JP2023091792A - Structural soundness evaluation system for building - Google Patents

Structural soundness evaluation system for building Download PDF

Info

Publication number
JP2023091792A
JP2023091792A JP2021206571A JP2021206571A JP2023091792A JP 2023091792 A JP2023091792 A JP 2023091792A JP 2021206571 A JP2021206571 A JP 2021206571A JP 2021206571 A JP2021206571 A JP 2021206571A JP 2023091792 A JP2023091792 A JP 2023091792A
Authority
JP
Japan
Prior art keywords
layer
energy absorption
absorption amount
building
analysis
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2021206571A
Other languages
Japanese (ja)
Inventor
恒二 廣石
Tsuneji Hiroishi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Taisei Corp
Original Assignee
Taisei Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Taisei Corp filed Critical Taisei Corp
Priority to JP2021206571A priority Critical patent/JP2023091792A/en
Publication of JP2023091792A publication Critical patent/JP2023091792A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Testing Of Devices, Machine Parts, Or Other Structures Thereof (AREA)

Abstract

To provide a system for accurate determination of the structural soundness of a building with a simple configuration.SOLUTION: A structural soundness evaluation system for a building includes: an analysis unit 21 which performs a static incremental analysis in advance using a three-dimensional frame model, calculates an analysis value of the energy absorption amount of each layer 11 and an analysis value of the energy absorption amount of each member including columns and beams at each incremental step which is a stage of increasing the load in the static incremental analysis, and records the analysis values in an analysis result recording unit 27; an earthquake information recording unit 22 which records earthquake information obtained from a sensor 12 installed in a building 10; and an energy absorption estimation unit 23 which calculates the layer shear force and interlayer displacement of each layer 11 based on the earthquake information and the weight of each layer 11 of the building 10, and calculates an estimated energy absorption amount of each layer 11 based on the layer shear force and interlayer displacement.SELECTED DRAWING: Figure 1

Description

本発明は、建物の健全性を診断、評価する健全性評価システムに関する。 The present invention relates to a soundness evaluation system for diagnosing and evaluating the soundness of a building.

地震発生後に、建物を直接目視しなくとも、建物の被災度合い等の、建物の構造性能すなわち健全性を把握することができる建物の健全性評価システムが、種々提案されている。このような建物の健全性評価システムにおいては、より高い精度で建物の健全性を把握することが望まれている。
例えば特許文献1には、多層構造の建物の観測層に設けられたセンサから得られる加速度データと観測層における損傷拡大の有無を示す損傷拡大情報とに基づいて、観測層における加速度データと観測層における損傷拡大の有無との関係を学習した建物損傷拡大検知モデルと、判定対象である判定層に設けられたセンサで取得された加速度データと、を用い、判定層における損傷拡大の有無を推定する構成の技術が開示されている。
特許文献1に開示されたような構成では、建物の観測層における損傷拡大の有無を推定することができるものの、建物の各層を構成する部材単位までの詳細な健全性の判定を行うことができるものではない。したがって、健全性の判定精度を高めようとしても、限度がある。
2. Description of the Related Art Various building soundness evaluation systems have been proposed, which are capable of ascertaining the structural performance of a building, such as the degree of damage to the building, that is, the soundness of the building after the occurrence of an earthquake without directly looking at the building. In such a building soundness evaluation system, it is desired to grasp the soundness of the building with higher accuracy.
For example, in Patent Document 1, based on acceleration data obtained from a sensor provided in the observation layer of a multi-layered building and damage expansion information indicating the presence or absence of damage expansion in the observation layer, acceleration data in the observation layer and observation layer Estimate the presence or absence of damage expansion in the judgment layer using the building damage expansion detection model that has learned the relationship between the presence or absence of damage expansion in the judgment layer and the acceleration data acquired by the sensor installed in the judgment layer. A configuration technique is disclosed.
In the configuration disclosed in Patent Document 1, although it is possible to estimate the presence or absence of damage expansion in the observation layer of the building, it is possible to make a detailed soundness determination of each member constituting each layer of the building. not a thing Therefore, there is a limit to improving the accuracy of soundness determination.

これに対し、特許文献2には、構造物の構造フレームを形成する複数の構造部材の接合部に振動センサを設置し、接合部と接合部を構成する複数の構造部材を部分構造として分割し、接合部に接合した各構造部材に設置した振動センサの検出情報を入力、接合部の振動センサを出力として、各部分構造の動特性の入出力関係に基づいて、部分構造を構成する構造部材の損傷の有無及び損傷の程度を検出する構成が開示されている。
特許文献2に開示されたような構成では、構造部材単位での詳細な健全性の判定を行うことができるが、構造部材の接合部の各々に振動センサを設置する必要がある。このため、多数の振動センサの設置が必要となり、構成が複雑となるので、実現が容易ではない。
On the other hand, in Patent Document 2, vibration sensors are installed at the joints of a plurality of structural members that form the structural frame of the structure, and the joints and the plurality of structural members that make up the joints are divided as partial structures. , Input the detection information of the vibration sensor installed on each structural member joined to the joint, use the vibration sensor of the joint as the output, and based on the input/output relationship of the dynamic characteristics of each partial structure, the structural members that make up the partial structure A configuration for detecting the presence or absence of damage and the degree of damage is disclosed.
In the configuration disclosed in Patent Document 2, detailed soundness determination can be performed for each structural member, but it is necessary to install a vibration sensor at each joint of the structural members. For this reason, it is necessary to install a large number of vibration sensors, which complicates the configuration and is not easy to implement.

また、特許文献3には、建物の複数の位置に設けられた複数のセンサを備え、複数のセンサで測定される、建物に主要動の到達前から到達後までの建物への地震の影響に基づいて、各位置における地震の建物への影響を測定するが開示されている。この構成においては、複数のセンサの測定結果から変位量及び層間変形角を算出し、建物の階層ごと、及記建物の構造要素(部材)ごとに、建物の健全性を評価している。
特許文献3に開示されたような構成においても、部材単位での詳細な健全性の評価を行うことができるが、そのためには部材ごとにセンサを設置する必要がある。このため、多数のセンサの設置が必要となり、システムの構成が複雑となる。
In addition, Patent Document 3 discloses that a plurality of sensors are provided at a plurality of positions in a building, and the impact of an earthquake on the building from before to after the arrival of the main motion to the building is measured by the plurality of sensors. Based on this, measuring the impact of earthquakes on buildings at each location is disclosed. In this configuration, the amount of displacement and the inter-story deformation angle are calculated from the measurement results of a plurality of sensors, and the soundness of the building is evaluated for each floor of the building and for each structural element (member) of the building.
Even in the configuration disclosed in Patent Document 3, it is possible to perform a detailed soundness evaluation for each member, but for this purpose it is necessary to install a sensor for each member. Therefore, it is necessary to install a large number of sensors, which complicates the system configuration.

特開2020-8332号公報Japanese Unexamined Patent Application Publication No. 2020-8332 特開2015-4526号公報JP 2015-4526 A 特開2020-143895号公報JP 2020-143895 A

本発明が解決しようとする課題は、簡易な構成で、健全性を精度よく判定することができる、建物の健全性評価システムを提供することである。 The problem to be solved by the present invention is to provide a building soundness evaluation system that can accurately determine the soundness of a building with a simple configuration.

本発明は、上記課題を解決するため、以下の手段を採用する。
すなわち、本発明の建物の健全性評価システムは、建物の健全性を診断、評価する健全性評価システムであって、柱及び梁を含んで前記建物に対応するように構成された立体骨組モデルを用いて、事前に静的増分解析を行い、当該解析において荷重を増加させる段階である増分ステップごとに、各層のエネルギー吸収量の解析値、及び前記柱及び前記梁を含む各部材のエネルギー吸収量の解析値を算出し、解析結果記録部に記録する解析部と、前記建物に設置したセンサから得られる地震情報を記録する地震情報記録部と、前記地震情報、及び前記建物の各層の重量に基づき、各層の層せん断力と層間変位を算出し、前記層せん断力及び前記層間変位に基づいて各層のエネルギー吸収量の推定値を計算するエネルギー吸収量の推定部と、前記解析結果記録部に記録された、前記各層のエネルギー吸収量の解析値のなかから、前記各層のエネルギー吸収量の推定値との差分が最小となる各層のエネルギー吸収量の差分最小解析値を選択して、これに対応する前記増分ステップを、差分最小の増分ステップとして同定する増分ステップの同定部と、前記差分最小の増分ステップに対応する前記各部材のエネルギー吸収量の解析値から、各部材のエネルギー吸収量の推定値を取得し、当該各部材のエネルギー吸収量の推定値と、前記各部材に対して設定された損傷判定閾値とを比較して、損傷程度を算定し、各部材の前記損傷程度に基づき、前記建物の健全性を判定する健全性判定部と、を備えていることを特徴とする。
このような構成によれば、柱及び梁を含んで建物に対応するように構成された立体骨組モデルを用いて静的増分解析を行い、この静的増分解析において荷重を増加させる段階である増分ステップごとに算出された、各層のエネルギー吸収量の解析値と、柱及び梁を含む各部材のエネルギー吸収量の解析値とが、解析部によって算出されて、解析結果記録部に記録されている。地震が生じた際には、エネルギー吸収量の推定部が、建物に設置したセンサから得られた地震情報、及び建物の各層の重量に基づいて、建物の各層におけるエネルギー吸収量の推定値を計算する。健全性判定部は、各層のエネルギー吸収量の解析値のなかから、各層のエネルギー吸収量の推定値との差分が最小となる各層のエネルギー吸収量の差分最小解析値を選択することによって、選択された各層のエネルギー吸収量の差分最小解析値に対応する、当該差分最小解析値が結果として出力された増分ステップを、差分最小の増分ステップとして同定する。このようにして同定された差分最小の増分ステップにおいては、地震情報が取得された地震が生じた際に各層が吸収したエネルギーと同程度のエネルギーを各層が吸収するように、荷重が増加された状態となっている。したがって、静的増分解析の、この差分最小の増分ステップの段階における各部材のエネルギー吸収量の解析値は、地震情報が取得された地震が生じた際に、各部材が吸収したエネルギーの量に近い値と考えられる。したがって、差分最小の増分ステップに対応する各部材のエネルギー吸収量の解析値から、各部材のエネルギー吸収量の推定値を取得し、当該各部材のエネルギー吸収量の推定値に基づき、損傷判定閾値との比較により損傷程度を算定することによって、建物を構成する各部材の損傷程度を評価し、建物の健全性を判定することができる。
このようにして、建物を構成する部材に生じる損傷の有無、及びその損傷程度を推定することによって、部材ごとに損傷評価を行うことができ、高精度で、信頼性の高い建物の健全性評価を行うことができる。
更に、上記のような構成においては、部材ごとに損傷評価を行うことができるにもかかわらず、部材ごとにセンサを設けなくともよいため、センサの数を多く必要としない。
したがって、簡易な構成で、健全性を精度よく判定することができる、建物の健全性評価システムを提供可能である。
In order to solve the above problems, the present invention employs the following means.
That is, the building soundness evaluation system of the present invention is a soundness evaluation system for diagnosing and evaluating the soundness of a building. , perform a static incremental analysis in advance, and for each incremental step that is the stage of increasing the load in the analysis, the analytical value of the energy absorption amount of each layer and the energy absorption amount of each member including the column and the beam The analysis unit that calculates the analysis value of and records it in the analysis result recording unit, the earthquake information recording unit that records the earthquake information obtained from the sensor installed in the building, the earthquake information, and the weight of each layer of the building Based on this, an energy absorption amount estimating unit that calculates the layer shear force and the interlayer displacement of each layer and calculates an estimated value of the energy absorption amount of each layer based on the layer shear force and the interlayer displacement, and the analysis result recording unit From the recorded analytical values of the energy absorption amount of each layer, select the minimum difference analysis value of the energy absorption amount of each layer that minimizes the difference from the estimated value of the energy absorption amount of each layer. The energy absorption amount of each member is determined from the identification unit of the incremental step that identifies the corresponding incremental step as the incremental step with the minimum difference, and the analytical value of the energy absorption amount of each member corresponding to the incremental step with the minimum difference. Obtain an estimated value, compare the estimated value of the energy absorption amount of each member and the damage determination threshold set for each member, calculate the degree of damage, and calculate the degree of damage of each member based on the degree of damage , and a soundness determination unit that determines the soundness of the building.
According to such a configuration, a static incremental analysis is performed using a three-dimensional frame model configured to correspond to a building including columns and beams, and the step of increasing the load in this static incremental analysis. The analysis value of the energy absorption amount of each layer and the analysis value of the energy absorption amount of each member including columns and beams, which are calculated for each step, are calculated by the analysis unit and recorded in the analysis result recording unit. . When an earthquake occurs, the energy absorption estimator calculates the estimated energy absorption in each floor of the building based on the earthquake information obtained from the sensors installed in the building and the weight of each floor of the building. do. The soundness determination unit selects, from among the analytical values of the energy absorption amount of each layer, the minimum difference analysis value of the energy absorption amount of each layer that minimizes the difference from the estimated value of the energy absorption amount of each layer. The incremental step at which the minimum difference analysis value corresponding to the minimum difference analysis value of the energy absorption amount of each layer was output is identified as the minimum difference incremental step. At the incremental step with the smallest difference identified in this way, the load is increased so that each layer absorbs the same amount of energy as it absorbed when the earthquake for which the seismic information was acquired occurred. state. Therefore, the analytical value of the amount of energy absorbed by each member at the stage of the incremental step with the smallest difference in the static incremental analysis is the amount of energy absorbed by each member when the earthquake for which the seismic information was acquired occurred. values are considered to be close to each other. Therefore, the estimated value of the energy absorption amount of each member is obtained from the analytical value of the energy absorption amount of each member corresponding to the incremental step with the smallest difference, and based on the estimated value of the energy absorption amount of each member, the damage determination threshold By calculating the degree of damage by comparing with the building, it is possible to evaluate the degree of damage to each member that constitutes the building and judge the soundness of the building.
In this way, by estimating the presence or absence of damage to the members that make up the building and the extent of the damage, it is possible to evaluate the damage to each member, resulting in a highly accurate and reliable assessment of the soundness of the building. It can be performed.
Furthermore, in the configuration as described above, although the damage evaluation can be performed for each member, it is not necessary to provide a sensor for each member, so a large number of sensors is not required.
Therefore, it is possible to provide a building soundness evaluation system that can accurately determine soundness with a simple configuration.

