JP2023091797A - casting method - Google Patents

casting method Download PDF

Info

Publication number
JP2023091797A
JP2023091797A JP2021206583A JP2021206583A JP2023091797A JP 2023091797 A JP2023091797 A JP 2023091797A JP 2021206583 A JP2021206583 A JP 2021206583A JP 2021206583 A JP2021206583 A JP 2021206583A JP 2023091797 A JP2023091797 A JP 2023091797A
Authority
JP
Japan
Prior art keywords
mold
molten metal
pressure
injection
mold cavity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2021206583A
Other languages
Japanese (ja)
Inventor
昭男 岡本
Akio Okamoto
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ube Machinery Corp Ltd
Original Assignee
Ube Machinery Corp Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ube Machinery Corp Ltd filed Critical Ube Machinery Corp Ltd
Priority to JP2021206583A priority Critical patent/JP2023091797A/en
Publication of JP2023091797A publication Critical patent/JP2023091797A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Moulds For Moulding Plastics Or The Like (AREA)

Abstract

To provide a casting method which enables clamping force class down and cycle reduction without stopping the fluidization of a molten metal in a mold cavity.SOLUTION: A casting method using a vertical casting device in which a molten metal is injection-filled into a mold cavity formed by a mold closing operation in which a movable mold comes closer to a fixed mold, controls an injection step of filling-fluidizing the molten metal into the mold cavity based on the closing position of the movable mold during the mold closing operation, a pressure increase step of increasing the density of the molten metal in the mold cavity; a pressure holding step of compensating the solidification shrinkage of the molten metal, and a cooling step of cooling the molten metal to a prescribed temperature.SELECTED DRAWING: Figure 2

Description

本発明は、固定金型に向かって可動金型が近接する型閉動作により形成される金型キャビティ内に溶湯を射出充填する、竪型鋳造装置を用いた鋳造方法に関するものである。 The present invention relates to a casting method using a vertical casting apparatus, in which molten metal is injected and filled into a mold cavity formed by a mold closing operation in which a movable mold approaches a fixed mold.

アルミニウム合金等の溶湯を金型キャビティ内に射出充填する鋳造成形に使用される鋳造装置は、横型鋳造装置と竪型鋳造装置に分類される。横型鋳造装置は、射出装置から水平方向に溶湯が射出され、水平方向から鉛直方向に溶湯の流動方向が変化して、金型キャビティ内を鉛直方向に溶湯が流動する。そのため、溶湯流動に乱れが生じやすく、空気やガスの巻き込み、ボイドやブリスター、湯ジワ、湯境、鋳バリ等の溶湯流動の乱れに起因する鋳造不良の発生が心配される。 Casting apparatuses used for casting and molding in which a molten metal such as an aluminum alloy is injected and filled into a mold cavity are classified into a horizontal casting apparatus and a vertical casting apparatus. In a horizontal casting apparatus, molten metal is horizontally injected from an injection device, the flow direction of the molten metal changes from the horizontal direction to the vertical direction, and the molten metal flows vertically in the mold cavity. Therefore, the flow of the molten metal is likely to be disturbed, and casting defects such as entrainment of air or gas, voids, blisters, wrinkles, weld boundaries, and burrs are likely to occur.

これに対して、竪型鋳造装置は、射出装置から鉛直方向に溶湯が射出され、金型キャビティ内を鉛直方向に溶湯が流動し、溶湯の流動方向に変化がない。そのため、溶湯流動は安定しており、鋳造不良の発生が少ないことから、気密性や製品強度を要する部品の鋳造成形に適しているとされている。本発明においては、この竪型鋳造装置を用いた鋳造方法を対象とする。 On the other hand, in the vertical casting apparatus, the molten metal is injected vertically from the injection device, the molten metal flows vertically in the mold cavity, and the flow direction of the molten metal does not change. Therefore, the flow of molten metal is stable, and casting defects are less likely to occur, making it suitable for casting parts that require airtightness and product strength. The object of the present invention is a casting method using this vertical casting apparatus.

ここで、竪型鋳造装置は、射出装置と金型キャビティを形成する鋳造金型を支持する型締装置とが、鉛直上下に配列されるため、構造が複雑で大型化しやすい。近年、鋳造品は大型化の傾向にあり、さらに、生産性を高めるために、1つの鋳造金型で複数の鋳造品を同時に鋳造成形する事例が増加傾向にある。その結果、竪型鋳造装置は、さらに複雑かつ大型化が進んでいる。そのために、型締力クラスダウンを実現できる提案が望まれる。例えば、金型キャビティ内に溶湯を射出充填後に、プレス動作(圧縮動作ともいう)を行って溶湯を押圧して製品形状に賦形する溶湯鍛造を利用した鋳造成形が好適とされている。溶湯の射出充填は、製品形状よりも大きい金型キャビティに向けて行うので、低い溶湯圧力で充填可能となり(鋳造圧力の低圧化)、溶湯圧力の反力として作用させる型締力も小さくて済む。また、プレス動作時の型締力は、溶湯の全面に作用するので、小さい型締力でプレス動作を行うことができる(型締装置の小型化)。この鋳造圧力の低圧化と型締装置の小型化の効果によって、竪型鋳造装置の小型化(型締力クラスダウン)を可能とする。この溶湯鍛造を利用した鋳造成形について、多くの提案がなされている。 Here, the vertical casting apparatus has a complicated structure and tends to be large because the injection apparatus and the mold clamping apparatus that supports the casting mold forming the mold cavity are arranged vertically up and down. In recent years, castings tend to be larger in size, and in order to improve productivity, there is an increasing tendency to simultaneously cast and mold a plurality of castings using a single casting mold. As a result, vertical casting apparatuses are becoming more complicated and larger. For that reason, a proposal that can realize a mold clamping force class down is desired. For example, casting molding using molten metal forging, in which a press operation (also referred to as compression operation) is performed to press the molten metal into a product shape after injection filling of the molten metal into the mold cavity, is considered suitable. Molten metal injection filling is performed toward a mold cavity that is larger than the product shape, so it is possible to fill with a low molten metal pressure (lower casting pressure), and the mold clamping force that acts as a reaction force to the molten metal pressure can be small. In addition, since the mold clamping force during the press operation acts on the entire surface of the molten metal, the press operation can be performed with a small mold clamping force (downsizing of the mold clamping device). Due to the effect of lowering the casting pressure and miniaturizing the mold clamping device, it is possible to reduce the size of the vertical casting device (mold clamping force class down). Many proposals have been made for casting using this molten metal forging.

例えば、特許文献1に示すような、金型キャビティの周囲の金型分割面に、シールドブロックを配置した竪型鋳造装置を用いて、鋳造成形を行うことが提案されている。先ず、低圧型締でシールドブロックの位置まで型閉し、最終製品容積よりも大きい金型キャビティ内に溶湯の射出充填を行う。シールドブロックには、圧縮動作時の製品圧縮量を調整する手段を備えており、溶湯の射出充填後に高圧型締に切換して、最終の圧縮位置まで圧縮動作することによって、溶湯を押圧して製品形状に賦形する。これにより、製品の圧縮率の変動を解消でき、高品質な鋳造品を得るとされている。 For example, as shown in Patent Literature 1, casting is proposed using a vertical casting apparatus in which a shield block is arranged on the mold dividing surface around the mold cavity. First, the mold is closed to the position of the shield block by low-pressure mold clamping, and the molten metal is injected and filled into the mold cavity, which is larger than the volume of the final product. The shield block is equipped with a means for adjusting the amount of compression of the product during the compression operation. After the molten metal is injected and filled, it is switched to high-pressure mold clamping, and the compression operation is performed to the final compression position, thereby pressing the molten metal. Shape into product shape. It is said that this makes it possible to eliminate fluctuations in the compression rate of the product and obtain high-quality castings.

特開平11-147169号公報JP-A-11-147169

ここで、特許文献1は、最終製品容積よりも大きい金型キャビティ内に溶湯の射出充填を行い、射出充填の後に、最終製品容積に金型キャビティを圧縮動作させるとなっている。つまり、溶湯の射出充填から圧縮動作の切換時には、金型キャビティ内で溶湯の流動は停止していることになる。この溶湯の流動停止によって、湯ジワ、湯境、酸化物等の異物巻き込み等の製品外観不良が、高い確率で生じる。また、溶湯の温度低下を招き、溶湯の粘度上昇により流動性が低下し、充填不良(製品ショート)、ボイド、鋳巣等の溶湯流動に起因する鋳造不良が心配される。さらに、溶湯の温度低下は、凝固時の金属組織の変化となり、製品強度の低下や部位による強度差等の鋳造品の強度異常の原因となる。その結果、特許文献1においては、型締力クラスダウンの効果は期待できるが、鋳造品の品質面では不安が残る鋳造方法である。 Here, in Patent Document 1, a molten metal is injected and filled into a mold cavity larger than the final product volume, and after injection filling, the mold cavity is compressed into the final product volume. In other words, the flow of the molten metal stops in the mold cavity when switching from the injection filling of the molten metal to the compression operation. Due to the stoppage of the flow of the molten metal, there is a high probability that product appearance defects such as wrinkles in the molten metal, boundaries between molten metals, and inclusion of foreign substances such as oxides will occur. In addition, the temperature of the molten metal is lowered, the fluidity of the molten metal is lowered due to the increased viscosity of the molten metal, and casting defects such as poor filling (product short circuit), voids, and blowholes caused by the flow of the molten metal are feared. Furthermore, a drop in the temperature of the molten metal causes a change in the metallographic structure during solidification, resulting in a decrease in the strength of the product and an abnormality in the strength of the cast product, such as a difference in strength depending on the part. As a result, in Patent Literature 1, although the effect of reducing the mold clamping force can be expected, the quality of the cast product remains uncertain.

そこで本発明は、金型キャビティ内の溶湯の流動が停止することなく、型締力クラスダウンおよびサイクル短縮を可能とする鋳造方法を提供することを目的とする。 SUMMARY OF THE INVENTION Accordingly, it is an object of the present invention to provide a casting method capable of reducing the mold clamping force class and shortening the cycle without stopping the flow of the molten metal in the mold cavity.

本発明の鋳造方法は、固定金型に向かって可動金型が近接する型閉動作により形成される金型キャビティ内に溶湯を射出充填する、竪型鋳造装置を用いた鋳造方法において、型閉動作中の前記可動金型の型閉位置に基づいて、前記金型キャビティ内に溶湯を充填流動させる射出工程と、前記金型キャビティ内の溶湯の密度を高める増圧工程と、溶湯の凝固収縮を補う保圧工程と、溶湯を所定の温度まで冷却させる冷却工程と、を制御することを特徴とする。 The casting method of the present invention is a casting method using a vertical casting apparatus, in which molten metal is injected and filled into a mold cavity formed by a mold closing operation in which a movable mold approaches a fixed mold. Based on the mold closing position of the movable mold during operation, an injection step of filling and flowing the molten metal into the mold cavity, a pressure increasing step of increasing the density of the molten metal in the mold cavity, and solidification shrinkage of the molten metal. and a cooling process for cooling the molten metal to a predetermined temperature.

