JP2023094196A - Thermally expandable refractory material - Google Patents

Thermally expandable refractory material Download PDF

Info

Publication number
JP2023094196A
JP2023094196A JP2021209522A JP2021209522A JP2023094196A JP 2023094196 A JP2023094196 A JP 2023094196A JP 2021209522 A JP2021209522 A JP 2021209522A JP 2021209522 A JP2021209522 A JP 2021209522A JP 2023094196 A JP2023094196 A JP 2023094196A
Authority
JP
Japan
Prior art keywords
thermally expandable
mass
refractory material
rubber
styrene
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2021209522A
Other languages
Japanese (ja)
Other versions
JP7142139B1 (en
Inventor
知道 高津
Tomomichi Takatsu
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denka Co Ltd
Original Assignee
Denka Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denka Co Ltd filed Critical Denka Co Ltd
Priority to JP2021209522A priority Critical patent/JP7142139B1/en
Application granted granted Critical
Publication of JP7142139B1 publication Critical patent/JP7142139B1/en
Publication of JP2023094196A publication Critical patent/JP2023094196A/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

To provide a thermally expandable refractory material having excellent insertability without sacrificing thermal expandability, shape retentivity, flexibility to follow even a curved face, or flame retardancy.SOLUTION: A thermally expandable refractory material contains a matrix polymer of 100 pts.mass, thermally expandable graphite of 5-400 pts.mass, and an inorganic phosphoric acid-based compound of 1-400 pts.mass, the matrix polymer containing an elastomer, and the thermally expandable graphite having an average aspect ratio of less than 20.SELECTED DRAWING: None

Description

本発明は、熱膨張性を有する耐火材に関する。 TECHNICAL FIELD The present invention relates to a refractory material having thermal expansibility.

火災発生等の際に、加熱により膨張し延焼を防止することのできる耐火材が知られている。このような熱膨張性を有する耐火材として、例えば、特許文献1には、マトリクス樹脂に熱膨張性黒鉛を含有したものが示されている。 Refractory materials are known that can expand when heated to prevent the spread of fire in the event of a fire or the like. As such a heat-expandable refractory material, for example, Patent Document 1 discloses a matrix resin containing heat-expandable graphite.

また、近年では、住宅等の構造物の開口部に使用する窓、障子、扉(すなわちドア)、戸、ふすま、および欄間等の建具に要求される性能の一つに防火性能があり、防火性能を高めるために、建具に熱膨張性耐火材を装着することが行われている。例えば、特許文献2には、防火性樹脂サッシの開口枠体を構成する枠材の内部に、熱膨張性耐火材を挿入することが記載されている。 In addition, in recent years, one of the performances required for fittings such as windows, shojis, doors (that is, doors), doors, sliding doors, and transoms used in openings of structures such as houses is fireproof performance. In order to improve performance, fittings are fitted with thermally expandable fireproof materials. For example, Patent Literature 2 describes inserting a heat-expandable fireproof material inside a frame member that constitutes an opening frame of a fireproof resin sash.

特開2018-100410号JP 2018-100410 特開2005-9304号Japanese Patent Application Laid-Open No. 2005-9304

熱膨張性耐火材には熱により膨張する材料が配合されており、膨張することで隙間を埋め、延焼や防煙の役目を果たす。そのために、従来の耐火材には、熱膨張性、加熱後の形状安定性、曲面にも追従する可撓性、および難燃性が要求されていた。 Thermally expandable refractory materials are compounded with materials that expand when heated, and when they expand, they fill gaps and play a role in spreading fire and preventing smoke. Therefore, conventional refractory materials are required to have thermal expansibility, shape stability after heating, flexibility to follow curved surfaces, and flame retardancy.

しかしながら、近年、防火性樹脂サッシの開口枠体を構成する枠材の内部や軒裏の換気部に設置される軒裏換気部材の内部にも熱膨張性耐火材が使用されるようになり、枠材や軒裏換気部材の長手方向に沿って熱膨張性耐火材を挿通する際、熱膨張性耐火材が柔らかいと、自重によりたわみが生じてしまい、挿通が困難な場合があった。 However, in recent years, thermally expandable fireproof materials have come to be used inside the frame material that constitutes the opening frame of the fireproof resin sash and inside the eaves ventilation member installed in the ventilation part of the eaves. When inserting the heat-expandable fire-resistant material along the longitudinal direction of the frame material and the eaves ventilation member, if the heat-expandable fire-resistant material is soft, it may bend due to its own weight, making it difficult to insert.

本発明はこのような事情に鑑みてなされたものであり、熱膨張性や、形状保持性、曲面にも追従する可撓性、難燃性を損なわずに、挿通性に優れる熱膨張性耐火材を提供するものである。 The present invention has been made in view of such circumstances, and a thermally expansible fire resistant material that is excellent in insertability without impairing thermal expansibility, shape retention, flexibility to follow curved surfaces, and flame retardancy. It provides materials.

本発明者は、上記課題を解決するために鋭意検討した。その結果、特定のアスペクト比を有する熱膨張性黒鉛を用いることにより、上記課題を解決しうることを見出し、本発明を完成するに至った。 The present inventor has made extensive studies to solve the above problems. As a result, the inventors have found that the above problems can be solved by using thermally expandable graphite having a specific aspect ratio, and have completed the present invention.

すなわち、本発明によれば、マトリクスポリマー100質量部、熱膨張性黒鉛5~400質量部、無機リン酸系化合物1~400質量部を含有し、前記マトリクスポリマーがエラストマーを含み、前記熱膨張性黒鉛の平均アスペクト比が20未満である、熱膨張性耐火材が提供される。 That is, according to the present invention, it contains 100 parts by mass of a matrix polymer, 5 to 400 parts by mass of thermally expandable graphite, and 1 to 400 parts by mass of an inorganic phosphoric acid compound, the matrix polymer contains an elastomer, and the thermally expandable A thermally expandable refractory material is provided wherein the graphite has an average aspect ratio of less than 20.

本発明の耐火材によれば、熱膨張性、形状保持性、可撓性、難燃性を損なわずに、優れた挿通性が得られる。 According to the refractory material of the present invention, excellent insertability can be obtained without impairing thermal expansibility, shape retention, flexibility and flame retardancy.

以下、本発明の実施の形態(以下、「本実施形態」という。)について詳細に説明するが、本発明はこれに限定されるものではなく、その要旨を逸脱しない範囲で様々な変形が可能である。 Hereinafter, an embodiment of the present invention (hereinafter referred to as "this embodiment") will be described in detail, but the present invention is not limited to this, and various modifications are possible without departing from the gist thereof. is.

<耐火材>
本実施形態の耐火材は、熱膨張性、形状保持性、可撓性、難燃性が優れていることに加えて、挿通性も優れている。このため、本実施形態の耐火材は、細長い空間に挿通させて設置する用途に好適に使用できる。また、本実施形態の耐火材を設置する対象としては、窓、障子、扉、ドア、戸、ふすま、及び欄間、サッシ等の建具や、軒裏換気部材などが挙げられ、これらの耐火性を高める用途に好適に用いられる。さらに、建具や軒裏換気部材に設けられた細長い空間内に本実施形態の耐火材を挿通させて耐火材を設置するような用途に好適に使用できる。
<Refractory material>
The refractory material of the present embodiment is excellent in thermal expansibility, shape retention, flexibility, and flame retardancy, and is also excellent in insertability. For this reason, the refractory material of this embodiment can be suitably used for installation by inserting it into an elongated space. In addition, the target for installing the fireproof material of this embodiment includes fittings such as windows, shoji, doors, doors, doors, fusuma, transoms, sashes, etc., and ventilation members behind the eaves. It is preferably used for enhancing. Furthermore, it can be suitably used for applications such as inserting the fire-resistant material of the present embodiment into an elongated space provided in a fitting or an eaves ventilation member to install the fire-resistant material.

本実施形態の耐火材は、マトリクスポリマーと、熱膨張性黒鉛と、無機リン系化合物と、繊維状化合物と、を含む。この耐火材は、一例では、シート状の耐火シートである。耐火シートの厚さは、例えば1~10mmである。耐火シートをロール状に巻いて耐火シートロールとして保管や運搬をしてもよい。なお、耐火材は、用途に合わせた形状に成型した成型品であってもよい。 The refractory material of this embodiment includes a matrix polymer, thermally expandable graphite, an inorganic phosphorus compound, and a fibrous compound. This refractory material is, for example, a sheet-like refractory sheet. The thickness of the refractory sheet is, for example, 1-10 mm. The fireproof sheet may be wound into a roll and stored or transported as a fireproof sheet roll. The refractory material may be a molded article molded into a shape suitable for the application.

耐火材は、例えば200℃以上で熱膨張を開始し強固な断熱層を形成することによって耐火性能を発揮する。耐火材の膨張倍率は、3~30倍が好ましく、5~25倍がより好ましく、7~20倍がさらに好ましい。 Refractory materials exhibit fire resistance performance by starting thermal expansion, for example, at 200° C. or higher and forming a strong heat insulating layer. The expansion ratio of the refractory material is preferably 3 to 30 times, more preferably 5 to 25 times, and even more preferably 7 to 20 times.

以下、耐火材の各成分について説明する。 Each component of the refractory material will be described below.

<マトリクスポリマー>
マトリクスポリマーは、エラストマーを含む。エラストマーとしては、ゴムや熱可塑性エラストマーが挙げられる。熱可塑性エラストマーは、加熱によって軟化し流動性を示す性質を有するエラストマーであり、このような性質を有さないゴムと区別可能である。
<Matrix polymer>
Matrix polymers include elastomers. Elastomers include rubbers and thermoplastic elastomers. Thermoplastic elastomers are elastomers that have the property of softening and exhibiting fluidity when heated, and can be distinguished from rubbers that do not have such properties.

ゴムとしては、天然ゴム、イソプレンゴム、ブタジエンゴム、1,2-ポリブタジエンゴム、スチレン-ブタジエンゴム、クロロプレンゴム、ニトリルゴム、ブチルゴム、塩素化ブチルゴム、塩素化ポリエチレンゴム、エチレン-プロピレンゴム、エチレン・プロピレン・ジエンゴム(EPDM)、エチレン・酢ビゴム、クロロプレンゴム、クロロスルホン化ポリエチレン、アクリルゴム、エピクロルヒドリンゴム、再生ゴムなどの架橋可能なゴム、シリコーンゴム、フッ素ゴム、ウレタンゴム等が挙げられる。 Rubbers include natural rubber, isoprene rubber, butadiene rubber, 1,2-polybutadiene rubber, styrene-butadiene rubber, chloroprene rubber, nitrile rubber, butyl rubber, chlorinated butyl rubber, chlorinated polyethylene rubber, ethylene-propylene rubber, and ethylene/propylene. - Crosslinkable rubber such as diene rubber (EPDM), ethylene-vinyl acetate rubber, chloroprene rubber, chlorosulfonated polyethylene, acrylic rubber, epichlorohydrin rubber, recycled rubber, silicone rubber, fluororubber, urethane rubber, and the like.

