JP2023092016A - Corrosion-resistant silicon carbide heating elements and method for manufacturing the same - Google Patents

Corrosion-resistant silicon carbide heating elements and method for manufacturing the same Download PDF

Info

Publication number
JP2023092016A
JP2023092016A JP2021206963A JP2021206963A JP2023092016A JP 2023092016 A JP2023092016 A JP 2023092016A JP 2021206963 A JP2021206963 A JP 2021206963A JP 2021206963 A JP2021206963 A JP 2021206963A JP 2023092016 A JP2023092016 A JP 2023092016A
Authority
JP
Japan
Prior art keywords
silicon carbide
corrosion
heating element
mass
protective film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2021206963A
Other languages
Japanese (ja)
Inventor
和久 坂本
Kazuhisa Sakamoto
明実 大沼
Akemi Onuma
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokai Konetsu Kogyo Co Ltd
Original Assignee
Tokai Konetsu Kogyo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokai Konetsu Kogyo Co Ltd filed Critical Tokai Konetsu Kogyo Co Ltd
Priority to JP2021206963A priority Critical patent/JP2023092016A/en
Publication of JP2023092016A publication Critical patent/JP2023092016A/en
Pending legal-status Critical Current

Links

Images

Abstract

To provide a corrosion-resistant silicon carbide heating element, capable of being manufactured easily at low cost, the heating element having a ytterbium silicate-containing film with excellent fusing properties as a protective film on a surface of a silicon carbide substrate.SOLUTION: A corrosion-resistant silicon carbide heating element has a protective film provided on at least a portion of a surface of a silicon carbide substrate, the protective film comprising 25-85 mass% of Yb2O3, 10-50 mass% of Yb2SiO5, 0-20 mass% of Yb2Si2O7, and 2-10 mass% of SiO2. Preferably, the thickness of the protective film is 30 to 200 μm.SELECTED DRAWING: None

Description

本発明は、耐食性炭化珪素発熱体および耐食性炭化珪素発熱体の製造方法に関する。 The present invention relates to a corrosion-resistant silicon carbide heating element and a method for manufacturing a corrosion-resistant silicon carbide heating element.

従来より、炭化珪素からなる発熱体(炭化珪素発熱体)が知られており、係る発熱体においては、棒状の発熱体の端部から通電し炉内に配置した発熱体から放熱することにより、被処理物の加熱処理が行われている(特許文献1等参照)。 Conventionally, heat generating elements made of silicon carbide (silicon carbide heat generating elements) have been known. A heat treatment is performed on an object to be treated (see Patent Document 1, etc.).

特開2010-126427号公報JP 2010-126427 A

上記炭化珪素発熱体は、長期間の使用によって経時劣化することが知られており、上記経時劣化は、特に炭化珪素発熱体の使用環境によって影響を受け易いことが知られている。 It is known that the silicon carbide heat generating element deteriorates with time due to long-term use, and it is known that the deterioration with time is particularly susceptible to the use environment of the silicon carbide heat generating element.

炭化珪素発熱体の劣化原因として、発熱体の主成分である炭化珪素(SiC)が800℃以上の高温大気雰囲気下で酸素(O)と反応し、二酸化珪素(SiO)を生成する反応が挙げられる。 As a cause of deterioration of the silicon carbide heating element, silicon carbide (SiC), which is the main component of the heating element, reacts with oxygen (O 2 ) in a high-temperature atmospheric atmosphere of 800° C. or higher to form silicon dioxide (SiO 2 ). is mentioned.

また、高温の水蒸気含有雰囲気下では、下記反応式(1)または(2)に示すように、上記と同様に炭化珪素(SiC)から二酸化珪素(SiO)を生成すると考えられる。
SiC+2HO→SiO+CH(1)
SiC+4HO→SiO+CO+4H (2)
In addition, in a high-temperature steam-containing atmosphere, silicon dioxide (SiO 2 ) is produced from silicon carbide (SiC) in the same manner as described above, as shown in the following reaction formula (1) or (2).
SiC+ 2H2OSiO2 + CH4 (1)
SiC+ 4H2OSiO2 + CO2 + 4H2 (2)

さらに、高温の水蒸気含有雰囲気においては、下記反応式(3)に示すように、上記二酸化珪素(SiO)から珪酸(Si(OH))を生成すると考えられる。
SiO+2HO→Si(OH) (3)
上記のとおり、炭化珪素は、特に高温の水蒸気含有雰囲気下において水蒸気と反応し、腐食溶解が進行することによりその劣化が促進されると考えられる。
Furthermore, in a high-temperature steam-containing atmosphere, silicic acid (Si(OH) 4 ) is produced from the silicon dioxide (SiO 2 ) as shown in the following reaction formula (3).
SiO2 + 2H2O →Si(OH) 4 (3)
As described above, it is considered that silicon carbide reacts with water vapor, particularly in a high-temperature water vapor-containing atmosphere, and progresses in corrosion and dissolution, thereby accelerating its deterioration.

炭化珪素発熱体は、MLCC(積層セラミックコンデンサ)などの電子部品を焼成処理したり、リチウムイオン二次電池用正極材の合成過程で焼成処理する際等に熱源として広く用いられているが、これ等の焼成処理は水蒸気を含む雰囲気下で行われる場合があり、特にリチウムイオン二次電池の正極材の合成工程では、被焼成物である原料粉末から水蒸気が大量に発生し、炉内に多量の水蒸気が存在する状態で焼成することが多いことから、炭化珪素発熱体の寿命が短くなり易い。 Silicon carbide heating elements are widely used as a heat source for firing electronic components such as MLCCs (multilayer ceramic capacitors), and for firing in the process of synthesizing positive electrode materials for lithium ion secondary batteries. Firing treatments such as these may be carried out in an atmosphere containing water vapor, especially in the process of synthesizing the positive electrode material of a lithium ion secondary battery. Since the firing is often performed in the presence of water vapor, the life of the silicon carbide heating element tends to be shortened.

本発明者等は、上記高温水蒸気による劣化を抑制するために、保護膜を設けた炭化珪素発熱体を着想するに至った。 The present inventors came up with the idea of a silicon carbide heating element provided with a protective film in order to suppress deterioration due to the high-temperature steam.

上記保護膜としては、高温水蒸気との反応性が低く、熱膨張係数が炭化珪素の熱膨張係数に近いYbSiO、YbSi等のイッテルビウム(Yb)の珪酸塩(珪酸イッテルビウム)からなるものが考えられた。
しかしながら、YbSiOやYbSi等の珪酸イッテルビウムはその融点が1800℃を超える一方で、炭化珪素の耐熱温度は1400℃程度であることから、炭化珪素製基材の表面においてYbSiOやYbSi等を溶融し、製膜することは困難である。
As the protective film, silicates of ytterbium (Yb) such as Yb 2 SiO 5 and Yb 2 Si 2 O 7 which have low reactivity with high-temperature steam and have thermal expansion coefficients close to that of silicon carbide (ytterbium silicate ) was considered.
However, the melting point of ytterbium silicate such as Yb 2 SiO 5 and Yb 2 Si 2 O 7 exceeds 1800° C., whereas the heat resistance temperature of silicon carbide is about 1400° C. It is difficult to melt Yb 2 SiO 5 , Yb 2 Si 2 O 7 or the like to form a film.

YbSiOまたはYbSi等からなる保護膜を低温で形成する方法として、プラズマPVD法(プラズマ物理気相蒸着法)や、EB-PVD(電子ビーム物理気相蒸着法)等も考えられたが、いずれも特別な装置を必要とし、その製造には高いコストが必要となる。 Plasma PVD (Plasma Physical Vapor Deposition), EB-PVD (Electron Beam Physical Vapor Deposition), etc. are methods for forming a protective film made of Yb 2 SiO 5 or Yb 2 Si 2 O 7 at a low temperature. was also considered, but all of them require special equipment and require high costs for their manufacture.

このように、従来、炭化珪素製基材の表面に珪酸イッテルビウム含有膜を優れた定着性の下、簡便かつ低コストに製膜することは困難であった。 Thus, conventionally, it has been difficult to form an ytterbium silicate-containing film on the surface of a silicon carbide base material easily and at low cost with excellent fixability.

