in the liquid medium to 1.9 mg/mL and the concentration of the yeast extract in the liquid medium to 1.5 mg/mL; tainanensis strain to degrade chitin as N-acetylglucosamine.

上述の方法の(b)工程において、当該キチンの当該液体培地中における重量百分率濃度は6%である。 In step (b) of the method described above, the chitin has a weight percent concentration of 6% in the liquid medium.

上述の方法において、当該液体培地中のキチンはα-キチンである。 In the above method, the chitin in the liquid medium is α-chitin.

上述の方法において、当該α-キチンはエビの殻由来である。 In the above method, the α-chitin is derived from shrimp shells.

上述の方法において、当該α-キチンはカニの殻由来である。 In the above method, the α-chitin is derived from crab shells.

上述の方法において、当該N-アセチルグルコサミンの生産方法は、よりよい窒素源の処方を使用することで、天然型N-アセチルグルコサミンの収率をさらに向上することができる。 In the above method, the method for producing N-acetylglucosamine can further improve the yield of natural N-acetylglucosamine by using a better nitrogen source formulation.

本発明の実施例5のN-アセチルグルコサミン生産方法で、異なるキチン由来でNAGを生産したときの収率の比較結果を示すグラフである。FIG. 10 is a graph showing the yield comparison results when NAG is produced from different chitins by the N-acetylglucosamine production method of Example 5 of the present invention. FIG.

本発明の目的、特徴、効果について充分に理解できるように、以下で具体的な実施例に添付の図面を組み合わせ、本発明について詳細に説明する。 DETAILED DESCRIPTION OF THE INVENTION In order that the objects, features and effects of the present invention can be fully understood, the present invention will be described in detail below in conjunction with specific embodiments in conjunction with the accompanying drawings.

〔実施例1〕
実施例1のN-アセチルグルコサミンの生産方法
本実施例1において使用する菌株は、Chitinibacter tainanensisである。上述のChitinibacter tainanensis菌株は、台湾I328041号特許を参考とし、中華民国食品工業発展研究所生物資源保存中心(Bioresource Collection and Research Center)より取得したもので、菌種番号はBCRC910256である。
[Example 1]
Method for producing N-acetylglucosamine in Example 1 The strain used in Example 1 is Chitinibacter tainanensis. The aforementioned Chitinibacter tainanensis strain was obtained from the Bioresource Collection and Research Center of the Republic of China Food Industry Development Research Center with reference to Taiwan Patent No. I328041, and the strain number is BCRC910256.

まず、Chitinibacter tainanensisのコロニーを400mlのLB培地に接種し、30℃の環境で16時間発酵培養を行った後、発酵液中から10mlの接種用菌液(濃度約1.7x10cfu/ml)を5つ取得した。同時に、5つの500ml三角フラスコを用意し、各三角フラスコに100mlの液体BH培地(Difco Bushnell-Haas broth)を入れ、当該BH培地が重量百分率濃度6%のα-キチン(これは本実施例1において提供するキチンのタイプの例示であり、その他の実施例において、使用者は必要に応じてその他タイプのキチンを使用できる)を含有する。前述の5つの10ml接種用菌液をそれぞれ前述の5つの液体BH培地中に接種し、上述のChitinibacter tainanensis菌株を接種した5つのBH培地をそれぞれ統制群と実験群1から実験群4とした。統制群の培地には別途窒素源を添加せず、実験群1の培地には最終濃度1.5mg/mlの酵母エキス(Yeast Extract)を添加、実験群2の培地には最終濃度3mg/mlの酵母エキスを添加、実験群3の培地には最終濃度4.5mg/mlの酵母エキスを添加、実験群4の培地には最終濃度6mg/mlの酵母エキスを添加した。 First, a colony of Chitinibacter tainanensis was inoculated into 400 ml of LB medium and fermented in an environment of 30° C. for 16 hours. got 5. At the same time, prepare five 500 ml Erlenmeyer flasks, put 100 ml of liquid BH medium (Difco Bushnell-Haas broth) in each Erlenmeyer flask, and the BH medium contains α-chitin with a weight percentage concentration of 6% (this is Example 1 are exemplary of the types of chitin provided in and in other examples, the user may use other types of chitin as desired. Five BH media inoculated with the aforementioned five liquid BH media containing 10 ml of each of the above five 10 ml inoculum solutions, and five BH media inoculated with the aforementioned Chitinibacter tainanensis strain were designated as a control group and experimental groups 1 to 4, respectively. No nitrogen source was added to the medium of the control group, Yeast Extract was added to the medium of the experimental group 1 at a final concentration of 1.5 mg/ml, and the medium of the experimental group 2 was added to a final concentration of 3 mg/ml. Yeast extract was added to the medium of experimental group 3, yeast extract was added to a final concentration of 4.5 mg/ml, and yeast extract to a final concentration of 6 mg/ml was added to the medium of experimental group 4.