熱可塑性エラストマーとしては、ポリオレフィン系熱可塑性エラストマー、ポリウレタン系熱可塑性エラストマー、ポリエステル系熱可塑性エラストマー、ポリアミド系熱可塑性エラストマー、ポリブタジエン系熱可塑性エラストマー、スチレン系熱可塑性エラストマー等が挙げられる。 Examples of thermoplastic elastomers include polyolefin thermoplastic elastomers, polyurethane thermoplastic elastomers, polyester thermoplastic elastomers, polyamide thermoplastic elastomers, polybutadiene thermoplastic elastomers, and styrene thermoplastic elastomers.

スチレン系熱可塑性エラストマーは、ビニル芳香族炭化水素を主体とする重合体ブロック及び共役ジエンを主体とする重合体ブロックとからなるブロック共重合体が好ましい。ビニル芳香族炭化水素としては、例えば、スチレン、p-メチルスチレン、α-メチルスチレン、ビニルキシレン、モノクロルスチレン、ジクロロスチレン、モノブロモスチレン等があり、これらは単体だけでなく2種以上を組み合わせて使用しても良い。共役ジエンとしては1,3-ブタジエン、イソプレン、2,3-ジメチル-1,3-ブタジエン、1,3-ペンタジエン等があり、これらは単体だけでなく2種以上を組み合わせて使用しても良い。 The styrenic thermoplastic elastomer is preferably a block copolymer composed of a polymer block mainly composed of a vinyl aromatic hydrocarbon and a polymer block mainly composed of a conjugated diene. Examples of vinyl aromatic hydrocarbons include styrene, p-methylstyrene, α-methylstyrene, vinylxylene, monochlorostyrene, dichlorostyrene, monobromostyrene and the like, and these may be used alone or in combination of two or more. May be used. Conjugated dienes include 1,3-butadiene, isoprene, 2,3-dimethyl-1,3-butadiene, 1,3-pentadiene, etc. These may be used alone or in combination of two or more. .

スチレン系熱可塑性エラストマーの具体的な例としては、スチレン・ブタジエン・スチレン(SBS)共重合体、スチレン・イソプレン・スチレン(SIS)共重合体、スチレン・エチレン・ブチレン・スチレン(SEBS)共重合体、スチレン・イソプレン・水添スチレン・イソプレン・スチレン(SEPS)共重合体、スチレン・エチレンプロピレン(SEP)共重合体、スチレン・エチレンプロピレン・スチレン(SEPS)共重合体、スチレン・エチレン‐エチレンプロピレン・スチレン(SEEPS)共重合体、等が挙げられる。スチレン系熱可塑性エラストマーのスチレン含有量は、例えば15質量%以上70質量%以下であり 、20質量%以上60質量%以下が好ましい。この含有量は、例えば、5、10、15、18、20、23、25、30、31、35、40、45、50、55、60、65、70質量%であり、ここで例示した数値の何れか2つの間の範囲内であってもよい。 Specific examples of styrene-based thermoplastic elastomers include styrene-butadiene-styrene (SBS) copolymers, styrene-isoprene-styrene (SIS) copolymers, and styrene-ethylene-butylene-styrene (SEBS) copolymers. , styrene/isoprene/hydrogenated styrene/isoprene/styrene (SEPS) copolymer, styrene/ethylene propylene (SEP) copolymer, styrene/ethylene propylene/styrene (SEPS) copolymer, styrene/ethylene-ethylene propylene/ styrene (SEEPS) copolymer, and the like. The styrene content of the styrene-based thermoplastic elastomer is, for example, 15% by mass or more and 70% by mass or less, preferably 20% by mass or more and 60% by mass or less. This content is, for example, 5, 10, 15, 18, 20, 23, 25, 30, 31, 35, 40, 45, 50, 55, 60, 65, 70 mass%, the numerical values illustrated here may be in the range between any two of

これらのゴム及び/又は熱可塑性エラストマーは、一種もしくは二種以上を使用することができる。 One or more of these rubbers and/or thermoplastic elastomers can be used.

マトリクスポリマーは、ゴムのみを含むか、又は、ゴムとスチレン系熱可塑性エラストマーの両方を含むことが好ましい。ゴムとスチレン系熱可塑性エラストマーの含有比率は100/0~5/95(質量比)であることが好ましい。このようなマトリクスポリマーであることにより、防火性樹脂サッシの開口枠体を構成する枠体の内部や軒裏換気部材の内部に枠体や軒裏換気部材の長手方向に沿って熱膨張性耐火材を挿入する際、円滑な挿入が出来る。ゴムとスチレン系熱可塑性エラストマーの質量比の合計を100とすると、ゴムの質量比は、例えば、5、10、15、20、25、30、35、40、45、50、55、60、65、70、75、80、85、90、95であり、ここで例示した数値の何れか2つの間の範囲内であってもよい。 The matrix polymer preferably contains only rubber or both rubber and styrenic thermoplastic elastomer. The content ratio of rubber and styrene thermoplastic elastomer is preferably 100/0 to 5/95 (mass ratio). By using such a matrix polymer, a heat-expandable fireproof material is applied along the longitudinal direction inside the frame constituting the opening frame of the fireproof resin sash and inside the eaves ventilation member. Smooth insertion is possible when inserting the material. If the total mass ratio of rubber and styrene-based thermoplastic elastomer is 100, the mass ratio of rubber is, for example, 5, 10, 15, 20, 25, 30, 35, 40, 45, 50, 55, 60, 65. , 70, 75, 80, 85, 90, 95, and may be in the range between any two of the numerical values exemplified herein.

マトリクスポリマーは、エラストマーのみで構成されていてもよく、その他のポリマーを含んでいてもよい。その他のポリマーとしては、エラストマーではない樹脂(ポリオレフィン、ポリスチレンなど)などが挙げられる。マトリクスポリマー中のエラストマーの割合は、例えば、50~100質量%であり、例えば、50、55、60、65、70、75、80、85、90、95、100質量%であり、ここで例示した数値の何れか2つの間の範囲内であってもよい。 The matrix polymer may consist only of an elastomer, or may contain other polymers. Other polymers include non-elastomeric resins (polyolefin, polystyrene, etc.). The proportion of the elastomer in the matrix polymer is, for example, 50 to 100% by weight, such as 50, 55, 60, 65, 70, 75, 80, 85, 90, 95, 100% by weight, exemplified here It may be in a range between any two of the numbers given.

<熱膨張性黒鉛>
熱膨張性黒鉛は、天然グラファイト、熱分解グラファイト等の粉末を、硫酸、硝酸等の無機酸と濃硝酸、過マンガン酸塩等の強酸化剤とで処理されたものであり、グラファイト層状構造を維持した結晶化合物である。これらは200℃程度以上の温度に曝されると、例えば、100倍以上に熱膨張するものである。なお、これら天然グラファイト、熱分解グラファイト等の粉末は、脱酸処理に加え、更に中和処理したタイプ他、各種品種があるがいずれも使用できる。
<Thermal expandable graphite>
Thermally expandable graphite is obtained by treating powders such as natural graphite and pyrolytic graphite with an inorganic acid such as sulfuric acid or nitric acid and a strong oxidizing agent such as concentrated nitric acid or permanganate. It is a maintained crystalline compound. These materials thermally expand, for example, 100 times or more when exposed to a temperature of about 200° C. or higher. The powders of natural graphite, pyrolytic graphite, etc. are available in various types such as deoxidized and neutralized types, and all of them can be used.

本発明に使用する熱膨張性黒鉛は、熱膨張性黒鉛の平均アスペクト比が20未満である。熱膨張性黒鉛の平均アスペクト比が20未満であることにより、防火性樹脂サッシの開口枠体を構成する枠体の内部や軒裏換気部材の内部に枠体や軒裏換気部材の長手方向に沿って熱膨張性耐火材を挿入する際、円滑な挿入が出来る。平均アスペクト比は、例えば5.0~19.9であり、具体的には、5.0、6.0、7.0、8.0、9.0、10.0、10.5、11.0、11.5、12.0、12.5、13.0、13.5、14.0、14.5、15.0、15.5、16.0、16.5、17.0、17.5、18.0、18.5、19.0、19.5、19.9であり、ここで例示した数値の何れか2つの間の範囲内であってもよい。 The thermally expandable graphite used in the present invention has an average aspect ratio of less than 20. Since the average aspect ratio of the thermally expandable graphite is less than 20, the inside of the frame constituting the opening frame of the fireproof resin sash and the inside of the eaves ventilation member are arranged in the longitudinal direction of the frame and the eaves ventilation member. When inserting the heat-expandable refractory material along, smooth insertion is possible. The average aspect ratio is, for example, 5.0 to 19.9, specifically 5.0, 6.0, 7.0, 8.0, 9.0, 10.0, 10.5, 11 .0, 11.5, 12.0, 12.5, 13.0, 13.5, 14.0, 14.5, 15.0, 15.5, 16.0, 16.5, 17.0 , 17.5, 18.0, 18.5, 19.0, 19.5, 19.9, and may be in the range between any two of the values exemplified herein.

平均アスペクト比は、鉛直方向の厚さに対する水平方向の平均径の割合である。本発明に使用する熱膨張性黒鉛は概ね平板状をしているため、鉛直方向が厚み方向、水平方向が径方向に一致すると見ることができるため、水平方向の最大寸法を鉛直方向の厚みで除した値をアスペクト比とする。
そして、十分大きな数、すなわち10個以上の黒鉛片につきアスペクト比を測定し、その平均値を平均アスペクト比とする。熱膨張性黒鉛の平均粒径も、水平方向の最大寸法の平均値として求めることができる。
熱膨張性黒鉛の水平方向における最大寸法及び厚みは、例えば電界放出形走査電子顕微鏡(FE-SEM)を用いて測定することができる。
The average aspect ratio is the ratio of the average horizontal diameter to the vertical thickness. Since the thermally expandable graphite used in the present invention has a generally flat plate shape, it can be seen that the vertical direction corresponds to the thickness direction and the horizontal direction corresponds to the radial direction. The value obtained by dividing is defined as the aspect ratio.
Then, the aspect ratio is measured for a sufficiently large number, that is, 10 or more graphite pieces, and the average value is taken as the average aspect ratio. The average particle size of the thermally expandable graphite can also be obtained as the average value of the maximum horizontal dimension.
The maximum horizontal dimension and thickness of thermally expandable graphite can be measured using, for example, a field emission scanning electron microscope (FE-SEM).