このような状況下、本発明は、炭化珪素性基材の表面に定着性に優れた珪酸イッテルビウム含有膜を有する、簡便かつ低コストに製造可能な新規な耐食性炭化珪素発熱体を提供するとともに、耐食性炭化珪素発熱体の製造方法を提供することを目的とするものである。 Under such circumstances, the present invention provides a novel corrosion-resistant silicon carbide heating element that has an ytterbium silicate-containing film with excellent fixability on the surface of a silicon carbide base material and that can be manufactured simply and at low cost. It is an object of the present invention to provide a method of manufacturing a corrosion-resistant silicon carbide heating element.

上記技術課題を解決するために、本願発明者等が鋭意検討を行った結果、YbSiOまたはYbSi等を溶融することに代えて、YbとSiOとを含むスラリーを炭化珪素製発熱体の少なくとも一部に塗布した後、1000~1350℃という比較的低温度で加熱処理することにより、簡便かつ低コストに炭化珪素製基材表面にYbSiOまたはYbSiを含む保護膜を形成し得ること、係る保護膜は、炭化珪素製基材に対して優れた定着性を発揮し得ることを見出し、本知見に基づいて本発明を完成するに至った。 In order to solve the above technical problems, the inventors of the present application conducted extensive studies and found that instead of melting Yb 2 SiO 5 or Yb 2 Si 2 O 7 or the like, Yb 2 O 3 and SiO 2 After coating at least a portion of the silicon carbide heating element with the slurry containing Yb 2 SiO 5 or Yb 2 SiO 5 or Yb 2 SiO 5 or Yb 2 SiO 5 or It was found that a protective film containing Yb 2 Si 2 O 7 can be formed, and that such a protective film can exhibit excellent fixability to a silicon carbide substrate. Based on this finding, the present invention was completed. came to.

すなわち、本発明は、
(1)炭化珪素製基材の少なくとも一部の表面に保護膜が設けられた耐食性炭化珪素発熱体であって、前記保護膜が、
Yb 25~85質量%、
YbSiO10~50質量%、
YbSi0~20質量%、
SiO 2~10質量%
を含有することを特徴とする耐食性炭化珪素発熱体、
(2)前記保護膜の厚みが30~200μmである上記(1)に記載の耐食性炭化珪素発熱体、
(3)前記炭化珪素製基材が、炭化珪素の含有割合が98質量%以上であり、表面に平均細孔径が1~30μmである複数の細孔を有し、開孔率が10%以上のものである上記(1)または(2)に記載の耐食性炭化珪素発熱体、
(4)上記(1)~(3)のいずれかに記載の耐食性炭化珪素発熱体を製造する方法であって、
YbとSiOとを含むスラリーを炭化珪素製基材の少なくとも一部に塗布した後、
1000~1350℃で加熱処理する
ことを特徴とする耐食性炭化珪素発熱体の製造方法
を提供するものである。
That is, the present invention
(1) A corrosion-resistant silicon carbide heating element having a protective film on at least a part of the surface of a silicon carbide substrate, the protective film comprising:
Yb 2 O 3 25-85% by mass,
Yb 2 SiO 5 10 to 50% by mass,
Yb 2 Si 2 O 7 0 to 20% by mass,
SiO2 2 to 10% by mass
A corrosion-resistant silicon carbide heating element, characterized by containing
(2) The corrosion-resistant silicon carbide heating element according to (1) above, wherein the protective film has a thickness of 30 to 200 μm;
(3) The silicon carbide substrate has a silicon carbide content of 98% by mass or more, has a plurality of pores with an average pore diameter of 1 to 30 μm on the surface, and has a porosity of 10% or more. The corrosion-resistant silicon carbide heating element according to the above (1) or (2), which is
(4) A method for manufacturing a corrosion-resistant silicon carbide heating element according to any one of (1) to (3) above,
After applying the slurry containing Yb 2 O 3 and SiO 2 to at least part of the silicon carbide substrate,
A method for manufacturing a corrosion-resistant silicon carbide heating element is provided, which is characterized by heat treatment at 1000 to 1350°C.

本発明によれば、炭化珪素性基材の表面に定着性に優れた珪酸イッテルビウム含有膜を保護膜として有する、簡便かつ低コストに製造可能な新規な耐食性炭化珪素発熱体を提供することができるとともに、耐食性炭化珪素発熱体の製造方法を提供することができる。 ADVANTAGE OF THE INVENTION According to the present invention, it is possible to provide a novel corrosion-resistant silicon carbide heating element that has an ytterbium silicate-containing film with excellent fixability as a protective film on the surface of a silicon carbide base material and that can be easily manufactured at low cost. In addition, it is possible to provide a method for manufacturing a corrosion-resistant silicon carbide heating element.

本発明に係る耐食性炭化珪素発熱体の形態例を示す概略図である。1 is a schematic diagram showing a form example of a corrosion-resistant silicon carbide heating element according to the present invention; FIG. 本発明に係る耐食性炭化珪素発熱体を構成する炭化珪素製基材の形態例を示す概略図である。1 is a schematic diagram showing an example of the form of a silicon carbide substrate that constitutes a corrosion-resistant silicon carbide heating element according to the present invention; FIG. 本発明に係る耐食性炭化珪素発熱体の形態例を示す概略図である。1 is a schematic diagram showing a form example of a corrosion-resistant silicon carbide heating element according to the present invention; FIG. 実施例で得られた耐食性炭化珪素発熱体の断面における観察画像を示す図である。FIG. 3 is a diagram showing an observation image of a cross section of a corrosion-resistant silicon carbide heating element obtained in an example; 実施例で得られた耐食性炭化珪素発熱体の断面における外周面近傍における観察画像の拡大図である。FIG. 4 is an enlarged view of an observed image in the vicinity of the outer peripheral surface in the cross section of the corrosion-resistant silicon carbide heating element obtained in the example. 実施例で得られた耐食性炭化珪素発熱体の断面における中央部における観察画像の拡大図である。FIG. 4 is an enlarged view of an observed image at the central portion of the cross section of the corrosion-resistant silicon carbide heating element obtained in Example. 実施例で得られた耐食性炭化珪素発熱体および比較例で得られた炭化珪素発熱体の耐水蒸気能力の評価結果を示す図である。FIG. 5 is a diagram showing evaluation results of the steam resistance ability of corrosion-resistant silicon carbide heating elements obtained in Examples and silicon carbide heating elements obtained in Comparative Examples.

先ず、本発明に係る耐食性炭化珪素発熱体について説明する。
本発明に係る耐食性炭化珪素発熱体は、炭化珪素製基材の少なくとも一部の表面に保護膜が設けられた耐食性炭化珪素発熱体であって、前記保護膜が、
Yb 25~85質量%、
YbSiO10~50質量%、
YbSi0~20質量%、
SiO 2~10質量%
を含有することを特徴とするものである。
First, a corrosion-resistant silicon carbide heating element according to the present invention will be described.
A corrosion-resistant silicon carbide heating element according to the present invention is a corrosion-resistant silicon carbide heating element in which a protective film is provided on at least a part of the surface of a silicon carbide substrate, the protective film comprising:
Yb 2 O 3 25-85% by mass,
Yb 2 SiO 5 10 to 50% by mass,
Yb 2 Si 2 O 7 0 to 20% by mass,
SiO 2 2-10% by mass
It is characterized by containing

本発明に係る耐食性炭化珪素発熱体は、炭化珪素製基材の表面の少なくとも一部保護膜が設けられた状態で使用され、通電することにより発熱して発熱体として機能するものであって、その形状は中実状のものであってもよいし、中空状のものであってもよいが、中空円筒状のものであることが好ましい。 A corrosion-resistant silicon carbide heating element according to the present invention is used in a state in which at least a portion of the surface of a silicon carbide substrate is provided with a protective film, and functions as a heating element by generating heat when energized, Its shape may be solid or hollow, but it is preferably hollow cylindrical.

図1は、本発明に係る耐食性炭化珪素発熱体の形態例を示す概略図であって、図に示す耐食性炭化珪素発熱体Hは、発熱部Mと発熱体Mの両端に接合された端部E、Eにより構成される。
本発明に係る耐食性炭化珪素発熱体は、例えば図1に示す上記発熱部Mとして使用され、この場合、発熱部Mは、通常、同図に示すように中空円筒形状を有している。
FIG. 1 is a schematic diagram showing an example of a form of a corrosion-resistant silicon carbide heating element according to the present invention. It is composed of E and E.
A corrosion-resistant silicon carbide heating element according to the present invention is used, for example, as the heat generating portion M shown in FIG.