上述の統制群と実験群の標本を30℃の環境で96時間発酵培養し、そのうちのChitinibacter tainanensis菌株に当該キチンをN-アセチルグルコサミンに分解させる。上述の統制群と実験群の標本を96時間培養した後、統制群と実験群の標本を遠心分離し(遠心分離の回転速度は10000rpm、遠心分離時間は10分間)、遠心分離が完了した統制群と実験群の標本中の上清液を取り、屈折計(ATAGO)で統制群と実験群標本の上清液の屈折度(Brix%)を測定(即ち、上清液中に溶解したN-アセチルグルコサミンの総濃度百分率)し、N-アセチルグルコサミンの濃度に換算する。 The above control group and experimental group specimens were fermented and cultured at 30° C. for 96 hours, and the Chitinibacter tainanensis strain therein decomposed the chitin into N-acetylglucosamine. After culturing the above control and experimental group specimens for 96 hours, the control and experimental group specimens were centrifuged (centrifugation rotation speed 10000 rpm, centrifugation time 10 minutes), The supernatants in the specimens of the group and the experimental group were taken, and the refractive index (Brix%) of the supernatants of the specimens of the control group and the experimental group was measured with a refractometer (ATAGO) (i.e., N dissolved in the supernatant -total concentration of acetylglucosamine) and converted to concentration of N-acetylglucosamine.

実験結果を下表1に示す。結果によると、培地中に酵母エキスを添加することでChitinibacter tainanensis菌株が生産するNAGの収率を向上でき、かつChitinibacter tainanensis菌株の収率向上程度は酵母エキスの添加濃度の増加に伴い上昇することが分かる。上述の実験結果から、微生物に適量の窒素源を与えることで、微生物がキチンをNAGに分解する効率を高められることが実証された。 Experimental results are shown in Table 1 below. According to the results, the addition of yeast extract to the medium can improve the yield of NAG produced by the Chitinibacter tainanensis strain, and the degree of improvement in the yield of the Chitinibacter tainanensis strain increases as the concentration of the yeast extract added increases. I understand. From the above experimental results, it was demonstrated that the efficiency of the microorganisms to decompose chitin into NAG can be enhanced by providing the microorganisms with an appropriate amount of nitrogen source.

Figure 2023094502000001
Figure 2023094502000001

〔実施例2〕
実施例2のN-アセチルグルコサミンの生産方法
本実施例2のN-アセチルグルコサミンの生産方法の流れは、実施例1とほぼ同じであり、本実施例2の統制群の培地成分も実施例1と同じであるが、唯一の違いは本実施例2の実験群1から実験群4で添加される窒素源の種類が実施例1と異なる点にある。本実施例2における実験群1から実験群4の窒素源の種類及び濃度を下表2に示す。
[Example 2]
Method for Producing N-Acetylglucosamine in Example 2 The flow of the method for producing N-acetylglucosamine in Example 2 is almost the same as in Example 1, and the medium components of the control group in Example 2 are also the same as in Example 1. The only difference is that the type of nitrogen source added in Experimental Groups 1 to 4 of Example 2 is different from Example 1. Table 2 below shows the types and concentrations of the nitrogen sources in Experimental Groups 1 to 4 in Example 2.