本発明の一態様においては、前記解析部は、前記立体骨組モデルに対して前記建物が層崩壊するようにパラメータが設定された層崩壊型モデルと、前記立体骨組モデルに対して前記建物が全体崩壊するようにパラメータが設定された全体崩壊型モデルの各々に対して、静的増分解析を行って、増分ステップごとに、前記各層のエネルギー吸収量の解析値と、前記各部材のエネルギー吸収量の解析値を算出して前記解析結果記録部に記録し、前記増分ステップの同定部は、前記解析結果記録部に記録された、前記層崩壊型モデルにおける前記各層のエネルギー吸収量の解析値と前記全体崩壊型モデルにおける前記各層のエネルギー吸収量の解析値の各組み合わせに対して、層ごとに、前記層崩壊型モデルにおける当該各層のエネルギー吸収量の解析値と前記全体崩壊型モデルにおける当該各層のエネルギー吸収量の解析値との和と、前記各層のエネルギー吸収量の推定値との差分を計算して、前記差分の全層における総和が最小となるような組み合わせである差分最小組み合わせを、前記各層のエネルギー吸収量の差分最小解析値として選択し、当該差分最小組み合わせ中の、前記層崩壊型モデルにおける前記各層のエネルギー吸収量の解析値と前記全体崩壊型モデルにおける前記各層のエネルギー吸収量の解析値に対応する、前記層崩壊型モデルにおける前記増分ステップと、前記全体崩壊型モデルにおける前記増分ステップを、それぞれ、第1差分最小の増分ステップと、第2差分最小の増分ステップとして同定し、前記健全性判定部は、前記第1差分最小の増分ステップと、前記第2差分最小の増分ステップを基に、前記建物の健全性を判定する。
ここで、上記でいう「層崩壊するようにパラメータが設定された層崩壊型モデル」は、具体的には、柱梁接合部において柱が先行して降伏する層崩壊機構が形成されるように、梁、パネルの各耐力を十分大きく設定した立体骨組モデルである。また、上記でいう「全体崩壊するようにパラメータが設定された全体崩壊型モデル」は、具体的には、柱梁接合部において梁あるいは接合部パネルが先行して降伏する全体崩壊機構が形成されるように、1層柱脚部と最上層柱頭部以外の柱耐力を十分大きく設定した立体骨組モデルである。
このような構成によれば、立体骨組モデルに対して建物が層崩壊するようにパラメータが設定された層崩壊型モデルと、立体骨組モデルに対して建物が全体崩壊するようにパラメータが設定された全体崩壊型モデルの各々に対して、静的増分解析を行う。解析結果記録部に記録された、層崩壊型モデルにおける各層のエネルギー吸収量の解析値と全体崩壊型モデルにおける各層のエネルギー吸収量の解析値の、各組み合わせに対して、層ごとに、層崩壊型モデルにおける各層のエネルギー吸収量の解析値と全体崩壊型モデルにおける各層のエネルギー吸収量の解析値との和と、各層のエネルギー吸収量の推定値との差分を計算して、この差分の全層における総和が最小となるような組み合わせである差分最小組み合わせを、各層のエネルギー吸収量の差分最小解析値として選択する。そして、このようにして選択された差分最小組み合わせに対応する、層崩壊型モデルにおける増分ステップと、全体崩壊型モデルにおける増分ステップを、それぞれ、第1差分最小の増分ステップ、及び第2差分最小の増分ステップとして同定する。
ここで、静的増分解析によって、層崩壊と全体崩壊がそれぞれ、上記のようにして同定された第1差分最小の増分ステップ及び第2差分最小の増分ステップまで進行した状態を組み合わせると、各層のエネルギー吸収量が、地震情報が取得された地震が生じた際におけるエネルギー吸収量の推定値と近い値となっている。すなわち、第1差分最小の増分ステップと第2差分最小の増分ステップは、地震情報が取得された地震における、層崩壊と全体崩壊の各々の進行度と見做すことができる。
このようにして同定された、第1差分最小の増分ステップと、第2差分最小の増分ステップとに基づいて、建物の健全性を判定することにより、実際に生じた地震荷重によって建物に生じる被害に、より近い崩壊状態を推定し、建物の健全性の評価を、より高い精度で行うことができる。
In one aspect of the present invention, the analysis unit includes a layer collapse type model in which parameters are set so that the building collapses in layers for the three-dimensional frame model, A static incremental analysis is performed for each of the total collapse type models whose parameters are set so as to collapse, and for each incremental step, the analytical value of the energy absorption amount of each layer and the energy absorption amount of each member are obtained. The analysis value of is calculated and recorded in the analysis result recording unit, and the identification unit of the incremental step is the analysis value of the energy absorption amount of each layer in the layer collapse model recorded in the analysis result recording unit. For each combination of the analytical values of the energy absorption amounts of the layers in the global collapse model, for each layer, the analytical values of the energy absorption amounts of the layers in the layer collapse model and the respective layers in the global collapse model Calculate the difference between the sum of the analytical value of the energy absorption amount and the estimated value of the energy absorption amount of each layer, and the minimum difference combination that is the combination that minimizes the sum of the differences in all layers, Selected as the difference minimum analysis value of the energy absorption amount of each layer, and the analysis value of the energy absorption amount of each layer in the layer collapse type model and the energy absorption amount of each layer in the total collapse type model in the minimum difference combination The incremental step in the layer collapse type model and the incremental step in the global collapse type model corresponding to the analytical value of are identified as the incremental step of the first difference minimum and the incremental step of the second difference minimum, respectively. , the soundness judging unit judges the soundness of the building based on the incremental step of the first minimum difference and the incremental step of the second minimum difference.
Here, the above-mentioned "layer collapse type model with parameters set so as to cause layer collapse" specifically means that a layer collapse mechanism is formed in which the column first yields at the column-to-beam joint. , beams, and panels with sufficiently large strengths. In addition, the above-mentioned "total collapse model with parameters set so as to cause total collapse" specifically has a total collapse mechanism in which the beam or joint panel yields first at the column-to-beam joint. As shown, it is a three-dimensional frame model in which the column strength of columns other than the first layer column base and the top layer column head is set sufficiently large.
According to such a configuration, there is a layer collapse type model in which parameters are set so that the building collapses in layers for the three-dimensional frame model, and a parameter is set in the three-dimensional frame model so that the building totally collapses. A static incremental analysis is performed for each of the global collapse models. For each combination of the analytical value of the energy absorption of each layer in the layer collapse type model and the analytical value of the energy absorption of each layer in the total collapse type model recorded in the analysis result recording part, the layer collapse Calculate the difference between the sum of the analytical value of the energy absorption of each layer in the model and the analytical value of the energy absorption of each layer in the total collapse model, and the estimated value of the energy absorption of each layer, and calculate the total of this difference. A minimum difference combination, which is a combination that minimizes the sum of the layers, is selected as the minimum difference analysis value of the energy absorption amount of each layer. Then, the increment step in the layer collapse type model and the increment step in the total collapse type model corresponding to the combination of the minimum difference selected in this way are set to the increment step of the first difference minimum and the increment step of the second difference minimum, respectively. Identifies as an incremental step.
Here, by static incremental analysis, combining the state in which the layer collapse and the total collapse have progressed to the incremental step of the first difference minimum and the incremental step of the second difference minimum identified as described above, each layer The energy absorption amount is close to the estimated value of the energy absorption amount when the earthquake for which the earthquake information was obtained occurred. That is, the increment step of the first difference minimum and the increment step of the second difference minimum can be regarded as progress of layer collapse and global collapse in the earthquake for which the earthquake information was acquired.
By judging the soundness of the building based on the incremental step of the first difference minimum and the incremental step of the second difference minimum, which are identified in this way, the damage caused to the building by the actually occurred seismic load can be determined. Therefore, it is possible to estimate a closer collapse state and evaluate the soundness of the building with higher accuracy.

本発明の一態様においては、前記健全性判定部は、部材ごとに、前記第1差分最小の増分ステップに対応する、前記層崩壊型モデルにおける前記各部材のエネルギー吸収量の解析値と、前記第2差分最小の増分ステップに対応する、前記全体崩壊型モデルにおける前記各部材のエネルギー吸収量の解析値の和を計算し、これを前記各部材のエネルギー吸収量の推定値として、前記損傷判定閾値と比較して、前記損傷程度を算定する。
上記のようにして同定された第1差分最小の増分ステップに対応する、層崩壊型モデルにおける各部材のエネルギー吸収量の解析値と、第2差分最小の増分ステップに対応する、全体崩壊型モデルにおける各部材のエネルギー吸収量の解析値とを、それぞれ求める。既に説明したように、第1差分最小の増分ステップと第2差分最小の増分ステップは、地震情報が取得された地震における、層崩壊と全体崩壊の各々の進行度であるから、上記のようにして求められた、第1差分最小の増分ステップと第2差分最小の増分ステップのそれぞれに対応する、各部材のエネルギー吸収量の解析値の和は、地震情報が取得された地震が生じた際に、各部材が吸収したエネルギーに近い値と考えられる。この和を、各部材のエネルギー吸収量の推定値として、部材ごとに、損傷判定閾値と比較することで、建物の健全性を判定することで、建物の健全性の評価を、より高い精度で行うことができる。
In one aspect of the present invention, the soundness determination unit includes, for each member, the analytical value of the energy absorption amount of each member in the layer collapse model corresponding to the incremental step of the minimum first difference, and the Calculate the sum of the analytical values of the energy absorption amount of each member in the total collapse model corresponding to the incremental step with the smallest second difference, and use this as the estimated value of the energy absorption amount of each member to determine the damage Comparing with a threshold value, the degree of damage is calculated.
The analysis value of the energy absorption amount of each member in the layer collapse type model corresponding to the incremental step with the minimum first difference identified as described above, and the total collapse type model corresponding to the incremental step with the minimum second difference and the analytical value of the energy absorption amount of each member in . As already explained, the increment step of the first difference minimum and the increment step of the second difference minimum are the degrees of progression of layer collapse and total collapse in the earthquake for which the earthquake information was acquired. The sum of the analytical values of the energy absorption of each member corresponding to each of the incremental step of the first difference minimum and the incremental step of the second difference minimum obtained by In addition, it is considered to be a value close to the energy absorbed by each member. This sum is used as an estimate of the amount of energy absorbed by each member, and is compared with the damage threshold for each member to determine the soundness of the building. It can be carried out.

本発明によれば、簡易な構成で、健全性を精度よく判定することができることが可能となる。 According to the present invention, it is possible to accurately determine soundness with a simple configuration.