熱膨張性黒鉛の含有量は、マトリクスポリマー100質量部に対して5~400質量部であり、40~300質量部が好ましく、70~200質量部がさらに好ましい。熱膨張性黒鉛の含有量が少なすぎると、火災時における耐火材の熱膨張性が悪くなる。一方で、熱膨張性黒鉛の含有量が多すぎると、熱膨張後の耐火材の形状安定性が悪くなる。 The content of thermally expandable graphite is 5 to 400 parts by mass, preferably 40 to 300 parts by mass, more preferably 70 to 200 parts by mass, based on 100 parts by mass of the matrix polymer. If the content of thermally expandable graphite is too low, the thermal expansion of the refractory material will be poor in the event of a fire. On the other hand, if the content of thermally expandable graphite is too high, the shape stability of the refractory material after thermal expansion is deteriorated.

<無機リン系化合物>
無機リン系化合物は、リン酸系化合物、亜リン酸系化合物、次亜リン酸系化合物、メタリン酸系化合物、ピロリン酸系化合物及びポリリン酸系化合物のうちの少なくとも1種を含むである。
<Inorganic phosphorus compound>
The inorganic phosphorus-based compound includes at least one of a phosphoric acid-based compound, a phosphorous acid-based compound, a hypophosphorous acid-based compound, a metaphosphoric acid-based compound, a pyrophosphate-based compound, and a polyphosphoric acid-based compound.

リン酸系化合物としては、例えば、第1リン酸アルミニウム、第1リン酸ナトリウム、第1リン酸カリウム、第1リン酸カルシウム、第1リン酸亜鉛、第2リン酸アルミニウム、第2リン酸ナトリウム、第2リン酸カリウム、第2リン酸カルシウム、第2リン酸亜鉛、第3リン酸アルミニウム、第3リン酸ナトリウム、第3リン酸カリウム、第3リン酸カルシウム、第3リン酸亜鉛、第3リン酸マグネシウム、リン酸一アンモニウム、リン酸二アンモニウム、リン酸三カルシウム、リン酸アルミニウム等が挙げられる。 Examples of phosphoric acid compounds include monoaluminum phosphate, monobasic sodium phosphate, monobasic potassium phosphate, monobasic calcium phosphate, monobasic zinc phosphate, dibasic aluminum phosphate, dibasic sodium phosphate, dipotassium phosphate, dibasic calcium phosphate, dibasic zinc phosphate, tribasic aluminum phosphate, tribasic sodium phosphate, tribasic potassium phosphate, tribasic calcium phosphate, tribasic zinc phosphate, tribasic magnesium phosphate, phosphorus monoammonium acid, diammonium phosphate, tricalcium phosphate, aluminum phosphate and the like.

亜リン酸系化合物としては、例えば、亜リン酸アルミニウム、亜リン酸水素アルミニウム、亜リン酸ナトリウム、亜リン酸カリウム、亜リン酸カルシウム、亜リン酸亜鉛などが挙げられる。 Phosphite compounds include, for example, aluminum phosphite, aluminum hydrogen phosphite, sodium phosphite, potassium phosphite, calcium phosphite, and zinc phosphite.

次亜リン酸系化合物としては、例えば、次亜リン酸アルミニウム、次亜リン酸ナトリウム、次亜リン酸カリウム、次亜リン酸カルシウム、次亜リン酸亜鉛などが挙げられる。 Examples of hypophosphite compounds include aluminum hypophosphite, sodium hypophosphite, potassium hypophosphite, calcium hypophosphite, and zinc hypophosphite.

メタリン酸系化合物としては、例えば、メタリン酸アルミニウム、メタリン酸ナトリウム、メタリン酸カリウム、メタリン酸カルシウム、メタリン酸亜鉛、ヘキサメタリン酸ナトリウムなどが挙げられる。 Examples of metaphosphate compounds include aluminum metaphosphate, sodium metaphosphate, potassium metaphosphate, calcium metaphosphate, zinc metaphosphate, and sodium hexametaphosphate.

ピロリン酸系化合物としては、例えば、ピロリン酸ナトリウムが挙げられる。 Examples of pyrophosphate compounds include sodium pyrophosphate.

ポリリン酸系化合物としては、例えば、ポリリン酸アンモニウム、メラミン変性ポリリン酸アンモニウムなどが挙げられる。 Examples of polyphosphate compounds include ammonium polyphosphate and melamine-modified ammonium polyphosphate.

無機リン系化合物は、亜リン酸水素アンモニウム及びポリリン酸アンモニウムのうち少なくとも1種を含むことが好ましい。 The inorganic phosphorus-based compound preferably contains at least one of ammonium hydrogen phosphite and ammonium polyphosphate.

無機リン系化合物の含有量は、マトリクスポリマー100質量部に対して1~400質量部であり、30~300質量部が好ましく、60~200質量部がさらに好ましい。無機リン系化合物の含有量が1質量部未満であると、火災時における耐火材の形状安定性が悪い。一方で、無機リン系化合物の含有量が400質量を超えると、火災時における耐火材の熱膨張性が悪い。 The content of the inorganic phosphorus compound is 1 to 400 parts by mass, preferably 30 to 300 parts by mass, more preferably 60 to 200 parts by mass, based on 100 parts by mass of the matrix polymer. If the content of the inorganic phosphorus-based compound is less than 1 part by mass, the shape stability of the refractory material in the event of fire is poor. On the other hand, when the content of the inorganic phosphorus-based compound exceeds 400 mass, the thermal expansion of the refractory material in the event of fire is poor.

熱膨張性黒鉛と無機リン酸系化合物の質量比(熱膨張性黒鉛/無機リン酸系化合物)は、0.05~100.00であり、0.07~100.00が好ましく、0.25~100.00がさらに好ましく、0.33~3.33がさらに好ましく、0.50~1.67がさらに好ましく、0.75~1.25がさらに好ましい。熱膨張性黒鉛と無機リン酸系化合物の質量比(熱膨張性黒鉛/無機リン酸系化合物)が低すぎると、熱膨張性が悪くなる。熱膨張性黒鉛と無機リン酸系化合物の質量比(熱膨張性黒鉛/無機リン酸系化合物)が高すぎると、形状安定性が悪くなる。この質量比は、例えば、0.05、0.07、0.25、0.33、0.40、0.50、0.70、1.67、2.00、3.00、3.33、3.95、5.00、10.00、20.00、50.00、100.00であり、ここで例示した数値の何れか2つの間の範囲内であってもよい。 The mass ratio of thermally expandable graphite and inorganic phosphoric acid compound (thermally expandable graphite/inorganic phosphoric acid compound) is 0.05 to 100.00, preferably 0.07 to 100.00, and 0.25. ~100.00 is more preferable, 0.33 to 3.33 is more preferable, 0.50 to 1.67 is more preferable, and 0.75 to 1.25 is even more preferable. If the mass ratio of the thermally expandable graphite to the inorganic phosphoric acid compound (thermally expandable graphite/inorganic phosphoric acid compound) is too low, the thermal expansibility will be poor. If the mass ratio of the thermally expandable graphite to the inorganic phosphoric acid compound (thermally expandable graphite/inorganic phosphoric acid compound) is too high, the shape stability is deteriorated. This mass ratio is, for example, , 3.95, 5.00, 10.00, 20.00, 50.00, 100.00, and may be in the range between any two of the values exemplified herein.

<その他の成分>
本実施形態では、その効果を阻害しない範囲で、通常のポリマー配合物に使用される可塑剤(軟化剤)、老化防止剤、加工助剤、滑剤、粘着付与剤、無機化合物(無機リン系化合物を除く)、加硫剤、加硫促進剤等を併用してもよい。成形性の調整に有効な可塑剤(軟化剤)の例としては、パラフィン系やナフテン系等のプロセスオイル、流動パラフィンやその他のパラフィン類、ワックス類、シリコーンオイルや液状ポリブテン等の合成高分子系軟化剤、フタル酸系やアジピン酸系、セバシン酸系やリン酸系等のエステル系可塑剤類、ステアリン酸やそのエステル類、アルキルスルホン酸エステル類や粘着付与剤などがあげられる。無機化合物(無機繊維化合物及び無機リン系化合物を除く)の例としては、炭酸カルシウム、水酸化アルミニウムなどが挙げられる。
<Other ingredients>
In the present embodiment, plasticizers (softeners), anti-aging agents, processing aids, lubricants, tackifiers, inorganic compounds (inorganic phosphorus-based compounds) that are used in ordinary polymer formulations are used within a range that does not impede their effects. ), a vulcanizing agent, a vulcanization accelerator, etc. may be used in combination. Examples of plasticizers (softeners) that are effective in adjusting moldability include process oils such as paraffin and naphthene, liquid paraffin and other paraffins, waxes, synthetic polymers such as silicone oil and liquid polybutene. Examples include softeners, phthalic acid-based, adipic acid-based, sebacic acid-based and phosphoric acid-based ester plasticizers, stearic acid and its esters, alkylsulfonic acid esters, and tackifiers. Examples of inorganic compounds (excluding inorganic fiber compounds and inorganic phosphorus compounds) include calcium carbonate and aluminum hydroxide.

本実施形態の耐火材は、上記各成分をバンバリーミキサー、ニーダーミキサー、二本ロール等公知の混練装置を用いて混練されたものを、例えば、プレス成形、ロール成形、押し出し成形、カレンダー成形等の従来公知の成形方法でシート状に成形することで得ることが出来る。 The refractory material of the present embodiment is obtained by kneading each of the above components using a known kneading device such as a Banbury mixer, a kneader mixer, and a two-roll roll, for example, by press molding, roll molding, extrusion molding, calender molding, etc. It can be obtained by molding into a sheet by a conventionally known molding method.

以下、本発明を実施例及び比較例により具体的に説明するが、これらの実施例は本発明を限定するものでない。 EXAMPLES The present invention will be specifically described below by way of Examples and Comparative Examples, but these Examples are not intended to limit the present invention.

1.耐火材の作製
表1~表4の配合に示した成分を、容量3リットルのニーダーミキサーを用いて120℃で2分間混練して組成物を得た。得られた組成物を更に熱プレス機でプレスして厚さ2mmのシート状の耐火材を得た。
1. Preparation of refractory material The components shown in Tables 1 to 4 were kneaded at 120°C for 2 minutes using a kneader mixer with a capacity of 3 liters to obtain a composition. The obtained composition was further pressed with a hot press to obtain a sheet-like refractory material with a thickness of 2 mm.