本発明の鋳造方法において、前記金型キャビティの周囲は、鉛直方向に延びる摺動PL面と、水平方向に延びる当接PL面で形成され、前記摺動PL面の範囲内で、前記金型キャビティの空間容積を可変することができ、前記射出工程で前記空間容積が最も大きく、前記射出工程から前記増圧工程および前記保圧工程に向かって、前記空間容積が次第に縮小し、前記冷却工程で前記空間容積が最も小さく、前記当接PL面が当接して製品容積となる、ことが好ましい。 In the casting method of the present invention, the periphery of the mold cavity is formed by a sliding PL surface extending in the vertical direction and a contact PL surface extending in the horizontal direction, and within the range of the sliding PL surface, the mold The spatial volume of the cavity is variable, the spatial volume is the largest in the injection process, the spatial volume is gradually reduced from the injection process toward the pressure increasing process and the pressure holding process, and the cooling process It is preferable that the space volume is the smallest at , and that the contact PL surface comes into contact with the product volume.

また、本発明の鋳造方法において、前記金型キャビティ内の溶湯は、前記空間容積の縮小によって押圧され流動する型締流動を示し、前記射出工程では、射出装置からの溶湯の射出流動に前記型締流動が加算され、前記増圧工程では、前記型締流動が溶湯の充填密度を高める型締増圧として作用し、前記保圧工程では、前記型締流動が溶湯の凝固収縮を補う型締保圧として作用する、ことが好ましい。 Further, in the casting method of the present invention, the molten metal in the mold cavity exhibits a mold clamping flow in which it is pressed and flows due to the reduction of the space volume, and in the injection step, the injection flow of the molten metal from the injection device is accompanied by the injection flow of the mold. A clamping flow is added, and in the pressure increasing step, the clamping flow acts as a mold clamping pressure increase that increases the filling density of the molten metal, and in the holding pressure step, the clamping flow supplements the solidification shrinkage of the molten metal. It preferably acts as a holding pressure.

さらに、本発明の鋳造方法において、前記金型キャビティ内のガスの排気手段を設ける、ことが好ましい。 Furthermore, in the casting method of the present invention, it is preferable to provide means for exhausting gas within the mold cavity.

また、本発明の鋳造方法において、前記金型キャビティ内に射出充填される溶湯の充填量調整手段を設ける、ことが好ましい。 Moreover, in the casting method of the present invention, it is preferable to provide means for adjusting the amount of molten metal injected and filled into the mold cavity.

さらに、本発明の鋳造方法において、前記金型キャビティ内に射出充填された溶湯の漏出防止手段を設ける、ことが好ましい。 Furthermore, in the casting method of the present invention, it is preferable to provide means for preventing leakage of molten metal injected and filled in the mold cavity.

本発明によれば、金型キャビティ内の溶湯の流動が停止することなく、型締力クラスダウンおよびサイクル短縮を可能とする鋳造方法を提供することができる。 According to the present invention, it is possible to provide a casting method capable of reducing the mold clamping force class and shortening the cycle without stopping the flow of the molten metal in the mold cavity.

本発明の実施形態に係る竪型鋳造装置を示す概念図である。1 is a conceptual diagram showing a vertical casting apparatus according to an embodiment of the present invention; FIG. 本発明の実施形態に係る鋳造方法を示す図である。It is a figure which shows the casting method which concerns on embodiment of this invention. 図1に示す竪型鋳造装置を用いた鋳造成形動作の前半部分を示す図である。1. It is a figure which shows the first half part of casting molding operation|movement using the vertical casting apparatus shown in FIG. 図1に示す竪型鋳造装置を用いた鋳造成形動作の後半部分を示す図である。1. It is a figure which shows the latter half part of casting molding operation|movement using the vertical casting apparatus shown in FIG. 溶湯の充填量調整手段の実施例を示す図である。It is a figure which shows the Example of the filling amount adjustment means of a molten metal. 溶湯の充填量調整手段の他の実施例を示す図である。FIG. 5 is a diagram showing another embodiment of the molten metal filling amount adjusting means.

以下、本発明を実施するための好適な実施形態について図面を用いて説明する。なお、以下の実施形態は、各請求項に係る発明を限定するものではない。また、実施形態の中で説明されている特徴の組合せの全てが、各請求項に係る発明の解決手段に必須であるとは限らない。また、本実施形態においては、各構成要素の尺度や寸法が誇張されて示されている場合や、一部の構成要素が省略されている場合がある。 Preferred embodiments for carrying out the present invention will be described below with reference to the drawings. In addition, the following embodiments do not limit the invention according to each claim. In addition, not all combinations of features described in the embodiments are essential for the solutions of the inventions according to the respective claims. In addition, in this embodiment, the scale and dimensions of each component may be exaggerated, and some components may be omitted.

(竪型鋳造装置)
先ず、本発明の実施形態に係る竪型鋳造装置について、図1を用いて説明する。図1に示す竪型鋳造装置100は、鋳造金型10と、射出装置20と、型締装置30と、制御装置40と、を備える。
(Vertical casting machine)
First, a vertical casting apparatus according to an embodiment of the present invention will be described with reference to FIG. A vertical casting apparatus 100 shown in FIG. 1 includes a casting mold 10 , an injection device 20 , a mold clamping device 30 and a control device 40 .

鋳造金型10は、固定金型11と、可動金型12と、を備える。固定金型11と可動金型12は、固定金型11を下にして鉛直上下に配置され、固定金型11に向かって可動金型12が近接する型閉動作により金型キャビティ13が形成される。また、固定金型11には、金型キャビティ13に溶湯を充填するゲート13Gを設ける。固定金型11と可動金型12は、図示しない加熱手段により、金型キャビティ13に射出充填される溶湯の流動と冷却に適切な温度に加熱制御される。また、必要に応じて、溶湯の射出充填前に、金型キャビティ13およびゲート13Gに離型剤が塗布される。 A casting mold 10 includes a fixed mold 11 and a movable mold 12 . The fixed mold 11 and the movable mold 12 are arranged vertically one above the other with the fixed mold 11 facing downward, and a mold cavity 13 is formed by a mold closing operation in which the movable mold 12 approaches the fixed mold 11. be. Further, the fixed mold 11 is provided with a gate 13G for filling the mold cavity 13 with molten metal. The stationary mold 11 and the movable mold 12 are heated and controlled to temperatures appropriate for the flow and cooling of the molten metal injected and filled into the mold cavity 13 by heating means (not shown). In addition, if necessary, a release agent is applied to the mold cavity 13 and the gate 13G before injection filling of the molten metal.

射出装置20は、鋳造金型10の鉛直下方に配置され、内部に溶湯Mを貯蔵する溶湯保持炉22と、溶湯保持炉22を収納する加圧室21と、溶湯保持炉22内の溶湯Mと鋳造金型10のゲート13Gを接続する給湯管23と、を備える。溶湯Mは、鋳造品の用途等に応じて適宜選択され所定の組成に調整された、例えば、アルミニウム合金等の金属材料を用い、所定の温度に溶解保持させる。そのため、溶湯保持炉22には、図示しない温度調整手段を備える。また、溶解炉等の溶湯Mを製造する手段を別に設け、溶湯保持炉22内に溶湯Mを定期的に補充するようにしても良い。加圧室21は密閉されており、例えば、加圧室21内に加圧ガスを供給して、加圧室21内を加圧することで、溶湯保持炉22内の溶湯Mが押圧され、給湯管23内を溶湯Mが上昇し、ゲート13Gを経由して金型キャビティ13に向けて溶湯Mが射出充填される。給湯管23は、例えば、断熱性を有し溶湯Mとの濡れ性の少ないセラミックス素材とすることが好ましい。さらに、内部の溶湯Mが固化しないように、溶湯保持炉22とゲート13Gの間の給湯管23を、所定の温度に加熱保持されることが好ましい。 The injection device 20 is arranged vertically below the casting mold 10, and includes a molten metal holding furnace 22 that stores the molten metal M, a pressure chamber 21 that contains the molten metal holding furnace 22, and the molten metal M in the molten metal holding furnace 22. and a hot water supply pipe 23 that connects the gate 13G of the casting mold 10. The molten metal M is a metal material such as an aluminum alloy, which is appropriately selected and adjusted to a predetermined composition according to the use of the cast product, and is melted and held at a predetermined temperature. Therefore, the molten metal holding furnace 22 is provided with temperature control means (not shown). Alternatively, means for producing the molten metal M, such as a melting furnace, may be separately provided, and the molten metal M may be periodically replenished in the molten metal holding furnace 22 . The pressurizing chamber 21 is sealed, and for example, by supplying a pressurized gas into the pressurizing chamber 21 and pressurizing the inside of the pressurizing chamber 21, the molten metal M in the molten metal holding furnace 22 is pressed and the molten metal is supplied. The molten metal M rises in the pipe 23 and is injected and filled toward the mold cavity 13 via the gate 13G. It is preferable that the hot water supply pipe 23 is made of, for example, a ceramic material that has heat insulating properties and low wettability with the molten metal M. As shown in FIG. Furthermore, it is preferable to heat and maintain the hot water supply pipe 23 between the molten metal holding furnace 22 and the gate 13G at a predetermined temperature so that the molten metal M inside does not solidify.

給湯管23とゲート13Gの接続部の固定金型11には、ゲート13Gを開閉する開閉手段14を備える。金型キャビティ13への溶湯Mの射出充填時には、開閉手段14を開放状態とし、射出充填以外は開閉手段14を閉鎖状態とすることで、例えば、金型キャビティ13の清掃や離型剤塗布の作業時に、給湯管23から溶湯保持炉22内の溶湯Mに異物が混入することを防止できる。あるいは、冷却工程や鋳造品の取出し工程と、給湯管23内に残った溶湯Mの回収作業等の同時作業による鋳造サイクル短縮の効果を得ることもできる。また、例えば、給湯管23内を窒素等の不活性ガスで充満し密閉状態とすることで、溶湯Mの酸化防止効果を得ることができる。また、給湯管23と合わせて、開閉手段14も所定の温度に加熱保持することが好ましい。なお、ゲート13Gと対向する可動金型12の位置に、ゲート13Gに向けて進退するピン等の開閉手段14としても良い。 The fixed mold 11 at the connecting portion between the hot water supply pipe 23 and the gate 13G is provided with opening/closing means 14 for opening/closing the gate 13G. When the mold cavity 13 is injected and filled with the molten metal M, the opening/closing means 14 is opened, and when the mold cavity 13 is not filled with injection, the opening/closing means 14 is closed. Foreign matter can be prevented from entering the molten metal M in the molten metal holding furnace 22 from the hot water supply pipe 23 during operation. Alternatively, it is possible to obtain the effect of shortening the casting cycle by simultaneously performing the cooling process, the process of removing the cast product, and the work of recovering the molten metal M remaining in the hot water supply pipe 23 . Further, for example, by filling the inside of the hot water supply pipe 23 with an inert gas such as nitrogen and keeping it in a sealed state, the oxidation prevention effect of the molten metal M can be obtained. Further, it is preferable to heat and hold the opening/closing means 14 together with the hot water supply pipe 23 at a predetermined temperature. An opening/closing means 14 such as a pin that advances and retreats toward the gate 13G may be provided at the position of the movable mold 12 facing the gate 13G.

型締装置30は、固定金型11を支持する固定盤31と、可動金型12を支持する可動盤32と、型締駆動部35を支持する型締盤33と、を備える。固定盤31と型締盤33は、複数のタイバー34で連結される。固定盤31と型締盤33の間に配置される可動盤32は、複数のタイバー34が貫通しており、タイバー34をガイドとして型開閉動作する。ここで、可動盤32の動作について、固定盤31に近づく下降動作を型閉動作、固定盤31から離れる上昇動作を型開動作、型閉動作の完了位置を型締限、型開動作の完了位置を型開限と定義する。 The mold clamping device 30 includes a fixed platen 31 that supports the fixed mold 11 , a movable platen 32 that supports the movable mold 12 , and a mold clamping platen 33 that supports the mold clamping drive section 35 . The fixed platen 31 and the mold clamping platen 33 are connected by a plurality of tie bars 34 . A movable platen 32 arranged between a fixed platen 31 and a mold clamping platen 33 is penetrated by a plurality of tie bars 34, and the molds are opened and closed using the tie bars 34 as guides. Here, regarding the motion of the movable platen 32, the downward motion toward the fixed platen 31 is the mold closing motion, the upward motion away from the fixed platen 31 is the mold opening motion, the position where the mold closing motion is completed is the clamping limit, and the mold opening motion is completed. Define the position as the mold opening limit.