Figure 2023094502000002
Figure 2023094502000002

実験結果を下表3に示す。結果によると、培地中にトリプトンと酵母エキスを添加することでChitinibacter tainanensis菌株が生産するNAGの収率を向上でき、かつChitinibacter tainanensis菌株の収率向上程度はトリプトンと酵母エキスの添加濃度の増加に伴い上昇することが分かる。かつ、本実施例2の実験結果と実施例1の実験結果を比較すると、培地中の一部の酵母エキスをトリプトンで置換することで、Chitinibacter tainanensis菌株の収率向上程度がより高まることが分かる。上述の実験結果は、異なる種類の窒素源による微生物のNAG生産効率の向上程度が異なることを証明している。特に、トリプトンを窒素源として加えたときの効果は単に酵母エキスを窒素源としたときの効果よりも高い。 Experimental results are shown in Table 3 below. According to the results, the addition of tryptone and yeast extract to the medium can improve the yield of NAG produced by the Chitinibacter tainanensis strain, and the yield improvement of the Chitinibacter tainanensis strain depends on the increase in the concentration of tryptone and yeast extract added. It can be seen that it increases with In addition, when comparing the experimental results of Example 2 and the experimental results of Example 1, it can be seen that the degree of improvement in yield of the Chitinibacter tainanensis strain is further increased by replacing a part of the yeast extract in the medium with tryptone. . The above experimental results demonstrate that different types of nitrogen sources improve the NAG production efficiency of microorganisms to different extents. In particular, the effect of adding tryptone as a nitrogen source is higher than the effect of simply using yeast extract as a nitrogen source.

Figure 2023094502000003
Figure 2023094502000003

〔実施例3〕
実施例3のN-アセチルグルコサミンの生産方法
本実施例3のN-アセチルグルコサミンの生産方法の流れは、実施例2とほぼ同じであり、本実施例3の統制群の培地成分も実施例2と同じであるが、唯一の違いは本実施例3の実験群1から実験群4で添加される窒素源の種類が実施例2と異なる点にある。本実施例3における実験群1から実験群4の窒素源の種類及び濃度を下表4に示す。
[Example 3]
Method for Producing N-Acetylglucosamine in Example 3 The flow of the method for producing N-acetylglucosamine in Example 3 is almost the same as in Example 2, and the medium components of the control group in Example 3 are also the same as in Example 2. The only difference is that the types of nitrogen sources added in Experimental Groups 1 to 4 of Example 3 are different from those in Example 2. Table 4 below shows the types and concentrations of the nitrogen sources in Experimental Groups 1 to 4 in Example 3.

Figure 2023094502000004
Figure 2023094502000004

実験結果を下表5に示す。結果によると、培地中に無機窒素源と酵母エキスを添加することでChitinibacter tainanensis菌株が生産するNAGの収率を向上でき、かつ本実施例3の実験結果(実験群1、1.9mg/mlの(NHHPOと1.5mg/mlの酵母エキスを含有)と、実施例2の実験結果(実験群3、3.0mg/mlのトリプトンと1.5mg/mlの酵母エキスを含有)と比較すると、培地中のトリプトンをリン酸水素二アンモニウム((NHHPO)で置換することで、Chitinibacter tainanensis菌株の収率向上程度がより高いことが分かる。このほか、本実施例3の実験結果から、4種類の無機炭素源の中で、リン酸水素二アンモニウムは比較的良い無機窒素源の由来であることも分かる。 Experimental results are shown in Table 5 below. According to the results, the addition of an inorganic nitrogen source and yeast extract to the medium can improve the yield of NAG produced by the Chitinibacter tainanensis strain, and the experimental results of Example 3 (experimental group 1, 1.9 mg / ml (NH 4 ) 2 HPO 4 and 1.5 mg/ml yeast extract) and the experimental results of Example 2 (experimental group 3, containing 3.0 mg/ml tryptone and 1.5 mg/ml yeast extract). containing), it can be seen that replacing tryptone in the medium with diammonium hydrogen phosphate ((NH 4 ) 2 HPO 4 ) improves the yield of the Chitinibacter tainanensis strain to a higher extent. In addition, from the experimental results of Example 3, it can be seen that diammonium hydrogen phosphate is derived from a relatively good inorganic nitrogen source among the four types of inorganic carbon sources.