表中の成分の詳細は、以下の通りである。
(1)マトリクスポリマー
・EPDM:エチレン・プロピレン・ジエンゴム、JSR株式会社製「EP-51」
・SBS:スチレン・ブタジエン・スチレン共重合体(SBS)、クレイトンポリマージャパン株式会社製「D1101JU」
・ブチルゴム:JSR株式会社製「ブチル268」
・CR:クロロプレンゴム、デンカ株式会社製「S-40V」
(2)熱膨張性黒鉛
・EXP-200(アスペクト比14.3):富士黒鉛工業株式会社「EXP-200」アスペクト比14.3
・EXP-150(アスペクト比15.7):富士黒鉛工業株式会社「EXP-150」アスペクト比15.7
・EXP-100(アスペクト比18.2):富士黒鉛工業株式会社「EXP-100」アスペクト比18.2
・ADT501(アスペクト比25.2):ADT社製「ADT501」アスペクト比25.2
・EXP50T(アスペクト比30.6):日本黒鉛工業株式会社製「EXP50T」アスペクト比30.6
(3)無機リン系化合物
・亜リン酸水素アルミニウム:太平化学産業株式会社製「NSF」
・ポリリン酸アンモニウム:SCM Industrial Chemical Co.,Ltd.,製「HP-APP II」
The details of the components in the table are as follows.
(1) Matrix polymer EPDM: Ethylene-propylene-diene rubber, "EP-51" manufactured by JSR Corporation
・ SBS: Styrene-butadiene-styrene copolymer (SBS), "D1101JU" manufactured by Kraton Polymer Japan Co., Ltd.
・Butyl rubber: "Butyl 268" manufactured by JSR Corporation
・CR: Chloroprene rubber, “S-40V” manufactured by Denka Co., Ltd.
(2) Thermally expandable graphite EXP-200 (aspect ratio 14.3): Fuji Graphite Industry Co., Ltd. “EXP-200” aspect ratio 14.3
・ EXP-150 (aspect ratio 15.7): Fuji Graphite Industry Co., Ltd. “EXP-150” aspect ratio 15.7
・ EXP-100 (aspect ratio 18.2): Fuji Graphite Industry Co., Ltd. “EXP-100” aspect ratio 18.2
· ADT501 (aspect ratio 25.2): "ADT501" aspect ratio 25.2 manufactured by ADT
・ EXP50T (aspect ratio 30.6): Nippon Graphite Industry Co., Ltd. “EXP50T” aspect ratio 30.6
(3) Inorganic phosphorus compound, aluminum hydrogen phosphite: "NSF" manufactured by Taihei Chemical Industry Co., Ltd.
- Ammonium polyphosphate: SCM Industrial Chemical Co.; , Ltd. , "HP-APP II"

2.評価
各実施例、比較例の耐火材について、以下の測定及び評価を行った。結果を表1~表4に示す。
2. Evaluation The following measurements and evaluations were performed on the refractory materials of Examples and Comparative Examples. The results are shown in Tables 1-4.

評価方法の詳細は、以下の通りである。
<熱膨張性>
厚さ2mm、幅10mm、長さ50mmの試験片を300℃で0.5時間熱処理し、その膨張倍率を測定した。具体的には、熱処理後の体積を、熱処理前の体積で除することにより、体積膨張倍率を算出し、以下の基準で熱膨張性を判定した。なお、体積は、圧さ、幅、長さを実測して算出した。
◎:体積膨張倍率が10倍以上
○:体積膨張倍率が8倍以上10倍未満
△:体積膨張倍率が6倍以上8倍未満
×:体積膨張倍率が6倍未満
The details of the evaluation method are as follows.
<Thermal expansion>
A test piece having a thickness of 2 mm, a width of 10 mm, and a length of 50 mm was heat-treated at 300° C. for 0.5 hours, and its expansion ratio was measured. Specifically, the volume expansion ratio was calculated by dividing the volume after the heat treatment by the volume before the heat treatment, and the thermal expandability was determined according to the following criteria. The volume was calculated by actually measuring the pressure, width and length.
◎: Volume expansion ratio is 10 times or more ○: Volume expansion ratio is 8 times or more and less than 10 times △: Volume expansion ratio is 6 times or more and less than 8 times ×: Volume expansion ratio is less than 6 times

<形状保持性>
上記の熱膨張性を評価した後、3点曲げ試験治具(上部押し側先端R1mmおよび幅80mm、下部2点支点側R1mm、幅80mm、支点間距離20mm)を用い、熱膨張後の試験片を圧縮速度50mm/minの条件にて破壊した際の強度(3点曲げ破壊強度)を測定した。そして、以下の基準で形状保持性を判定した。
◎:3点曲げ破壊強度が1.0N以上
○:3点曲げ破壊強度が0.8N以上1.0N未満
△:3点曲げ破壊強度が0.5N以上0.8N未満
×:3点曲げ破壊強度が0.5N未満
<Shape retention>
After evaluating the above thermal expansion properties, using a three-point bending test jig (upper push side tip R1 mm and width 80 mm, lower two-point fulcrum side R1 mm, width 80 mm, distance between fulcrums 20 mm), the test piece after thermal expansion was broken at a compression rate of 50 mm/min (three-point bending breaking strength). Then, the shape retainability was determined according to the following criteria.
◎: 3-point bending fracture strength is 1.0 N or more ○: 3-point bending fracture strength is 0.8 N or more and less than 1.0 N △: 3-point bending fracture strength is 0.5 N or more and less than 0.8 N ×: 3-point bending fracture strength Strength less than 0.5N

<挿通性>
厚さ2mm、幅10mm、長さ150mmの試験片の、片方短辺から50mmまでを台座に固定し、21℃で1分間放置して、空中に浮かせた100mm長さの耐火材のたわみ量を測定した。そして、以下の基準でたわみ性を判定した。
◎:たわみ量が10mm未満
〇:たわみ量が10mm以上15mm未満
×:たわみ量が15mm以上
<Penetration>
A test piece with a thickness of 2 mm, a width of 10 mm, and a length of 150 mm is fixed to a pedestal from one short side to 50 mm, left at 21 ° C. for 1 minute, and floated in the air. It was measured. Then, the flexibility was determined according to the following criteria.
◎: deflection amount less than 10 mm ○: deflection amount 10 mm or more and less than 15 mm ×: deflection amount 15 mm or more

<可撓性>
厚さ1mm、幅25mm、長さ100mmのSUS板に両面テープを貼ったものを2枚用意し、長さ方向に3mmの間隔をあけて横並びにする。そこに厚さ2mm、幅10mm、長さ100mmの試験片を貼り、試料片を貼った面とは逆方向に折り曲げ、試験片に亀裂が入った時点での角度を測定し、以下の基準で可撓性を判定した。なお、亀裂が入ったときの角度が大きいほど、可撓性が良好であることを示す。
◎:180度の角度でも亀裂なし
○:135度以上180度未満の角度で亀裂が発生
×:135度未満の角度で亀裂が発生
<Flexibility>
Two SUS plates each having a thickness of 1 mm, a width of 25 mm, and a length of 100 mm to which a double-faced tape is attached are prepared and arranged side by side with an interval of 3 mm in the longitudinal direction. A test piece with a thickness of 2 mm, a width of 10 mm, and a length of 100 mm is pasted there, and the angle at which the test piece cracks is measured by bending in the opposite direction to the surface where the sample piece is pasted. Flexibility was determined. The larger the cracking angle, the better the flexibility.
◎: No cracks even at an angle of 180 degrees ○: Cracks occur at an angle of 135 degrees or more and less than 180 degrees ×: Cracks occur at an angle of less than 135 degrees

<難燃性>
JIS K6269に準じて燃焼試験装置(スガ試験機(株)製,ON-1型)を用いて酸素指数を測定し、以下の基準で難燃性を判定した。なお、酸素指数が大きいほど、難燃性が高いことを示す。
◎:酸素指数が35以上
○:酸素指数が30以上35未満
×:酸素指数が30未満
<Flame Retardant>
The oxygen index was measured using a combustion tester (manufactured by Suga Test Instruments Co., Ltd., Model ON-1) according to JIS K6269, and flame retardancy was determined according to the following criteria. In addition, it shows that flame retardance is so high that an oxygen index is large.
◎: Oxygen index is 35 or more ○: Oxygen index is 30 or more and less than 35 ×: Oxygen index is less than 30

Figure 2023094196000001
Figure 2023094196000001

Figure 2023094196000002
Figure 2023094196000002

Figure 2023094196000003
Figure 2023094196000003

Figure 2023094196000004
Figure 2023094196000004

本発明は、熱膨張性を有する耐火材に関する。 TECHNICAL FIELD The present invention relates to a refractory material having thermal expansibility.

火災発生等の際に、加熱により膨張し延焼を防止することのできる耐火材が知られている。このような熱膨張性を有する耐火材として、例えば、特許文献1には、マトリクス樹脂に熱膨張性黒鉛を含有したものが示されている。 Refractory materials are known that can expand when heated to prevent the spread of fire in the event of a fire or the like. As such a heat-expandable refractory material, for example, Patent Document 1 discloses a matrix resin containing heat-expandable graphite.

また、近年では、住宅等の構造物の開口部に使用する窓、障子、扉(すなわちドア)、戸、ふすま、および欄間等の建具に要求される性能の一つに防火性能があり、防火性能を高めるために、建具に熱膨張性耐火材を装着することが行われている。例えば、特許文献2には、防火性樹脂サッシの開口枠体を構成する枠材の内部に、熱膨張性耐火材を挿入することが記載されている。 In addition, in recent years, one of the performances required for fittings such as windows, shojis, doors (that is, doors), doors, sliding doors, and transoms used in openings of structures such as houses is fireproof performance. In order to improve performance, fittings are fitted with thermally expandable fireproof materials. For example, Patent Literature 2 describes inserting a heat-expandable fireproof material inside a frame member that constitutes an opening frame of a fireproof resin sash.

特開2018-100410号JP 2018-100410 特開2005-9304号Japanese Patent Application Laid-Open No. 2005-9304

熱膨張性耐火材には熱により膨張する材料が配合されており、膨張することで隙間を埋め、延焼や防煙の役目を果たす。そのために、従来の耐火材には、熱膨張性、加熱後の形状安定性、曲面にも追従する可撓性、および難燃性が要求されていた。 Thermally expandable refractory materials are compounded with materials that expand when heated, and when they expand, they fill gaps and play a role in spreading fire and preventing smoke. Therefore, conventional refractory materials are required to have thermal expansibility, shape stability after heating, flexibility to follow curved surfaces, and flame retardancy.

しかしながら、近年、防火性樹脂サッシの開口枠体を構成する枠材の内部や軒裏の換気部に設置される軒裏換気部材の内部にも熱膨張性耐火材が使用されるようになり、枠材や軒裏換気部材の長手方向に沿って熱膨張性耐火材を挿通する際、熱膨張性耐火材が柔らかいと、自重によりたわみが生じてしまい、挿通が困難な場合があった。 However, in recent years, thermally expandable fireproof materials have come to be used inside the frame material that constitutes the opening frame of the fireproof resin sash and inside the eaves ventilation member installed in the ventilation part of the eaves. When inserting the heat-expandable fire-resistant material along the longitudinal direction of the frame material and the eaves ventilation member, if the heat-expandable fire-resistant material is soft, it may bend due to its own weight, making it difficult to insert.