本発明に係る耐食性炭化珪素発熱体は、炭化珪素製基材と、炭化珪素製基材の少なくとも一部の表面に設けられた保護膜とを有している。 A corrosion-resistant silicon carbide heating element according to the present invention includes a silicon carbide substrate and a protective film provided on at least a portion of the silicon carbide substrate.

本発明に係る耐食性炭化珪素発熱体において、保護膜は、Ybを、25~85質量%含有するものであり、25~75質量%含有するものであることが好ましく、25~60質量%含有するものであることがより好ましい。 In the corrosion-resistant silicon carbide heating element according to the present invention, the protective film contains Yb 2 O 3 in an amount of 25 to 85% by mass, preferably 25 to 75% by mass, more preferably 25 to 60% by mass. % is more preferable.

本発明に係る耐食性炭化珪素発熱体において、保護膜は、YbSiOを、10~50質量%含有するものであり、20~50質量%含有するものであることが好ましく、30~50質量%含有するものであることがより好ましい。 In the corrosion-resistant silicon carbide heating element according to the present invention, the protective film contains Yb 2 SiO 5 in an amount of 10 to 50% by mass, preferably 20 to 50% by mass, more preferably 30 to 50% by mass. % is more preferable.

本発明に係る耐食性炭化珪素発熱体において、保護膜は、YbSiを、0~20質量%含有するものであり、5~20質量%含有するものであることが好ましく、10~20質量%含有するものであることがより好ましい。 In the corrosion-resistant silicon carbide heating element according to the present invention, the protective film contains Yb 2 Si 2 O 7 in an amount of 0 to 20% by mass, preferably 5 to 20% by mass. It is more preferable to contain 20% by mass.

本発明に係る耐食性炭化珪素発熱体において、保護膜中におけるYbSiOおよびYbSiの含有割合が、各々上記規定を満たすものであることにより、保護膜および炭化珪素製基材の熱膨張係数の差による炭化珪素製基材や保護膜の破損の発生を抑制しつつ、高温水蒸気による炭化珪素製基材の劣化を効果的に抑制することができる。 In the corrosion-resistant silicon carbide heating element according to the present invention, the content ratio of Yb 2 SiO 5 and Yb 2 Si 2 O 7 in the protective film satisfies the above stipulations, respectively, so that the protective film and the silicon carbide substrate It is possible to effectively suppress deterioration of the silicon carbide substrate due to high-temperature steam while suppressing damage to the silicon carbide substrate and the protective film due to the difference in thermal expansion coefficient.

本発明に係る耐食性炭化珪素発熱体において、保護膜は、YbSiOおよびYbSiを、合計で、10~70質量%含有するものであることが好ましく、40~70質量%含有するものであることがより好ましい。 In the corrosion-resistant silicon carbide heating element according to the present invention, the protective film preferably contains Yb 2 SiO 5 and Yb 2 Si 2 O 7 in a total content of 10 to 70% by mass, preferably 40 to 70% by mass. It is more preferable to contain.

本発明に係る耐食性炭化珪素発熱体において、保護膜中におけるYbSiOおよびYbSiの合計含有割合が、上記規定を満たすものであることによっても、保護膜および炭化珪素製基材との熱膨張係数の差による炭化珪素製基材や保護膜の破損を抑制しつつ、高温水蒸気による炭化珪素製基材の劣化をより効果的に抑制することができる。 In the corrosion-resistant silicon carbide heat generating element according to the present invention, the total content of Yb 2 SiO 5 and Yb 2 Si 2 O 7 in the protective film satisfies the above-mentioned stipulations. It is possible to more effectively suppress deterioration of the silicon carbide substrate due to high-temperature steam while suppressing damage to the silicon carbide substrate and the protective film due to a difference in coefficient of thermal expansion from that of the silicon carbide substrate.

本発明に係る耐食性炭化珪素発熱体において、保護膜は、SiOを、2~10質量%含有するものであり、5~10質量%含有するものが好ましい。 In the corrosion-resistant silicon carbide heating element according to the present invention, the protective film contains SiO 2 in an amount of 2 to 10% by mass, preferably 5 to 10% by mass.

本発明に係る耐食性炭化珪素発熱体において、保護膜は、Yb、YbSiO、YbSiおよびSiOを、合計で、37~100質量含有するものであることが好ましく、70~100質量%含有するものであることがより好ましく、Yb、YbSiO、YbSiおよびSiOのみからなることがさらに好ましい。 In the corrosion-resistant silicon carbide heating element according to the present invention, the protective film contains 37 to 100 mass of Yb 2 O 3 , Yb 2 SiO 5 , Yb 2 Si 2 O 7 and SiO 2 in total. It preferably contains 70 to 100% by mass, and more preferably consists of only Yb 2 O 3 , Yb 2 SiO 5 , Yb 2 Si 2 O 7 and SiO 2 .

本発明に係る耐食性炭化珪素発熱体において、保護膜中におけるYb、YbSiO、YbSiおよびSiOといった各構成成分の含有割合は、耐食性炭化珪素発熱体の表面に設けられた保護膜を削り取って得られた測定サンプルを用いて、以下の方法により得られる値を意味する。
(1)X線回折(XRD)スペクトルの測定
以下の条件により上記測定サンプルのX線回折(XRD)スペクトルを測定する。
X線回折装置 :(株)リガク製 全自動水平型多目的X線回折装置 SmartLab
ゴニオメーター :SmartLab
X線電圧 :40kV
X線電流 :30mA
測定角度範囲(2θ):10°~90°
測定ステップ :0.001°
走査速度 :5°/分間
(2)RIR(Reference Intensity Ratio)法による各成分の定量
(1)で得られたX線回折スペクトルデータを、(株)リガク製「統合粉末X線解析ソフトウェアPDXL2.2」を使用して解析し、ICDDカードを使用したRIR(Reference Instensity Ratio:参照強度比)法により、保護膜を構成する各成分量を特定する。
なお、Yb、YbSiO、YbSiおよびSiOのICDDカード番号は以下のとおりである。
Yb:01-075-6636
YbSiO:00-040-0386
YbSi:01-082-0734
SiO:01-083-1831
In the corrosion-resistant silicon carbide heating element according to the present invention, the content of each component such as Yb 2 O 3 , Yb 2 SiO 5 , Yb 2 Si 2 O 7 and SiO 2 in the protective film is determined by the surface of the corrosion-resistant silicon carbide heating element. means a value obtained by the following method using a measurement sample obtained by scraping off the protective film provided on the .
(1) Measurement of X-ray diffraction (XRD) spectrum The X-ray diffraction (XRD) spectrum of the measurement sample is measured under the following conditions.
X-ray diffractometer: Fully automatic horizontal multi-purpose X-ray diffractometer SmartLab manufactured by Rigaku Corporation
Goniometer: SmartLab
X-ray voltage: 40 kV
X-ray current: 30mA
Measurement angle range (2θ): 10° to 90°
Measurement step: 0.001°
Scanning speed: 5°/minute (2) Quantification of each component by RIR (Reference Intensity Ratio) method The X-ray diffraction spectrum data obtained in (1) was analyzed using Rigaku's "integrated powder X-ray analysis software PDXL2. 2”, and the RIR (Reference Intensity Ratio) method using an ICDD card specifies the amount of each component constituting the protective film.
The ICDD card numbers of Yb 2 O 3 , Yb 2 SiO 5 , Yb 2 Si 2 O 7 and SiO 2 are as follows.
Yb 2 O 3 : 01-075-6636
Yb 2 SiO 5 : 00-040-0386
Yb 2 Si 2 O 7 : 01-082-0734
SiO2 : 01-083-1831

本発明に係る耐食性炭化珪素発熱体において、保護膜は、炭化珪素製基材の少なくとも一部の表面に設けられており、その表面の36~100%の範囲に設けられていることが好ましい。
本発明に係る耐食性炭化珪素発熱体が中空円筒形状を有するものである場合、保護膜は、中空円筒状の炭化珪素製基材の外周面全体に設けられていることが好ましく、中空円筒状の炭化珪素製基材の外周面全体および内周面全体に設けられていることがより好ましい。
In the corrosion-resistant silicon carbide heating element according to the present invention, the protective film is provided on at least a part of the surface of the silicon carbide substrate, and preferably covers 36 to 100% of the surface.
When the corrosion-resistant silicon carbide heating element according to the present invention has a hollow cylindrical shape, the protective film is preferably provided on the entire outer peripheral surface of the hollow cylindrical silicon carbide substrate. More preferably, they are provided on the entire outer peripheral surface and the entire inner peripheral surface of the silicon carbide substrate.