本実施形態における建物の健全性評価システムの概略構成を示す図である。BRIEF DESCRIPTION OF THE DRAWINGS It is a figure which shows schematic structure of the soundness-evaluation system of the building in this embodiment. 層崩壊型の崩壊機構を模式的に示す図である。FIG. 2 is a diagram schematically showing a layer collapse type collapse mechanism. 全体崩壊型の崩壊機構を模式的に示す図である。FIG. 4 is a diagram schematically showing a collapse mechanism of a total collapse type; 実際の地震時の崩壊機構の一例を示す図であって、層崩壊型と全体崩壊型とが組み合わさった崩壊機構を模式的に示す図である。FIG. 3 is a diagram showing an example of a collapse mechanism during an actual earthquake, and schematically showing a collapse mechanism in which a layer collapse type and a general collapse type are combined. 立体骨組モデルを構成する部材について説明するための図である。FIG. 3 is a diagram for explaining members that constitute a three-dimensional frame model; 層崩壊型の立体骨組モデルにおける静的増分解析の例を示す図である。FIG. 10 is a diagram showing an example of static incremental analysis in a layer-collapsed three-dimensional frame model; 全体崩壊型の立体骨組モデルにおける静的増分解析の例を示す図である。FIG. 10 is a diagram showing an example of static incremental analysis in a totally collapsing three-dimensional frame model; 層崩壊型モデルにおけるエネルギー吸収量と、全体崩壊型モデルにおけるエネルギー吸収量とを組み合わせることで、地震発生時おける建物の各層におけるエネルギー吸収量を推定することをイメージで示す図であるFIG. 4 is a diagram showing an image of estimating the amount of energy absorbed in each layer of a building when an earthquake occurs by combining the amount of energy absorbed in a layer collapse model and the amount of energy absorbed in a global collapse model. 部材が1サイクル変形した場合における、部材のエネルギー吸収量を示す図である。FIG. 4 is a diagram showing the amount of energy absorbed by a member when the member is deformed for one cycle; 建物の健全性評価システムにおける、建物の健全性評価方法の流れを示すフローチャートである。1 is a flow chart showing a flow of a building soundness evaluation method in a building soundness evaluation system; 本実施形態における建物の健全性評価システムにより、モデル1に対して、建物を構成する各部材のエネルギー吸収量を推定した場合の検証例を示す図である。FIG. 4 is a diagram showing a verification example when the energy absorption amount of each member constituting a building is estimated for model 1 by the building soundness evaluation system according to the present embodiment; 本実施形態における建物の健全性評価システムにより、モデル2に対して、建物を構成する各部材のエネルギー吸収量を推定した場合の検証例を示す図である。FIG. 10 is a diagram showing a verification example in the case of estimating an energy absorption amount of each member constituting a building with respect to model 2 by the building soundness evaluation system according to the present embodiment; 本実施形態における建物の健全性評価システムにより、モデル3に対して、建物を構成する各部材のエネルギー吸収量を推定した場合の検証例を示す図である。FIG. 10 is a diagram showing a verification example when the energy absorption amount of each member constituting a building is estimated for model 3 by the building soundness evaluation system according to the present embodiment; 本実施形態における建物の健全性評価システムにより、モデル4に対して、建物を構成する各部材のエネルギー吸収量を推定した場合の検証例を示す図である。FIG. 10 is a diagram showing a verification example when the energy absorption amount of each member constituting the building is estimated for model 4 by the building soundness evaluation system according to the present embodiment; 本実施形態における建物の健全性評価システムにより、モデル5に対して、建物を構成する各部材のエネルギー吸収量を推定した場合の検証例を示す図である。FIG. 10 is a diagram showing a verification example when the energy absorption amount of each member constituting a building is estimated for model 5 by the building soundness evaluation system according to the present embodiment; 本実施形態における建物の健全性評価システムにより、モデル6に対して、建物を構成する各部材のエネルギー吸収量を推定した場合の検証例を示す図である。FIG. 10 is a diagram showing a verification example in the case of estimating an energy absorption amount of each member constituting a building with respect to model 6 by the building soundness evaluation system according to the present embodiment;

以下、添付図面を参照して、本発明による建物の健全性評価システム1を実施するための形態について、図面に基づいて説明する。
本実施形態における建物の健全性評価システム1の概略構成を図1に示す。
本発明は、柱及び梁を含む建物を対象として、柱梁で構成される立体骨組モデルを用いた静的増分解析結果と、建物に設置したセンサから得られる地震情報に基づき、建物の各層、及び各部材でのエネルギー吸収量を推定した後、エネルギー吸収量の推定値と各部材に設定された損傷判定閾値と比較して、各部材の損傷程度を算定し、建物の健全性を診断、評価する建物の健全性モニタリングシステムである。
図1に示されるように、建物の健全性評価システム1は、建物10と、評価装置20と、を備えている。建物の健全性評価システム1は、地震発生後の建物10の健全性を評価する。
建物10は、地盤上に構築され、上下方向に複数の層11を有している。本実施形態においては、建物10は、所謂ラーメン架構として構築されている。建物10は、層数や、構造(鉄筋コンクリート造、鉄骨造、鉄筋コンクリート造等)について何ら限定するものではない。
建物10には、センサ12が設けられている。センサ12は、本実施形態においては、建物10の各層11に設置されている。各センサ12は、地震発生時に予め設定された閾値を超える揺れを検知すると、建物10の各層11における加速度波形データを検出する。センサ12は、それぞれメモリ(図示無し)と、通信部(図示無し)と、を備えている。センサ12は、それぞれ、検出した加速度波形データを、地震情報としてメモリ(図示無し)に保存する。センサ12は、地震終了後、メモリに保存した加速度波形データを、通信部から外部のネットワーク100を介して評価装置20に転送する。
ここで、外部のネットワーク100とは、例えば、通信部と無線による通信を行うことのできる公衆無線網等である。通信部は、センサ12で検出された地震情報を、図1に示すように外部のネットワーク100を介して評価装置20に送信する。
EMBODIMENT OF THE INVENTION Hereinafter, with reference to an accompanying drawing, the form for implementing the soundness-evaluation system 1 of the building by this invention is demonstrated based on drawing.
FIG. 1 shows a schematic configuration of a building soundness evaluation system 1 according to this embodiment.
The present invention targets a building including columns and beams. Based on the results of static incremental analysis using a three-dimensional frame model composed of columns and beams, and seismic information obtained from sensors installed in the building, each layer of the building, And after estimating the amount of energy absorbed by each member, compare the estimated amount of energy absorption with the damage judgment threshold set for each member, calculate the degree of damage to each member, and diagnose the soundness of the building. It is a health monitoring system for the building to be evaluated.
As shown in FIG. 1 , the building soundness evaluation system 1 includes a building 10 and an evaluation device 20 . The building soundness evaluation system 1 evaluates the soundness of a building 10 after an earthquake occurs.
The building 10 is constructed on the ground and has a plurality of layers 11 in the vertical direction. In this embodiment, the building 10 is constructed as a so-called frame frame. The number of layers of the building 10 and the structure (reinforced concrete construction, steel frame construction, reinforced concrete construction, etc.) are not limited at all.
A building 10 is provided with a sensor 12 . The sensors 12 are installed on each floor 11 of the building 10 in this embodiment. Each sensor 12 detects acceleration waveform data on each floor 11 of the building 10 upon detection of shaking exceeding a preset threshold when an earthquake occurs. Each sensor 12 has a memory (not shown) and a communication unit (not shown). Each sensor 12 stores the detected acceleration waveform data in a memory (not shown) as earthquake information. After the earthquake ends, the sensor 12 transfers the acceleration waveform data stored in the memory to the evaluation device 20 via the external network 100 from the communication unit.
Here, the external network 100 is, for example, a public wireless network or the like that allows wireless communication with the communication unit. The communication unit transmits earthquake information detected by the sensor 12 to the evaluation device 20 via an external network 100 as shown in FIG.

評価装置20は、無線又は有線により、外部のネットワーク100に接続されている。評価装置20は、センサ12で検出した地震情報を基に、建物10の健全性を評価する。
図2は、層崩壊型の崩壊機構を模式的に示す図である。図3は、全体崩壊型の崩壊機構を模式的に示す図である。図4は、実際の地震時の崩壊機構の一例を示す図であって、層崩壊型と全体崩壊型とが組み合わさった崩壊機構を模式的に示す図である。
建物10の躯体を構成するラーメン架構が強震動を受けた場合、部材の塑性化が生じ崩壊機構が形成される。崩壊機構は、図2に示すように、柱梁接合部において柱が先行して降伏する「層崩壊型」と、図3に示すように、梁あるいは柱と梁の接合部が先行して降伏する「全体崩壊型」と、に大別される。崩壊機構は、柱、梁、柱と梁の接合部の耐力比に基づき設計時に想定されるが、実際の強震時には入力方向や部材耐力のばらつきの影響を受けるため、想定通りの崩壊機構が形成されるとは限らない。また、部材間耐力比が極端な値でない限りは、図4に示すように、強震時には、「層崩壊型」と「全体崩壊型」が混合した損傷分布を示す可能性が高い。このため、センサ12によるモニタリングにより、各層の層間変形角がわかったとしても、その時に形成された崩壊機構により、損傷する部材及びその程度は異なると考えられる。
そこで、評価装置20は、センサ12で検出した地震情報に基づいて、建物10に生じた層崩壊型の崩壊機構、及び全体崩壊型の崩壊機構の、それぞれの進行度を推定し、その推定結果に基づいて、建物10の各部材に生じた損傷程度を推定し、各部材の損傷程度に基づき、建物の健全性を判定する。
ここで、上記でいう「層崩壊するようにパラメータが設定された層崩壊型モデル」は、具体的には、柱梁接合部において柱が先行して降伏する層崩壊機構が形成されるように、梁、パネルの各耐力を十分大きく設定した立体骨組モデルである。また、上記でいう「全体崩壊するようにパラメータが設定された全体崩壊型モデル」は、具体的には、柱梁接合部において梁あるいは接合部パネルが先行して降伏する全体崩壊機構が形成されるように、1層柱脚部と最上層柱頭部以外の柱耐力を十分大きく設定した立体骨組モデルである。
The evaluation device 20 is connected to an external network 100 wirelessly or by wire. The evaluation device 20 evaluates the soundness of the building 10 based on the earthquake information detected by the sensor 12 .
FIG. 2 is a diagram schematically showing a layer collapse type collapse mechanism. FIG. 3 is a diagram schematically showing a total collapse type collapse mechanism. FIG. 4 is a diagram showing an example of a collapse mechanism during an actual earthquake, and schematically showing a collapse mechanism in which layer collapse type and global collapse type are combined.
When the rigid-frame frame forming the skeleton of the building 10 is subjected to strong vibration, the members are plasticized and a collapse mechanism is formed. As shown in Fig. 2, the collapse mechanism is divided into the "layer collapse type" where the column yields first at the column-to-beam joint, and the "layer collapse type" where the beam or column-to-beam joint yields first, as shown in Fig. 3. It is roughly divided into “total collapse type”. The collapse mechanism is assumed at the time of design based on the strength ratio of columns, beams, and joints between columns and beams. However, during an actual strong earthquake, it is affected by variations in input direction and member resistance strength, so the collapse mechanism is formed as expected. not necessarily. Also, as long as the strength ratio between members is not an extreme value, as shown in Fig. 4, during a strong earthquake, there is a high possibility that the damage distribution is a mixture of "layer collapse type" and "global collapse type". Therefore, even if the interlaminar deformation angle of each layer is known by monitoring with the sensor 12, it is considered that the members damaged and the degree of damage differ depending on the collapse mechanism formed at that time.
Therefore, based on the earthquake information detected by the sensor 12, the evaluation device 20 estimates the progress of each of the layer collapse type collapse mechanism and the total collapse type collapse mechanism that occurred in the building 10, and the estimation result Based on the above, the degree of damage to each member of the building 10 is estimated, and the soundness of the building is determined based on the degree of damage to each member.
Here, the above-mentioned "layer collapse type model with parameters set so as to cause layer collapse" specifically means that a layer collapse mechanism is formed in which the column first yields at the column-to-beam joint. , beams, and panels with sufficiently large strengths. In addition, the above-mentioned "total collapse model with parameters set so as to cause total collapse" specifically has a total collapse mechanism in which the beam or joint panel yields first at the column-to-beam joint. As shown, it is a three-dimensional frame model in which the column strength of columns other than the first layer column base and the top layer column head is set sufficiently large.