本発明はこのような事情に鑑みてなされたものであり、熱膨張性や、形状保持性、曲面にも追従する可撓性、難燃性を損なわずに、挿通性に優れる熱膨張性耐火材を提供するものである。 The present invention has been made in view of such circumstances, and a thermally expansible fire resistant material that is excellent in insertability without impairing thermal expansibility, shape retention, flexibility to follow curved surfaces, and flame retardancy. It provides materials.

本発明者は、上記課題を解決するために鋭意検討した。その結果、特定のアスペクト比を有する熱膨張性黒鉛を用いることにより、上記課題を解決しうることを見出し、本発明を完成するに至った。 The present inventor has made extensive studies to solve the above problems. As a result, the inventors have found that the above problems can be solved by using thermally expandable graphite having a specific aspect ratio, and have completed the present invention.

すなわち、本発明によれば、マトリクスポリマー100質量部、熱膨張性黒鉛5~400質量部、無機リン酸系化合物1~400質量部を含有し、前記マトリクスポリマーがエラストマーを含み、前記熱膨張性黒鉛の平均アスペクト比が20未満である、熱膨張性耐火材が提供される。 That is, according to the present invention, it contains 100 parts by mass of a matrix polymer, 5 to 400 parts by mass of thermally expandable graphite, and 1 to 400 parts by mass of an inorganic phosphoric acid compound, the matrix polymer contains an elastomer, and the thermally expandable A thermally expandable refractory material is provided wherein the graphite has an average aspect ratio of less than 20.

本発明の耐火材によれば、熱膨張性、形状保持性、可撓性、難燃性を損なわずに、優れた挿通性が得られる。 According to the refractory material of the present invention, excellent insertability can be obtained without impairing thermal expansibility, shape retention, flexibility and flame retardancy.

以下、本発明の実施の形態(以下、「本実施形態」という。)について詳細に説明するが、本発明はこれに限定されるものではなく、その要旨を逸脱しない範囲で様々な変形が可能である。 Hereinafter, an embodiment of the present invention (hereinafter referred to as "this embodiment") will be described in detail, but the present invention is not limited to this, and various modifications are possible without departing from the gist thereof. is.

<耐火材>
本実施形態の耐火材は、熱膨張性、形状保持性、可撓性、難燃性が優れていることに加えて、挿通性も優れている。このため、本実施形態の耐火材は、細長い空間に挿通させて設置する用途に好適に使用できる。また、本実施形態の耐火材を設置する対象としては、窓、障子、扉、ドア、戸、ふすま、及び欄間、サッシ等の建具や、軒裏換気部材などが挙げられ、これらの耐火性を高める用途に好適に用いられる。さらに、建具や軒裏換気部材に設けられた細長い空間内に本実施形態の耐火材を挿通させて耐火材を設置するような用途に好適に使用できる。
<Refractory material>
The refractory material of the present embodiment is excellent in thermal expansibility, shape retention, flexibility, and flame retardancy, and is also excellent in insertability. For this reason, the refractory material of this embodiment can be suitably used for installation by inserting it into an elongated space. In addition, the target for installing the fireproof material of this embodiment includes fittings such as windows, shoji, doors, doors, doors, fusuma, transoms, sashes, etc., and ventilation members behind the eaves. It is preferably used for enhancing. Furthermore, it can be suitably used for applications such as inserting the fire-resistant material of the present embodiment into an elongated space provided in a fitting or an eaves ventilation member to install the fire-resistant material.

本実施形態の耐火材は、マトリクスポリマーと、熱膨張性黒鉛と、無機リン系化合物と、繊維状化合物と、を含む。この耐火材は、一例では、シート状の耐火シートである。耐火シートの厚さは、例えば1~10mmである。耐火シートをロール状に巻いて耐火シートロールとして保管や運搬をしてもよい。なお、耐火材は、用途に合わせた形状に成型した成型品であってもよい。 The refractory material of this embodiment includes a matrix polymer, thermally expandable graphite, an inorganic phosphoric acid -based compound, and a fibrous compound. This refractory material is, for example, a sheet-like refractory sheet. The thickness of the refractory sheet is, for example, 1-10 mm. The fireproof sheet may be wound into a roll and stored or transported as a fireproof sheet roll. The refractory material may be a molded article molded into a shape suitable for the application.

耐火材は、例えば200℃以上で熱膨張を開始し強固な断熱層を形成することによって耐火性能を発揮する。耐火材の膨張倍率は、3~30倍が好ましく、5~25倍がより好ましく、7~20倍がさらに好ましい。 Refractory materials exhibit fire resistance performance by starting thermal expansion, for example, at 200° C. or higher and forming a strong heat insulating layer. The expansion ratio of the refractory material is preferably 3 to 30 times, more preferably 5 to 25 times, and even more preferably 7 to 20 times.

以下、耐火材の各成分について説明する。 Each component of the refractory material will be described below.

<マトリクスポリマー>
マトリクスポリマーは、エラストマーを含む。エラストマーとしては、ゴムや熱可塑性エラストマーが挙げられる。熱可塑性エラストマーは、加熱によって軟化し流動性を示す性質を有するエラストマーであり、このような性質を有さないゴムと区別可能である。
<Matrix polymer>
Matrix polymers include elastomers. Elastomers include rubbers and thermoplastic elastomers. Thermoplastic elastomers are elastomers that have the property of softening and exhibiting fluidity when heated, and can be distinguished from rubbers that do not have such properties.

ゴムとしては、天然ゴム、イソプレンゴム、ブタジエンゴム、1,2-ポリブタジエンゴム、スチレン-ブタジエンゴム、クロロプレンゴム、ニトリルゴム、ブチルゴム、塩素化ブチルゴム、塩素化ポリエチレンゴム、エチレン-プロピレンゴム、エチレン・プロピレン・ジエンゴム(EPDM)、エチレン・酢ビゴム、クロロプレンゴム、クロロスルホン化ポリエチレン、アクリルゴム、エピクロルヒドリンゴム、再生ゴムなどの架橋可能なゴム、シリコーンゴム、フッ素ゴム、ウレタンゴム等が挙げられる。 Rubbers include natural rubber, isoprene rubber, butadiene rubber, 1,2-polybutadiene rubber, styrene-butadiene rubber, chloroprene rubber, nitrile rubber, butyl rubber, chlorinated butyl rubber, chlorinated polyethylene rubber, ethylene-propylene rubber, and ethylene/propylene. - Crosslinkable rubber such as diene rubber (EPDM), ethylene-vinyl acetate rubber, chloroprene rubber, chlorosulfonated polyethylene, acrylic rubber, epichlorohydrin rubber, recycled rubber, silicone rubber, fluororubber, urethane rubber, and the like.

熱可塑性エラストマーとしては、ポリオレフィン系熱可塑性エラストマー、ポリウレタン系熱可塑性エラストマー、ポリエステル系熱可塑性エラストマー、ポリアミド系熱可塑性エラストマー、ポリブタジエン系熱可塑性エラストマー、スチレン系熱可塑性エラストマー等が挙げられる。 Examples of thermoplastic elastomers include polyolefin thermoplastic elastomers, polyurethane thermoplastic elastomers, polyester thermoplastic elastomers, polyamide thermoplastic elastomers, polybutadiene thermoplastic elastomers, and styrene thermoplastic elastomers.

スチレン系熱可塑性エラストマーは、ビニル芳香族炭化水素を主体とする重合体ブロック及び共役ジエンを主体とする重合体ブロックとからなるブロック共重合体が好ましい。ビニル芳香族炭化水素としては、例えば、スチレン、p-メチルスチレン、α-メチルスチレン、ビニルキシレン、モノクロルスチレン、ジクロロスチレン、モノブロモスチレン等があり、これらは単体だけでなく2種以上を組み合わせて使用しても良い。共役ジエンとしては1,3-ブタジエン、イソプレン、2,3-ジメチル-1,3-ブタジエン、1,3-ペンタジエン等があり、これらは単体だけでなく2種以上を組み合わせて使用しても良い。 The styrenic thermoplastic elastomer is preferably a block copolymer composed of a polymer block mainly composed of a vinyl aromatic hydrocarbon and a polymer block mainly composed of a conjugated diene. Examples of vinyl aromatic hydrocarbons include styrene, p-methylstyrene, α-methylstyrene, vinylxylene, monochlorostyrene, dichlorostyrene, monobromostyrene and the like, and these may be used alone or in combination of two or more. May be used. Conjugated dienes include 1,3-butadiene, isoprene, 2,3-dimethyl-1,3-butadiene, 1,3-pentadiene, etc. These may be used alone or in combination of two or more. .

スチレン系熱可塑性エラストマーの具体的な例としては、スチレン・ブタジエン・スチレン(SBS)共重合体、スチレン・イソプレン・スチレン(SIS)共重合体、スチレン・エチレン・ブチレン・スチレン(SEBS)共重合体、スチレン・イソプレン・水添スチレン・イソプレン・スチレン(SEPS)共重合体、スチレン・エチレンプロピレン(SEP)共重合体、スチレン・エチレンプロピレン・スチレン(SEPS)共重合体、スチレン・エチレン‐エチレンプロピレン・スチレン(SEEPS)共重合体、等が挙げられる。スチレン系熱可塑性エラストマーのスチレン含有量は、例えば15質量%以上70質量%以下であり 、20質量%以上60質量%以下が好ましい。この含有量は、例えば、5、10、15、18、20、23、25、30、31、35、40、45、50、55、60、65、70質量%であり、ここで例示した数値の何れか2つの間の範囲内であってもよい。 Specific examples of styrene-based thermoplastic elastomers include styrene-butadiene-styrene (SBS) copolymers, styrene-isoprene-styrene (SIS) copolymers, and styrene-ethylene-butylene-styrene (SEBS) copolymers. , styrene/isoprene/hydrogenated styrene/isoprene/styrene (SEPS) copolymer, styrene/ethylene propylene (SEP) copolymer, styrene/ethylene propylene/styrene (SEPS) copolymer, styrene/ethylene-ethylene propylene/ styrene (SEEPS) copolymer, and the like. The styrene content of the styrene-based thermoplastic elastomer is, for example, 15% by mass or more and 70% by mass or less, preferably 20% by mass or more and 60% by mass or less. This content is, for example, 5, 10, 15, 18, 20, 23, 25, 30, 31, 35, 40, 45, 50, 55, 60, 65, 70 mass%, the numerical values illustrated here may be in the range between any two of

これらのゴム及び/又は熱可塑性エラストマーは、一種もしくは二種以上を使用することができる。 One or more of these rubbers and/or thermoplastic elastomers can be used.