本発明に係る耐食性炭化珪素発熱体において、保護膜の厚みは、30~200μmであることが好ましく、50~200μmであることがより好ましい。 In the corrosion-resistant silicon carbide heating element according to the present invention, the protective film preferably has a thickness of 30 to 200 μm, more preferably 50 to 200 μm.

本発明に係る耐食性炭化珪素発熱体において、保護膜の厚みが上記範囲内にあることにより、高温水蒸気に対する耐食性を長期間に亘って容易に発揮することができる。 In the corrosion-resistant silicon carbide heating element according to the present invention, since the thickness of the protective film is within the above range, it is possible to easily exhibit corrosion resistance against high-temperature steam over a long period of time.

なお、本出願書類において、上記保護膜の厚みの範囲の下限値および上限値は、各々、本発明に係る耐食性炭化珪素発熱体の垂直断面を走査型電子顕微鏡で10箇所観察したときにおける、各観察画像における保護膜の最小膜厚の算術平均値および保護膜の最大膜厚の算術平均値を意味する。 In the present application documents, the lower limit and upper limit of the range of the thickness of the protective film are each obtained by observing the vertical cross section of the corrosion-resistant silicon carbide heating element according to the present invention at 10 locations with a scanning electron microscope. It means the arithmetic average value of the minimum film thickness of the protective film and the arithmetic average value of the maximum film thickness of the protective film in the observed image.

本発明に係る耐食性炭化珪素発熱体において、炭化珪素製基材は、炭化珪素の含有割合が、98質量%以上(98~100質量%)であるものが好ましく、99質量%以上(99~100質量%)であるものがより好ましく、100質量%であるものがさらに好ましい。
本発明に係る耐食性炭化珪素発熱体において、炭化珪素製基材を構成する炭化珪素の含有割合が上記規定を満たすものであることにより、被処理物を高い効率で加熱処理することができる。
In the corrosion-resistant silicon carbide heating element according to the present invention, the silicon carbide base material preferably has a silicon carbide content of 98% by mass or more (98 to 100% by mass), and preferably 99% by mass or more (99 to 100% by mass). % by mass), more preferably 100% by mass.
In the corrosion-resistant silicon carbide heating element according to the present invention, since the content of silicon carbide constituting the silicon carbide substrate satisfies the above-described regulation, the object to be treated can be heat-treated with high efficiency.

本発明に係る耐食性炭化珪素発熱体において、炭化珪素製基材中の炭化珪素の含有割合は、耐食性炭化珪素発熱体を構成する炭化珪素製基材を所定量削り取って測定サンプルとした上で、JIS R 6124.14備考における「炭化けい素の定量方法」の規定により測定される値を意味する。 In the corrosion-resistant silicon carbide heating element according to the present invention, the content ratio of silicon carbide in the silicon carbide base material is obtained by scraping off a predetermined amount of the silicon carbide base material constituting the corrosion-resistant silicon carbide heating element to obtain a measurement sample. It means a value measured according to the provisions of "Method for quantifying silicon carbide" in the remarks of JIS R 6124.14.

本発明に係る耐食性炭化珪素発熱体において、炭化珪素製基材は、表面に複数の細孔を有するものが適当であり、当該細孔の平均細孔径は、1~30μmであることが好ましく、5~30μmであることがより好ましく、20~30μmであることがさらに好ましい。 In the corrosion-resistant silicon carbide heating element according to the present invention, the silicon carbide substrate suitably has a plurality of pores on its surface, and the pores preferably have an average pore diameter of 1 to 30 μm. It is more preferably 5 to 30 μm, even more preferably 20 to 30 μm.

本発明に係る耐食性炭化珪素発熱体において、炭化珪素製基材が、表面に上記規定を満たす複数の細孔を有するものであることにより、保護膜の一部が炭化珪素基材の内部に侵入し、いわゆるアンカー効果により、炭化珪素製基材に対する保護膜の強固な密着性を容易に発揮することができる。 In the corrosion-resistant silicon carbide heat generating element according to the present invention, the silicon carbide substrate has a plurality of pores that satisfy the above-mentioned regulations on the surface, so that part of the protective film penetrates into the silicon carbide substrate. However, due to the so-called anchor effect, the strong adhesion of the protective film to the silicon carbide substrate can be easily exhibited.

なお、本発明に係る耐食性炭化珪素発熱体において、炭化珪素製基材表面における平均細孔径は、耐食性炭化珪素発熱体から切り出した炭化珪素製基材において、JIS R 1655に規定する水銀圧入法により求められる値を意味する。 In addition, in the corrosion-resistant silicon carbide heating element according to the present invention, the average pore diameter on the surface of the silicon carbide substrate is determined by the mercury intrusion method specified in JIS R 1655 in the silicon carbide substrate cut from the corrosion-resistant silicon carbide heating element. Means the desired value.

本発明に係る耐食性炭化珪素発熱体において、炭化珪素製基材は、開孔率が10%以上であるものが好ましく、10~50%であるものがより好ましく、10~30%であるものがさらに好ましい。 In the corrosion-resistant silicon carbide heating element according to the present invention, the silicon carbide substrate preferably has a porosity of 10% or more, more preferably 10 to 50%, even more preferably 10 to 30%. More preferred.

本発明に係る耐食性炭化珪素発熱体において、炭化珪素製基材の開孔率が上記規定を満たすものであることにより、炭化珪素製基材に対する保護膜の密着性をより容易に向上させることができる。 In the corrosion-resistant silicon carbide heating element according to the present invention, the porosity of the silicon carbide base material satisfies the above-described regulation, so that the adhesion of the protective film to the silicon carbide base material can be more easily improved. can.

なお、本発明に係る耐食性炭化珪素発熱体において、炭化珪素製基材表面における開孔率は、耐食性炭化珪素発熱体から切り出した炭化珪素製基材において、JIS R1655に規定する水銀圧入法により求められる値を意味する。 In addition, in the corrosion-resistant silicon carbide heating element according to the present invention, the porosity of the surface of the silicon carbide substrate is determined by the mercury injection method specified in JIS R1655 in the silicon carbide substrate cut out from the corrosion-resistant silicon carbide heating element. value.

本発明に係る耐食性炭化珪素発熱体において、上記細孔径および開孔率の規定を満たす炭化珪素製基材は、例えば、炭化珪素(SiC)粉末に、バインダーおよび水を加えて捏合し、炭化珪素発熱体の発熱部の形状に対応する形状に成形し、乾燥した後、窒素ガス雰囲気中、2100~2400℃の温度で焼結することにより作製することができる。 In the corrosion-resistant silicon carbide heating element according to the present invention, the silicon carbide base material that satisfies the above regulations for pore size and porosity is obtained, for example, by adding a binder and water to silicon carbide (SiC) powder and kneading them to obtain silicon carbide. It can be produced by molding into a shape corresponding to the shape of the heating portion of the heating element, drying it, and then sintering it at a temperature of 2100 to 2400° C. in a nitrogen gas atmosphere.

図2(a)は、本発明に係る耐食性炭化珪素発熱体を構成する炭化珪素製基材の形態例を示す概略図であって、同図において、中空円筒状の炭化珪素製基材bを、その長手方向に対する垂直断面図として示している。
図2(b)は、図2(a)における破線部分の拡大図であって、同図に示すように、炭化珪素基材bの表面および内部には複数の細孔hが形成されている。
FIG. 2(a) is a schematic diagram showing an example of the form of the silicon carbide substrate constituting the corrosion-resistant silicon carbide heating element according to the present invention. , as a cross section perpendicular to its longitudinal direction.
FIG. 2(b) is an enlarged view of the dashed line portion in FIG. 2(a), and as shown in the figure, a plurality of pores h are formed on the surface and inside of the silicon carbide base material b. .

一方、図3(a)は、図2(a)に示す炭化珪素製基材bの外表面および内表面に保護膜cを設けた、本発明に係る耐食性炭化珪素発熱体の形態例を示す概略図であって、同図において、中空円筒状の耐食性炭化珪素発熱体Mは、その長手方向に対する垂直断面図として示している。
図3(b)は、図3(a)における破線部分の拡大図であって、同図に示すように、中空円筒形状を有する炭化珪素製基材bにおいて、その外周面および内周面の表面に各々設けられた保護膜cの一部は、炭化珪素基材bの表面に形成された複数の細孔h内に侵入して密着していることが分かる。
On the other hand, FIG. 3(a) shows a form example of a corrosion-resistant silicon carbide heating element according to the present invention, in which protective films c are provided on the outer and inner surfaces of the silicon carbide substrate b shown in FIG. 2(a). It is a schematic view, in which a hollow cylindrical corrosion-resistant silicon carbide heating element M is shown as a vertical cross-sectional view with respect to its longitudinal direction.
FIG. 3(b) is an enlarged view of the dashed line portion in FIG. 3(a). As shown in FIG. It can be seen that a part of the protective film c provided on each surface penetrates into and adheres to the plurality of pores h formed on the surface of the silicon carbide base material b.