型締駆動部35は、油圧シリンダ等の油圧駆動手段によって、可動盤32および可動金型12の型開閉動作を行う。なお、型締駆動部35は、油圧シリンダ等の油圧駆動手段に限定されることなく、例えば、回転動作を直線動作に変換するボールネジ機構と電動モータを組み合わせた電動駆動手段であっても良く、油圧駆動手段と電動駆動手段を組み合わせたものでも良い。また、複数のトグルリンク機構を組み合わせたトグル式型締手段であっても良く、あるいは、型開閉動作は油圧駆動手段や電動駆動手段を用い、昇圧動作および降圧動作は、例えば、タイバー34の先端部に油圧シリンダ等を配置したハイブリット式型締手段であっても良い。型開閉動作と昇圧動作および降圧動作において、可動金型12の型開閉位置や型開閉速度と、固定金型11と可動金型12の押付力(型締力という)を正確に制御できる型締装置30であれば限定されない。 The mold clamping driving unit 35 performs mold opening/closing operations of the movable platen 32 and the movable mold 12 by hydraulic driving means such as a hydraulic cylinder. The mold clamping drive unit 35 is not limited to a hydraulic drive means such as a hydraulic cylinder, and may be an electric drive means combining a ball screw mechanism for converting rotary motion into linear motion and an electric motor. A combination of hydraulic drive means and electric drive means may be used. Alternatively, a toggle type mold clamping means combining a plurality of toggle link mechanisms may be used, or a hydraulic drive means or an electric drive means may be used for the mold opening/closing operation, and the pressure rising and lowering operations may be performed at the tips of the tie bars 34, for example. It may be a hybrid type mold clamping means in which a hydraulic cylinder or the like is arranged in the part. Mold clamping that can accurately control the mold opening/closing position and mold opening/closing speed of the movable mold 12 and the pressing force (called mold clamping force) between the fixed mold 11 and the movable mold 12 in the mold opening/closing operation, pressure increase operation, and pressure decrease operation. It is not limited as long as it is the device 30 .

制御装置40は、射出装置20を操作して溶湯Mの射出充填等の動作を制御する射出制御部41と、型締駆動部35を操作して型締装置30の動作を制御する型締制御部46と、予め設定された制御パターンに基づいて、射出制御部41と型締制御部46に操作指令を発信して鋳造成形を行う鋳造制御部47と、を備える。 The control device 40 includes an injection control unit 41 that operates the injection device 20 to control operations such as injection filling of the molten metal M, and a mold clamping control unit that operates the mold clamping drive unit 35 to control the operation of the mold clamping device 30. and a casting control unit 47 that transmits operation commands to the injection control unit 41 and the mold clamping control unit 46 based on a preset control pattern to perform casting.

ここで、射出制御部41は、流路切換機能を有する流量調整手段42と、圧力調整手段43と、加圧ガス供給源44と、加圧室21内の加圧ガスの圧力を計測する圧力計測手段45と、を備える。加圧ガス供給源44に貯蔵される加圧ガスを、圧力調整手段43で所定の圧力に調整し、流量調整手段42で所定の流量に調整して加圧室21内に供給し、射出制御部41に設定された目標圧力と圧力計測手段45の計測圧力が一致するように、加圧室21内の圧力制御が行われる。加圧室21内の圧力制御によって、溶湯保持炉22内の溶湯Mが押圧されて、給湯管23と開閉手段14およびゲート13Gを経由して、金型キャビティ13内への溶湯Mの射出充填が制御される。射出充填の後は、流量調整手段42を操作して、加圧室21内の加圧ガスを排出して、加圧室21内の圧力を低減させ、給湯管23内に残った溶湯Mを溶湯保持炉22に戻す回収作業を行う。 Here, the injection control unit 41 includes a flow rate adjusting means 42 having a flow path switching function, a pressure adjusting means 43, a pressurized gas supply source 44, and a pressure measuring means for measuring the pressure of the pressurized gas in the pressurizing chamber 21. and measuring means 45 . The pressurized gas stored in the pressurized gas supply source 44 is adjusted to a predetermined pressure by the pressure adjusting means 43, adjusted to a predetermined flow rate by the flow rate adjusting means 42, and supplied into the pressurizing chamber 21 for injection control. The pressure in the pressurizing chamber 21 is controlled so that the target pressure set in the unit 41 and the pressure measured by the pressure measuring means 45 match. By controlling the pressure in the pressure chamber 21, the molten metal M in the molten metal holding furnace 22 is pressed, and the molten metal M is injected and filled into the mold cavity 13 via the feed pipe 23, the opening/closing means 14, and the gate 13G. is controlled. After injection filling, the flow rate adjusting means 42 is operated to discharge the pressurized gas in the pressurizing chamber 21, reduce the pressure in the pressurizing chamber 21, and remove the molten metal M remaining in the hot water supply pipe 23. A recovery operation of returning the molten metal to the molten metal holding furnace 22 is performed.

また、加圧ガスは、安価な圧縮空気を用いても良いが、溶湯Mの酸化防止による品質安定化の観点からは、アルゴンや窒素等の不活性ガスを用いることが好ましい。その際に、加圧室21および給湯管23内は不活性ガスで充満状態を維持することが好ましい。また、窒素ガスにおいては、分離膜や吸着膜等を用いて空気中から窒素ガスのみを分離収集する窒素ガス発生装置を、加圧ガス供給源44に用いても良い。 Inexpensive compressed air may be used as the pressurized gas, but from the viewpoint of stabilizing the quality of the molten metal M by preventing oxidation, it is preferable to use an inert gas such as argon or nitrogen. At this time, it is preferable to keep the pressure chamber 21 and the hot water supply pipe 23 filled with inert gas. As for nitrogen gas, a nitrogen gas generator that separates and collects only nitrogen gas from the air using a separation membrane, an adsorption membrane, or the like may be used as the pressurized gas supply source 44 .

なお、図1に示す射出装置20と制御装置40は、加圧室21に加圧ガスを供給して、溶湯保持炉22内の溶湯Mを押圧して、給湯管23を経由して金型キャビティ13内に溶湯Mの射出充填を行うとしたが、これに限定されることなく、例えば、溶湯保持炉22内の溶湯Mの中で、ピストン式の加圧手段と給湯管23を連結し、ピストン操作により溶湯Mを押圧して、給湯管23を経由して射出充填する構成であっても良い。あるいは、電磁ポンプを用いて溶湯保持炉22から溶湯Mを押圧して、給湯管23を経由して射出充填する構成であっても良い。また、例えば、型締装置30の下方部に、射出スリーブ(給湯管23に相当)とプランジャを備えた射出装置20を竪型に配置し、溶湯保持炉22から溶湯Mを搬送して給湯管23内に溶湯Mを供給し、プランジャの押圧動作によって給湯管23内の溶湯Mを押圧して射出充填する構成であっても良い。いずれにしても、溶湯保持炉22内の溶湯Mを押圧して、給湯管23を経由して金型キャビティ13内に溶湯Mを射出充填し、金型キャビティ13内を下方から上方の鉛直方向に充填流動する竪型鋳造装置100を用いる。 Note that the injection device 20 and the control device 40 shown in FIG. Although the molten metal M is injected and filled into the cavity 13, the present invention is not limited to this. Alternatively, the molten metal M may be pressed by operating the piston and injection-filled through the hot water supply pipe 23 . Alternatively, an electromagnetic pump may be used to press the molten metal M from the molten metal holding furnace 22 and perform injection filling via the hot water supply pipe 23 . Further, for example, an injection device 20 having an injection sleeve (corresponding to a hot water supply pipe 23) and a plunger is arranged vertically below the mold clamping device 30, and the molten metal M is conveyed from the molten metal holding furnace 22 to the hot water supply pipe. The molten metal M may be supplied into 23, and injection filling may be performed by pressing the molten metal M in the hot water supply pipe 23 by the pressing operation of the plunger. In any case, the molten metal M in the molten metal holding furnace 22 is pressed, the molten metal M is injected and filled into the mold cavity 13 via the feed pipe 23, and the mold cavity 13 is vertically moved from the bottom to the top. A vertical casting apparatus 100 that fills and flows is used.

(鋳造方法)
次に、図1に示す竪型鋳造装置100を用いて、本発明の実施形態に係る鋳造方法について、図2を用いて説明する。図2(a)は、鋳造成形における可動金型12の動作波形SHを示し、横軸を経過時間、縦軸を可動金型12の型閉位置とする。また、図2(b)は、鋳造成形における加圧室21内の加圧ガスの圧力波形PHを示し、横軸を経過時間、縦軸を加圧室21内の加圧ガスの圧力とする。
(Casting method)
Next, a casting method according to an embodiment of the present invention using the vertical casting apparatus 100 shown in FIG. 1 will be described with reference to FIG. FIG. 2(a) shows an operation waveform SH of the movable mold 12 in casting molding, with the horizontal axis representing the elapsed time and the vertical axis representing the closing position of the movable mold 12. FIG. Further, FIG. 2B shows the pressure waveform PH of the pressurized gas in the pressurizing chamber 21 in casting, where the horizontal axis is the elapsed time and the vertical axis is the pressure of the pressurized gas in the pressurizing chamber 21. .

先ず、図2(a)に示すように、鋳造成形が開始されると、型締制御部46は型締駆動部35を操作して型閉工程を行う。可動金型12は、型開限位置から固定金型11に向かって型閉動作する。図示しない金型位置センサ等で可動金型12の型閉位置を計測する。可動金型12の型閉位置が射出開始位置S1に到達すると、型締制御部46は、切換時間T1として射出制御部41にデータ転送する。同時に、型締制御部46は、予め設定した型閉速度に基づいて、型締駆動部35を操作して型閉工程(可動金型12の型閉動作)の速度制御を行う。射出開始位置S1より手前のPL開始位置S0で、金型キャビティ13が形成される。射出開始位置S1の金型キャビティ13の空間容積は、鋳造品の容積(製品容積という)よりも大きい状態である。速度制御による型閉工程は継続されているので、経過時間とともに金型キャビティ13の空間容積は次第に縮小していく。 First, as shown in FIG. 2A, when casting is started, the mold clamping control section 46 operates the mold clamping drive section 35 to perform a mold closing process. The movable mold 12 performs a mold closing operation toward the fixed mold 11 from the mold opening limit position. A mold closing position of the movable mold 12 is measured by a mold position sensor (not shown) or the like. When the mold closing position of the movable mold 12 reaches the injection start position S1, the mold clamping control section 46 transfers data to the injection control section 41 as switching time T1. At the same time, the mold clamping control unit 46 operates the mold clamping driving unit 35 based on a preset mold closing speed to control the speed of the mold closing process (mold closing operation of the movable mold 12). The mold cavity 13 is formed at the PL start position S0 before the injection start position S1. The spatial volume of the mold cavity 13 at the injection start position S1 is larger than the volume of the casting (referred to as product volume). Since the mold closing process by speed control is continued, the spatial volume of the mold cavity 13 gradually shrinks with the passage of time.