マトリクスポリマーは、ゴムのみを含むか、又は、ゴムとスチレン系熱可塑性エラストマーの両方を含むことが好ましい。ゴムとスチレン系熱可塑性エラストマーの含有比率は100/0~5/95(質量比)であることが好ましい。このようなマトリクスポリマーであることにより、防火性樹脂サッシの開口枠体を構成する枠体の内部や軒裏換気部材の内部に枠体や軒裏換気部材の長手方向に沿って熱膨張性耐火材を挿入する際、円滑な挿入が出来る。ゴムとスチレン系熱可塑性エラストマーの質量比の合計を100とすると、ゴムの質量比は、例えば、5、10、15、20、25、30、35、40、45、50、55、60、65、70、75、80、85、90、95であり、ここで例示した数値の何れか2つの間の範囲内であってもよい。 The matrix polymer preferably contains only rubber or both rubber and styrenic thermoplastic elastomer. The content ratio of rubber and styrene thermoplastic elastomer is preferably 100/0 to 5/95 (mass ratio). By using such a matrix polymer, a heat-expandable fireproof material is applied along the longitudinal direction inside the frame constituting the opening frame of the fireproof resin sash and inside the eaves ventilation member. Smooth insertion is possible when inserting the material. If the total mass ratio of rubber and styrene-based thermoplastic elastomer is 100, the mass ratio of rubber is, for example, 5, 10, 15, 20, 25, 30, 35, 40, 45, 50, 55, 60, 65. , 70, 75, 80, 85, 90, 95, and may be in the range between any two of the numerical values exemplified herein.

マトリクスポリマーは、エラストマーのみで構成されていてもよく、その他のポリマーを含んでいてもよい。その他のポリマーとしては、エラストマーではない樹脂(ポリオレフィン、ポリスチレンなど)などが挙げられる。マトリクスポリマー中のエラストマーの割合は、例えば、50~100質量%であり、例えば、50、55、60、65、70、75、80、85、90、95、100質量%であり、ここで例示した数値の何れか2つの間の範囲内であってもよい。 The matrix polymer may consist only of an elastomer, or may contain other polymers. Other polymers include non-elastomeric resins (polyolefin, polystyrene, etc.). The proportion of the elastomer in the matrix polymer is, for example, 50 to 100% by weight, such as 50, 55, 60, 65, 70, 75, 80, 85, 90, 95, 100% by weight, exemplified here It may be in a range between any two of the numbers given.

<熱膨張性黒鉛>
熱膨張性黒鉛は、天然グラファイト、熱分解グラファイト等の粉末を、硫酸、硝酸等の無機酸と濃硝酸、過マンガン酸塩等の強酸化剤とで処理されたものであり、グラファイト層状構造を維持した結晶化合物である。これらは200℃程度以上の温度に曝されると、例えば、100倍以上に熱膨張するものである。なお、これら天然グラファイト、熱分解グラファイト等の粉末は、脱酸処理に加え、更に中和処理したタイプ他、各種品種があるがいずれも使用できる。
<Thermal expandable graphite>
Thermally expandable graphite is obtained by treating powders such as natural graphite and pyrolytic graphite with an inorganic acid such as sulfuric acid or nitric acid and a strong oxidizing agent such as concentrated nitric acid or permanganate. It is a maintained crystalline compound. These materials thermally expand, for example, 100 times or more when exposed to a temperature of about 200° C. or higher. The powders of natural graphite, pyrolytic graphite, etc. are available in various types such as deoxidized and neutralized types, and all of them can be used.

本発明に使用する熱膨張性黒鉛は、熱膨張性黒鉛の平均アスペクト比が20未満である。熱膨張性黒鉛の平均アスペクト比が20未満であることにより、防火性樹脂サッシの開口枠体を構成する枠体の内部や軒裏換気部材の内部に枠体や軒裏換気部材の長手方向に沿って熱膨張性耐火材を挿入する際、円滑な挿入が出来る。平均アスペクト比は、例えば5.0~19.9であり、具体的には、5.0、6.0、7.0、8.0、9.0、10.0、10.5、11.0、11.5、12.0、12.5、13.0、13.5、14.0、14.5、15.0、15.5、16.0、16.5、17.0、17.5、18.0、18.5、19.0、19.5、19.9であり、ここで例示した数値の何れか2つの間の範囲内であってもよい。 The thermally expandable graphite used in the present invention has an average aspect ratio of less than 20. Since the average aspect ratio of the thermally expandable graphite is less than 20, the inside of the frame constituting the opening frame of the fireproof resin sash and the inside of the eaves ventilation member are arranged in the longitudinal direction of the frame and the eaves ventilation member. When inserting the heat-expandable refractory material along, smooth insertion is possible. The average aspect ratio is, for example, 5.0 to 19.9, specifically 5.0, 6.0, 7.0, 8.0, 9.0, 10.0, 10.5, 11 .0, 11.5, 12.0, 12.5, 13.0, 13.5, 14.0, 14.5, 15.0, 15.5, 16.0, 16.5, 17.0 , 17.5, 18.0, 18.5, 19.0, 19.5, 19.9, and may be in the range between any two of the values exemplified herein.

平均アスペクト比は、鉛直方向の厚さに対する水平方向の平均径の割合である。本発明に使用する熱膨張性黒鉛は概ね平板状をしているため、鉛直方向が厚み方向、水平方向が径方向に一致すると見ることができるため、水平方向の最大寸法を鉛直方向の厚みで除した値をアスペクト比とする。
そして、十分大きな数、すなわち10個以上の黒鉛片につきアスペクト比を測定し、その平均値を平均アスペクト比とする。熱膨張性黒鉛の平均粒径も、水平方向の最大寸法の平均値として求めることができる。
熱膨張性黒鉛の水平方向における最大寸法及び厚みは、例えば電界放出形走査電子顕微鏡(FE-SEM)を用いて測定することができる。
The average aspect ratio is the ratio of the average horizontal diameter to the vertical thickness. Since the thermally expandable graphite used in the present invention has a generally flat plate shape, it can be seen that the vertical direction corresponds to the thickness direction and the horizontal direction corresponds to the radial direction. The value obtained by dividing is defined as the aspect ratio.
Then, the aspect ratio is measured for a sufficiently large number, that is, 10 or more graphite pieces, and the average value is taken as the average aspect ratio. The average particle size of the thermally expandable graphite can also be obtained as the average value of the maximum horizontal dimension.
The maximum horizontal dimension and thickness of thermally expandable graphite can be measured using, for example, a field emission scanning electron microscope (FE-SEM).

熱膨張性黒鉛の含有量は、マトリクスポリマー100質量部に対して5~400質量部であり、40~300質量部が好ましく、70~200質量部がさらに好ましい。熱膨張性黒鉛の含有量が少なすぎると、火災時における耐火材の熱膨張性が悪くなる。一方で、熱膨張性黒鉛の含有量が多すぎると、熱膨張後の耐火材の形状安定性が悪くなる。 The content of thermally expandable graphite is 5 to 400 parts by mass, preferably 40 to 300 parts by mass, more preferably 70 to 200 parts by mass, based on 100 parts by mass of the matrix polymer. If the content of thermally expandable graphite is too low, the thermal expansion of the refractory material will be poor in the event of a fire. On the other hand, if the content of thermally expandable graphite is too high, the shape stability of the refractory material after thermal expansion is deteriorated.

<無機リン系化合物>
無機リン系化合物は、リン酸系化合物、亜リン酸系化合物、次亜リン酸系化合物、メタリン酸系化合物、ピロリン酸系化合物及びポリリン酸系化合物のうちの少なくとも1種を含むである。
<Inorganic phosphoric acid compound>
The inorganic phosphoric acid -based compound includes at least one of a phosphoric acid-based compound, a phosphorous acid-based compound, a hypophosphorous acid-based compound, a metaphosphoric acid-based compound, a pyrophosphate-based compound, and a polyphosphoric acid-based compound.

リン酸系化合物としては、例えば、第1リン酸アルミニウム、第1リン酸ナトリウム、第1リン酸カリウム、第1リン酸カルシウム、第1リン酸亜鉛、第2リン酸アルミニウム、第2リン酸ナトリウム、第2リン酸カリウム、第2リン酸カルシウム、第2リン酸亜鉛、第3リン酸アルミニウム、第3リン酸ナトリウム、第3リン酸カリウム、第3リン酸カルシウム、第3リン酸亜鉛、第3リン酸マグネシウム、リン酸一アンモニウム、リン酸二アンモニウム、リン酸三カルシウム、リン酸アルミニウム等が挙げられる。 Examples of phosphoric acid compounds include monoaluminum phosphate, monobasic sodium phosphate, monobasic potassium phosphate, monobasic calcium phosphate, monobasic zinc phosphate, dibasic aluminum phosphate, dibasic sodium phosphate, dipotassium phosphate, dibasic calcium phosphate, dibasic zinc phosphate, tribasic aluminum phosphate, tribasic sodium phosphate, tribasic potassium phosphate, tribasic calcium phosphate, tribasic zinc phosphate, tribasic magnesium phosphate, phosphorus monoammonium acid, diammonium phosphate, tricalcium phosphate, aluminum phosphate and the like.

亜リン酸系化合物としては、例えば、亜リン酸アルミニウム、亜リン酸水素アルミニウム、亜リン酸ナトリウム、亜リン酸カリウム、亜リン酸カルシウム、亜リン酸亜鉛などが挙げられる。 Phosphite compounds include, for example, aluminum phosphite, aluminum hydrogen phosphite, sodium phosphite, potassium phosphite, calcium phosphite, and zinc phosphite.

次亜リン酸系化合物としては、例えば、次亜リン酸アルミニウム、次亜リン酸ナトリウム、次亜リン酸カリウム、次亜リン酸カルシウム、次亜リン酸亜鉛などが挙げられる。 Examples of hypophosphite compounds include aluminum hypophosphite, sodium hypophosphite, potassium hypophosphite, calcium hypophosphite, and zinc hypophosphite.

メタリン酸系化合物としては、例えば、メタリン酸アルミニウム、メタリン酸ナトリウム、メタリン酸カリウム、メタリン酸カルシウム、メタリン酸亜鉛、ヘキサメタリン酸ナトリウムなどが挙げられる。 Examples of metaphosphate compounds include aluminum metaphosphate, sodium metaphosphate, potassium metaphosphate, calcium metaphosphate, zinc metaphosphate, and sodium hexametaphosphate.

ピロリン酸系化合物としては、例えば、ピロリン酸ナトリウムが挙げられる。 Examples of pyrophosphate compounds include sodium pyrophosphate.

ポリリン酸系化合物としては、例えば、ポリリン酸アンモニウム、メラミン変性ポリリン酸アンモニウムなどが挙げられる。 Examples of polyphosphate compounds include ammonium polyphosphate and melamine-modified ammonium polyphosphate.

無機リン系化合物は、亜リン酸水素アンモニウム及びポリリン酸アンモニウムのうち少なくとも1種を含むことが好ましい。 The inorganic phosphoric acid compound preferably contains at least one of ammonium hydrogen phosphite and ammonium polyphosphate.