図1に示されるように、評価装置20は、解析部21と、解析結果記録部27と、地震情報記録部22と、エネルギー吸収量の推定部23と、増分ステップの同定部24と、健全性判定部25と、を主に備えている。
解析部21は、図2、図3に示されるような、建物10に対応するように構成された立体骨組モデルMを用いた解析を、事前に行うことによって、建物10の各層11のエネルギー吸収量の解析値と、建物10を構成する各部材のエネルギー吸収量の解析値と、を算出する。解析結果記録部27は、いわゆるデータベースであり、解析部21で算出された、建物10の各層11のエネルギー吸収量の解析値と、建物10を構成する各部材のエネルギー吸収量の解析値と、が記録されている。
図5は、立体骨組モデルを構成する部材について説明するための図である。
解析部21は、図5に示すように、柱16及び梁17を含んで構成された立体骨組モデルMを、解析に用いる。立体骨組モデルMにおいて、柱16、梁17は、それぞれ、軸、せん断、曲げ、及びねじり方向の変形を考慮できる要素として線材置換する。柱16、梁17は、地震時に両端が塑性化するため、柱16、梁17に関しては、両端部16a、16b、17a、17bのそれぞれでエネルギー吸収量を算出する。柱16と梁17との接合部は、剛梁19aと弾塑性バネ要素による斜め材19bとで構成されるパネル19として取り扱い、エネルギー吸収量が算出される。
As shown in FIG. 1, the evaluation device 20 includes an analysis unit 21, an analysis result recording unit 27, an earthquake information recording unit 22, an energy absorption estimation unit 23, an incremental step identification unit 24, and a sound A gender determination unit 25 is mainly provided.
The analysis unit 21 analyzes in advance using a three-dimensional frame model M configured to correspond to the building 10 as shown in FIGS. An analytical value of the energy absorption amount and an analytical value of the energy absorption amount of each member constituting the building 10 are calculated. The analysis result recording unit 27 is a so-called database, and stores the analytical value of the energy absorption amount of each layer 11 of the building 10 calculated by the analysis unit 21, the analytical value of the energy absorption amount of each member constituting the building 10, is recorded.
FIG. 5 is a diagram for explaining the members that make up the three-dimensional frame model.
As shown in FIG. 5, the analysis unit 21 uses a three-dimensional frame model M including columns 16 and beams 17 for analysis. In the three-dimensional frame model M, the pillars 16 and beams 17 are replaced with wire rods as elements capable of considering deformation in axial, shear, bending, and torsional directions. Since both ends of the column 16 and the beam 17 become plastic during an earthquake, the energy absorption amount is calculated for each of the ends 16a, 16b, 17a, and 17b of the column 16 and the beam 17. FIG. A joint portion between the column 16 and the beam 17 is treated as a panel 19 composed of a rigid beam 19a and a diagonal member 19b formed by an elastic-plastic spring element, and the energy absorption amount is calculated.

解析部21は、図2に示すような、立体骨組モデルMに対して建物10が層崩壊するようにパラメータが設定された層崩壊型モデルM1と、図3に示すような、立体骨組モデルMに対して建物10が全体崩壊するようにパラメータが設定された全体崩壊型モデルM2と、を用いて静的増分解析を行う。層崩壊型モデルM1は、梁、パネルの耐力を十分大きくし、静的増分解析の際に層崩壊が進行するように、各パラメータが設定されている。全体崩壊型モデルM2は、最下層の柱脚部と最上層の柱頭部以外に関して、柱の端部の曲げ耐力を十分大きくし、静的増分解析の際に全体崩壊が進行するように、各パラメータが設定されている。
図6は、層崩壊型の立体骨組モデルにおける静的増分解析の例を示す図である。図7は、全体崩壊型の立体骨組モデルにおける静的増分解析の例を示す図である。
静的増分解析は、建物10の立体骨組モデルM1、M2に作用させる荷重、すなわち地震力を、段階的に増加させていき、増加させる段階である増分ステップの各々における、建物の挙動を解析するものである。図6、7の各々においては、左側に、静的増分解析を開始してから間もなく、各層及び各部材のエネルギー吸収量が小さい状態であるi1番目の増分ステップが示されている。右側には、i1番目の増分ステップから更に荷重の載荷が進み、各層及び各部材のエネルギー吸収量が増大し、層崩壊または全体崩壊が進行した状態であるi2番目の増分ステップが示されている。
静的増分解析においては、建物10の高さ、各層11の重量、及び設計用1次固有周期から、外力分布であるAi分布が決定される。静的増分解析においては、Ai分布を満たしたまま、外力を漸増させていくように、計算がなされる。
The analysis unit 21 generates a layer collapse model M1 in which parameters are set so that the building 10 undergoes a layer collapse with respect to the three-dimensional frame model M shown in FIG. 2, and a three-dimensional frame model M shown in FIG. A static incremental analysis is performed using a total collapse model M2 whose parameters are set so that the building 10 totally collapses. Each parameter of the layer collapse model M1 is set so that the yield strength of the beams and panels is sufficiently increased, and layer collapse progresses during the static incremental analysis. In the total collapse model M2, except for the column base of the lowest layer and the column head of the uppermost layer, the bending strength of the end of the column is sufficiently large, and the total collapse progresses during the static incremental analysis. parameters are set.
FIG. 6 is a diagram showing an example of static incremental analysis in a layer collapse type space frame model. FIG. 7 is a diagram showing an example of static incremental analysis in a total collapsing three-dimensional frame model.
In the static incremental analysis, the load acting on the three-dimensional frame models M1 and M2 of the building 10, that is, the seismic force, is increased step by step, and the behavior of the building is analyzed at each incremental step. It is. In each of FIGS. 6 and 7, the left side shows the i1-th incremental step in which the amount of energy absorption of each layer and each member is small shortly after starting the static incremental analysis. The right side shows the i2-th incremental step, in which the load further progresses from the i1-th incremental step, the energy absorption amount of each layer and each member increases, and layer collapse or total collapse progresses. .
In the static incremental analysis, the Ai distribution, which is the external force distribution, is determined from the height of the building 10, the weight of each story 11, and the primary natural period for design. In the static incremental analysis, calculation is performed so as to gradually increase the external force while satisfying the Ai distribution.

次に、解析部21は、静的増分解析の結果を基に、静的増分解析における増分ステップごとに、各層のエネルギー吸収量の解析値、及び柱16及び梁17を含む各部材のエネルギー吸収量の解析値を算出する。
このために、まず、解析部21は、層崩壊型モデルM1に対する静的増分解析の結果を基に、水平面内に位置する一方向であるX方向と、水平面内でX方向に直交する方向であるY方向の各々を荷重方向として、静的増分解析において荷重を増加させる段階である増分ステップごとに、各層のエネルギー吸収量と、各部材(柱16、梁17、パネル19)のエネルギー吸収量と、を算出し、これらを各層のエネルギー吸収量の解析値と、各部材のエネルギー吸収量の解析値として、解析結果記録部27に記録する。
実際には、解析部21は、次のような値を算出する。
sEwcX(i,j):層崩壊型モデルM1の静的増分解析結果における、X方向載荷時の、i段階目の増分ステップにおける、下からj番目の層のエネルギー吸収量の解析値
sEwcY(i,j):層崩壊型モデルM1の静的増分解析結果における、Y方向載荷時の、i段階目の増分ステップにおける、下からj番目の層のエネルギー吸収量の解析値
eEwcX(i,k):層崩壊型モデルM1の静的増分解析結果における、X方向載荷時の、i段階目の増分ステップにおける、k番目の部材のエネルギー吸収量の解析値
eEwcY(i,k):層崩壊型モデルM1の静的増分解析結果における、Y方向載荷時の、i段階目の増分ステップにおける、k番目の部材のエネルギー吸収量の解析値
図6に示すように、層崩壊型モデルM1では、水平面に沿った荷重方向(X方向、Y方向)への載荷荷重を、増分ステップを経るごとに、段階的に増やしていくと、最終的に、最下層で崩壊が生じており、上方の層に比較し、最下層におけるエネルギー吸収量が顕著に大きくなっている。また、最下層での崩壊は、主に柱の損傷によるものであり、最下層の柱におけるエネルギー吸収量は、柱以外の梁、パネル等に比較し、著しく大きくなっている。
Next, based on the results of the static incremental analysis, the analysis unit 21 calculates the analytical value of the energy absorption amount of each layer and the energy absorption of each member including the column 16 and the beam 17 for each incremental step in the static incremental analysis. Calculate the analytical value of the amount.
For this purpose, first, based on the results of the static incremental analysis for the layer collapse model M1, the analysis unit 21 performs the X direction, which is one direction located in the horizontal plane, and the direction orthogonal to the X direction in the horizontal plane. With each Y direction as the load direction, the energy absorption amount of each layer and the energy absorption amount of each member (column 16, beam 17, panel 19) for each incremental step that is the stage of increasing the load in static incremental analysis and are recorded in the analysis result recording unit 27 as an analysis value of the energy absorption amount of each layer and an analysis value of the energy absorption amount of each member.
Actually, the analysis unit 21 calculates the following values.
sE wcX (i, j): Analysis value of the energy absorption amount of the j-th layer from the bottom in the i-th incremental step during loading in the X direction in the static incremental analysis result of the layer collapse model M1 sE wcY (i, j): Analysis value of the energy absorption amount of the j-th layer from the bottom at the i-th incremental step during Y-direction loading in the static incremental analysis result of the layer collapse model M1 eE wcX (i , k): Analysis value of the energy absorption amount of the k-th member at the i-th incremental step during loading in the X direction in the static incremental analysis result of the layer collapse model M1 eE wcY (i, k): Analysis value of the energy absorption amount of the k-th member at the i-th incremental step during Y-direction loading in the static incremental analysis result of the layer collapse model M1 As shown in FIG. 6, the layer collapse model M1 Then, when the applied load in the loading direction (X direction, Y direction) along the horizontal plane is increased step by step, the bottom layer finally collapses, and the upper The amount of energy absorption in the lowest layer is significantly larger than that in the layer of . In addition, the collapse at the bottom layer is mainly due to the damage of the columns, and the amount of energy absorbed by the columns at the bottom layer is significantly larger than that of the beams, panels, etc. other than the columns.

また、解析部21は、全体崩壊型モデルM2に対する静的増分解析の結果を基に、X方向とY方向のそれぞれについて、増分ステップごとに、各層のエネルギー吸収量と、各部材(柱16、梁17、パネル19)のエネルギー吸収量と、を算出し、これらを各層のエネルギー吸収量の解析値と、各部材のエネルギー吸収量の解析値として、解析結果記録部27に記録する。
実際には、解析部21は、次のような値を算出する。
sEosX(i,j):全体崩壊型モデルM2の静的増分解析結果における、X方向載荷時の、i段階目の増分ステップにおける、下からj番目の層のエネルギー吸収量の解析値
sEosY(i,j):全体崩壊型モデルM2の静的増分解析結果における、Y方向載荷時の、i段階目の増分ステップにおける、下からj番目の層のエネルギー吸収量の解析値
eEosX(i,k):全体崩壊型モデルM2の静的増分解析結果における、X方向載荷時の、i段階目の増分ステップにおける、k番目の部材のエネルギー吸収量の解析値
eEosY(i,k):全体崩壊型モデルM2の静的増分解析結果における、Y方向載荷時の、i段階目の増分ステップにおける、k番目の部材のエネルギー吸収量の解析値
図7に示すように、全体崩壊型モデルM2では、平面に沿った荷重方向(X方向、Y方向)への載荷荷重を段階的に増やしていくと、建物10の全体の層で、エネルギー吸収量が大きくなっていく。また、部材についても同様に、それぞれのエネルギー吸収量が大きくなっている。各層においては、柱に限らず、梁、パネル等についても、エネルギー吸収量が増大している。
In addition, based on the results of the static incremental analysis for the total collapse model M2, the analysis unit 21 calculates the energy absorption amount of each layer and each member (column 16, The energy absorption amount of the beam 17 and the panel 19) is calculated and recorded in the analysis result recording unit 27 as an analysis value of the energy absorption amount of each layer and an analysis value of the energy absorption amount of each member.
Actually, the analysis unit 21 calculates the following values.
sE osX (i, j): Analysis value of the energy absorption amount of the j-th layer from the bottom in the i-th incremental step during loading in the X direction in the static incremental analysis result of the total collapse model M2 sE osY (i, j): Analysis value of the energy absorption amount of the j-th layer from the bottom in the i-th incremental step during Y-direction loading in the static incremental analysis result of the global collapse model M2 eE osX (i , k): Analysis value of the energy absorption amount of the k-th member at the i-th incremental step during X-direction loading in the static incremental analysis result of the global collapse model M2 eE osY (i, k): Analysis value of the energy absorption amount of the k-th member at the i-th incremental step during Y-direction loading in the static incremental analysis result of the total collapse model M2 As shown in FIG. 7, the total collapse model M2 Then, when the applied load in the load direction (X direction, Y direction) along the plane is increased step by step, the energy absorption amount increases in all the layers of the building 10 . Similarly, the energy absorption amount of each member is increased. In each layer, not only columns but also beams, panels, etc. have increased energy absorption.

地震が発生すると、地震情報記録部22は、外部のネットワーク100を介して建物10のセンサ12の通信部14から送信される地震情報を記録する。地震情報記録部22は、地震発生時に、センサ12で検出された、建物10の各層11における加速度波形データを記録する。
エネルギー吸収量の推定部23は、センサ12で検出される地震情報、及び建物10の各層11の重量に基づき、各層11の層せん断力と層間変位を算出し、層せん断力と層間変位に基づいて各層のエネルギー吸収量の推定値を計算する。
When an earthquake occurs, the earthquake information recording section 22 records earthquake information transmitted from the communication section 14 of the sensor 12 of the building 10 via the external network 100 . The earthquake information recording unit 22 records acceleration waveform data on each floor 11 of the building 10 detected by the sensor 12 when an earthquake occurs.
The energy absorption amount estimation unit 23 calculates the story shear force and interlayer displacement of each story 11 based on the earthquake information detected by the sensor 12 and the weight of each story 11 of the building 10, and based on the story shear force and the story displacement to calculate an estimate of the energy absorption of each layer.