射出制御部41は、図2(b)に示すように、切換時間T1のデータ転送を受けて、流量調整手段42を操作して加圧室21内への加圧ガスの供給を開始し、加圧室21の圧力制御を行う。加圧室21の圧力制御(ガス圧力PG2からPG4に増圧)に応じて、溶湯保持炉22内の溶湯Mが押圧され、給湯管23と開閉手段14およびゲート13Gを経由して、金型キャビティ13内への溶湯Mの射出充填が行われる(射出工程)。この時のガス圧力(PG2からPG4)を射出鋳造圧力といい、射出鋳造圧力に応じた金型キャビティ13内の溶湯Mの流動を射出流動という。なお、図2(b)においては、ガス圧力(射出鋳造圧力)を直線的に増圧させたが、例えば、階段状に増圧させても良い。また、鋳造成形の開始から切換時間T1に至るまでは、予備加圧工程として、給湯管23内の溶湯Mの高さを所定の位置に保持して待機させる圧力制御を行う(ガス圧力PG1)。これにより、射出工程の開始と同時に射出流動が開始し、射出装置20の射出工程と、型締装置30の型閉工程とのタイミング調整を容易とすることができる。 As shown in FIG. 2(b), the injection control unit 41 receives the data transfer for the switching time T1, operates the flow rate adjusting means 42, and starts supplying the pressurized gas into the pressurizing chamber 21. Pressure control of the pressurization chamber 21 is performed. According to the pressure control of the pressurization chamber 21 (increasing the gas pressure from PG2 to PG4), the molten metal M in the molten metal holding furnace 22 is pressed, and the metal mold is pushed through the hot water supply pipe 23, the opening/closing means 14, and the gate 13G. Injection filling of the molten metal M into the cavity 13 is performed (injection step). The gas pressure (PG2 to PG4) at this time is called injection casting pressure, and the flow of the molten metal M in the mold cavity 13 according to the injection casting pressure is called injection flow. Although the gas pressure (injection casting pressure) is linearly increased in FIG. 2(b), it may be increased stepwise, for example. Further, from the start of casting to the switching time T1, as a preliminary pressurization step, pressure control is performed to hold the height of the molten metal M in the hot water supply pipe 23 at a predetermined position and wait (gas pressure PG1). . As a result, the injection flow starts simultaneously with the start of the injection process, and timing adjustment between the injection process of the injection device 20 and the mold closing process of the mold clamping device 30 can be facilitated.

ここで、切換時間T1から切換時間T2の射出工程において、金型キャビティ13内の溶湯Mの流動は、圧力制御(ガス圧力PG2からPG3)による射出流動によるものである。この時、金型キャビティ13の空間容積は、製品容積よりも大きい状態であるので、低いガス圧力(PG2からPG3)の射出鋳造圧力であっても、安定した溶湯Mの充填流動を示し、射出工程の低圧化の効果を得る。 Here, in the injection process from the switching time T1 to the switching time T2, the flow of the molten metal M in the mold cavity 13 is due to injection flow by pressure control (gas pressures PG2 to PG3). At this time, since the space volume of the mold cavity 13 is larger than the product volume, even at a low gas pressure (PG2 to PG3) injection molding pressure, the molten metal M shows a stable filling flow and injection The effect of lowering the pressure of the process is obtained.

また、切換時間T2のタイミングで、金型キャビティ13内を射出流動する溶湯Mと、金型キャビティ13の空間容積の縮小が継続中の可動金型12が接触する。その結果、切換時間T2以後の射出工程においては、圧力制御(ガス圧力PG3からPG4に増圧)による射出流動に、金型キャビティ13の空間容積の縮小によって生じる溶湯Mの押圧による流動(型締流動という)が加算されて、金型キャビティ13内の溶湯Mの流動が行われる(射出流動+型締流動)。この型締流動に要する溶湯Mの押圧力を型締鋳造圧力といい、型締流動が生じる金型キャビティ13の空間容積の縮小を型締圧縮という。射出流動と型締流動の合算による射出工程は、低いガス圧力(PG3からPG4)の射出鋳造圧力であっても、安定した溶湯Mの充填流動を示し、射出装置20による射出工程の低圧化を確実なものとする。さらに、低い型締鋳造圧力であっても安定した溶湯Mの充填流動を示し、型締装置30による射出工程の低圧化の効果を得る(型締力クラスダウンという)。また、切換時間T2の前後の溶湯Mの充填流動は停滞することなく、射出工程の全範囲(切換時間T1からT3)において、金型キャビティ13内の溶湯Mの連続した安定流動が維持される。溶湯Mの充填流動の速度は、ガス圧力(PG2からPG4)および可動金型12の型閉速度によって制御される。 At the switching time T2, the molten metal M injected and flowed in the mold cavity 13 comes into contact with the movable mold 12 whose spatial volume is still being reduced. As a result, in the injection process after the switching time T2, the injection flow due to the pressure control (increasing the gas pressure from PG3 to PG4) is combined with the flow due to pressing of the molten metal M caused by the reduction of the spatial volume of the mold cavity 13 (mold clamping flow). flow) is added to cause the flow of the molten metal M in the mold cavity 13 (injection flow + mold clamping flow). The pressing force of the molten metal M required for this mold clamping flow is called mold clamping casting pressure, and the reduction of the spatial volume of the mold cavity 13 in which the mold clamping flow occurs is called mold clamping compression. The injection process due to the sum of the injection flow and the mold clamping flow shows a stable filling flow of the molten metal M even at a low gas pressure (PG3 to PG4) injection molding pressure, and the injection device 20 can reduce the pressure of the injection process. make sure. Furthermore, even at a low mold clamping casting pressure, a stable filling flow of the molten metal M is exhibited, and the effect of lowering the pressure of the injection process by the mold clamping device 30 is obtained (referred to as mold clamping force class reduction). In addition, the filling flow of the molten metal M before and after the switching time T2 does not stagnate, and the continuous and stable flow of the molten metal M in the mold cavity 13 is maintained throughout the entire range of the injection process (switching time T1 to T3). . The filling flow rate of the molten metal M is controlled by the gas pressure (PG2 to PG4) and the mold closing speed of the movable mold 12.

次に、図2(a)に示すように、可動金型12の型閉位置が増圧開始位置S2に到達すると、型締制御部46は、切換時間T3として射出制御部41にデータ転送する。同時に、型締制御部46は、予め設定された型閉速度と型閉位置に基づいて、型締駆動部35を操作して増圧工程を行う。増圧工程では、型締圧縮を利用して型締鋳造圧力を増圧して、型締流動を増大させ、金型キャビティ13内を溶湯Mで完全に充満し、溶湯Mの充填密度を高め、鋳造品としての品質の安定化を図るものである(型締増圧という)。そのために、増圧開始位置S2は、型締増圧による金型キャビティ13の空間容積の縮小量を見越した可動金型12の型閉位置とする。つまり、可動金型12の型閉位置の移動量を、増圧工程の圧力(型締鋳造圧力)の制御に用いる。また、可動金型12の型閉速度を、増圧工程の型締鋳造圧力の増圧速度(型締増圧速度という)の制御に用いる。型締増圧の型締流動は、金型キャビティ13内の溶湯Mに直接的に効率良く作用する。その結果、増圧工程においても型締力クラスダウンの効果を得る。 Next, as shown in FIG. 2A, when the mold closing position of the movable mold 12 reaches the pressure increase start position S2, the mold clamping control unit 46 transfers data to the injection control unit 41 as switching time T3. . At the same time, the mold clamping control unit 46 operates the mold clamping drive unit 35 to perform the pressure increasing process based on the preset mold closing speed and mold closing position. In the pressure increasing step, the mold clamping compression is used to increase the mold clamping casting pressure to increase the mold clamping flow, completely fill the mold cavity 13 with the molten metal M, increase the packing density of the molten metal M, This is intended to stabilize the quality of castings (referred to as mold clamping pressure increase). Therefore, the pressure increase start position S2 is set to the mold closing position of the movable mold 12 in anticipation of the amount of reduction in the spatial volume of the mold cavity 13 due to the mold clamping pressure increase. In other words, the amount of movement of the mold closing position of the movable mold 12 is used to control the pressure (mold clamping casting pressure) in the pressure increasing process. In addition, the mold closing speed of the movable mold 12 is used to control the pressure increasing speed of the mold clamping casting pressure in the pressure increasing process (referred to as mold clamping pressure increasing speed). The mold clamping flow of the mold clamping pressure increase directly and efficiently acts on the molten metal M in the mold cavity 13 . As a result, the mold clamping force can be lowered even in the pressure increasing process.

可動金型12の型閉位置が保圧開始位置S3に到達すると、型締制御部46は、切換時間T4として射出制御部41にデータ転送する。同時に、型締制御部46は、予め設定された型閉速度と型閉位置に基づいて、型締駆動部35を操作して保圧工程を行う。保圧工程では、型締圧縮を利用して型締鋳造圧力を調整して、型締流動を用いて、金型キャビティ13内に射出充填された溶湯Mの凝固収縮を補う充填流動(保圧流動という)を行い、鋳造品の高品質化を図るものである(型締保圧という)。そのために、保圧開始位置S3は、型締保圧による金型キャビティ13の空間容積の縮小量を見越した可動金型12の型閉位置とする。つまり、可動金型12の型閉位置の移動量を、保圧工程の保圧流動の制御に用いる。また、可動金型12の型閉速度を、保圧工程の溶湯Mの凝固収縮の速度(型締保圧速度という)の制御に用いる。型締保圧の保圧流動は、金型キャビティ13内の溶湯Mの凝固収縮に直接的に効率良く作用する。その結果、保圧工程においても型締力クラスダウンの効果を得る。 When the mold closing position of the movable mold 12 reaches the holding pressure start position S3, the mold clamping control section 46 transfers data to the injection control section 41 as switching time T4. At the same time, the mold clamping control unit 46 operates the mold clamping drive unit 35 to perform the pressure holding process based on the preset mold closing speed and mold closing position. In the holding pressure process, the mold clamping compression is used to adjust the mold clamping casting pressure, and the mold clamping flow is used to compensate for the solidification shrinkage of the molten metal M injected and filled in the mold cavity 13 (holding pressure flow) to improve the quality of castings (this is called mold clamping and holding pressure). Therefore, the holding pressure start position S3 is set to the mold closing position of the movable mold 12 in anticipation of the amount of reduction in the spatial volume of the mold cavity 13 due to the mold clamping and holding pressure. That is, the amount of movement of the mold closing position of the movable mold 12 is used to control the holding pressure flow in the holding pressure process. Further, the mold closing speed of the movable mold 12 is used to control the speed of solidification shrinkage of the molten metal M in the pressure holding process (referred to as mold clamping pressure holding speed). The holding pressure flow of the mold clamping and holding pressure directly and efficiently acts on the solidification shrinkage of the molten metal M in the mold cavity 13 . As a result, the mold clamping force can be lowered even in the holding pressure process.