無機リン系化合物の含有量は、マトリクスポリマー100質量部に対して1~400質量部であり、30~300質量部が好ましく、60~200質量部がさらに好ましい。無機リン系化合物の含有量が1質量部未満であると、火災時における耐火材の形状安定性が悪い。一方で、無機リン系化合物の含有量が400質量を超えると、火災時における耐火材の熱膨張性が悪い。 The content of the inorganic phosphoric acid compound is 1 to 400 parts by mass, preferably 30 to 300 parts by mass, more preferably 60 to 200 parts by mass, based on 100 parts by mass of the matrix polymer. If the content of the inorganic phosphoric acid -based compound is less than 1 part by mass, the shape stability of the refractory material in the event of fire is poor. On the other hand, if the content of the inorganic phosphoric acid -based compound exceeds 400 mass, the thermal expansibility of the refractory material at the time of fire is poor.

熱膨張性黒鉛と無機リン酸系化合物の質量比(熱膨張性黒鉛/無機リン酸系化合物)は、0.05~100.00であり、0.07~100.00が好ましく、0.25~100.00がさらに好ましく、0.33~3.33がさらに好ましく、0.50~1.67がさらに好ましく、0.75~1.25がさらに好ましい。熱膨張性黒鉛と無機リン酸系化合物の質量比(熱膨張性黒鉛/無機リン酸系化合物)が低すぎると、熱膨張性が悪くなる。熱膨張性黒鉛と無機リン酸系化合物の質量比(熱膨張性黒鉛/無機リン酸系化合物)が高すぎると、形状安定性が悪くなる。この質量比は、例えば、0.05、0.07、0.25、0.33、0.40、0.50、0.70、1.67、2.00、3.00、3.33、3.95、5.00、10.00、20.00、50.00、100.00であり、ここで例示した数値の何れか2つの間の範囲内であってもよい。 The mass ratio of thermally expandable graphite and inorganic phosphoric acid compound (thermally expandable graphite/inorganic phosphoric acid compound) is 0.05 to 100.00, preferably 0.07 to 100.00, and 0.25. ~100.00 is more preferable, 0.33 to 3.33 is more preferable, 0.50 to 1.67 is more preferable, and 0.75 to 1.25 is even more preferable. If the mass ratio of the thermally expandable graphite to the inorganic phosphoric acid compound (thermally expandable graphite/inorganic phosphoric acid compound) is too low, the thermal expansibility will be poor. If the mass ratio of the thermally expandable graphite to the inorganic phosphoric acid compound (thermally expandable graphite/inorganic phosphoric acid compound) is too high, the shape stability is deteriorated. This mass ratio is, for example, , 3.95, 5.00, 10.00, 20.00, 50.00, 100.00, and may be in the range between any two of the values exemplified herein.

<その他の成分>
本実施形態では、その効果を阻害しない範囲で、通常のポリマー配合物に使用される可塑剤(軟化剤)、老化防止剤、加工助剤、滑剤、粘着付与剤、無機化合物(無機リン系化合物を除く)、加硫剤、加硫促進剤等を併用してもよい。成形性の調整に有効な可塑剤(軟化剤)の例としては、パラフィン系やナフテン系等のプロセスオイル、流動パラフィンやその他のパラフィン類、ワックス類、シリコーンオイルや液状ポリブテン等の合成高分子系軟化剤、フタル酸系やアジピン酸系、セバシン酸系やリン酸系等のエステル系可塑剤類、ステアリン酸やそのエステル類、アルキルスルホン酸エステル類や粘着付与剤などがあげられる。無機化合物(無機繊維化合物及び無機リン系化合物を除く)の例としては、炭酸カルシウム、水酸化アルミニウムなどが挙げられる。
<Other ingredients>
In the present embodiment, plasticizers (softeners), anti-aging agents, processing aids, lubricants, tackifiers, inorganic compounds (inorganic phosphate -based compounds), vulcanizing agents, vulcanization accelerators, etc. may be used in combination. Examples of plasticizers (softeners) that are effective in adjusting moldability include process oils such as paraffin and naphthene, liquid paraffin and other paraffins, waxes, synthetic polymers such as silicone oil and liquid polybutene. Examples include softeners, phthalic acid-based, adipic acid-based, sebacic acid-based and phosphoric acid-based ester plasticizers, stearic acid and its esters, alkylsulfonic acid esters, and tackifiers. Examples of inorganic compounds (excluding inorganic fiber compounds and inorganic phosphate compounds) include calcium carbonate and aluminum hydroxide.

本実施形態の耐火材は、上記各成分をバンバリーミキサー、ニーダーミキサー、二本ロール等公知の混練装置を用いて混練されたものを、例えば、プレス成形、ロール成形、押し出し成形、カレンダー成形等の従来公知の成形方法でシート状に成形することで得ることが出来る。 The refractory material of the present embodiment is obtained by kneading each of the above components using a known kneading device such as a Banbury mixer, a kneader mixer, and a two-roll roll, for example, by press molding, roll molding, extrusion molding, calender molding, etc. It can be obtained by molding into a sheet by a conventionally known molding method.

以下、本発明を実施例及び比較例により具体的に説明するが、これらの実施例は本発明を限定するものでない。 EXAMPLES The present invention will be specifically described below by way of examples and comparative examples, but these examples are not intended to limit the present invention.

1.耐火材の作製
表1~表4の配合に示した成分を、容量3リットルのニーダーミキサーを用いて120℃で2分間混練して組成物を得た。得られた組成物を更に熱プレス機でプレスして厚さ2mmのシート状の耐火材を得た。
1. Preparation of refractory material The components shown in Tables 1 to 4 were kneaded at 120°C for 2 minutes using a kneader mixer with a capacity of 3 liters to obtain a composition. The obtained composition was further pressed with a hot press to obtain a sheet-like refractory material with a thickness of 2 mm.

表中の成分の詳細は、以下の通りである。
(1)マトリクスポリマー
・EPDM:エチレン・プロピレン・ジエンゴム、JSR株式会社製「EP-51」
・SBS:スチレン・ブタジエン・スチレン共重合体(SBS)、クレイトンポリマージャパン株式会社製「D1101JU」
・ブチルゴム:JSR株式会社製「ブチル268」
・CR:クロロプレンゴム、デンカ株式会社製「S-40V」
(2)熱膨張性黒鉛
・EXP-200(アスペクト比14.3):富士黒鉛工業株式会社「EXP-200」アスペクト比14.3
・EXP-150(アスペクト比15.7):富士黒鉛工業株式会社「EXP-150」アスペクト比15.7
・EXP-100(アスペクト比18.2):富士黒鉛工業株式会社「EXP-100」アスペクト比18.2
・ADT501(アスペクト比25.2):ADT社製「ADT501」アスペクト比25.2
・EXP50T(アスペクト比30.6):日本黒鉛工業株式会社製「EXP50T」アスペクト比30.6
(3)無機リン系化合物
・亜リン酸水素アルミニウム:太平化学産業株式会社製「NSF」
・ポリリン酸アンモニウム:SCM Industrial Chemical Co.,Ltd.,製「HP-APP II」
The details of the components in the table are as follows.
(1) Matrix polymer EPDM: Ethylene-propylene-diene rubber, "EP-51" manufactured by JSR Corporation
・ SBS: Styrene-butadiene-styrene copolymer (SBS), "D1101JU" manufactured by Kraton Polymer Japan Co., Ltd.
・Butyl rubber: "Butyl 268" manufactured by JSR Corporation
・CR: Chloroprene rubber, “S-40V” manufactured by Denka Co., Ltd.
(2) Thermally expandable graphite EXP-200 (aspect ratio 14.3): Fuji Graphite Industry Co., Ltd. “EXP-200” aspect ratio 14.3
・ EXP-150 (aspect ratio 15.7): Fuji Graphite Industry Co., Ltd. “EXP-150” aspect ratio 15.7
・ EXP-100 (aspect ratio 18.2): Fuji Graphite Industry Co., Ltd. “EXP-100” aspect ratio 18.2
· ADT501 (aspect ratio 25.2): "ADT501" aspect ratio 25.2 manufactured by ADT
・ EXP50T (aspect ratio 30.6): Nippon Graphite Industry Co., Ltd. “EXP50T” aspect ratio 30.6
(3) Inorganic phosphoric acid compound, aluminum hydrogen phosphite: "NSF" manufactured by Taihei Chemical Industry Co., Ltd.
- Ammonium polyphosphate: SCM Industrial Chemical Co.; , Ltd. , "HP-APP II"

2.評価
各実施例、比較例の耐火材について、以下の測定及び評価を行った。結果を表1~表4に示す。
2. Evaluation The following measurements and evaluations were performed on the refractory materials of Examples and Comparative Examples. The results are shown in Tables 1-4.

評価方法の詳細は、以下の通りである。
<熱膨張性>
厚さ2mm、幅10mm、長さ50mmの試験片を300℃で0.5時間熱処理し、その膨張倍率を測定した。具体的には、熱処理後の体積を、熱処理前の体積で除することにより、体積膨張倍率を算出し、以下の基準で熱膨張性を判定した。なお、体積は、圧さ、幅、長さを実測して算出した。
◎:体積膨張倍率が10倍以上
○:体積膨張倍率が8倍以上10倍未満
△:体積膨張倍率が6倍以上8倍未満
×:体積膨張倍率が6倍未満
The details of the evaluation method are as follows.
<Thermal expansion>
A test piece having a thickness of 2 mm, a width of 10 mm, and a length of 50 mm was heat-treated at 300° C. for 0.5 hours, and its expansion ratio was measured. Specifically, the volume expansion ratio was calculated by dividing the volume after the heat treatment by the volume before the heat treatment, and the thermal expandability was determined according to the following criteria. The volume was calculated by actually measuring the pressure, width and length.
◎: Volume expansion ratio is 10 times or more ○: Volume expansion ratio is 8 times or more and less than 10 times △: Volume expansion ratio is 6 times or more and less than 8 times ×: Volume expansion ratio is less than 6 times

<形状保持性>
上記の熱膨張性を評価した後、3点曲げ試験治具(上部押し側先端R1mmおよび幅80mm、下部2点支点側R1mm、幅80mm、支点間距離20mm)を用い、熱膨張後の試験片を圧縮速度50mm/minの条件にて破壊した際の強度(3点曲げ破壊強度)を測定した。そして、以下の基準で形状保持性を判定した。
◎:3点曲げ破壊強度が1.0N以上
○:3点曲げ破壊強度が0.8N以上1.0N未満
△:3点曲げ破壊強度が0.5N以上0.8N未満
×:3点曲げ破壊強度が0.5N未満
<Shape retention>
After evaluating the above thermal expansion properties, using a three-point bending test jig (upper push side tip R1 mm and width 80 mm, lower two-point fulcrum side R1 mm, width 80 mm, distance between fulcrums 20 mm), the test piece after thermal expansion was broken at a compression rate of 50 mm/min (three-point bending breaking strength). Then, the shape retainability was determined according to the following criteria.
◎: 3-point bending fracture strength is 1.0 N or more ○: 3-point bending fracture strength is 0.8 N or more and less than 1.0 N △: 3-point bending fracture strength is 0.5 N or more and less than 0.8 N ×: 3-point bending fracture strength Strength less than 0.5N