まず、エネルギー吸収量の推定部23は、地震時にセンサ12で得られた各層11の加速度波形データと、各層11の重量に基づき、各層11における層せん断力を算出する。
より詳細には、QX(j)、QY(j)、QZ(j)を、それぞれ、j番目の層における、X方向、Y方向、及びX方向とY方向の各々に直交するZ方向の層せん断力、FX(j)、FY(j)、FZ(j)を、それぞれ、j番目の層における、X方向、Y方向、及びZ方向の慣性力とする。このとき、最上階では、QX(j)、QY(j)、QZ(j)は、それぞれ、
QX(j)=FX(j)、
QY(j)=FY(j)、
QZ(j)=FZ(j)、
と表される。また、最上階以外では、下からj番目の層に作用する層せん断力は、より上の層における慣性力の和となるので、層の総数をTとすると、

Figure 2023091792000002
と表される。なお、FX(j)、FY(j)、FZ(j)は、Mass(j)をj番目の層の重量、abACCX(j)、abACCY(j)、abACCZ(j)を、それぞれ、j番目の層におけるX方向、Y方向、Z方向の観測加速度とすると、次のように表される。
FX(j)=-Mass(j)×abACCX(j)
FY(j)=-Mass(j)×abACCY(j)
FZ(j)=-Mass(j)×abACCZ(j)
層間変位は、各層11における加速度波形の2階積分を上下層で差分することにより算出される。 First, the energy absorption estimation unit 23 calculates the layer shear force in each layer 11 based on the acceleration waveform data of each layer 11 obtained by the sensor 12 during an earthquake and the weight of each layer 11 .
More specifically, let QX(j), QY(j), and QZ(j) denote the X direction, the Y direction, and the Z direction orthogonal to each of the X and Y directions, respectively, in the j-th layer. Let the shear forces, FX(j), FY(j), FZ(j), be the inertial forces in the X, Y, and Z directions, respectively, at the j-th layer. At this time, on the top floor, QX(j), QY(j), and QZ(j) are respectively
QX(j)=FX(j),
QY(j)=FY(j),
QZ(j)=FZ(j),
is represented. In addition, except for the top floor, the story shear force acting on the j-th layer from the bottom is the sum of the inertial forces in the higher layers, so if the total number of layers is T,
Figure 2023091792000002
is represented. Note that FX(j), FY(j), and FZ(j) are Mass(j) for the weight of the j-th layer, and abACCX(j), abACCY(j), and abACCZ(j) for the j-th layer, respectively. Observed accelerations in the X, Y, and Z directions in the layer are expressed as follows.
FX(j)=−Mass(j)×abACCX(j)
FY(j)=−Mass(j)×abACCY(j)
FZ(j)=−Mass(j)×abACCZ(j)
The interlayer displacement is calculated by subtracting the second order integral of the acceleration waveform in each layer 11 between the upper and lower layers.

次に、エネルギー吸収量の推定部23は、上記のようにして算出された各層11における層せん断力と、層間変位とに基づいて、水平2方向(X方向、Y方向)のそれぞれについて、各層11におけるエネルギー吸収量の推定値を計算する。
実際には、エネルギー吸収量の推定部23は、次のような値を算出する。
sEobsX(j):地震情報を基に計算した、X方向における、下からj番目の層のエネルギー吸収量の推定値
sEobsY(j):地震情報を基に計算した、Y方向における、下からj番目の層のエネルギー吸収量の推定値
である。
具体的には、エネルギー吸収量の推定部23は、地震情報から計算した各層11における層せん断力と、層間変位との関係における履歴面積に基づいて、上記の、各層11におけるエネルギー吸収量の推定値sEobsX(j)、sEobsY(j)を計算する。
Next, the energy absorption amount estimating unit 23 calculates each layer in each of the two horizontal directions (X direction and Y direction) based on the layer shear force and the interlayer displacement in each layer 11 calculated as described above. Calculate an estimate of the energy absorption in 11.
In practice, the energy absorption amount estimator 23 calculates the following values.
sE obsX (j): Estimated value of energy absorption in the j-th layer from the bottom in the X direction calculated based on earthquake information sE obsY (j): Calculated based on earthquake information in the Y direction is an estimate of the energy absorption of the j-th layer from .
Specifically, the energy absorption amount estimating unit 23 estimates the energy absorption amount in each layer 11 based on the history area in the relationship between the story shear force in each layer 11 calculated from the earthquake information and the interlayer displacement. Calculate the values sE obsX (j), sE obsY (j).

増分ステップの同定部24は、解析結果記録部27に記録された、各層11のエネルギー吸収量の解析値のなかから、各層のエネルギー吸収量の推定値sEobsX(j)、sEobsY(j)との差分が最小となる各層のエネルギー吸収量の差分最小解析値を選択して、これに対応する増分ステップを、差分最小の増分ステップとして同定する。以下、増分ステップの同定部24について、詳細に説明する。
wcXを、層崩壊型モデルM1の静的増分解析結果における、X方向載荷時の、荷重を増加させる段階である増分ステップの総数、nwcYを、層崩壊型モデルM1の静的増分解析結果における、Y方向載荷時の、荷重を増加させる段階である増分ステップの総数、nosXを、全体崩壊型モデルM2の静的増分解析結果における、X方向載荷時の、荷重を増加させる段階である増分ステップの総数、nosYを、全体崩壊型モデルM2の静的増分解析結果における、Y方向載荷時の、荷重を増加させる段階である増分ステップの総数とする。
The incremental step identification unit 24 obtains estimated values sE obsX (j) and sE obsY (j) of the energy absorption of each layer from among the analytical values of the energy absorption of each layer 11 recorded in the analysis result recording unit 27 . is selected, and the incremental step corresponding thereto is identified as the incremental step with the minimum difference. The identification unit 24 of the increment step will be described in detail below.
nwcX is the total number of incremental steps, which are stages of increasing the load during loading in the X direction, in the static incremental analysis result of the layer collapse type model M1, and nwcY is the static incremental analysis result of the layer collapse type model M1. , the total number of incremental steps, nosX , which is the stage of increasing the load during loading in the Y direction, is the stage of increasing the load during loading in the X direction in the static incremental analysis result of the total collapse model M2. Let the total number of incremental steps, nosY , be the total number of incremental steps, which are stages of increasing the load, in the static incremental analysis results of the global collapse model M2 during loading in the Y direction.

層崩壊型モデルM1の静的増分解析結果におけるX方向載荷時の増分ステップは総数がnwcXであり、全体崩壊型モデルM2の静的増分解析結果におけるX方向載荷時の増分ステップは総数がnosXであるから、層崩壊型モデルM1の静的増分解析結果におけるX方向載荷時の、各層のエネルギー吸収量の解析値と、全体崩壊型モデルM2の静的増分解析結果におけるX方向載荷時の、各層のエネルギー吸収量の解析値との組み合わせは、nwcX×nosX個存在する。
増分ステップの同定部24は、これらnwcX×nosX個の全ての組み合わせに対して、次の式(1)によってX方向載荷時層エネルギー差分eを計算して、X方向載荷時層エネルギー差分eが最も小さくなるような組み合わせである差分最小組み合わせを、各層のエネルギー吸収量の差分最小解析値として選択し、この差分最小組み合わせ中の、層崩壊型モデルM1における各層のエネルギー吸収量の解析値と全体崩壊型モデルM2における各層のエネルギー吸収量の解析値に対応する、層崩壊型モデルM1の静的増分解析結果におけるX方向載荷時の増分ステップiwcX(1≦iwcX≦nwcX)と、全体崩壊型モデルM2の静的増分解析結果におけるX方向載荷時の増分ステップiosX(1≦iosX≦nosX)の組み合わせを同定する。

Figure 2023091792000003
The total number of incremental steps during X-direction loading in the static incremental analysis results of layer collapse model M1 is nwcX , and the total number of incremental steps during X-direction loading in the static incremental analysis results of global collapse model M2 is n. Since it is osX , the analytical value of the energy absorption amount of each layer at the time of X-direction loading in the static incremental analysis result of the layer collapse model M1, and the X-direction loading in the static incremental analysis result of the total collapse model M2 , there are n wcX ×n osX combinations with the analytical values of the energy absorption amount of each layer.
The incremental step identification unit 24 calculates the layer energy difference ex when loaded in the X direction by the following formula (1) for all n wcX ×n osX combinations, and obtains the layer energy when loaded in the X direction The minimum difference combination, which is the combination that minimizes the difference ex , is selected as the minimum difference analysis value of the energy absorption amount of each layer, and the energy absorption amount of each layer in the layer collapse model M1 among the minimum difference combinations is calculated. Incremental step i wcX (1 ≤ i wcX ≤ n wcX) at the time of loading in the X direction in the static incremental analysis result of the layer collapse type model M1 corresponding to the analytical value and the analytical value of the energy absorption amount of each layer in the total collapse type model M2 ) and the incremental step i osX (1≦i osX ≦n osX ) at the time of loading in the X direction in the static incremental analysis result of the global collapse model M2.
Figure 2023091792000003

同様に、層崩壊型モデルM1の静的増分解析結果におけるY方向載荷時の、各層のエネルギー吸収量の解析値と、全体崩壊型モデルM2の静的増分解析結果におけるY方向載荷時の、各層のエネルギー吸収量の解析値との組み合わせは、nwcY×nosY個存在する。
増分ステップの同定部24は、これらnwcY×nosY個の全ての組み合わせに対して、次の式(2)によってY方向載荷時層エネルギー差分eを計算して、Y方向載荷時層エネルギー差分eが最も小さくなるような組み合わせである差分最小組み合わせを、各層のエネルギー吸収量の差分最小解析値として選択し、この差分最小組み合わせ中の、層崩壊型モデルM1における各層のエネルギー吸収量の解析値と全体崩壊型モデルM2における各層のエネルギー吸収量の解析値に対応する、層崩壊型モデルM1の静的増分解析結果におけるY方向載荷時の増分ステップiwcY(1≦iwcY≦nwcY)と、全体崩壊型モデルM2の静的増分解析結果におけるY方向載荷時の増分ステップiosY(1≦iosY≦nosY)の組み合わせを同定する。

Figure 2023091792000004
Similarly, the analysis value of the energy absorption amount of each layer during the Y-direction loading in the static incremental analysis results of the layer collapse model M1, and the Y-direction loading in the static incremental analysis results of the total collapse model M2, each layer There are n wcY ×n osY combinations with the analytical values of the amount of energy absorption.
The incremental step identification unit 24 calculates the layer energy difference e Y during loading in the Y direction by the following formula (2) for all n wcY ×n osY combinations, and obtains the layer energy during loading in the Y direction. The minimum difference combination, which is the combination that minimizes the difference e Y , is selected as the minimum difference analysis value of the energy absorption of each layer, and the energy absorption of each layer in the layer collapse model M1 among the minimum difference combinations is calculated. Incremental step i wcY (1 ≤ i wcY ≤ n wcY) in the static incremental analysis result of the layer collapse type model M1 corresponding to the analytical value and the analytical value of the energy absorption amount of each layer in the total collapse type model M2 ) and an incremental step i osY (1≦i osY ≦n osY ) during Y-direction loading in the static incremental analysis result of the global collapse model M2.
Figure 2023091792000004

増分ステップの同定部24及び後に説明する健全性判定部25の動作は、建物10の損傷がある程度進んだときに地震動を受けたときの、各層(及び各部材)のエネルギー吸収量と、同じ地震動を建物10が新築の状態で受けた場合の、各層(及び各部材)のエネルギー吸収量が、同じという前提に基づいている。
例えば、建物10の全体崩壊が進行し、その後に、層崩壊が進行するような場合を考える。このような場合において、建物10が最終的に吸収するエネルギー量Eaは、建物10が新築のときから全体崩壊が進行し終えた時点までに吸収するエネルギー量E1と、全体崩壊が進行し終えた時点から層崩壊が進行し終えた時点までに吸収するエネルギー量E2の和E1+E2と考えることができる。
ここで、上記のような前提によれば、全体崩壊が進行し終えた時点から層崩壊が進行し終えた時点までに吸収するエネルギー量E2は、建物10が新築のときから(全体崩壊を経ずに)層崩壊が進行し終えた時点までに吸収するエネルギー量E2´と等しいこととなる。すなわち、上記の和E1+E2は、建物10が新築のときから全体崩壊が進行し終えた時点までに吸収するエネルギー量E1と、建物10が新築のときから(全体崩壊を経ずに)層崩壊が進行し終えた時点までに吸収するエネルギー量E2´の和E1+E2´に等しくなる。
したがって、上記のような前提に基づくと、各層及び各部材のエネルギー吸収量という観点からすれば、仮に建物10に層崩壊と全体崩壊が、それぞれ前後して、あるいは同時に、進行したとしても、これは、建物10に層崩壊と全体崩壊が個別に、それぞれある程度の段階だけ進行した状態を、合算したものであると見做すことができる。
The operation of the incremental step identification unit 24 and the soundness determination unit 25, which will be described later, is to determine the amount of energy absorbed by each layer (and each member) and the is based on the premise that each layer (and each member) absorbs the same amount of energy when the building 10 is newly constructed.
For example, let us consider a case where the entire building 10 collapses, and then layer collapse progresses. In such a case, the amount of energy Ea that the building 10 finally absorbs is the amount of energy E1 that the building 10 absorbs from the time the building 10 is newly built until the time when the total collapse has finished progressing, and It can be considered as the sum E1+E2 of the amount of energy E2 absorbed from the point in time to the point in time when the layer collapse has finished progressing.
Here, according to the above premise, the amount of energy E2 absorbed from the time when the total collapse has finished progressing to the time when the story collapse has finished progressing is is equal to the amount of energy E2' absorbed by the time when the layer collapse has finished progressing. That is, the above sum E1+E2 is the amount of energy E1 absorbed from the time the building 10 is newly built until the time when the total collapse progresses, and It is equal to the sum E1+E2' of the amount of energy E2' absorbed by the time when the movement is finished.
Therefore, based on the above premises, from the viewpoint of the amount of energy absorbed by each layer and each member, even if the building 10 were to undergo layer collapse and total collapse at the same time, this would not be the case. can be regarded as the sum of the states in which the building 10 has undergone separate layer collapse and total collapse, each progressing to a certain degree.