可動金型12の型閉位置が型締限(切換時間T5)に到達すると、型締制御部46は、型締駆動部35を操作して、可動金型12を型締限位置に保持して、金型キャビティ13内の溶湯Mを、取出し可能な温度まで冷却させる(冷却工程)。冷却工程では、金型キャビティ13の空間容積が製品容積となる型締限位置で、溶湯Mを冷却させることで、寸法精度の高い鋳造品を得ることができる。また、冷却工程は、冷却時間として設定し時間管理される。冷却工程を終えると、型締制御部46は型締駆動部35を操作して、可動金型12を型開限位置まで型開し(型開工程)、図示しない取出装置等を用いて、金型キャビティ13から鋳造品として取り出す。 When the mold closing position of the movable mold 12 reaches the mold clamping limit (switching time T5), the mold clamping control unit 46 operates the mold clamping drive unit 35 to hold the movable mold 12 at the mold clamping limit position. to cool the molten metal M in the mold cavity 13 to a temperature at which it can be taken out (cooling step). In the cooling step, the molten metal M is cooled at the mold clamping limit position where the spatial volume of the mold cavity 13 becomes the product volume, thereby obtaining a cast product with high dimensional accuracy. Also, the cooling process is set as a cooling time and time-managed. After completing the cooling process, the mold clamping control unit 46 operates the mold clamping drive unit 35 to open the movable mold 12 to the mold opening limit position (mold opening process), and using a take-out device (not shown) or the like, A casting is taken out from the mold cavity 13 .

なお、増圧工程から保圧工程、保圧工程から冷却工程の切換は、型閉動作中の可動金型12の型閉位置の位置管理で行うとしたが、これに限定されることなく、例えば、冷却工程と同様に、増圧時間および保圧時間として設定して時間管理で行うとしても良い。また、型締鋳造圧力を設定して増圧工程および保圧工程を行う圧力管理であっても良い。この場合、型締鋳造圧力に応じた、金型キャビティ13内の溶湯Mの充満や充填密度の調整(増圧工程)が行われ、また、溶湯Mの凝固収縮の保圧流動の調整(保圧工程)が行われ、可動金型12の型閉動作が停止または型閉速度が減速する。この型閉動作の停止や型閉速度の減速を検知して各工程の切換を行うとする。 Switching from the pressure increasing process to the holding pressure process and from the holding pressure process to the cooling process is performed by position management of the mold closing position of the movable mold 12 during the mold closing operation, but is not limited to this. For example, similarly to the cooling process, the pressure increasing time and the pressure holding time may be set and time management may be performed. Moreover, the pressure control may be such that the mold clamping casting pressure is set and the pressure increasing process and the pressure holding process are performed. In this case, the filling of the molten metal M in the mold cavity 13 and the filling density are adjusted (pressure increasing process) according to the mold clamping casting pressure, and the holding pressure flow of the solidification shrinkage of the molten metal M is adjusted (holding pressure). pressure step) is performed, and the mold closing operation of the movable mold 12 is stopped or the mold closing speed is reduced. It is assumed that each process is switched by detecting the stoppage of the mold closing operation or the deceleration of the mold closing speed.

このように、鋳造成形の全ての工程(射出工程、増圧工程、保圧工程、冷却工程)を、可動金型12の型閉動作の型閉位置に基づいて制御することによって、金型キャビティ13内の溶湯Mの充填流動の停滞や乱れを皆無とすることができる。その結果、溶湯Mの安定流動を確保することができ、湯ジワ、湯境、酸化物等の異物巻き込み等の溶湯流動の乱れに起因する鋳造不良や、充填不良(製品ショート)、ボイド、鋳巣、凝固組織の乱れ(偏析)、製品強度の変動等の溶湯Mの温度低下に起因する鋳造不良の発生を確実に防止でき、高品質な鋳造品の安定供給を可能とする。 In this way, by controlling all the casting and molding processes (injection process, pressure increasing process, holding pressure process, cooling process) based on the mold closing position of the mold closing operation of the movable mold 12, the mold cavity The stagnation and disturbance of the filling flow of the molten metal M in 13 can be eliminated. As a result, a stable flow of the molten metal M can be ensured, and casting defects, filling defects (product shorts), voids, casting failures, etc. due to disturbances in the molten metal flow such as wrinkles, molten metal boundaries, inclusion of foreign substances such as oxides, etc. It is possible to reliably prevent the occurrence of casting defects caused by the temperature drop of the molten metal M, such as porosity, solidified structure disturbance (segregation), and product strength fluctuations, and to enable the stable supply of high-quality castings.

増圧工程および保圧工程における射出制御部41は、図2(b)に示すような制御を行う。先ず、増圧工程において、既に型締装置30による型締増圧が作用しているので、射出装置20による増圧操作は不要となる。そのため、射出制御部41は、切換時間T3のデータ転送を受けて、流量調整手段42を操作して、加圧室21内をガス圧力PG4に保持させる。これは、型締増圧の際に、金型キャビティ13内の溶湯Mが、ゲート13Gから給湯管23方向へ逆流することを防止するためである。ガス圧力PG4に保持している間に、開閉手段14を操作してゲート13Gを閉鎖する。また、ゲート13Gの閉鎖と同時、または閉鎖後に、型締増圧を開始するとしても良い。また、例えば、切換時間T2からT3の範囲において、射出装置20からの射出流動が所定の充填量に達した場合は、その時点で開閉手段14を操作してゲート13Gを閉鎖するとしても良い。この場合でも、型締流動は継続中であるので、金型キャビティ13内の溶湯Mの充填流動の停滞は生じない。このように、射出装置20および開閉手段14の動作性能を考慮して適正に選択することが好ましい。 The injection control unit 41 in the pressure increasing process and the pressure holding process performs control as shown in FIG. 2(b). First, in the pressure increasing process, since the mold clamping pressure increase by the mold clamping device 30 is already acting, the pressure increasing operation by the injection device 20 becomes unnecessary. Therefore, the injection control section 41 receives the data transfer of the switching time T3 and operates the flow rate adjusting means 42 to maintain the gas pressure PG4 in the pressurizing chamber 21 . This is to prevent the molten metal M in the mold cavity 13 from flowing backward from the gate 13G toward the hot water supply pipe 23 when the mold clamping pressure is increased. While the gas pressure is maintained at PG4, the opening/closing means 14 is operated to close the gate 13G. Also, the mold clamping pressure increase may be started at the same time as or after closing the gate 13G. Further, for example, when the injection flow from the injection device 20 reaches a predetermined filling amount within the switching time T2 to T3, the opening/closing means 14 may be operated to close the gate 13G at that point. Even in this case, since the mold clamping flow is continuing, the filling flow of the molten metal M in the mold cavity 13 does not stagnate. In this way, it is preferable to make an appropriate selection in consideration of the operating performance of the injection device 20 and the opening/closing means 14 .

次に、保圧工程において、既に型締装置30による型締保圧が作用しているので、射出装置20による保圧操作は不要となる。そのために、射出制御部41は、切換時間T4のデータ転送を受けて、流量調整手段42を操作して、加圧室21内から加圧ガスを排出し、加圧室21内の加圧ガスの圧力を低下させて、給湯管23内に残った溶湯Mを押下げて、溶湯保持炉22内に戻す作業(溶湯回収工程という)を行うことができる。同様に、射出装置20による冷却工程も不要である。なお、図2(b)において、説明しやすいように切換時間T4で溶湯Mの回収工程を開始するとしたが、鋳造成形のサイクル短縮の観点からは、ゲート13Gの閉鎖後に開始することが好ましい。また、比較として、従来技術の増圧工程および保圧工程の圧力波形FHを破線で示す。 Next, in the pressure holding process, since the mold clamping and holding pressure by the mold clamping device 30 is already acting, the pressure holding operation by the injection device 20 becomes unnecessary. Therefore, the injection control unit 41 receives the data transfer of the switching time T4, operates the flow rate adjusting means 42, discharges the pressurized gas from the pressurized chamber 21, and releases the pressurized gas in the pressurized chamber 21. is lowered to push down the molten metal M remaining in the hot water supply pipe 23 and return it to the molten metal holding furnace 22 (referred to as a molten metal recovery process). Similarly, the cooling process by the injection device 20 is also unnecessary. In FIG. 2(b), the recovery process of the molten metal M is started at the switching time T4 for ease of explanation, but from the viewpoint of shortening the casting cycle, it is preferable to start after the gate 13G is closed. For comparison, the dashed lines show the pressure waveforms FH in the pressure increasing process and the pressure holding process of the prior art.

このように、保圧工程および冷却工程の中で、次ショットの鋳造準備に向けた溶湯回収工程を同時に行うことにより、鋳造成形のサイクル短縮の効果を得ることができる。また、可動金型12の型閉位置の移動量(金型キャビティ13の空間容積)で、溶湯Mの射出充填量が制御される。そのため、射出装置20に設定するガス圧力(射出鋳造圧力)は、射出流動が確保できる適当な範囲でよい。例えば、高いガス圧力を設定したとしても、金型キャビティ13の空間容積で、溶湯Mの射出充填量が規制される。金型キャビティ13内を溶湯Mで充満した後は、射出制御部41の圧力制御を継続していても、金型キャビティ13の空間容積以上に溶湯Mを射出充填することはできない。その結果、金型キャビティ13が満杯状態になれば、射出装置20からの射出流動が自然に停止する。このことは、溶湯Mの微妙な温度変化や組成変動等によって、射出流動は微妙に変動し、射出充填量が変動する、という従来技術の課題を解決できることを意味する。その結果、重量変動が少ない高品質な鋳造品の安定供給を実現することができる。 In this manner, the molten metal recovery step for preparation for casting the next shot is performed simultaneously in the holding pressure step and the cooling step, thereby obtaining the effect of shortening the casting cycle. In addition, the injection filling amount of the molten metal M is controlled by the amount of movement of the movable mold 12 at the mold closing position (the spatial volume of the mold cavity 13). Therefore, the gas pressure (injection molding pressure) set in the injection device 20 may be within an appropriate range that ensures injection flow. For example, even if a high gas pressure is set, the injection filling amount of the molten metal M is restricted by the spatial volume of the mold cavity 13 . After the mold cavity 13 is filled with the molten metal M, even if the pressure control of the injection control unit 41 is continued, the molten metal M cannot be injected and filled beyond the spatial volume of the mold cavity 13 . As a result, when the mold cavity 13 becomes full, the injection flow from the injection device 20 naturally stops. This means that it is possible to solve the problem of the prior art that the injection flow slightly fluctuates and the injection filling amount fluctuates due to subtle changes in the temperature and composition of the molten metal M. As a result, it is possible to realize a stable supply of high-quality castings with little weight fluctuation.

(鋳造成形動作)
次に、図1に示す竪型鋳造装置100を用いた鋳造方法の鋳造成形動作について、図3と図4を用いて説明する。なお、図3と図4は、図1に示す鋳造金型10を拡大したものであり、説明に不要な箇所は省略している。
(Casting molding operation)
Next, the casting operation of the casting method using the vertical casting apparatus 100 shown in FIG. 1 will be described with reference to FIGS. 3 and 4. FIG. 3 and 4 are enlarged views of the casting mold 10 shown in FIG. 1, and parts unnecessary for explanation are omitted.

鋳造成形の開始前は、図3(a)に示すように、可動金型12は型開限の位置に待機し、給湯管23内の溶湯Mの湯面位置H1の予備加圧工程にあり、開閉手段14は閉鎖状態である。鋳造成形の開始後は、可動金型12は固定金型11に向かって型閉動作する(型閉工程)。なお、固定金型11と可動金型12は鉛直上下に配置されているので、可動金型12の型閉動作は、鉛直下方に下降動作することを示唆する。この段階では、金型キャビティ13の周囲から鉛直上方に延びる、固定金型11の摺動PL面15Lおよび可動金型12の摺動PL面15Uは離れている状態である。 Before starting casting, as shown in FIG. 3(a), the movable mold 12 is on standby at the mold opening limit position, and the molten metal M in the hot water supply pipe 23 is in a pre-pressurizing step at the surface position H1. , the opening/closing means 14 is closed. After the start of casting molding, the movable mold 12 performs a mold closing operation toward the fixed mold 11 (mold closing step). Since the fixed mold 11 and the movable mold 12 are arranged vertically above and below, the closing operation of the movable mold 12 suggests that the movable mold 12 moves downward vertically. At this stage, the sliding PL surface 15L of the fixed mold 11 and the sliding PL surface 15U of the movable mold 12 extending vertically upward from the periphery of the mold cavity 13 are separated.