<挿通性>
厚さ2mm、幅10mm、長さ150mmの試験片の、片方短辺から50mmまでを台座に固定し、21℃で1分間放置して、空中に浮かせた100mm長さの耐火材のたわみ量を測定した。そして、以下の基準でたわみ性を判定した。
◎:たわみ量が10mm未満
〇:たわみ量が10mm以上15mm未満
×:たわみ量が15mm以上
<Penetration>
A test piece with a thickness of 2 mm, a width of 10 mm, and a length of 150 mm is fixed to a pedestal from one short side to 50 mm, left at 21 ° C. for 1 minute, and floated in the air. It was measured. Then, the flexibility was determined according to the following criteria.
◎: deflection amount less than 10 mm ○: deflection amount 10 mm or more and less than 15 mm ×: deflection amount 15 mm or more

<可撓性>
厚さ1mm、幅25mm、長さ100mmのSUS板に両面テープを貼ったものを2枚用意し、長さ方向に3mmの間隔をあけて横並びにする。そこに厚さ2mm、幅10mm、長さ100mmの試験片を貼り、試料片を貼った面とは逆方向に折り曲げ、試験片に亀裂が入った時点での角度を測定し、以下の基準で可撓性を判定した。なお、亀裂が入ったときの角度が大きいほど、可撓性が良好であることを示す。
◎:180度の角度でも亀裂なし
○:135度以上180度未満の角度で亀裂が発生
×:135度未満の角度で亀裂が発生
<Flexibility>
Two SUS plates each having a thickness of 1 mm, a width of 25 mm, and a length of 100 mm to which a double-faced tape is attached are prepared and arranged side by side with an interval of 3 mm in the longitudinal direction. A test piece with a thickness of 2 mm, a width of 10 mm, and a length of 100 mm is pasted there, and the angle at which the test piece cracks is measured by bending in the opposite direction to the surface where the sample piece is pasted. Flexibility was determined. The larger the cracking angle, the better the flexibility.
◎: No cracks even at an angle of 180 degrees ○: Cracks occur at an angle of 135 degrees or more and less than 180 degrees ×: Cracks occur at an angle of less than 135 degrees

<難燃性>
JIS K6269に準じて燃焼試験装置(スガ試験機(株)製,ON-1型)を用いて酸素指数を測定し、以下の基準で難燃性を判定した。なお、酸素指数が大きいほど、難燃性が高いことを示す。
◎:酸素指数が35以上
○:酸素指数が30以上35未満
×:酸素指数が30未満
<Flame Retardant>
The oxygen index was measured using a combustion tester (manufactured by Suga Test Instruments Co., Ltd., Model ON-1) according to JIS K6269, and flame retardancy was determined according to the following criteria. In addition, it shows that flame retardance is so high that an oxygen index is large.
◎: Oxygen index is 35 or more ○: Oxygen index is 30 or more and less than 35 ×: Oxygen index is less than 30

Figure 2023094196000005
Figure 2023094196000005

Figure 2023094196000006
Figure 2023094196000006

Figure 2023094196000007
Figure 2023094196000007

Figure 2023094196000008
Figure 2023094196000008

Claims (4)

マトリクスポリマー100質量部、熱膨張性黒鉛5~400質量部、無機リン酸系化合物1~400質量部を含有し、
前記マトリクスポリマーがエラストマーを含み、
前記熱膨張性黒鉛の平均アスペクト比が20未満である、熱膨張性耐火材。
Matrix polymer 100 parts by mass, thermally expandable graphite 5 to 400 parts by mass, inorganic phosphoric acid compound 1 to 400 parts by mass,
the matrix polymer comprises an elastomer;
A thermally expandable refractory material, wherein the thermally expandable graphite has an average aspect ratio of less than 20.
前記熱膨張性黒鉛と前記無機リン酸系化合物の質量比(熱膨張性黒鉛/無機リン酸系化合物)が0.05~100.00である、請求項1に記載の熱膨張性耐火材。 The thermally expandable refractory material according to claim 1, wherein the thermally expandable graphite and the inorganic phosphoric acid compound have a mass ratio (thermally expandable graphite/inorganic phosphoric acid compound) of 0.05 to 100.00. 前記無機リン系化合物が、亜リン酸水素アルミニウムおよび/またはポリリン酸アンモニウムを含む、請求項1又は請求項2記載の熱膨張性耐火材。 3. The thermally expandable refractory material according to claim 1, wherein said inorganic phosphorus compound comprises aluminum hydrogen phosphite and/or ammonium polyphosphate. 建具または軒裏換気部材に使用される、請求項1乃至請求項3のうち何れか1項に記載の熱膨張性耐火材。 4. The thermally expandable fireproof material according to any one of claims 1 to 3, which is used for fittings or soffit ventilation members.
JP2021209522A 2021-12-23 2021-12-23 Inflatable refractory material Active JP7142139B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2021209522A JP7142139B1 (en) 2021-12-23 2021-12-23 Inflatable refractory material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2021209522A JP7142139B1 (en) 2021-12-23 2021-12-23 Inflatable refractory material

Publications (2)

Publication Number Publication Date
JP7142139B1 JP7142139B1 (en) 2022-09-26
JP2023094196A true JP2023094196A (en) 2023-07-05

Family

ID=83400870

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2021209522A Active JP7142139B1 (en) 2021-12-23 2021-12-23 Inflatable refractory material

Country Status (1)

Country Link
JP (1) JP7142139B1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007297856A (en) * 2006-05-01 2007-11-15 Sekisui Chem Co Ltd Fire-resistant cover sheet for steel frame
WO2016031910A1 (en) * 2014-08-27 2016-03-03 積水化学工業株式会社 Thermally expandable fire resistant resin composition
JP2016199710A (en) * 2015-04-13 2016-12-01 スリーエム イノベイティブ プロパティズ カンパニー Fire spread prevention member and method
JP2017137475A (en) * 2016-02-02 2017-08-10 積水化学工業株式会社 Fire-resistant resin composition
JP2018115319A (en) * 2017-01-13 2018-07-26 積水化学工業株式会社 Thermally expandable fire-resistant sheet and use thereof in battery
JP2020125395A (en) * 2019-02-04 2020-08-20 積水化学工業株式会社 Thermoplastic resin sheet

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007297856A (en) * 2006-05-01 2007-11-15 Sekisui Chem Co Ltd Fire-resistant cover sheet for steel frame
WO2016031910A1 (en) * 2014-08-27 2016-03-03 積水化学工業株式会社 Thermally expandable fire resistant resin composition
JP2016199710A (en) * 2015-04-13 2016-12-01 スリーエム イノベイティブ プロパティズ カンパニー Fire spread prevention member and method
JP2017137475A (en) * 2016-02-02 2017-08-10 積水化学工業株式会社 Fire-resistant resin composition
JP2018115319A (en) * 2017-01-13 2018-07-26 積水化学工業株式会社 Thermally expandable fire-resistant sheet and use thereof in battery
JP2020125395A (en) * 2019-02-04 2020-08-20 積水化学工業株式会社 Thermoplastic resin sheet

Also Published As

Publication number Publication date
JP7142139B1 (en) 2022-09-26

Similar Documents

Publication Publication Date Title
JP3363156B2 (en) Fire-resistant sheet-like molded product, fire-resistant laminate for steel frame coating, fire-resistant structure for wall, and method of construction of fire-resistant steel frame and fire-resistant wall
JP3838780B2 (en) Refractory sheet-like molded body and sheet laminate
JPWO2014057689A1 (en) Thermally expandable resin composition
JP7142139B1 (en) Inflatable refractory material
JP2007198029A (en) Construction method of fire resisting structure of steel frame beam equipped with through hole
JP4130009B2 (en) Refractory resin composition and sheet molded body using the same
JP2024028274A (en) Fireproof resin composition, fireproof material, fireproof laminate, compartment penetration treatment structure, and compartment penetration treatment method
JP5066303B1 (en) High fire resistant rubber composition sheet
JP7074924B1 (en) Thermally expandable refractory material
JP2015214656A (en) Fireproof resin composition
JP2000055293A (en) Fireproof pipe
JPH107838A (en) Fire-resistant rubber composition
JP2019189777A (en) Fire retardant resin composition, molded body and wound body
JP6914405B1 (en) Refractory material
JP3877429B2 (en) Fireproof multilayer sheet
JP3707891B2 (en) Fire resistant rubber composition
JP4320110B2 (en) Fireproof wall structure
JP4137285B2 (en) Fireproof / firewall construction
JP7335407B1 (en) Water-swellable refractory composition
JP7127170B1 (en) Inflatable refractory material
JPWO2017150515A1 (en) Refractory elastomer composition and molded article thereof
JP7018108B1 (en) Refractory material
WO2023145907A1 (en) Thermally expandable refractory material
JP2024044440A (en) Putty-like fireproof composition
JP3739153B2 (en) Refractory rubber composition

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220114

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20220114

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220308

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220406

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20220426

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220601

C60 Trial request (containing other claim documents, opposition documents)

Free format text: JAPANESE INTERMEDIATE CODE: C60

Effective date: 20220601

C876 Explanation why request for accelerated appeal examination is justified

Free format text: JAPANESE INTERMEDIATE CODE: C876

Effective date: 20220601

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20220608

C21 Notice of transfer of a case for reconsideration by examiners before appeal proceedings

Free format text: JAPANESE INTERMEDIATE CODE: C21

Effective date: 20220614

A912 Re-examination (zenchi) completed and case transferred to appeal board

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20220624

C211 Notice of termination of reconsideration by examiners before appeal proceedings

Free format text: JAPANESE INTERMEDIATE CODE: C211

Effective date: 20220628

C305 Report on accelerated appeal examination

Free format text: JAPANESE INTERMEDIATE CODE: C305

Effective date: 20220630

C22 Notice of designation (change) of administrative judge

Free format text: JAPANESE INTERMEDIATE CODE: C22

Effective date: 20220705

C13 Notice of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: C13

Effective date: 20220719

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220728

C23 Notice of termination of proceedings

Free format text: JAPANESE INTERMEDIATE CODE: C23

Effective date: 20220809

C03 Trial/appeal decision taken

Free format text: JAPANESE INTERMEDIATE CODE: C03

Effective date: 20220906

C30A Notification sent

Free format text: JAPANESE INTERMEDIATE CODE: C3012

Effective date: 20220906

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220912

R150 Certificate of patent or registration of utility model

Ref document number: 7142139

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150