本発明に係る耐食性炭化珪素発熱体は、本発明に係る製造方法により容易に製造することができる。 The corrosion-resistant silicon carbide heating element according to the present invention can be easily manufactured by the manufacturing method according to the present invention.

本発明によれば、長期間に亘って高温水蒸気に対して高い耐食性を発揮することができ、簡便かつ低コストに製造可能な耐食性炭化珪素発熱体を提供することができる。 According to the present invention, it is possible to provide a corrosion-resistant silicon carbide heating element that can exhibit high corrosion resistance against high-temperature steam for a long period of time and that can be manufactured simply and at low cost.

次に、本発明に係る耐食性炭化珪素発熱体の製造方法について説明する。
本発明に係る耐食性炭化珪素発熱体の製造方法は、本発明に係る炭化珪素発熱体を製造する方法であって、
YbとSiOとを含むスラリーを炭化珪素製基材の少なくとも一部に塗布した後、
1000~1350℃で加熱処理する
ことを特徴とするものである。
Next, a method for manufacturing a corrosion-resistant silicon carbide heating element according to the present invention will be described.
A method for manufacturing a corrosion-resistant silicon carbide heating element according to the present invention is a method for manufacturing a silicon carbide heating element according to the present invention,
After applying the slurry containing Yb 2 O 3 and SiO 2 to at least part of the silicon carbide substrate,
It is characterized by heat treatment at 1000 to 1350°C.

本発明に係る耐食性炭化珪素発熱体の製造方法において、炭化珪素製基材としては、上述したものと同様のものを挙げることができる。 In the method for manufacturing a corrosion-resistant silicon carbide heating element according to the present invention, the silicon carbide substrate may be the same as those described above.

本発明に係る耐食性炭化珪素発熱体の製造方法においては、YbとSiOとを含むスラリーを炭化珪素製基材の少なくとも一部に塗布する。 In the method of manufacturing a corrosion-resistant silicon carbide heating element according to the present invention, a slurry containing Yb 2 O 3 and SiO 2 is applied to at least a portion of a silicon carbide substrate.

本発明に係る耐食性炭化珪素発熱体の製造方法において、塗布液となるスラリー中におけるYb濃度およびSiO濃度は、各々、得ようとする保護膜中の各成分濃度に応じて適宜調整すればよい。 In the manufacturing method of the corrosion-resistant silicon carbide heating element according to the present invention, the Yb 2 O 3 concentration and the SiO 2 concentration in the slurry that becomes the coating liquid are adjusted appropriately according to the concentration of each component in the protective film to be obtained. do it.

本発明に係る耐食性炭化珪素発熱体の製造方法において、塗布液となるスラリー中におけるYb濃度は、固形分換算で、65~80質量%が好ましい。 In the method for manufacturing the corrosion-resistant silicon carbide heating element according to the present invention, the concentration of Yb 2 O 3 in the slurry serving as the coating liquid is preferably 65 to 80% by mass in terms of solid content.

本発明に係る耐食性炭化珪素発熱体の製造方法において、塗布液となるスラリー中におけるSiO濃度は、固形分換算で、7~14質量%が好ましい。 In the method for manufacturing the corrosion-resistant silicon carbide heating element according to the present invention, the SiO 2 concentration in the slurry serving as the coating liquid is preferably 7 to 14% by mass in terms of solid content.

本発明に係る耐食性炭化珪素発熱体の製造方法において、塗布液となるスラリー中には、YbおよびSiO以外の成分として、塗布液中の成分分散を目的とした分散剤や、加熱処理前(焼付前)における塗膜強度の確保を目的とするバインダー(例えば、アクリルエマルジョン)等を含有することができる。 In the method for manufacturing the corrosion-resistant silicon carbide heating element according to the present invention, the slurry serving as the coating liquid contains, as components other than Yb 2 O 3 and SiO 2 , a dispersant for the purpose of dispersing the components in the coating liquid, and a heating element. A binder (for example, an acrylic emulsion) or the like can be included for the purpose of ensuring the strength of the coating film before processing (before baking).

スラリーを構成する分散媒としては、特に制限されないが、環境面や作業性を考慮した場合、水であることが好ましい。 The dispersion medium that constitutes the slurry is not particularly limited, but water is preferable in consideration of the environment and workability.

本発明に係る耐食性炭化珪素発熱体の製造方法において、塗布液となるスラリーは、各構成成分を分散媒中で混合することにより調製することができる。
上記スラリー中の固形分濃度は、70~80質量%であることが好ましい。
また、上記スラリーの粘度は、100~800Pa・sであることが好ましい。
In the method of manufacturing the corrosion-resistant silicon carbide heating element according to the present invention, the slurry that serves as the coating liquid can be prepared by mixing each constituent component in the dispersion medium.
The solid content concentration in the slurry is preferably 70 to 80% by mass.
Moreover, the viscosity of the slurry is preferably 100 to 800 Pa·s.

本発明に係る耐食性炭化珪素発熱体の製造方法において、塗布液となるスラリーを炭化珪素製基材に塗布する方法も特に制限されず、刷毛塗りによりスラリーを塗布する刷毛塗り法の他、スラリーを吹き付けるスプレー法や、スラリー中に炭化珪素製基材を浸漬するディッピング法により塗布してもよい。 In the method of manufacturing the corrosion-resistant silicon carbide heating element according to the present invention, the method of applying the slurry as the coating liquid to the silicon carbide substrate is not particularly limited. It may be applied by a spray method of blowing, or a dipping method of immersing the silicon carbide substrate in the slurry.

本発明に係る耐食性炭化珪素発熱体の製造方法においては、YbとSiOとを含むスラリーを、炭化珪素製基材の少なくとも一部に塗布する。
スラリーを塗布する位置や範囲は、得ようとする保護膜の形成位置や範囲に対応して決定すればよい。
In the method of manufacturing a corrosion-resistant silicon carbide heating element according to the present invention, a slurry containing Yb 2 O 3 and SiO 2 is applied to at least a portion of a silicon carbide substrate.
The position and range of application of the slurry may be determined according to the formation position and range of the protective film to be obtained.

本発明に係る耐食性炭化珪素発熱体の製造方法において、中空円筒形状を有する炭化珪素製基材の外周面に保護膜を設けようとする場合は、刷毛塗り法またはスプレー法によりスラリーを塗布することが好ましく、中空円筒形状を有する炭化珪素製基材の外周面および内周面の両者に保護膜を設けようとする場合は、ディッピング法によりスラリーを塗布することが好ましい。 In the method for manufacturing a corrosion-resistant silicon carbide heating element according to the present invention, when a protective film is to be provided on the outer peripheral surface of the silicon carbide substrate having a hollow cylindrical shape, slurry is applied by a brush coating method or a spray method. is preferred, and when protective films are to be provided on both the outer peripheral surface and the inner peripheral surface of the silicon carbide substrate having a hollow cylindrical shape, it is preferable to apply the slurry by a dipping method.

本発明に係る耐食性炭化珪素発熱体の製造方法においては、所定厚みの保護膜を得る上で、複数回塗布処理を施してもよい。 In the method of manufacturing the corrosion-resistant silicon carbide heating element according to the present invention, the coating process may be performed multiple times in order to obtain a protective film having a predetermined thickness.

本発明に係る耐食性炭化珪素発熱体の製造方法において、上記スラリーを塗布した後、適宜乾燥処理することが好ましい。 In the method for manufacturing a corrosion-resistant silicon carbide heating element according to the present invention, it is preferable to appropriately dry the slurry after applying the slurry.

本発明に係る耐食性炭化珪素発熱体の製造方法においては、表面の少なくとも一部に上記スラリーが塗布された炭化珪素製基材を、1000~1350℃で加熱処理する。 In the method for manufacturing a corrosion-resistant silicon carbide heating element according to the present invention, the silicon carbide substrate having the slurry applied to at least a portion of the surface thereof is heat-treated at 1000 to 1350.degree.