可動金型12の型閉位置がPL開始位置S0で、2つの摺動PL面(15L、15U)が勘合して、金型キャビティ13が形成される。可動金型12の型閉位置が射出開始位置S1で、図3(b)に示すように、開閉手段14が開放状態となり、給湯管23から金型キャビティ13内に溶湯Mが射出充填される。この段階では、溶湯Mと可動金型12は接触していないので、射出装置20からの射出流動のみで、金型キャビティ13内の溶湯Mの充填流動が行われる。また、射出開始位置S1以後の可動金型12の型閉動作は、型締制御部46に設定された型閉速度に基づいて速度制御される。 When the mold closing position of the movable mold 12 is the PL start position S0, the two sliding PL surfaces (15L, 15U) are engaged to form the mold cavity 13. FIG. When the mold closing position of the movable mold 12 is the injection start position S1, the opening/closing means 14 is opened as shown in FIG. . At this stage, the molten metal M and the movable mold 12 are not in contact with each other. Further, the mold closing operation of the movable mold 12 after the injection start position S1 is speed-controlled based on the mold closing speed set in the mold clamping control section 46 .

可動金型12の型閉動作の継続により、金型キャビティ13の空間容積は次第に縮小する。また、射出装置20からの射出流動の継続により、金型キャビティ13内の溶湯Mの射出充填量は次第に増大する。その結果、図3(c)に示すように、切換時間T2の段階で、溶湯Mと可動金型12が接触する。その後は、射出流動に型締流動が加算されて、金型キャビティ13内の溶湯Mの充填流動が行われる。この射出流動と型締流動の合算により、射出鋳造圧力の低圧化と型締鋳造圧力の型締力クラスダウンの効果を発揮する。さらに、金型キャビティ13内の溶湯Mの充填流動が加速されて、短時間で射出充填を完了することができる。その結果、溶湯温度の低下の防止効果、薄肉部分への溶湯Mの充填性向上、大物鋳造品の充填不良の改善等の付帯効果も得ることができる。 As the mold closing operation of the movable mold 12 continues, the spatial volume of the mold cavity 13 is gradually reduced. Further, due to the continuation of the injection flow from the injection device 20, the injection filling amount of the molten metal M in the mold cavity 13 gradually increases. As a result, as shown in FIG. 3(c), the molten metal M and the movable mold 12 come into contact with each other at the switching time T2. After that, the mold clamping flow is added to the injection flow, and the filling flow of the molten metal M in the mold cavity 13 is performed. The addition of this injection flow and mold clamping flow has the effect of lowering the injection casting pressure and lowering the mold clamping force class of the mold clamping casting pressure. Furthermore, the filling flow of the molten metal M in the mold cavity 13 is accelerated, and injection filling can be completed in a short time. As a result, it is possible to obtain additional effects such as the effect of preventing the temperature of the molten metal from lowering, improving the fillability of the molten metal M into thin-walled portions, and improving the filling failure of large castings.

射出流動と型締流動が合算した充填流動の継続により、金型キャビティ13内は溶湯Mで充満されていく。可動金型12の型閉位置が増圧開始位置S2で、図4(d)に示すように、金型キャビティ13内は溶湯Mでほぼ充満状態となる。この段階では、2つの摺動PL面(15L、15U)の鉛直方向の上端に連続に配置され、水平方向に延びる2つのPL面(固定金型11の当接PL面16Lと可動金型12の当接PL面16U)は、金型キャビティ13の空間容積の収縮量を残した状態に離れている。この状態で増圧工程および保圧工程を行うと、2つの当接PL面(16L、16U)は次第に接近して、金型キャビティ13の空間容積の縮小が行われる。なお、増圧工程の開始前または開始と同時に、あるいは、射出装置20からの充填量が所定量に達した時点で、開閉手段14を閉鎖状態として、金型キャビティ13から給湯管23への溶湯Mの逆流防止を行う。開閉手段14の閉鎖後は、給湯管23内に残った溶湯Mの回収作業を行う。 The inside of the mold cavity 13 is filled with the molten metal M due to the continuation of the filling flow that is the sum of the injection flow and the clamping flow. The mold closing position of the movable mold 12 is the pressure increase start position S2, and the inside of the mold cavity 13 is substantially filled with the molten metal M as shown in FIG. 4(d). At this stage, the two sliding PL surfaces (15L, 15U) are arranged continuously at the upper ends in the vertical direction, and the two PL surfaces (the contact PL surface 16L of the fixed mold 11 and the movable mold 12) extend in the horizontal direction. contact PL surface 16U) is separated while the amount of shrinkage of the spatial volume of the mold cavity 13 remains. When the pressure-increasing step and the pressure-holding step are performed in this state, the two contact PL surfaces (16L, 16U) gradually approach each other, and the spatial volume of the mold cavity 13 is reduced. Before or at the same time as the pressure increasing process is started, or when the filling amount from the injection device 20 reaches a predetermined amount, the opening/closing means 14 is closed to allow the molten metal to flow from the mold cavity 13 to the hot water supply pipe 23. Prevent backflow of M. After the opening/closing means 14 is closed, the molten metal M remaining in the hot water supply pipe 23 is recovered.

増圧工程および保圧工程により、金型キャビティ13の空間容積の縮小が進み、図4(e)に示すように、最終的に2つの当接PL面(16L、16U)が当接して、金型キャビティ13の空間容積が製品容積となって保圧工程を完了する。その後の冷却工程では、2つの当接PL面(16L、16U)の押付力(型締力という)を調整して、2つの当接PL面(16L、16U)の当接状態を維持させる。冷却工程の完了後は、図4(f)に示すように、可動金型12を型開限まで型開させて、例えば、可動金型12内に設けた図示しない押出手段等を用いて、鋳造品MCを取り出す。鋳造品MCの取出し後は、金型キャビティ13の清掃や離型剤塗布等の次ショットの鋳造成形の準備を行う。 Due to the pressure increasing process and the pressure maintaining process, the spatial volume of the mold cavity 13 is reduced, and as shown in FIG. The space volume of the mold cavity 13 becomes the product volume, and the holding pressure process is completed. In the subsequent cooling process, the pressing force (referred to as mold clamping force) of the two contact PL surfaces (16L, 16U) is adjusted to maintain the contact state of the two contact PL surfaces (16L, 16U). After the cooling process is completed, the movable mold 12 is opened to the mold opening limit as shown in FIG. Take out the casting MC. After the cast product MC is removed, preparations for casting the next shot, such as cleaning the mold cavity 13 and applying a release agent, are performed.

ここで、可動金型12の型閉位置のPL開始位置S0から型締限までは、2つの摺動PL面(15L、15U)が勘合する摺動範囲内で、金型キャビティ13の空間容積を可変することができる。金型キャビティ13の空間容積の可変は、この摺動範囲内で、鋳造成形の射出工程から保圧工程までを連続して行う。その結果、金型キャビティ13内の溶湯Mの充填流動は停滞することなく、連続した充填流動を示す。金型キャビティ13の空間容積は、射出工程が最も大きく、保圧工程に向かって次第に縮小され、保圧工程の完了で最も小さくなり、型締限位置で製品容積となる。 Here, from the PL start position S0 of the mold closing position of the movable mold 12 to the mold clamping limit, the space volume of the mold cavity 13 is within the sliding range where the two sliding PL surfaces (15L, 15U) are fitted. can be varied. The spatial volume of the mold cavity 13 can be varied continuously from the injection process of casting to the holding pressure process within this sliding range. As a result, the filling flow of the molten metal M in the mold cavity 13 shows a continuous filling flow without stagnation. The spatial volume of the mold cavity 13 is the largest during the injection process, gradually shrinks toward the holding pressure process, becomes the smallest at the completion of the holding pressure process, and becomes the product volume at the mold clamping limit position.

また、金型キャビティ13内の残存空気や溶湯Mから発生した揮発性ガス等(総称してガスという)の排気手段GRを、図3(a)に示すように、2つの摺動PL面(15L、15U)に設ける。例えば、2つの摺動PL面(15L、15U)の隙間を適正な範囲に調整して、この隙間を排気手段GRとしてガスの排気に用いる。また、2つの摺動PL面(15L、15U)に微細なスリット溝を設けて、このスリット溝を排気手段GRとしても良い。あるいは、ガスのみが透過する微細な穴が無数に空いた多孔質金属等で、2つの摺動PL面(15L、15U)の一部あるいは全部を形成して、排気手段GRとしても良い。金型キャビティ13内のガスは、溶湯Mよりも軽いために、充填流動する溶湯Mに押されて、鉛直上方に位置する2つの摺動PL面(15L、15U)に向かって流れる。そのため、2つの摺動PL面(15L、15U)に排気手段GRを設けることで、ガスの排気が効率良く行われ、ガス残り不良を確実に防止することができる。 Also, as shown in FIG. 15L, 15U). For example, the gap between the two sliding PL surfaces (15L, 15U) is adjusted to an appropriate range, and this gap is used as the exhaust means GR to exhaust gas. Also, fine slit grooves may be provided on the two sliding PL surfaces (15L, 15U), and these slit grooves may be used as the exhaust means GR. Alternatively, the two sliding PL surfaces (15L, 15U) may be partly or wholly formed of a porous metal or the like having countless fine holes through which only gas is permeable to serve as the exhaust means GR. Since the gas in the mold cavity 13 is lighter than the molten metal M, it is pushed by the filling and flowing molten metal M and flows toward the two slide PL surfaces (15L, 15U) positioned vertically above. Therefore, by providing the exhaust means GR on the two sliding PL surfaces (15L, 15U), the gas can be exhausted efficiently, and the residual gas failure can be reliably prevented.

さらに、金型キャビティ13内に射出充填した溶湯Mの漏出防止手段を、二重に設ける。1つ目の漏出防止手段MS1は、図3(a)に示すように、2つの摺動PL面(15L、15U)に、排気手段GRと合わせて設ける。これにより、ガスの排気と溶湯Mの漏出防止の効果を同時に発揮することができる。例えば、2つの摺動PL面(15L、15U)の隙間を、0.05mm程度に調整する。この程度の隙間であれば、溶湯Mの漏出防止を確実に行うことができ、さらに、ガスの排出をスムーズに行うことができる。なお、鋳造金型10は、高温の溶湯Mにより温度上昇し、隙間が変わることがある。そのために、温度上昇を見越した隙間の調整を行うことが好ましい。あるいは、例えば、温度上昇に対して熱膨張係数を適切に調整された金型素材等を、2つの摺動PL面(15L、15U)に用いても良い。また、鋳造金型10の長期間の使用により、例えば、溶湯Mの凝固片等の異物により、2つの摺動PL面(15L、15U)が損傷受けて、隙間が広がることがあり、広がった隙間から溶湯Mが漏出することが心配される。そこで、2つ目の漏出防止手段MS2は、図3(b)に示すように、2つの当接PL面(16L、16U)に設ける。型締限において、2つの当接PL面(16L、16U)に型締力が作用し、強固に密着することで、漏出防止の効果を発揮する。 Further, a double means for preventing leakage of the molten metal M injected and filled into the mold cavity 13 is provided. As shown in FIG. 3(a), the first leakage prevention means MS1 is provided on the two sliding PL surfaces (15L, 15U) together with the exhaust means GR. As a result, the effects of exhausting the gas and preventing the leakage of the molten metal M can be exhibited at the same time. For example, the gap between the two sliding PL surfaces (15L, 15U) is adjusted to about 0.05 mm. With such a gap, the molten metal M can be reliably prevented from leaking, and the gas can be discharged smoothly. The temperature of the casting mold 10 may rise due to the high temperature of the molten metal M, and the gap may change. Therefore, it is preferable to adjust the gap in anticipation of the temperature rise. Alternatively, for example, a mold material or the like whose thermal expansion coefficient is appropriately adjusted with respect to temperature rise may be used for the two sliding PL surfaces (15L, 15U). In addition, due to the long-term use of the casting mold 10, for example, the two sliding PL surfaces (15L, 15U) may be damaged by foreign matter such as solidified pieces of the molten metal M, and the gap may widen. There is concern that the molten metal M may leak through the gap. Therefore, the second leakage preventing means MS2 is provided on the two contact PL surfaces (16L, 16U) as shown in FIG. 3(b). At the mold clamping limit, a mold clamping force acts on the two abutting PL surfaces (16L, 16U) to firmly adhere to each other, thereby exhibiting the effect of preventing leakage.