Figure 2023094502000005
Figure 2023094502000005

〔実施例4〕
実施例4のN-アセチルグルコサミンの生産方法
まず、160グラムのα-キチン粉末を準備し、上述のキチン粉末を2リットルのBH培地に入れて均一に混合する。当該BH培地中にさらに最終濃度1.9mg/mlのリン酸水素二アンモニウムと1.5mg/mlの酵母エキスを添加する。上述のキチン粉末とBH培地の培地混合物を5リットルの発酵槽に入れ、汎用の高圧滅菌器で滅菌を行う。
[Example 4]
Method for producing N-acetylglucosamine in Example 4 First, 160 grams of α-chitin powder is prepared, and the above chitin powder is added to 2 liters of BH medium and mixed uniformly. Further, diammonium hydrogen phosphate at a final concentration of 1.9 mg/ml and yeast extract at a final concentration of 1.5 mg/ml are added to the BH medium. The medium mixture of chitin powder and BH medium described above is placed in a 5-liter fermenter and sterilized with a general-purpose high-pressure sterilizer.

その後、実施例1の接種用菌液の作製方法で接種用菌液を作製する。100mlのChitinibacter tainanensis接種用菌液を上述の培地混合物に接種し、回転速度200rpm、温度30℃、通気量2L/minの条件で発酵を行い、発酵時間は165時間で、5時間ごとに発酵液中から発酵液標本を取り、実施例1の方法で、発酵液標本から上清液を取得して、上清液の屈折度を測定した。各時間点で測定された上清液のNAG濃度のうち最高値は65mg/mlに達することができ、NAG収率に換算すると81.3%(NAG収率=NAG生産量/キチン添加量x100%)に達することができる。 Thereafter, an inoculum solution is prepared by the method for preparing an inoculum solution of Example 1. 100 ml of Chitinibacter tainanensis inoculum solution was inoculated into the above medium mixture, and fermentation was performed under the conditions of rotation speed of 200 rpm, temperature of 30 ° C., and aeration rate of 2 L / min. A fermented liquid sample was taken from the medium, a supernatant liquid was obtained from the fermented liquid sample by the method of Example 1, and the refractive index of the supernatant liquid was measured. The maximum NAG concentration in the supernatant measured at each time point could reach 65 mg/ml, which is 81.3% in terms of NAG yield (NAG yield = NAG production/chitin addition x 100). %) can be reached.

〔実施例5〕
実施例5のN-アセチルグルコサミンの生産方法
まず、実施例1の方法で5つの10mlの接種用菌液を作製する。同時に5つの500mlの三角フラスコ及び5つの実験群液体培地を準備する。上述の5つの実験群液体培地はBH培地を基礎培地とし、異なる由来のα-キチンを加えた(培地中の重量百分率濃度6%)、リン酸水素二アンモニウム(培地中の最終濃度1.9mg/ml)、酵母エキス(培地中の最終濃度1.5mg/ml)。上述の5つの実験群液体培地をそれぞれ実験群1から実験群5とする。
[Example 5]
Method for Producing N-Acetylglucosamine in Example 5 First, by the method in Example 1, five 10 ml inoculum solutions are prepared. Prepare five 500 ml Erlenmeyer flasks and five experimental group liquid media at the same time. The above-mentioned five experimental group liquid media were BH medium as the basal medium, and α-chitin of different origin was added (weight percentage concentration in the medium was 6%), diammonium hydrogen phosphate (final concentration in the medium was 1.9 mg /ml), yeast extract (final concentration 1.5 mg/ml in medium). The five experimental group liquid culture media described above are designated as experimental groups 1 to 5, respectively.