本発明に係る耐食性炭化珪素発熱体の製造方法において、表面の少なくとも一部に上記スラリーが塗布された炭化珪素製基材を加熱処理する温度は、1000~1350℃であり、1100~1350℃であることが好ましく、1250~1350℃であることがより好ましい。 In the method for manufacturing a corrosion-resistant silicon carbide heating element according to the present invention, the temperature for heat-treating the silicon carbide substrate having the slurry applied to at least a portion of the surface is 1000 to 1350°C, and 1100 to 1350°C. It is preferably 1250 to 1350°C, more preferably 1250 to 1350°C.

本発明に係る耐食性炭化珪素発熱体の製造方法において、表面の少なくとも一部に上記スラリーが塗布された炭化珪素製基材を加熱処理する温度が上記範囲内にあることにより、炭化珪素製基材の耐熱温度を超えることによる基材の破損を抑制しつつ、特殊な加熱装置を使用することなく、簡便かつ低コストに保護膜を形成することができる。 In the method for manufacturing a corrosion-resistant silicon carbide heating element according to the present invention, the silicon carbide base material having the slurry applied to at least a portion of the surface thereof is heat-treated at a temperature within the above range. It is possible to form a protective film simply and at low cost without using a special heating device while suppressing breakage of the base material due to exceeding the heat-resistant temperature of .

本発明に係る耐食性炭化珪素発熱体の製造方法において、表面の少なくとも一部に上記スラリーが塗布された炭化珪素製基材を加熱処理する時間は、1~30分間であることが好ましく、3~20分間であることがより好ましく、5~10分間であることがさらに好ましい。 In the method for manufacturing a corrosion-resistant silicon carbide heating element according to the present invention, the time for heat-treating the silicon carbide substrate having the slurry applied to at least part of the surface thereof is preferably 1 to 30 minutes, and preferably 3 to 30 minutes. 20 minutes is more preferable, and 5 to 10 minutes is even more preferable.

本発明に係る耐食性炭化珪素発熱体の製造方法において、表面の少なくとも一部に上記スラリーが塗布された炭化珪素製基材を加熱処理する時間が上記範囲内にあることにより、炭化珪素製基材に対する密着性(定着性)に優れた保護膜を容易に形成することができる。 In the method for manufacturing a corrosion-resistant silicon carbide heating element according to the present invention, the silicon carbide base material having the slurry applied to at least a part of the surface thereof is heat-treated for a time within the above range, whereby the silicon carbide base material is It is possible to easily form a protective film having excellent adhesion (fixability) to the surface.

本発明に係る耐食性炭化珪素発熱体の製造方法において、表面の少なくとも一部に上記スラリーが塗布された炭化珪素製基材を加熱処理する際の雰囲気は、特に制限されないが、不活性ガス雰囲気であることが好ましく、不活性ガスとしては、窒素ガス、アルゴンガス、ヘリウムガス等を挙げることができ、窒素ガスであることが好ましい。 In the method for manufacturing a corrosion-resistant silicon carbide heating element according to the present invention, the atmosphere in which the silicon carbide base material having the slurry applied to at least a part of the surface thereof is heat-treated is not particularly limited, but an inert gas atmosphere. Examples of the inert gas include nitrogen gas, argon gas, helium gas, etc. Nitrogen gas is preferred.

本発明に係る耐食性炭化珪素発熱体の製造方法において、表面の少なくとも一部に上記スラリーが塗布された炭化珪素製基材を加熱処理する際の雰囲気中の水分濃度は、1000質量ppm以下であることが好ましい。 In the method for manufacturing a corrosion-resistant silicon carbide heating element according to the present invention, the moisture concentration in the atmosphere when heat-treating the silicon carbide substrate having the slurry applied to at least a portion of the surface thereof is 1000 ppm by mass or less. is preferred.

本発明によれば、炭化珪素性基材の表面に定着性に優れた珪酸イッテルビウム含有膜を有する耐食性炭化珪素発熱体を簡便かつ低コストに製造可能な方法を提供することができる。 According to the present invention, it is possible to provide a method capable of simply and inexpensively producing a corrosion-resistant silicon carbide heating element having a ytterbium silicate-containing film with excellent fixability on the surface of a silicon carbide substrate.

以下、本発明を実施例および比較例によりさらに詳細に説明するが、本発明は以下の例により何ら限定されるものではない。 EXAMPLES The present invention will be described in more detail below with reference to examples and comparative examples, but the present invention is not limited by the following examples.

(実施例1)
(1)基材接合物の形成
炭化珪素製基材として、外径20mm×内径10mm×全長300mmの中空円筒形状を有する再結晶SiC質基材(炭化珪素の含有割合98質量%、表面に分布する複数の細孔の平均細孔径が20μm、気孔率(開孔率)23%)を用意した。
上記炭化珪素質基材の両端に、外径20mm×内径10mm×全長300mmの中空円筒形状を有するSiC/C質端部を各々接合することにより、塗布膜の形成対象となる基材接合体(外径20mm×内径10mm×全長900mm)を得た。
(2)コート液の調製
W.R.グレース社製コロイダルシリカ懸濁液(グレード:ルドックスHS-40)を17.5質量%、日本イットリウム(株)製Yb粉末(グレード:3N)を65質量%およびイオン交換水を17.5質量%となるように各々量り取り、乳鉢内で5分間混合することにより、スラリー状の原料混合物を得た。
得られた原料混合物に対し、さらに、バインダーとして、信越化学工業(株)製メトローズ(グレード:SM-400)の1.5質量%水溶液を、上記原料混合物が90質量%、上記分散剤が10質量%となるように混合して、スラリー状のコート液を調製した。
(3)コート液の塗布
(1)で作製した基材接合体を、その全体が(2)で調製したコート液中に浸漬するように90分間静置することにより、基材接合体の外周面および内周面の全体に上記コート液を含浸させた。
(4)加熱処理
上記コート液から基材接合体を引き上げて充分乾燥させた後、熱処理炉中で、大気雰囲気下、1300℃で4分間加熱して焼き付け処理を行うことにより、耐食性炭化珪素発熱体の両端に端部が接合された接合物を得た。
上記接合物の外周面および内周面の全体には、保護膜が形成され剥離等を生じていないことが視認でき、この保護膜の一部を削りとって測定したところ、当該保護膜は、Yb26質量%、YbSiO48質量%、YbSi17質量%、SiO9質量%を含有するものであった。
また、上記接合物を構成する耐食性炭化珪素発熱体の一部を切り出して、図4左側に概略図で示すように、その断面における外周面近傍と中央部を走査型電子顕微鏡(SEM)で観察し、得られた各観察画像を図4の右側に示す。
また、上記耐食性炭化珪素発熱体の外周面近傍および中央部におけるSEM観察画像(倍率:100倍、反射電子像)の拡大図を、各々図5および図6に示す。
図6より、炭化珪素質基材には、図中、濃い黒色で示される細孔が形成されていることが分かる。
また、図5より、灰色で示される炭化珪素質基材の外周面には白色で示される保護膜が層状に形成されていること、この保護膜はその一部が炭化珪素製基材表面に形成されている複数の細孔内に侵入して同基材に密着して形成されていることが分かる。
上記保護膜の厚さは35~190μmであった。
(Example 1)
(1) Formation of Substrate Bonded Material As a silicon carbide substrate, a recrystallized SiC substrate having a hollow cylindrical shape with an outer diameter of 20 mm, an inner diameter of 10 mm, and a total length of 300 mm (content of silicon carbide: 98% by mass, distributed on the surface) An average pore diameter of 20 μm and a porosity (opening ratio) of 23%) were prepared.
By joining SiC/C end portions having a hollow cylindrical shape with an outer diameter of 20 mm, an inner diameter of 10 mm, and a total length of 300 mm to both ends of the silicon carbide base material, the base material joined body ( 20 mm outer diameter x 10 mm inner diameter x 900 mm total length).
(2) Preparation of Coating LiquidW. R. 17.5% by mass of colloidal silica suspension (grade: Ludox HS-40) manufactured by Grace, 65% by mass of Yb 2 O 3 powder (grade: 3N) manufactured by Nippon Yttrium Co., Ltd., and 17.5% by mass of deionized water. A raw material mixture in the form of slurry was obtained by weighing and mixing each material in a mortar for 5 minutes so as to obtain 5% by mass.
To the obtained raw material mixture, further, as a binder, a 1.5% by mass aqueous solution of Metolose manufactured by Shin-Etsu Chemical Co., Ltd. (grade: SM-400), 90% by mass of the raw material mixture, and 10% of the dispersant. A slurry-like coating liquid was prepared by mixing so as to obtain a mass %.
(3) Application of coating liquid The substrate bonded body prepared in (1) was allowed to stand still for 90 minutes so that the entire substrate bonded body was immersed in the coating liquid prepared in (2). The entire surface and inner peripheral surface were impregnated with the coating liquid.
(4) Heat treatment After the substrate bonded body is pulled out of the coating liquid and sufficiently dried, it is baked in an air atmosphere at 1300° C. for 4 minutes in a heat treatment furnace to obtain corrosion-resistant silicon carbide heat generation. A joint was obtained in which the ends were joined to both ends of the body.
A protective film was formed on the entire outer peripheral surface and the inner peripheral surface of the joint, and it was visually confirmed that no peeling or the like had occurred. It contained 26% by mass of Yb 2 O 3 , 48% by mass of Yb 2 SiO 5 , 17% by mass of Yb 2 Si 2 O 7 and 9% by mass of SiO 2 .
Also, a part of the corrosion-resistant silicon carbide heating element constituting the above-mentioned joint was cut out, and as shown in the schematic diagram on the left side of FIG. Each observation image obtained is shown on the right side of FIG.
5 and 6 are enlarged views of SEM observation images (magnification: 100 times, backscattered electron images) in the vicinity of the outer peripheral surface and in the central portion of the corrosion-resistant silicon carbide heating element.
From FIG. 6, it can be seen that the silicon carbide base material has pores shown in dark black in the figure.
Further, from FIG. 5, a protective film shown in white is formed in layers on the outer peripheral surface of the silicon carbide substrate shown in gray, and a part of this protective film is formed on the surface of the silicon carbide substrate. It can be seen that it is formed in close contact with the base material by entering into the plurality of formed pores.
The thickness of the protective film was 35 to 190 μm.