(溶湯の充填量調整手段)
ここまでは、射出装置20からの金型キャビティ13への溶湯充填量は、制御精度が高く安定している、あるいは、鋳造品MCの品質に影響を及ぼさない程度の小さな変動量の状態を前提条件として説明してきた。しかしながら、実際の鋳造成形においては、溶湯充填量が大きく変動することが十分に考えられる。溶湯充填量が変動する要因として、例えば、金型キャビティ13内のガス排出が十分でなく残存ガスが充填流動の抵抗となる場合、溶湯Mの温度や組成の変動により溶融粘度が変化して充填流動が乱れる場合、加圧ガスの圧力制御の精度が大気圧の変動の影響を受ける場合等である。そこで、本発明において、溶湯充填量の変動に対して、溶湯の充填量調整手段を設けたことを特徴とする。充填量調整手段の3つの事例として、図5と図6を用いて説明する。
(Molten metal filling amount adjusting means)
Up to this point, it is assumed that the molten metal filling amount from the injection device 20 to the mold cavity 13 is stable with high control accuracy, or that the amount of fluctuation is small enough not to affect the quality of the cast product MC. described as a condition. However, in actual casting molding, it is fully conceivable that the molten metal filling amount fluctuates greatly. For example, if the gas discharge in the mold cavity 13 is not sufficient and the remaining gas acts as a resistance to the filling flow, the melt viscosity changes due to changes in the temperature and composition of the molten metal M, resulting in a change in filling. For example, when the flow is disturbed, or when the accuracy of the pressure control of the pressurized gas is affected by fluctuations in the atmospheric pressure. Therefore, in the present invention, it is characterized in that a means for adjusting the filling amount of molten metal is provided in response to fluctuations in the filling amount of molten metal. Three examples of filling amount adjusting means will be described with reference to FIGS. 5 and 6. FIG.

1つ目の事例は、図5(a)に示すように、可動金型12の型閉位置を固定した状態で、射出鋳造圧力PSで金型キャビティ13に向けて溶湯Mを射出充填させる。金型キャビティ13内は溶湯Mで次第に充満され、金型キャビティ13内の溶湯Mの圧力を示す、型締鋳造圧力PM1が次第に上昇する。射出鋳造圧力PSと型締鋳造圧力PM1が同等になると(PS=PM1)、金型キャビティ13内は溶湯Mで満杯状態であり、これ以上の溶湯Mの射出充填はできず、圧力バランスによる溶湯充填量の調整が行われる。この原理を充填量調整手段MC1とする。ここで、型閉位置とは、増圧工程および保圧工程の金型キャビティ13の空間容積の縮小を正確に制御した増圧開始位置S2である。つまり、可動金型12の型閉位置を正確に制御することによって、射出装置20の射出充填量の変動を解消することが容易にできる。 In the first example, as shown in FIG. 5(a), the molten metal M is injected and filled into the mold cavity 13 with the injection casting pressure PS while the mold closing position of the movable mold 12 is fixed. The mold cavity 13 is gradually filled with the molten metal M, and the clamping casting pressure PM1, which indicates the pressure of the molten metal M in the mold cavity 13, gradually rises. When the injection casting pressure PS and the mold clamping casting pressure PM1 become equal (PS=PM1), the inside of the mold cavity 13 is filled with the molten metal M, and further injection filling of the molten metal M is impossible. Fill volume adjustment is performed. This principle is referred to as filling amount adjusting means MC1. Here, the mold closing position is the pressure increase start position S2 at which the reduction of the spatial volume of the mold cavity 13 in the pressure increase process and the pressure holding process is accurately controlled. That is, by accurately controlling the mold closing position of the movable mold 12, it is possible to easily eliminate fluctuations in the injection filling amount of the injection device 20. FIG.

2つ目の事例は、図5(b)に示すように、切換時間T2からT3の範囲において、射出鋳造圧力PSで金型キャビティ13に向けて溶湯Mの射出充填を継続させる。射出流動に型締流動が加算され、金型キャビティ13内は溶湯Mで次第に充満され、型締鋳造圧力PM2が発生する。図5(a)と同様に、射出鋳造圧力PSと型締鋳造圧力PM2が同等になるまでは(PS=PM2)、射出流動と型締流動が継続される。その後、金型キャビティ13内が溶湯Mで満杯となり、さらに、射出流動と型締流動の継続により、図5(c)に示すように、より大きな型締鋳造圧力PM3が発生し(PM3>PM2)、射出鋳造圧力PSとのバランスが崩れて(PM3>PS)、給湯管23を介して射出装置20に溶湯Mが戻される(バックフローという)。可動金型12の型閉位置が増圧開始位置S2に到達するまでは、過剰な溶湯Mのバックフローは継続され、金型キャビティ13内は空間容積に適した溶湯Mの充填量で満杯状態が維持される。増圧開始位置S2で開閉手段14を閉鎖することで、金型キャビティ13の空間容積に応じた溶湯Mの充填量が確保され、射出装置20の射出充填量の変動を解消することが容易にできる。このバックフローによる溶湯充填量の調整を充填量調整手段MC2とする。なお、バックフローした溶湯Mは、溶湯保持炉22の溶湯Mと混合され、次ショットの鋳造成形に適用される。 In the second example, as shown in FIG. 5(b), the injection filling of the molten metal M continues toward the mold cavity 13 at the injection casting pressure PS in the switching time range from T2 to T3. The mold clamping flow is added to the injection flow, the mold cavity 13 is gradually filled with the molten metal M, and a mold clamping casting pressure PM2 is generated. As in FIG. 5A, the injection flow and the clamping flow are continued until the injection casting pressure PS and the clamping casting pressure PM2 become equal (PS=PM2). After that, the inside of the mold cavity 13 is filled with the molten metal M, and furthermore, due to the continuation of the injection flow and the mold clamping flow, a larger mold clamping casting pressure PM3 is generated (PM3>PM2 ), the balance with the injection casting pressure PS is lost (PM3>PS), and the molten metal M is returned to the injection device 20 through the hot water supply pipe 23 (referred to as backflow). Until the mold closing position of the movable mold 12 reaches the pressure increase start position S2, the excessive backflow of the molten metal M is continued, and the mold cavity 13 is filled with a filling amount of the molten metal M suitable for the space volume. is maintained. By closing the opening/closing means 14 at the pressure increase start position S2, the filling amount of the molten metal M corresponding to the spatial volume of the mold cavity 13 is ensured, and fluctuations in the injection filling amount of the injection device 20 can be easily eliminated. can. The adjustment of the molten metal filling amount by this backflow is defined as a filling amount adjusting means MC2. The backflowed molten metal M is mixed with the molten metal M in the molten metal holding furnace 22 and applied to casting the next shot.

3つ目の事例は、図6に示すように、鋳造金型10に充填量調整手段MC3を設けたものである。その構成は、図6(a)に示すように、2つの摺動PL面(15L、15U)および2つの当接PL面(16L、16U)の間に空間部を設け、この空間部を充填量調整手段MC3とする。なお、図6(a)において、鉛直上方側の空間容積が広がった形状の充填量調整手段MC3としたが、これに限定されることなく、例えば、同一の空間容積の形状としても良く、鉛直方向と水平方向を組み合わせた空間形状としても良い。先ず、可動金型12の型閉位置が射出開始位置S1で射出工程を開始する。その後、射出流動と型締流動を組み合わせて、金型キャビティ13内を溶湯Mで充満していく。射出工程においては、2つの摺動PL面(15L、15U)は、少なくとも一部は勘合状態ではなく、金型キャビティ13と充填量調整空間17Rは連通状態となっている。仮に、金型キャビティ13の空間容積に対して、溶湯Mの充填量が過大であった場合には、この連通状態から充填量調整手段MC3に溶湯Mがオーバーフローして、金型キャビティ13の空間容積に適した溶湯Mの充填量で満杯状態が維持される(オーバーフローによる溶湯充填量の調整という)。 In the third example, as shown in FIG. 6, the casting mold 10 is provided with a filling amount adjusting means MC3. As shown in FIG. 6(a), the configuration is such that a space is provided between two sliding PL surfaces (15L, 15U) and two contact PL surfaces (16L, 16U), and this space is filled with A quantity adjusting means MC3 is used. In FIG. 6(a), the filling amount adjusting means MC3 has a shape in which the space volume on the vertically upper side is widened, but is not limited to this. The spatial shape may be a combination of the direction and the horizontal direction. First, the mold closing position of the movable mold 12 starts the injection process at the injection start position S1. After that, the mold cavity 13 is filled with the molten metal M by combining the injection flow and the clamping flow. In the injection process, at least a part of the two sliding PL surfaces (15L, 15U) are not in a fitted state, and the mold cavity 13 and the filling amount adjusting space 17R are in a state of communication. If the filling amount of the molten metal M is excessive with respect to the spatial volume of the mold cavity 13, the molten metal M overflows from this communication state into the filling amount adjusting means MC3, and the space of the mold cavity 13 is filled. The full state is maintained with the filling amount of molten metal M suitable for the volume (this is called adjustment of the molten metal filling amount by overflow).

次に、図6(b)に示すように、2つの摺動PL面(15L、15U)が完全に勘合した状態を増圧開始位置S2とする。つまり、可動金型12の型閉位置が増圧開始位置S2に到達するまでは、オーバーフローによる溶湯充填量の調整が継続されているので、増圧開始位置S2の金型キャビティ13の空間容積に適した溶湯Mの充填量が確保されていることになる。その後、開閉手段14を閉鎖状態として、増圧工程へと進む。なお、充填量調整手段MC3にオーバーフローした溶湯MFは、増圧工程から冷却工程の範囲で冷却され、鋳造品MCの取出し工程で、鋳造金型10から取り出して、溶解炉等で再溶融して再利用する。 Next, as shown in FIG. 6(b), the state where the two sliding PL surfaces (15L, 15U) are completely fitted together is defined as pressure increase start position S2. That is, until the mold closing position of the movable mold 12 reaches the pressure increase start position S2, the adjustment of the molten metal filling amount is continued by overflow. A suitable filling amount of the molten metal M is ensured. After that, the opening/closing means 14 is closed, and the process proceeds to the pressure increasing step. The molten metal MF that has overflowed into the filling amount adjusting means MC3 is cooled in the range from the pressure increasing process to the cooling process, is removed from the casting mold 10, and is remelted in a melting furnace or the like in the process of removing the casting MC. Reuse.