図8は、層崩壊型モデルにおけるエネルギー吸収量と、全体崩壊型モデルにおけるエネルギー吸収量とを組み合わせることで、地震発生時おける建物の各層におけるエネルギー吸収量を推定することをイメージで示す図である。
上記のような考察に基づき、本実施形態においては、実際に地震が生じた際に、当該地震によって建物10に層崩壊と全体崩壊がそれぞれ作用したと仮定して、地震情報から算出される各層のエネルギー吸収量の推定値sEobsX(j)、sEobsY(j)が、解析結果記録部27に記録された、層崩壊型モデルM1を用いた静的増分解析の、いずれかの段階(すなわち増分ステップiwcX、iwcY)の各層のエネルギー吸収量の解析値sEwcX(iwcX,j)、sEwcY(iwcY,j)と、全体崩壊型モデルM2を用いた静的増分解析の、いずれかの段階(すなわち増分ステップiosX、iosY)の各層のエネルギー吸収量の解析値sEosX(iosX,j)、sEosY(iosY,j)と、の和として表すことができないかを検討する。
もし、地震情報から算出される各層のエネルギー吸収量の推定値sEobsX(j)、sEobsY(j)が、解析結果記録部27に記録された、層崩壊型モデルM1を用いた静的増分解析の、何らかの増分ステップiwcX、iwcYの各層のエネルギー吸収量の解析値sEwcX(iwcX,j)、sEwcY(iwcY,j)と、全体崩壊型モデルM2を用いた静的増分解析の、何らかの増分ステップiosX、iosYの各層のエネルギー吸収量の解析値sEosX(iosX,j)、sEosY(iosY,j)と、の和に一致し、または近似するようであれば、当該地震においては、層崩壊型モデルM1を用いた静的増分解析で層崩壊が増分ステップiwcX、iwcYだけ進んだ状態と、全体崩壊型モデルM2を用いた静的増分解析で全体崩壊が増分ステップiosX、iosYだけ進んだ状態とが、組み合わさった状態であると考えることができる。
FIG. 8 is a diagram showing an image of estimating the amount of energy absorbed in each layer of a building at the time of an earthquake by combining the amount of energy absorbed in the layer collapse type model and the amount of energy absorbed in the global collapse type model. .
Based on the above considerations, in the present embodiment, when an earthquake actually occurs, it is assumed that the building 10 is affected by a layer collapse and a total collapse due to the earthquake, and each layer calculated from the earthquake information Estimated values sE obsX (j) and sE obsY (j) of the energy absorption amounts of are recorded in the analysis result recording unit 27, at any stage of the static incremental analysis using the layer collapse model M1 (i.e. Analysis values sE wcX (i wcX , j ) and sE wcY (i wcY , j) of the energy absorption amount of each layer at incremental steps i wcX , i wcY ), and the static incremental analysis using the total collapse model M2, Can it be expressed as the sum of the analytical values sE osX ( iosX , j ) and sE osY (i osY , j) of the energy absorption of each layer at any stage (i.e., incremental steps i osX , i osY )? Consider.
If the estimated values sE obsX (j) and sE obsY (j) of the energy absorption of each layer calculated from the earthquake information are recorded in the analysis result recording unit 27, the static increment using the layer collapse model M1 Analytical values sEwcX ( iwcX ,j) and sEwcY ( iwcY ,j) of the energy absorption of each layer at some incremental steps iwcX and iwcY of the analysis, and static increments using the total collapse model M2 It seems to match or approximate the sum of the analytical values sE osX ( i osX ,j) and sE osY (i osY ,j) of the energy absorption of each layer at some incremental step i osX , i osY of the analysis. If so, in this earthquake, the static incremental analysis using the layer collapse model M1 shows the state in which the layer collapse progresses by the incremental steps i wcX and i wcY , and the static incremental analysis using the global collapse model M2 The states in which the global decay has advanced by incremental steps i osX , i osY can be considered combined states.

ここで、上記のような、式(1)として表されるX方向載荷時層エネルギー差分eは、層崩壊型モデルM1の静的増分解析結果におけるX方向載荷時の、ある増分ステップiwcXでのエネルギー吸収量の解析値sEwcX(iwcX,j)と、全体崩壊型モデルM2の静的増分解析結果におけるX方向載荷時の、ある増分ステップiosXでのエネルギー吸収量の解析値sEosX(iosX,j)との和の、層ごとの、地震情報から算出された、X方向におけるエネルギー吸収量sEobsX(j)との差分の、総和である。
したがって、式(1)のX方向載荷時層エネルギー差分eが最小となるような、層崩壊型モデルM1の静的増分解析結果におけるX方向載荷時のエネルギー吸収量の解析値sEwcX(iwcX,j)と、全体崩壊型モデルM2の静的増分解析結果におけるX方向載荷時のエネルギー吸収量の解析値sEosX(iosX,j)の組み合わせである差分最小組み合わせを、X方向における、各層のエネルギー吸収量の差分最小解析値として選択することにより、この差分最小組み合わせ中の、層崩壊型モデルM1における各層のエネルギー吸収量の解析値sEwcX(iwcX,j)と全体崩壊型モデルM2における各層のエネルギー吸収量の解析値sEosX(iosX,j)に対応する増分ステップiwcX、増分ステップiosXを、それぞれ第1差分最小の増分ステップiwcX、第2差分最小の増分ステップiosXとして、同定することができる。
同様に、上記のような、式(2)として表されるY方向載荷時層エネルギー差分eは、層崩壊型モデルM1の静的増分解析結果におけるY方向載荷時の、ある増分ステップiwcYでのエネルギー吸収量の解析値sEwcY(iwcY,j)と、全体崩壊型モデルM2の静的増分解析結果におけるY方向載荷時の、ある増分ステップiosYでのエネルギー吸収量の解析値sEosY(iosY,j)との和の、層ごとの、地震情報から算出された、Y方向におけるエネルギー吸収量sEobsY(j)との差分の、総和である。
したがって、式(2)のY方向載荷時層エネルギー差分eが最小となるような、層崩壊型モデルM1の静的増分解析結果におけるY方向載荷時のエネルギー吸収量の解析値sEwcY(iwcY,j)と、全体崩壊型モデルM2の静的増分解析結果におけるY方向載荷時のエネルギー吸収量の解析値sEosY(iosY,j)の組み合わせである差分最小組み合わせを、X方向における、各層のエネルギー吸収量の差分最小解析値として選択することにより、この差分最小組み合わせ中の、層崩壊型モデルM1における各層のエネルギー吸収量の解析値sEwcY(iwcY,j)と全体崩壊型モデルM2における各層のエネルギー吸収量の解析値sEosY(iosY,j)に対応する増分ステップiwcY、増分ステップiosYを、それぞれ第1差分最小の増分ステップiwcY、第2差分最小の増分ステップiosYとして、同定することができる。
Here, the layer energy difference e x during loading in the X direction expressed as Equation (1) as described above is an incremental step i wcX and the analytical value sE osX (i osX , j) is the sum of the differences from the energy absorption amount sE obsX (j) in the X direction calculated from the seismic information for each layer.
Therefore, the analytical value sE wcX ( i wcX ,j) and the analysis value sE osX (i osX ,j) of the energy absorption amount during loading in the X direction in the static incremental analysis result of the total collapse type model M2. By selecting the difference minimum analysis value of the energy absorption amount of each layer, the analysis value sE wcX (i wcX , j) of the energy absorption amount of each layer in the layer collapse type model M1 and the total collapse type model in this difference minimum combination The increment step i wcX and the increment step i osX corresponding to the analytical value sE osX ( i osX , j) of the energy absorption amount of each layer in M2 are set to the first difference minimum increment step i wcX and the second difference minimum increment step, respectively. It can be identified as iosX .
Similarly, the layer energy difference e Y during loading in the Y direction expressed as Equation (2) as described above is a certain incremental step i wcY and the analytical value sE It is the sum of the difference between the sum of osY (i osY , j) and the energy absorption amount sE obsY (j) in the Y direction calculated from the seismic information for each layer.
Therefore, the analysis value sE wcY ( i wcY , j) and the analysis value sE osY (i osY , j) of the energy absorption amount during Y-direction loading in the static incremental analysis result of the total collapse model M2. By selecting the difference minimum analysis value of the energy absorption amount of each layer, the analysis value sE wcY (i wcY , j) of the energy absorption amount of each layer in the layer collapse type model M1 and the total collapse type model in this combination of the minimum difference The increment step i wcY and the increment step i osY corresponding to the analytical value sE osY ( i osY , j) of the energy absorption amount of each layer in M2 are set to the first difference minimum increment step i wcY and the second difference minimum increment step, respectively. can be identified as i osY .

上記のような考察を基に、増分ステップの同定部24は、X方向に対し、層崩壊型モデルM1における各層のエネルギー吸収量の解析値sEwcX(i,j)と全体崩壊型モデルM2における各層のエネルギー吸収量の解析値sEosX(i,j)の、nwcX×nosX個の組み合わせの各々に対して、層11ごとに、層崩壊型モデルM1における各層のエネルギー吸収量の解析値sEwcX(i,j)と全体崩壊型モデルM2における各層のエネルギー吸収量の解析値sEosX(i,j)との和と、各層のエネルギー吸収量の推定値sEobsX(j)との差分を計算して、差分の全層における総和eが最小となるような解析値の組み合わせである差分最小組み合わせを、各層のエネルギー吸収量の差分最小解析値として選択し、当該差分最小組み合わせ中の、層崩壊型モデルM1における各層のエネルギー吸収量の解析値sEwcX(iwcX,j)と全体崩壊型モデルM2における各層のエネルギー吸収量の解析値sEosX(iosX,j)に対応する、層崩壊型モデルM1における増分ステップiwcXと、全体崩壊型モデルM2における増分ステップiosXを、それぞれ、第1差分最小の増分ステップiwcXと、第2差分最小の増分ステップiosXとして同定する。
同様に、増分ステップの同定部24は、Y方向に対し、層崩壊型モデルM1における各層のエネルギー吸収量の解析値sEwcY(i,j)と全体崩壊型モデルM2における各層のエネルギー吸収量の解析値sEosY(i,j)の、nwcY×nosY個の組み合わせの各々に対して、層11ごとに、層崩壊型モデルM1における各層のエネルギー吸収量の解析値sEwcY(i,j)と全体崩壊型モデルM2における各層のエネルギー吸収量の解析値sEosY(i,j)との和と、各層のエネルギー吸収量の推定値sEobsY(j)との差分を計算して、差分の全層における総和eが最小となるような解析値の組み合わせである差分最小組み合わせを、各層のエネルギー吸収量の差分最小解析値として選択し、当該差分最小組み合わせ中の、層崩壊型モデルM1における各層のエネルギー吸収量の解析値sEwcY(iwcY,j)と全体崩壊型モデルM2における各層のエネルギー吸収量の解析値sEosY(iosY,j)に対応する、層崩壊型モデルM1における増分ステップiwcYと、全体崩壊型モデルM2における増分ステップiosYを、それぞれ、第1差分最小の増分ステップiwcYと、第2差分最小の増分ステップiosYとして同定する。
Based on the above considerations, the incremental step identification unit 24 determines, in the X direction, the analytical value sE wcX (i, j) of the energy absorption amount of each layer in the layer collapse model M1 and the total collapse model M2 For each of n wcX ×n osX combinations of the analytical value sE osX (i, j) of the energy absorption amount of each layer, the analytical value of the energy absorption amount of each layer in the layer collapse model M1 for each layer 11 The difference between the sum of sE wcX (i, j) and the analytical value sE osX (i, j) of the energy absorption of each layer in the global collapse model M2, and the estimated value sE obsX (j) of the energy absorption of each layer is calculated, and the minimum difference combination, which is a combination of analytical values that minimizes the sum of the differences e x in all layers, is selected as the minimum difference analytical value of the energy absorption amount of each layer, and among the minimum difference combinations , corresponding to the analytical value sE wcX (i wcX , j) of the energy absorption of each layer in the layer collapse model M1 and the analytical value sE osX (i osX , j) of the energy absorption of each layer in the total collapse model M2, The incremental step iwcX in the layer collapse type model M1 and the incremental step iosX in the total collapse type model M2 are identified as the first difference minimum incremental step iwcX and the second difference minimum incremental step iosX , respectively.
Similarly, the incremental step identification unit 24 calculates the analytical value sE wcY (i, j) of the energy absorption of each layer in the layer collapse model M1 and the energy absorption of each layer in the total collapse model M2 in the Y direction. For each of n wcY ×n osY combinations of the analytical value sE osY (i, j), for each layer 11, the analytical value sE wcY (i, j) of the energy absorption amount of each layer in the layer collapse model M1 ) and the analytical value sE osY (i, j) of the energy absorption of each layer in the total collapse model M2, and the estimated value sE obsY (j) of the energy absorption of each layer. A minimum difference combination that is a combination of analysis values that minimizes the total sum e Y in all layers is selected as the minimum difference analysis value of the energy absorption amount of each layer, and the layer collapse type model M1 in the minimum difference combination in the layer collapse model M1 corresponding to the analytical value sE wcY (i wcY , j) of the energy absorption of each layer in and the analytical value sE osY ( iosY , j) of the energy absorption of each layer in the total collapse model M2 The incremental step i wcY and the incremental step i osY in the total collapse model M2 are identified as the first difference minimum incremental step i wcY and the second difference minimum incremental step i osY , respectively.