その後、実施例1の方法で5つの10mlの接種用菌液を作製する。同時に、5つの500mlの三角フラスコと5つの統制群液体培地を準備する。上述の5つの統制群液体培地はBH培地を基礎培地とし、異なる由来のα-キチン(培地中の重量百分率濃度6%)を加えるが、窒素源は加えない。上述の5つの実験群液体培地をそれぞれ統制群1から統制群5とする。 Five 10 ml inoculum solutions are then prepared by the method of Example 1. At the same time, prepare five 500 ml Erlenmeyer flasks and five control liquid media. The five control group liquid culture media mentioned above use BH medium as the basal medium, supplemented with α-chitin of different origins (6% weight percent concentration in the medium), but no nitrogen source. The five experimental group liquid media mentioned above are referred to as control group 1 to control group 5, respectively.

そのうち、実験群1と統制群1に同じα-キチン由来を使用し、実験群2と統制群2に同じα-キチン由来を使用、実験群3と統制群3に同じα-キチン由来を使用、実験群4と統制群4に同じα-キチン由来を使用、実験群5と統制群5に同じα-キチン由来を使用している。下表6において、実験群1と統制群1をグループ1、実験群2と統制群2をグループ2、実験群3と統制群3をグループ3、実験群4と統制群4をグループ4、実験群5と統制群5をグループ5と呼ぶ。 Among them, the same α-chitin origin is used for experimental group 1 and control group 1, the same α-chitin origin is used for experimental group 2 and control group 2, and the same α-chitin origin is used for experimental group 3 and control group 3. , the experimental group 4 and the control group 4 used the same α-chitin origin, and the experimental group 5 and the control group 5 used the same α-chitin origin. In Table 6 below, experimental group 1 and control group 1 are group 1, experimental group 2 and control group 2 are group 2, experimental group 3 and control group 3 are group 3, experimental group 4 and control group 4 are group 4, and experimental Group 5 and control group 5 are referred to as Group 5.

グループ1からグループ5のα-キチン由来は下表6に示すとおりである。 Groups 1 to 5 derived from α-chitin are as shown in Table 6 below.

Figure 2023094502000006
Figure 2023094502000006

続いて、前述の5つの10mlの接種用菌液を実験群1から実験群5の液体BH培地にそれぞれ接種した。実験群1から実験群5の標本は30℃の環境で200rpmの回転速度により72時間振とう培養し、そのうちのChitinibacter tainanensis菌株に当該キチンをN-アセチルグルコサミンに分解させた。上述の実験群の標本は72時間の発酵培養後、実施例1の方法により、実験群1から実験群5の標本から上清液を取得して、上清液のNAG屈折度を測定した。 Subsequently, 10 ml of the above-described five bacterium solutions for inoculum were inoculated into the liquid BH medium of experimental groups 1 to 5, respectively. The specimens of Experimental Groups 1 to 5 were cultured with shaking at 200 rpm in an environment of 30° C. for 72 hours, and the Chitinibacter tainanensis strain was allowed to decompose the chitin into N-acetylglucosamine. After fermenting and culturing the specimens of the experimental groups for 72 hours, supernatants were obtained from the specimens of Experimental Groups 1 to 5 according to the method of Example 1, and the NAG refractivity of the supernatants was measured.