(実施例2)
実施例1(4)において、1300℃で4分間加熱することにより焼き付け処理を行ったことに代えて1100℃で4分間加熱することにより焼き付け処理を行った以外は、実施例1と同様にして、耐食性炭化珪素発熱体の両端に端部が接合された接合物を得た。
上記接合物の外周面および内周面の全体には、保護膜が形成され剥離等を生じていないことが視認でき、この保護膜の一部を削りとって測定したところ、当該保護膜は、Yb80質量%、YbSiO13質量%、YbSi3質量%、SiO4質量%を含有するものであった。
また、上記耐食性炭化珪素発熱体の一部を切り出して、その断面を走査型電子顕微鏡で観察したところ、表面に厚さ50~120μmの保護膜が形成されており、この保護膜はその一部が炭化珪素製基材表面の細孔に侵入して炭化珪素製基材に密着して形成されていることを確認できた。
(Example 2)
In the same manner as in Example 1, except that in Example 1 (4), the baking treatment was performed by heating at 1100° C. for 4 minutes instead of performing the baking treatment by heating at 1300° C. for 4 minutes. , a bonded product in which the ends were bonded to both ends of the corrosion-resistant silicon carbide heating element was obtained.
A protective film was formed on the entire outer peripheral surface and the inner peripheral surface of the joint, and it was visually confirmed that no peeling or the like had occurred. It contained 80% by mass of Yb 2 O 3 , 13% by mass of Yb 2 SiO 5 , 3% by mass of Yb 2 Si 2 O 7 and 4% by mass of SiO 2 .
A part of the corrosion-resistant silicon carbide heating element was cut out and its cross section was observed with a scanning electron microscope. entered the pores on the surface of the silicon carbide substrate and was formed in close contact with the silicon carbide substrate.

(比較例1)
実施例1において、「(2)コート液の調製」工程および「(3)コート液の塗布」工程を行うことなく、「(1)基材接合物の形成」で作製した基材接合物を、そのまま「(4)加熱処理」工程に供した以外は、実施例1と同様に処理することにより、炭化珪素発熱体の両端に端部が接合された接合物を得た。
(Comparative example 1)
In Example 1, the substrate-bonded product prepared in "(1) Formation of substrate-bonded product" was performed without performing the "(2) Coating liquid preparation" step and the "(3) Coating liquid application" step. , and a bonded product in which the ends were bonded to both ends of the silicon carbide heating element was obtained by treating in the same manner as in Example 1, except that the silicon carbide heating element was directly subjected to the "(4) heat treatment" step.

(比較例2)
実施例1の「(2)コート液の調製」工程において、W.R.グレース社製コロイダルシリカ懸濁液(グレード:ルドックスHS-40)が38.9質量%、日本イットリウム(株)製Yb粉末(グレード:3N)が48.1質量%、イオン交換水が13.0質量%となるように各々量り取った以外は、実施例1と同様に処理することにより、炭化珪素発熱体の両端に端部が接合された接合物を得た。
上記接合物の外周面および内周面には保護膜が形成されたが、部分的に定着しておらず、剥離を生じていることが視認された。保護膜のうち定着した部分を削りとって測定したところ、当該保護膜は、Yb0質量%(検出無し)、YbSiO79質量%、YbSi4質量%、SiO17質量%を含有するものであった。
また、上記耐食性炭化珪素発熱体のうち、保護膜が定着した箇所の一部を切り出して、その断面を走査型電子顕微鏡で観察したところ、表面に厚さ10~25μmの保護膜が形成されていた。
各実施例および比較例で得られた耐食性炭化珪素発熱体および炭化珪素発熱体の保護膜の特性を表1に示す。
表1中、「保護膜定着性」については、保護膜が炭化珪素質基材の外周面および内周面の全体に形成され剥離を生じていないことが視認される場合は「〇」、保護膜が炭化珪素質基材の外周面および内周面の一部において剥離を生じていることが視認される場合は「×」として評価した。
(Comparative example 2)
In the step of "(2) preparation of coating liquid" in Example 1, W.W. R. Grace's colloidal silica suspension (grade: Ludox HS-40) is 38.9% by mass, Nippon Yttrium Co., Ltd.'s Yb 2 O 3 powder (grade: 3N) is 48.1% by mass, and ion-exchanged water is A bonded product in which the ends were bonded to both ends of the silicon carbide heating element was obtained by the same treatment as in Example 1, except that each was weighed out so as to be 13.0% by mass.
A protective film was formed on the outer and inner peripheral surfaces of the bonded product, but it was visually observed that it was partially not fixed and peeled off. When the fixed portion of the protective film was scraped off and measured, the protective film contained Yb 2 O 3 0% by mass (not detected), Yb 2 SiO 5 79% by mass, Yb 2 Si 2 O 7 4% by mass, It contained 17% by mass of SiO 2 .
In addition, when a portion of the corrosion-resistant silicon carbide heating element where the protective film was fixed was cut out and its cross section was observed with a scanning electron microscope, a protective film having a thickness of 10 to 25 μm was formed on the surface. rice field.
Table 1 shows the characteristics of the corrosion-resistant silicon carbide heating element and the protective film of the silicon carbide heating element obtained in each example and comparative example.
In Table 1, regarding "protective film fixability", if the protective film is formed on the entire outer peripheral surface and inner peripheral surface of the silicon carbide base material and it is visually observed that no peeling has occurred, "O" is given. When peeling of the film was observed on part of the outer peripheral surface and the inner peripheral surface of the silicon carbide base material, it was evaluated as "x".