(効果)
このように、可動金型12の型閉動作の型閉位置に基づいて、射出工程、増圧工程、保圧工程、冷却工程の鋳造成形動作を制御する。これによって、金型キャビティ13内の溶湯Mの充填流動の停滞や乱れの無い、安定流動を確保することができる。その結果、湯ジワ、湯境、酸化物等の異物巻き込み、未充填、ボイド、鋳巣、偏析等の鋳造不良を確実に防止でき、高品質な鋳造品MCの安定供給を提供することができる。また、射出装置20からの射出流動と、金型キャビティ13の空間容積の縮小の型締圧縮で生じる型締流動の合算により、射出装置20および型締装置30の低圧化の効果を発揮し、小さな竪型鋳造装置100で大きな鋳造品MCを鋳造成形することができるという型締力クラスダウンを達成する。さらに、増圧工程から冷却工程の範囲内で、溶湯Mの回収工程等の次ショットの鋳造成形の準備工程を並行して行うことができるので、鋳造成形のサイクル短縮も期待できる。さらに、金型キャビティ13内のガス排気手段GR、射出装置20からの溶湯Mの射出流動を調整する充填量調整手段(MC1~MC3)、溶湯Mの漏出防止手段MSにより、鋳造品MCの品質安定化と鋳造成形の安定運転を提供することができる。
(effect)
In this manner, the casting and molding operations of the injection process, the pressure increasing process, the pressure holding process, and the cooling process are controlled based on the mold closing position of the mold closing operation of the movable mold 12 . As a result, a stable flow can be ensured without stagnation or turbulence in the filling flow of the molten metal M in the mold cavity 13 . As a result, it is possible to reliably prevent casting defects such as wrinkles, hot water boundaries, inclusion of foreign matter such as oxides, unfilling, voids, blowholes, segregation, etc., and it is possible to provide a stable supply of high-quality cast products MC. . In addition, the addition of the injection flow from the injection device 20 and the mold clamping flow generated by mold clamping compression for reducing the spatial volume of the mold cavity 13 exerts the effect of lowering the pressure of the injection device 20 and the mold clamping device 30. To achieve a mold clamping force class-down so that a large casting MC can be cast with a small vertical casting apparatus 100.例文帳に追加Furthermore, since the preparatory process for casting the next shot such as the recovering process of the molten metal M can be carried out in parallel within the range from the pressure increasing process to the cooling process, shortening of the casting cycle can be expected. Furthermore, the quality of the casting MC is improved by the gas exhaust means GR in the mold cavity 13, the filling amount adjusting means (MC1 to MC3) for adjusting the injection flow of the molten metal M from the injection device 20, and the leakage preventing means MS of the molten metal M. It can provide stabilization and stable operation of casting.

以上、本発明の好適な実施形態について説明したが、本発明の技術範囲は、上述した実施形態に記載された範囲には限定されない。上記の実施形態には多様な変更または改良を加えることが可能である。 Although the preferred embodiments of the present invention have been described above, the technical scope of the present invention is not limited to the ranges described in the above-described embodiments. Various modifications or improvements can be added to the above embodiments.

100 竪型鋳造装置
10 鋳造金型
11 固定金型
12 可動金型
13 金型キャビティ
13G ゲート
14 開閉手段
20 射出装置
21 加圧室
22 溶湯保持炉
23 給湯管
M、MF 溶湯
30 型締装置
31 固定盤
32 可動盤
33 型締盤
34 タイバー
35 型締駆動部
40 制御装置
41 射出制御部
42 流量調整手段
43 圧力調整手段
44 加圧ガス供給源
45 圧力計測手段
46 型締制御部
47 鋳造制御部
SH 動作波形
PH、FH 圧力波形
S0 PL開始位置
S1 射出開始位置
S2 増圧開始位置
S3 保圧開始位置
T1~T5 切換時間
PG1~PG4 ガス圧力
H1 湯面位置
15L、15U 摺動PL面
16L、16U 当接PL面
MC 鋳造品
PS 射出鋳造圧力
PM1~PM3 型締鋳造圧力
GR 排気手段
MS1、MS2 漏出防止手段
MC1~MC3 充填量調整手段
REFERENCE SIGNS LIST 100 vertical casting device 10 casting mold 11 fixed mold 12 movable mold 13 mold cavity 13G gate 14 opening/closing means 20 injection device 21 pressure chamber 22 molten metal holding furnace 23 hot water supply pipe M, MF molten metal 30 mold clamping device 31 fixing Plate 32 Movable platen 33 Mold clamping plate 34 Tie bar 35 Mold clamping driving part 40 Control device 41 Injection control part 42 Flow rate adjusting means 43 Pressure adjusting means 44 Pressurized gas supply source 45 Pressure measuring means 46 Mold clamping control part 47 Casting control part SH Operating waveform PH, FH Pressure waveform S0 PL start position S1 Injection start position S2 Pressure increase start position S3 Holding pressure start position T1 to T5 Switching time PG1 to PG4 Gas pressure H1 Hot water surface position 15L, 15U Sliding PL surface 16L, 16U Contact PL surface MC Casting product PS Injection casting pressure PM1 to PM3 Mold clamping casting pressure GR Exhaust means MS1, MS2 Leakage prevention means MC1 to MC3 Filling amount adjustment means

Claims (6)

固定金型に向かって可動金型が近接する型閉動作により形成される金型キャビティ内に溶湯を射出充填する、竪型鋳造装置を用いた鋳造方法において、
型閉動作中の前記可動金型の型閉位置に基づいて、前記金型キャビティ内に溶湯を充填流動させる射出工程と、前記金型キャビティ内の溶湯の密度を高める増圧工程と、溶湯の凝固収縮を補う保圧工程と、溶湯を所定の温度まで冷却させる冷却工程と、を制御することを特徴とする鋳造方法。
In a casting method using a vertical casting machine, in which molten metal is injected and filled into a mold cavity formed by a mold closing operation in which a movable mold approaches a fixed mold,
Based on the mold closing position of the movable mold during the mold closing operation, an injection step of filling and flowing the molten metal into the mold cavity, a pressure increasing step of increasing the density of the molten metal in the mold cavity, and A casting method characterized by controlling a holding pressure process for compensating for solidification shrinkage and a cooling process for cooling molten metal to a predetermined temperature.
前記金型キャビティの周囲は、鉛直方向に延びる摺動PL面と、水平方向に延びる当接PL面で形成され、前記摺動PL面の範囲内で、前記金型キャビティの空間容積を可変することができ、前記射出工程で前記空間容積が最も大きく、前記射出工程から前記増圧工程および前記保圧工程に向かって、前記空間容積が次第に縮小し、前記冷却工程で前記空間容積が最も小さく、前記当接PL面が当接して製品容積となる、請求項1記載の鋳造方法。 The periphery of the mold cavity is formed by a sliding PL surface extending in the vertical direction and a contact PL surface extending in the horizontal direction, and the spatial volume of the mold cavity is variable within the range of the sliding PL surface. The spatial volume is the largest in the injection step, gradually decreases from the injection step toward the pressure increasing step and the pressure holding step, and the spatial volume is the smallest in the cooling step. 2. The casting method according to claim 1, wherein said abutting PL surfaces abut to form a product volume. 前記金型キャビティ内の溶湯は、前記空間容積の縮小によって押圧され流動する型締流動を示し、前記射出工程では、射出装置からの溶湯の射出流動に前記型締流動が加算され、前記増圧工程では、前記型締流動が溶湯の充填密度を高める型締増圧として作用し、前記保圧工程では、前記型締流動が溶湯の凝固収縮を補う型締保圧として作用する、請求項1または2に記載の鋳造方法。 The molten metal in the mold cavity exhibits a mold clamping flow that is pressed and flows due to the reduction of the space volume, and in the injection step, the mold clamping flow is added to the injection flow of the molten metal from the injection device, and the pressure is increased. 2. In the step, the clamping flow acts as a mold clamping pressure increase that increases the packing density of the molten metal, and in the holding pressure step, the clamping flow acts as a clamping holding pressure that compensates for the solidification shrinkage of the molten metal. Or the casting method according to 2. 前記金型キャビティ内のガスの排気手段を設ける、請求項1から3のいずれか1項に記載の鋳造方法。 4. A casting method according to any one of claims 1 to 3, wherein means for evacuating gases within the mold cavity are provided. 前記金型キャビティ内に射出充填される溶湯の充填量調整手段を設ける、請求項1から3のいずれか1項に記載の鋳造方法。 4. The casting method according to any one of claims 1 to 3, further comprising means for adjusting the amount of molten metal injected and filled into said mold cavity. 前記金型キャビティ内に射出充填された溶湯の漏出防止手段を設ける、請求項1から5のいずれか1項に記載の鋳造方法。 6. The casting method according to any one of claims 1 to 5, wherein means for preventing leakage of molten metal injected and filled in said mold cavity is provided.
JP2021206583A 2021-12-21 2021-12-21 casting method Pending JP2023091797A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2021206583A JP2023091797A (en) 2021-12-21 2021-12-21 casting method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2021206583A JP2023091797A (en) 2021-12-21 2021-12-21 casting method

Publications (1)

Publication Number Publication Date
JP2023091797A true JP2023091797A (en) 2023-07-03

Family

ID=86995816

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2021206583A Pending JP2023091797A (en) 2021-12-21 2021-12-21 casting method

Country Status (1)

Country Link
JP (1) JP2023091797A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117548649A (en) * 2024-01-10 2024-02-13 中信戴卡股份有限公司 Casting method for temperature-pressure flow multi-field cooperative control, control device and application thereof

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117548649A (en) * 2024-01-10 2024-02-13 中信戴卡股份有限公司 Casting method for temperature-pressure flow multi-field cooperative control, control device and application thereof
CN117548649B (en) * 2024-01-10 2024-03-12 中信戴卡股份有限公司 Casting method for temperature-pressure flow multi-field cooperative control, control device and application thereof

Similar Documents

Publication Publication Date Title
CN101274361B (en) Low speed vacuum squeeze casting technology
JP3882013B2 (en) Casting water heater
JP2023091797A (en) casting method
JP2000135551A (en) Non-hole natured die-casting device
JP2012148319A (en) Apparatus and method for die casting
JP2001252759A (en) Casting method, casting facility, method for producing metallic raw and apparatus for producing metallic raw
JP3592252B2 (en) Casting method and casting apparatus
US3999593A (en) Method and apparatus for pore-free die casting
US5595236A (en) Vertical squeeze casting apparatus
JP2013132644A (en) Die casting method
KR100939966B1 (en) Manufacturing system of vehicle steering apparatus for valae housing
JP3842163B2 (en) Die casting apparatus and die casting method
JP5362389B2 (en) Oxygen substitution die casting apparatus and casting method
JP2023031343A (en) casting method
JP2014521519A (en) Die casting machine and die casting method
JP3117163B2 (en) Die casting machine
JP2023115495A (en) Vertical mold casting apparatus
JP2023037676A (en) Method of low-pressure casting
JP2023181585A (en) Vacuum caster
JPH07155924A (en) Method for supplying molten metal in die casting machine
JP2024024722A (en) Hollow molding apparatus and hollow molding method
JPH04143058A (en) Injection forming apparatus
JP2005046905A (en) Vacuum die-casting machine
JP2024024714A (en) Hollow casting apparatus and hollow casting method
JP3592239B2 (en) Casting method and casting apparatus

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20240927

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20241002