同時に、前述の5つの10mlの接種用菌液を統制群1から統制群5の液体LB培地にそれぞれ接種し、上述の実験群1から実験群5の発酵操作の流れと同じように発酵操作を行い、統制群1から統制群5の上清液のNAG屈折度を測定した。 At the same time, the aforementioned five 10 ml inoculum solutions were inoculated into the liquid LB media of control groups 1 to 5, respectively, and fermentation was performed in the same manner as the flow of fermentation operations for experimental groups 1 to 5 described above. The NAG refractivity of the supernatants of control groups 1 to 5 was measured.

実験結果を図1に示す。図1の黒いストリップはグループ中の実験群を表し、白いストリップはグループ中の統制群を表す。グループ1からグループ5において、実験群はいずれも最終濃度1.9mg/mlのリン酸水素二アンモニウムと、最終濃度1.5mg/mlの酵母エキスを窒素源として添加しており、各実験群は対応する対照群(同じα-キチン由来を使用しているが、上述の窒素源を添加していないもの)と比較したとき、各実験群のNAG収率がいずれも向上されていた。上述の実験結果から分かるように、どのα-キチン由来を原料として使用しても、培地中に上述の窒素源の処方を添加すれば、微生物を利用してN-アセチルグルコサミンを生産する生産方法のNAG収率を向上させることができる。かつ、上述の実験結果から分かるように、異なる由来のエビの殻またはカニの殻等の廃棄バイオマス材料をキチンとして使用しても、培地中に上述の窒素源の処方が含有されていれば、Chitinibacter tainanensis菌株はいずれもNAGを効果的に生産することができ、多様なキチン由来の選択が可能で、NAGの生産コスト削減にさらに役立つ。 The experimental results are shown in FIG. The black strip in FIG. 1 represents the experimental group in the group and the white strip represents the control group in the group. In groups 1 to 5, all experimental groups were added with a final concentration of 1.9 mg/ml diammonium hydrogen phosphate and a final concentration of 1.5 mg/ml yeast extract as a nitrogen source. All NAG yields in each experimental group were improved when compared to the corresponding control group (using the same α-chitin origin but without the addition of the nitrogen source described above). As can be seen from the above experimental results, no matter which α-chitin-derived material is used as a raw material, if the above-mentioned nitrogen source formulation is added to the medium, a production method for producing N-acetylglucosamine using microorganisms. can improve the NAG yield of In addition, as can be seen from the above experimental results, even if waste biomass materials such as shrimp shells or crab shells of different origins are used as chitin, if the above-mentioned nitrogen source formulation is contained in the medium, All of the Chitinibacter tainanensis strains can effectively produce NAG, and a variety of chitin-derived selections are possible, further helping to reduce the production cost of NAG.

上述のように、上述のN-アセチルグルコサミンの生産方法によれば、当該生産方法はより優れた窒素源の処方、即ち1.9mg/mlのリン酸水素二アンモニウムと1.5mg/mlの酵母エキスを提供することで、単純にBH培地を使用した従来のN-アセチルグルコサミンの生産方法と比較して、上述のより優れた窒素源の処方を添加したN-アセチルグルコサミンの生産方法は天然型N-アセチルグルコサミンの収率をさらに向上することができる。 As mentioned above, according to the production method of N-acetylglucosamine described above, the production method has a better nitrogen source formulation, namely 1.9 mg/ml diammonium hydrogen phosphate and 1.5 mg/ml yeast By providing the extract, compared to the conventional method of producing N-acetylglucosamine simply using BH medium, the method of producing N-acetylglucosamine supplemented with the above-mentioned superior nitrogen source formulation is a natural type. The yield of N-acetylglucosamine can be further improved.