Figure 2023092016000001
Figure 2023092016000001

<耐水蒸気能力の評価>
実施例1および比較例1に記載の方法で得られた接合物を各々2本づつ用意した(以後、実施例1記載の方法で得られた接合物を実施例1(a)および実施例1(b)に係る接合物と称し、比較例1記載の方法で得られた接合物を比較例1(a)および比較例1(b)に係る接合物と称する)。上記各接合物の端部に電極を設け、通電可能な状態とした。
上記通電可能な状態とした各接合物を、耐食性炭化珪素発熱体ないしは炭化珪素発熱体が函型試験炉(炉内幅180mm、炉内高さ180mm、炉内長300mm)内に収容されるように、各々配置した。
上記各接合物に通電し、上記各接合物の耐食性炭化珪素発熱体ないしは炭化珪素発熱体の表面負荷密度が2W/cmになるように保持しつつ、函型試験炉の炉内温度が1050℃、電気炉内の水蒸気量が82.8g/m(露点50℃)となるように制御しつつ、連続運転を行った。
上記連続運転において、通電開始時における接合物の抵抗値を100%としたときの抵抗値の増加割合(抵抗増加率)を測定した。
<Evaluation of water vapor resistance>
Two each of the bonded products obtained by the method described in Example 1 and Comparative Example 1 were prepared (hereafter, the bonded products obtained by the method described in Example 1 were referred to as Example 1(a) and Example 1 (b), and the bonded products obtained by the method described in Comparative Example 1 are referred to as bonded products according to Comparative Examples 1(a) and 1(b)). An electrode was provided at the end of each of the joints to make it possible to conduct electricity.
Each of the joints in the energizable state was placed in a box-type test furnace (furnace width: 180 mm, furnace height: 180 mm, furnace length: 300 mm). , respectively.
Electricity is applied to each joint, and the temperature in the box test furnace is raised to 1050 while maintaining the surface load density of the corrosion-resistant silicon carbide heating element or silicon carbide heating element of each joint at 2 W/cm 2 . C. and the amount of water vapor in the electric furnace was controlled to 82.8 g/ m.sup.3 (dew point 50.degree. C.).
In the above continuous operation, the rate of increase in resistance value (resistance increase rate) was measured when the resistance value of the joint at the start of energization was taken as 100%.

図7より、実施例1(a)および実施例1(b)に係る接合物を構成する耐食性炭化珪素発熱体は、炭化珪素製基材の表面に特定組成を有する保護膜が設けられたものであることから、炉内で2000時間連続して運転しても、抵抗増加率が30%以内に抑制されており、炭化珪素発熱体の高温水蒸気による腐食劣化を長期に亘って抑制し得るものであることが分かる。 As shown in FIG. 7, the corrosion-resistant silicon carbide heating elements constituting the bonded products according to Examples 1(a) and 1(b) are those in which a protective film having a specific composition is provided on the surface of the silicon carbide substrate. Therefore, even if the furnace is continuously operated for 2000 hours, the resistance increase rate is suppressed to within 30%, and the corrosion deterioration of the silicon carbide heating element due to high-temperature steam can be suppressed over a long period of time. It turns out that

一方、図7より、比較例1(a)および比較例1(b)に係る接合物を構成する炭化珪素発熱体は、表面に特定組成を有する保護膜が設けられていないことから、炉内で連続して運転したときに、運転時間が1000時間を超える付近で抵抗増加率が急激に上昇し、時間経過とともに抵抗増加率が上昇することから、炭化珪素発熱体の高温水蒸気による腐食劣化を抑制し得ないものであることが分かる。 On the other hand, as shown in FIG. 7, the silicon carbide heat generating elements constituting the bonded products according to Comparative Examples 1(a) and 1(b) are not provided with a protective film having a specific composition on the surface, so that the , the resistance increase rate rises sharply when the operating time exceeds 1000 hours, and the resistance increase rate rises with the passage of time. It turns out to be irrepressible.

本発明によれば、炭化珪素性基材の表面に定着性に優れた珪酸イッテルビウム含有膜を保護膜として有する、簡便かつ低コストに製造可能な新規な耐食性炭化珪素発熱体を提供することができるとともに、耐食性炭化珪素発熱体の製造方法を提供することができる。 ADVANTAGE OF THE INVENTION According to the present invention, it is possible to provide a novel corrosion-resistant silicon carbide heating element that has an ytterbium silicate-containing film with excellent fixability as a protective film on the surface of a silicon carbide base material and that can be easily manufactured at low cost. In addition, it is possible to provide a method for manufacturing a corrosion-resistant silicon carbide heating element.

Claims (4)

炭化珪素製基材の少なくとも一部の表面に保護膜が設けられた耐食性炭化珪素発熱体であって、前記保護膜が、
Yb 25~85質量%、
YbSiO10~50質量%、
YbSi0~20質量%、
SiO 2~10質量%
を含有することを特徴とする耐食性炭化珪素発熱体。
A corrosion-resistant silicon carbide heating element provided with a protective film on at least a part of the surface of a silicon carbide substrate, the protective film comprising:
Yb 2 O 3 25-85% by mass,
Yb 2 SiO 5 10 to 50% by mass,
Yb 2 Si 2 O 7 0 to 20% by mass,
SiO2 2 to 10% by mass
A corrosion-resistant silicon carbide heating element comprising:
前記保護膜の厚みが30~200μmである請求項1に記載の耐食性炭化珪素発熱体。 2. The corrosion-resistant silicon carbide heating element according to claim 1, wherein said protective film has a thickness of 30 to 200 μm. 前記炭化珪素製基材が、炭化珪素の含有割合が98質量%以上であり、表面に平均細孔径が1~30μmである複数の細孔を有し、開孔率が10%以上のものである請求項1または請求項2に記載の耐食性炭化珪素発熱体。 The silicon carbide substrate has a silicon carbide content of 98% by mass or more, has a plurality of pores with an average pore diameter of 1 to 30 μm on the surface, and has a porosity of 10% or more. A corrosion-resistant silicon carbide heating element according to claim 1 or claim 2. 請求項1~請求項3のいずれかに記載の耐食性炭化珪素発熱体を製造する方法であって、
YbとSiOとを含むスラリーを炭化珪素製基材の少なくとも一部に塗布した後、
1000~1350℃で加熱処理する
ことを特徴とする耐食性炭化珪素発熱体の製造方法。










A method for manufacturing a corrosion-resistant silicon carbide heating element according to any one of claims 1 to 3,
After applying the slurry containing Yb 2 O 3 and SiO 2 to at least part of the silicon carbide substrate,
A method for manufacturing a corrosion-resistant silicon carbide heating element, characterized by heat-treating at 1000 to 1350°C.










JP2021206963A 2021-12-21 2021-12-21 Corrosion-resistant silicon carbide heating elements and method for manufacturing the same Pending JP2023092016A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2021206963A JP2023092016A (en) 2021-12-21 2021-12-21 Corrosion-resistant silicon carbide heating elements and method for manufacturing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2021206963A JP2023092016A (en) 2021-12-21 2021-12-21 Corrosion-resistant silicon carbide heating elements and method for manufacturing the same

Publications (1)

Publication Number Publication Date
JP2023092016A true JP2023092016A (en) 2023-07-03

Family

ID=86995882

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2021206963A Pending JP2023092016A (en) 2021-12-21 2021-12-21 Corrosion-resistant silicon carbide heating elements and method for manufacturing the same

Country Status (1)

Country Link
JP (1) JP2023092016A (en)

Similar Documents

Publication Publication Date Title
JPWO2017082147A1 (en) Coating formed on a graphite substrate and method for producing the same
KR102149166B1 (en) Coating liquid and method for producing refractory material having coating layer
WO2021065355A1 (en) Refractory material
JP5709007B2 (en) Heat storage body for heat storage type burner and method for manufacturing heat storage body for heat storage type burner
JP6208512B2 (en) Ceramic joint
JP2023092016A (en) Corrosion-resistant silicon carbide heating elements and method for manufacturing the same
JP6253554B2 (en) Composite refractory and method for producing the same
US5268199A (en) Alkali corrosion resistant coatings and ceramic foams having superfine open cell structure and method of processing
JP5339321B2 (en) Oxidation-resistant graphite material and method for producing the same
JP4507148B2 (en) Heat treatment member made of mullite sintered body
US20180112081A1 (en) Composite thermoelectric material and its manufacturing method
JP2006514912A (en) Silicon carbide ceramic member having an oxide layer
US2872724A (en) Oxidized chromium-alumina metal ceramic protective tube
JPH11211357A (en) Inorganic fiber block and furnace
JP6407180B2 (en) Honeycomb structure and method for manufacturing honeycomb structure
WO2016198917A1 (en) Refractories for applications in combustion chambers intended for producing energy and/or waste disposal
JP4583788B2 (en) Thermal insulation structure
JP2014051424A (en) Member for heat treatment and vessel for heat treatment including the same
JP2009155124A (en) Refractory formed body for treating radioactive waste and method for producing the same
WO2016059736A1 (en) Hearth roll for continuous annealing furnaces, and method for manufacturing same
Chen et al. Novel Al/Al2O3 composite foams by direct oxidation conversion
Shen et al. Fabrication of Si3N4–based seal coating on porous Si3N4 ceramics
JP2004299948A (en) Rare earth silicate high temperature steam corrosion preventing coating film and method of manufacturing the same
Li et al. Thin film coatings of (Ca0. 6, Mg0. 4) Zr4 (PO4) 6 on Si3N4 and SiC
JP6462807B2 (en) Ceramic joint

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20231206