健全性判定部25は、上記のようにして同定された、X方向、Y方向の各々における第1差分最小の増分ステップiwcX、iwcY、第2差分最小の増分ステップiosX、iosYを基に、建物10の健全性を判定する。
上記のように、増分ステップの同定部24が、X方向、Y方向の各々における第1差分最小の増分ステップiwcX、iwcY、第2差分最小の増分ステップiosX、iosYを同定することにより、地震情報が取得された地震においては、層崩壊型モデルM1を用いた静的増分解析と、全体崩壊型モデルM2を用いた静的増分解析の各々において、それぞれどの段階すなわち増分ステップまで、層崩壊と全体崩壊が進行した状態であるのかが、特定されている。とすれば、実際の地震においては、各部材は、層崩壊型モデルM1を用いた静的増分解析における増分ステップiwcX、iwcYの段階において当該部材が吸収したと考えられるエネルギー吸収量の解析値eEwcX(iwcX,k)、eEwcY(iwcY,k)と、全体崩壊型モデルM2を用いた静的増分解析における増分ステップiosX、iosYの段階において当該部材が吸収したと考えられるエネルギー吸収量の解析値eEosX(iosX,k)、eEosY(iosY,k)とを、合算した分だけのエネルギーを吸収したと見做すことができる。
したがって、健全性判定部25は、具体的には、次式(3)によって、各部材のエネルギー吸収量の推定値eEobs(k)を計算する。

Figure 2023091792000005
このようにして、健全性判定部25は、部材ごとに、第1差分最小の増分ステップiwcX、iwcYに対応する、層崩壊型モデルM1における各部材のエネルギー吸収量の解析値eEwcX(iwcX,k)、eEwcY(iwcY,k)と、第2差分最小の増分ステップiosX、iosYに対応する、全体崩壊型モデルM2における各部材のエネルギー吸収量の解析値eEosX(iosX,k)、eEosY(iosY,k)の和を計算することにより、各部材のエネルギー吸収量の推定値eEobs(k)を導出する。 The soundness determination unit 25 determines the incremental steps i wcX and i wcY with the first difference minimum and the incremental steps i osX and i osY with the second minimum difference in each of the X and Y directions identified as described above. Based on this, the soundness of the building 10 is determined.
As described above, the incremental step identification unit 24 identifies incremental steps i wcX and i wcY with the smallest first difference and incremental steps i osX and i osY with the smallest second difference in each of the X and Y directions. In the earthquake for which the earthquake information was acquired, in each of the static incremental analysis using the layer collapse model M1 and the static incremental analysis using the global collapse model M2, up to which stage, that is, the incremental step, It is specified whether it is in a state where layer collapse and global collapse have progressed. Then, in an actual earthquake, each member is considered to have absorbed the amount of energy absorbed at the incremental steps i wcX and i wcY in the static incremental analysis using the layer collapse model M1. Values eE wcX (i wcX , k), eE wcY (i wcY , k) and incremental steps i osX , i osY in the static incremental analysis using the total collapse model M2 It can be assumed that energy corresponding to the sum of the analytical values eE osX (i osX , k) and eE osY (i osY , k) of the amount of absorbed energy is absorbed.
Accordingly, the soundness determination unit 25 specifically calculates the estimated value eE obs (k) of the energy absorption amount of each member by the following equation (3).
Figure 2023091792000005
In this way, the soundness determination unit 25 determines the analytical value eE wcX ( i wcX , k), eE wcY (i wcY , k ) and the analytical values eE osX ( By calculating the sum of i osX ,k) and eE osY (i osY ,k), the energy absorption estimate eE obs (k) of each member is derived.

健全性判定部25は、更に、第1差分最小の増分ステップiwcX、iwcYと、第2差分最小の増分ステップiosX、iosYを基に導出された、各部材のエネルギー吸収量の推定値eEobs(k)を基に、建物10の健全性を判定する。健全性判定部25は、各部材のエネルギー吸収量の推定値eEobs(k)と、予め設定された損傷判定閾値とを比較して、損傷程度を算定する。健全性判定部25は、各部材のエネルギー吸収量の推定値eEobs(k)が、損傷判定閾値よりも大きい場合に、その部材に損傷が生じている可能性がある、と判定する。
ここで、損傷判定閾値として、例えば、部材の持つ塑性変形性能に応じて塑性率の損傷判定閾値μcrを設定することができる。図9に示すように、塑性率μで部材が1サイクル変形した場合、部材におけるエネルギー吸収量Eは、下式(4)で表される。
E=4(μ-1)Myθy・・・(4)
したがって、部材のエネルギー吸収量の損傷閾値Ecrは、
cr=4(μcr-1)Mθ
となる。
例えば、端部から中央部までの部材半長が1750mm、降伏強度が295N/mmの、断面寸法が300mm×300mmであり、厚さが9mmである角形鋼管(降伏時の曲げモーメントMy=327kNm、降伏時の部材角θy=0.0065rad)について、μcr=3.0とすると、Ecr=17.0kNmとなる。
このような損傷判定閾値は、上記に限られず、他の方法によって適切に設定されて構わないし、柱16、梁17等の部材種類ごとに、異なる態様で、設定されてもよい。
健全性判定部25は、算定した損傷程度、部材に損傷が生じているか否か、といった判定結果を示す情報を、モニター装置や、外部のネットワーク100を介してアクセス可能な他の端末等を通して出力する。
上記でいう損傷程度は、損傷程度I~損傷程度IVで評価する。損傷程度Iは、柱や梁、耐力壁にほとんど損傷がない状態と定義した。損傷程度IIは、柱や梁、耐力壁に軽微なひびわれが発生している状態とした。また、損傷程度IIIは、柱や梁、耐力壁に顕著なせん断ひびわれが見られる状態と定義し、損傷程度IVは、柱や梁、耐力壁に大きなせん断ひびわれが見られ、大破している状態と定義した。
The soundness determination unit 25 further estimates the energy absorption amount of each member derived based on the first difference minimum incremental steps i wcX and i wcY and the second difference minimum incremental steps i osX and i osY . The soundness of the building 10 is determined based on the value eE obs (k). The soundness determination unit 25 compares the estimated value eE obs (k) of the energy absorption amount of each member with a preset damage determination threshold to calculate the degree of damage. When the estimated energy absorption amount eE obs (k) of each member is larger than the damage determination threshold, the soundness determination unit 25 determines that the member may be damaged.
Here, as the damage determination threshold value, for example, the damage determination threshold value μcr of the plasticity rate can be set according to the plastic deformation performance of the member. As shown in FIG. 9, when the member is deformed for one cycle with a plasticity factor μ, the energy absorption amount E in the member is expressed by the following formula (4).
E=4(μ−1) Myθy (4)
Therefore, the damage threshold E cr of the energy absorption amount of the member is
E cr =4(μ cr −1)M y θ y
becomes.
For example, a rectangular steel pipe with a member half length from the end to the center of 1750 mm, a yield strength of 295 N/ mm2 , a cross-sectional dimension of 300 mm × 300 mm, and a thickness of 9 mm (bending moment at yield My = 327 kNm , member angle θy=0.0065 rad at yield), and μ cr =3.0, E cr =17.0 kNm.
Such a damage determination threshold is not limited to the above, and may be appropriately set by another method, or may be set in a different manner for each member type such as the pillar 16 and the beam 17 .
The soundness determination unit 25 outputs information indicating the determination result such as the calculated degree of damage and whether or not the member is damaged, through a monitor device or other terminal that can be accessed via the external network 100. do.
The degree of damage referred to above is evaluated from degree of damage I to degree of damage IV. Damage degree I was defined as a state in which there was almost no damage to columns, beams, and load-bearing walls. The degree of damage II was defined as a state in which slight cracks occurred in columns, beams, and load-bearing walls. In addition, damage level III is defined as a state in which significant shear cracks are observed in columns, beams, and bearing walls, and damage level IV is a state in which large shear cracks are observed in columns, beams, and bearing walls, causing severe damage. defined as

このようにして、健全性判定部25は、差分最小の増分ステップiwcX、iwcY、iosX、iosYに対応する各部材のエネルギー吸収量の推定値eEobs(k)と、各部材に対して設定された損傷判定閾値とを比較して、損傷程度を算定し、各部材の損傷程度に基づき、建物10の健全性を判定する。
ここでいう建物10の健全性は、安全、要注意、危険で評価する。健全性評価による安全指標は、損傷程度I、IIに対応する。また、健全性評価による要注意指標は損傷程度IIIに対応し、危険指標は損傷程度IVに対応する。
In this way, the soundness determination unit 25 obtains the estimated energy absorption amount eE obs (k) of each member corresponding to the incremental steps i wcX , i wcY , i osX , and i osY with the smallest difference, and The degree of damage is calculated by comparing with a damage determination threshold value set for each member, and the soundness of the building 10 is determined based on the degree of damage to each member.
The soundness of the building 10 here is evaluated in terms of safety, caution, and danger. The safety index based on soundness evaluation corresponds to the degree of damage I and II. Further, the caution index by the soundness evaluation corresponds to the damage level III, and the danger index corresponds to the damage level IV.

(健全性評価方法)
図10は、建物の健全性評価システム1における、建物の健全性評価方法の流れを示すフローチャートである。
評価装置20で建物10の健全性評価を行うには、事前準備として、予め、解析部21において、層崩壊型モデルM1と、全体崩壊型モデルM2と、を用いて静的増分解析を行う。解析部21では、静的増分解析において荷重を増加させる段階である増分ステップごとに、各層のエネルギー吸収量の解析値、及び各部材のエネルギー吸収量の解析値を算出しておく。算出された各層のエネルギー吸収量の解析値、及び各部材のエネルギー吸収量の解析値は、解析結果記録部27に記録しておく。
その後、地震が発生すると、評価装置20が、建物10に設けられたセンサ12で検出された地震情報を、外部のネットワーク100から取得する(ステップS11)。
地震情報を取得すると、評価装置20のエネルギー吸収量の推定部23が、センサ12で検出される地震情報、及び建物10の各層11の重量に基づき、各層11の層せん断力と層間変位を算出し、算出された層せん断力及び層間変位に基づいて、各層のエネルギー吸収量の推定値を計算する(ステップS12)。
(Soundness evaluation method)
FIG. 10 is a flow chart showing the flow of the building soundness evaluation method in the building soundness evaluation system 1 .
In order to perform the soundness evaluation of the building 10 with the evaluation device 20, as a preliminary preparation, the analysis unit 21 performs static incremental analysis in advance using the layer collapse model M1 and the global collapse model M2. The analysis unit 21 calculates an analysis value of the energy absorption amount of each layer and an analysis value of the energy absorption amount of each member for each incremental step which is a step of increasing the load in the static incremental analysis. The calculated analytical value of the energy absorption amount of each layer and the calculated analytical value of the energy absorption amount of each member are recorded in the analysis result recording unit 27 .
After that, when an earthquake occurs, the evaluation device 20 acquires earthquake information detected by the sensor 12 provided in the building 10 from the external network 100 (step S11).
When the earthquake information is acquired, the estimation unit 23 of the energy absorption amount of the evaluation device 20 calculates the story shear force and interlayer displacement of each story 11 based on the earthquake information detected by the sensor 12 and the weight of each story 11 of the building 10. Then, an estimated value of the energy absorption amount of each layer is calculated based on the calculated layer shear force and interlayer displacement (step S12).