本発明は上述で最良の実施例を開示したが、当業者であれば理解できるように、この実施例は単に本発明を説明するために用いたのみであり、本発明の範囲を限定すると理解されるべきではない。注意すべきは、この実施例と同等効果を有する変化および置換はすべて、本発明の範疇内に含まれることである。このため、本発明の保護範囲は、特許請求の範囲の定義に準じる。 Although the present invention has disclosed a best mode embodiment above, it will be appreciated by those skilled in the art that this embodiment is merely used to illustrate the invention and is intended to limit the scope of the invention. should not be. It should be noted that all variations and substitutions having equivalent effects with this example are included within the scope of the present invention. Therefore, the protection scope of the present invention is subject to the definition of the claims.

Claims (8)

N-アセチルグルコサミンの生産方法であって、
(a)Chitinibacter tainanensis菌株を提供する工程と、
(b)Chitinibacter tainanensis菌株を、キチン、リン酸水素二アンモニウム及び酵母エキスを含む液体培地に接種し、当該液体培地中における当該リン酸水素二アンモニウムの濃度が1.9 mg/mL、当該液体培地中における当該酵母エキスの濃度が1.5mg/mLとする工程と、
(c)30℃の環境下でChitinibacter tainanensis菌株を発酵させ、当該キチンをN-アセチルグルコサミンとして分解させる工程と、
を含む、ことを特徴とする、N-アセチルグルコサミンの生産方法。
A method for producing N-acetylglucosamine, comprising:
(a) providing a Chitinibacter tainanensis strain;
(b) Chitinibacter tainanensis strain is inoculated into a liquid medium containing chitin, diammonium hydrogen phosphate and yeast extract, the concentration of diammonium hydrogen phosphate in the liquid medium is 1.9 mg / mL, the liquid medium A step in which the concentration of the yeast extract in the medium is 1.5 mg / mL;
(c) fermenting the Chitinibacter tainanensis strain in an environment at 30° C. to degrade the chitin as N-acetylglucosamine;
A method for producing N-acetylglucosamine, characterized in that
前記(b)工程において、前記キチンの前記液体培地中における重量百分率濃度が6%である、ことを特徴とする、請求項1に記載のN-アセチルグルコサミンの生産方法。 2. The method for producing N-acetylglucosamine according to claim 1, wherein in the step (b), the weight percentage concentration of the chitin in the liquid medium is 6%. 前記液体培地中のキチンがα-キチンである、ことを特徴とする、請求項2に記載のN-アセチルグルコサミンの生産方法。 3. The method for producing N-acetylglucosamine according to claim 2, wherein the chitin in the liquid medium is α-chitin. 前記α-キチンがエビの殻由来である、ことを特徴とする、請求項3に記載のN-アセチルグルコサミンの生産方法。 The method for producing N-acetylglucosamine according to claim 3, wherein the α-chitin is derived from shrimp shells. 前記α-キチンがカニの殻由来である、ことを特徴とする、請求項3に記載のN-アセチルグルコサミンの生産方法。 The method for producing N-acetylglucosamine according to claim 3, wherein the α-chitin is derived from crab shells. 前記(b)工程において、前記液体培地中のキチンがα-キチンである、ことを特徴とする、請求項1に記載のN-アセチルグルコサミンの生産方法。 2. The method for producing N-acetylglucosamine according to claim 1, wherein in the step (b), the chitin in the liquid medium is α-chitin. 前記α-キチンがエビの殻由来である、ことを特徴とする、請求項6に記載のN-アセチルグルコサミンの生産方法。 7. The method for producing N-acetylglucosamine according to claim 6, wherein the α-chitin is derived from shrimp shells. 前記α-キチンがカニの殻由来である、ことを特徴とする、請求項6に記載のN-アセチルグルコサミンの生産方法。 7. The method for producing N-acetylglucosamine according to claim 6, wherein the α-chitin is derived from crab shells.
JP2022025369A 2021-12-23 2022-02-22 Method for producing natural N-acetylglucosamine Active JP7319405B2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
TW110148430A TWI792803B (en) 2021-12-23 2021-12-23 Method of producing natural type n-acetylglucosamine
TW110148430 2021-12-23

Publications (2)

Publication Number Publication Date
JP2023094502A true JP2023094502A (en) 2023-07-05
JP7319405B2 JP7319405B2 (en) 2023-08-01

Family

ID=86689046

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2022025369A Active JP7319405B2 (en) 2021-12-23 2022-02-22 Method for producing natural N-acetylglucosamine

Country Status (2)

Country Link
JP (1) JP7319405B2 (en)
TW (1) TWI792803B (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI328041B (en) * 2004-12-17 2010-08-01 Cpc Corp Taiwan
US20170009267A1 (en) * 2015-07-07 2017-01-12 Jiangnan University Method for Enhancing N-acetylglucosamine Production through glcK Knockout of Bacillus subtilis
CN111944789A (en) * 2020-09-02 2020-11-17 鲁东大学 Method for producing chitinase by fermenting chaetomium globosum and application thereof

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI328041B (en) * 2004-12-17 2010-08-01 Cpc Corp Taiwan
US20170009267A1 (en) * 2015-07-07 2017-01-12 Jiangnan University Method for Enhancing N-acetylglucosamine Production through glcK Knockout of Bacillus subtilis
CN111944789A (en) * 2020-09-02 2020-11-17 鲁东大学 Method for producing chitinase by fermenting chaetomium globosum and application thereof

Also Published As

Publication number Publication date
JP7319405B2 (en) 2023-08-01
TW202325854A (en) 2023-07-01
TWI792803B (en) 2023-02-11

Similar Documents

Publication Publication Date Title
CN103468624B (en) Genetic engineering bacteria used for high efficient production of mycose
CN108277184A (en) Produce the bacillus and its preparation method and application of algin catenase
CN113652379B (en) Bacillus cell wall depolymerization GIEC and application thereof
CN117229979B (en) Extended microbubble strain for producing algin lyase and application thereof
CN111733086B (en) Aspergillus oryzae and application thereof in soy sauce brewing
JP7319405B2 (en) Method for producing natural N-acetylglucosamine
Trincone Some enzymes in marine environment: Prospective applications found in patent literature
CN107739721A (en) Produce bacillus sp.W2017 and its application of agar-agar digestive enzyme
CN115975857A (en) Broad-spectrum culture medium suitable for degrading waste feathers and application thereof
CN103468606A (en) Klebsiella oxytoca and application thereof in allitol production
CN100427583C (en) Active strain of high-activity saccharifying enzyme, enzyme preparation, and their preparation method and use
CN117070367B (en) Aureobasidium pullulans NCPS2022-M and culture method
KR20190011450A (en) Manufacturing method of exo-polysaccharide comprising fucose
CN118374562B (en) Fermentation medium for preparing N-acetylglucosamine
KR101708369B1 (en) Method for Producing Bacterial Cellulose by Culturing Gluconacetobacter sp. gel_SEA623-2 Strain and Lactobacillus plantarum Strain
CN113151060B (en) Bacillus lysine prolonging ZCGT05 and application thereof
JPH01247080A (en) Production of polysaccharides by multistage fermentation
CN106929456A (en) A kind of temmoku acinetobacter calcoaceticus MCDA01 and its method for preparing chitin deacetylase
CN116837050A (en) Method for simultaneously preparing multiple seaweed oligosaccharides
CN1244680C (en) Stabilizing post-processing method for beneficial microbial preparation
RU2186850C2 (en) Method of citric acid producing
CN117646049A (en) Method for preparing N-acetylglucosamine by microbial fermentation
CN104726422A (en) Method for producing heat-resistant superoxide dismutase (SOD) by utilizing Stilbella thermophila
KR101408972B1 (en) Method of producing bio ethanol using the composition for accelerating fermentation
CN104694502A (en) Method for producing heat-resistant superoxide dismutase (SOD) by using talaromyces thermophilus

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220222

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230207

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230711

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230720

R150 Certificate of patent or registration of utility model

Ref document number: 7319405

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150