続いて、増分ステップの同定部24が、解析結果記録部27に記録された、各層のエネルギー吸収量の解析値のなかから、各層のエネルギー吸収量の推定値との差分が最小となる各層のエネルギー吸収量の差分最小解析値を選択して、これに対応する増分ステップを、差分最小の増分ステップとして同定する(ステップS13)。
より詳細には、増分ステップの同定部24は、X方向、Y方向のそれぞれにおいて、析結果記録部27に記録された、層崩壊型モデルM1における各層のエネルギー吸収量の解析値と全体崩壊型モデルM2における各層のエネルギー吸収量の解析値の各組み合わせに対して、層ごとに、層崩壊型モデルM1の静的増分解析結果における各層のエネルギー吸収量の解析値と、全体崩壊型モデルM2の静的増分解析結果における各層のエネルギー吸収量の解析値との和と、各層のエネルギー吸収量の推定値との差分を計算して、差分の全層における総和が最小となるような組み合わせである差分差分最小組み合わせを、各層のエネルギー吸収量の差分最小解析値として選択し、当該差分最小組み合わせ中の、層崩壊型モデルM1における各層のエネルギー吸収量の解析値と全体崩壊型モデルM2における各層のエネルギー吸収量の解析値に対応する、層崩壊型モデルM1における増分ステップと、全体崩壊型モデルM2における増分ステップを、それぞれ、第1差分最小の増分ステップと、第2差分最小の増分ステップとして同定する。
Subsequently, the incremental step identification unit 24 selects the layer whose difference from the estimated value of the energy absorption amount of each layer is the smallest among the analysis values of the energy absorption amount of each layer recorded in the analysis result recording unit 27. The minimum difference analysis value of the amount of energy absorption is selected, and the incremental step corresponding thereto is identified as the incremental step with the minimum difference (step S13).
More specifically, the incremental step identification unit 24 compares the analysis values of the energy absorption amount of each layer in the layer collapse type model M1 recorded in the analysis result recording unit 27 in each of the X direction and the Y direction, and the total collapse type For each combination of the analytical value of the energy absorption amount of each layer in the model M2, for each layer, the analytical value of the energy absorption amount of each layer in the static incremental analysis result of the layer collapse type model M1 and the total collapse type model M2 Calculate the difference between the sum of the analytical value of the energy absorption amount of each layer in the static incremental analysis result and the estimated value of the energy absorption amount of each layer, and find the combination that minimizes the total sum of the differences for all layers. The difference minimum combination is selected as the difference minimum analysis value of the energy absorption amount of each layer, and the analysis value of the energy absorption amount of each layer in the layer collapse model M1 and each layer in the total collapse model M2 in the difference minimum combination are selected. The incremental step in the layer collapse model M1 and the incremental step in the total collapse model M2 corresponding to the analytical value of the energy absorption amount are identified as the incremental step of the first difference minimum and the incremental step of the second difference minimum, respectively. do.

健全性判定部25は、部材ごとに、第1差分最小の増分ステップに対応する、層崩壊型モデルM1における各部材のエネルギー吸収量の解析値と、第2差分最小の増分ステップに対応する、全体崩壊型モデルM2における各部材のエネルギー吸収量の解析値の和を計算することにより、各部材のエネルギー吸収量の推定値を導出する(ステップS14)。
その後、健全性判定部25は、第1差分最小の増分ステップと、第2差分最小の増分ステップを基に導出された、各部材のエネルギー吸収量の推定値を基に、建物10の健全性を判定する(ステップS15)。健全性判定部25は、各部材のエネルギー吸収量の推定値と、予め設定された損傷判定閾値とを比較して、損傷程度を算定する。健全性判定部25は、各部材のエネルギー吸収量の推定値が、損傷判定閾値よりも大きい場合に、その部材に損傷が生じている可能性がある、と判定する。
更に、健全性判定部25は、算定した損傷程度、部材に損傷が生じているか否か、といった判定結果を示す情報を、モニター装置や、外部のネットワーク100を介してアクセス可能な他の端末等を通して出力する(ステップS16)。
The soundness determination unit 25 determines, for each member, the analysis value of the energy absorption amount of each member in the layer collapse model M1, which corresponds to the incremental step of the minimum first difference, and the incremental step of the minimum second difference, By calculating the sum of the analytical values of the energy absorption of each member in the total collapse model M2, an estimated value of the energy absorption of each member is derived (step S14).
After that, the soundness determination unit 25 determines the soundness of the building 10 based on the estimated value of the energy absorption amount of each member derived based on the incremental step of the first difference minimum and the incremental step of the second difference minimum. is determined (step S15). The soundness determination unit 25 compares the estimated value of the energy absorption amount of each member with a preset damage determination threshold to calculate the degree of damage. The soundness determination unit 25 determines that the member may be damaged when the estimated value of the energy absorption amount of each member is larger than the damage determination threshold value.
Furthermore, the soundness determination unit 25 sends information indicating the determination result such as the calculated degree of damage and whether or not the member is damaged, to a monitor device, other terminals accessible via the external network 100, etc. (step S16).

(健全性評価方法による推定精度の検証)
ここでは、本発明の建物の健全性評価システム1での推定精度の検証を行った。
検証対象の建物を実現する架構としては、次のモデル1~モデル6の、6種類のモデルを用意した。
モデル1は、4層で、X方向の柱スパンが2、Y方向の柱スパンが1、柱の、梁やパネルに対する耐力比である柱耐力比γを1.0とした。
モデル2は、4層で、X方向の柱スパンが2、Y方向の柱スパンが1、柱耐力比γを1.5とした。
モデル3は、8層で、X方向の柱スパンが3、Y方向の柱スパンが2、柱耐力比γを1.0とした。
モデル4は、8層で、X方向の柱スパンが3、Y方向の柱スパンが2、柱耐力比γを1.5とした。
モデル5は、12層で、X方向の柱スパンが4、Y方向の柱スパンが3、柱耐力比γを1.0とした。
モデル6は、12層で、X方向の柱スパンが4、Y方向の柱スパンが3、柱耐力比γを1.5とした。
上記のいずれのモデルにおいても、構造特性係数Dsを0.4とした。
これらの各モデルに対し、入力地震波として、八戸波・レベル3を、X方向とY方向の各々に対して45°の角度となる方向から入力した。この場合、センサ12で検出される加速度情報から算定される、X方向、Y方向のそれぞれにおける、各部材のエネルギー吸収量を正解値とし、上記健全性評価システム1で推定を行った各部材のエネルギー吸収量の推定値eEobs(k)を推定値とした。
(Verification of estimation accuracy by soundness evaluation method)
Here, the estimation accuracy of the building soundness evaluation system 1 of the present invention was verified.
Six types of models, model 1 to model 6, were prepared as the framework for realizing the building to be verified.
Model 1 has four layers, a column span in the X direction of 2, a column span in the Y direction of 1, and a column yield strength ratio γ, which is the yield strength ratio of a column to a beam or panel, set to 1.0.
Model 2 has four layers, a column span in the X direction of 2, a column span in the Y direction of 1, and a column strength ratio γ of 1.5.
Model 3 has eight layers, a column span in the X direction of 3, a column span in the Y direction of 2, and a column strength ratio γ of 1.0.
Model 4 has eight layers, a column span in the X direction of 3, a column span in the Y direction of 2, and a column strength ratio γ of 1.5.
Model 5 has 12 layers, a column span of 4 in the X direction, a column span of 3 in the Y direction, and a column strength ratio γ of 1.0.
Model 6 has 12 layers, a column span in the X direction of 4, a column span in the Y direction of 3, and a column strength ratio γ of 1.5.
The structural characteristic factor Ds was set to 0.4 in all the above models.
For each of these models, the Hachinohe wave, level 3, was input as an input seismic wave from a direction forming an angle of 45° with respect to each of the X and Y directions. In this case, the energy absorption amount of each member in each of the X direction and the Y direction calculated from the acceleration information detected by the sensor 12 is set as the correct value, and the energy of each member estimated by the soundness evaluation system 1 The estimated value eE obs (k) of the amount of energy absorption was used as the estimated value.

図11~図16は、本実施形態における建物の健全性評価システム1により、モデル1~6の各々に対して、建物を構成する各部材のエネルギー吸収量を推定した場合の検証例を示す図である。図11~図16では、柱や梁の両端、及びパネルにおいては、正解値と推定値の比較結果となる差分が示されている。
各図より、柱耐力比γが1.0と小さく設定されたモデルでは、最下層の層崩壊機構が支配的となることから、層崩壊型モデルM1の静的解析結果がそのまま反映され、正解値に近い推定が出来ていることが確認できる。
柱耐力比γが1.5と設定された、全体崩壊機構が支配的になる架構においても、柱のエネルギー吸収量は概ね精度よく推定できており、梁やパネルもエネルギー吸収が大きくなる箇所は概ね整合している。ここで、1本の梁の両端でエネルギー吸収量が大きく異なる正解値があるが、これは、卓越方向への応答の中で、スラブの合成効果により一端の耐力が上昇し塑性化がほぼ生じずに、他端にエネルギー吸収が集中したことが要因であるため、合成効果を考慮していない静的解析に基づく推定値と差が生じたものと考えられる。
なお、本検証においては、鋼構造のラーメン架構を対象とした事例を示したが、RC造においても、柱や梁の端部及びパネルに塑性化が生じる点は共通であるため、極めて大きな損傷が生じない応答レベルにおいては、妥当性は確保されると考えられる。
11 to 16 are diagrams showing verification examples when the energy absorption amount of each member constituting the building is estimated for each of the models 1 to 6 by the building soundness evaluation system 1 according to this embodiment. is. 11 to 16 show the difference between the correct value and the estimated value at both ends of the column or beam and at the panel.
From each figure, in the model in which the column strength ratio γ is set as small as 1.0, the layer collapse mechanism of the lowest layer is dominant, so the static analysis results of the layer collapse type model M1 are reflected as they are, and the correct answer is It can be confirmed that the estimation is close to the value.
Even in a frame where the total collapsing mechanism is dominant, where the column strength ratio γ is set to 1.5, the energy absorption of the columns can be estimated with high accuracy, and the beams and panels also have a large amount of energy absorption. Generally consistent. Here, there is a correct value for the amount of energy absorption that differs greatly at both ends of a single beam. It is thought that the energy absorption was concentrated at the other end without considering the composite effect, and the estimated value based on the static analysis, which does not consider the synthetic effect, and the difference occurred.
In this verification, an example of a rigid-frame frame of steel structure was shown. Validity is considered to be ensured at response levels at which no

上述したような建物10の健全性評価システム1は、建物10の健全性を診断、評価する健全性評価システム1であって、柱16及び梁17を含んで建物10に対応するように構成された立体骨組モデルM(M1、M2)を用いて、事前に静的増分解析を行い、当該解析において荷重を増加させる段階である増分ステップごとに、各層のエネルギー吸収量の解析値sEwcX(i,j)、sEwcY(i,j)、sEosX(i,j)、sEosY(i,j)、及び柱16及び梁17を含む各部材のエネルギー吸収量の解析値eEwcX(i,k)、eEwcY(i,k)、eEosX(i,k)、eEosY(i,k)を算出し、解析結果記録部27に記録する解析部21と、建物10に設置したセンサ12から得られる地震情報を記録する地震情報記録部22と、地震情報、及び建物10の各層11の重量に基づき、各層11の層せん断力と層間変位を算出し、層せん断力及び層間変位に基づいて各層のエネルギー吸収量の推定値sEobsX(j)、sEobsY(j)を計算するエネルギー吸収量の推定部23と、解析結果記録部27に記録された、各層のエネルギー吸収量の解析値sEwcX(i,j)、sEwcY(i,j)、sEosX(i,j)、sEosY(i,j)のなかから、各層のエネルギー吸収量の推定値sEobsX(j)、sEobsY(j)との差分が最小となる各層のエネルギー吸収量の差分最小解析値(層崩壊型モデルM1における各層のエネルギー吸収量の解析値sEwcX(i,j)、sEwcY(i,j)と全体崩壊型モデルM2における各層のエネルギー吸収量の解析値sEosX(i,j)、sEosY(i,j)の組み合わせ)を選択して、これに対応する増分ステップを、差分最小の増分ステップiwcX、iwcY、iosX、iosYとして同定する増分ステップの同定部24と、差分最小の増分ステップiwcX、iwcY、iosX、iosYに対応する各部材のエネルギー吸収量の解析値eEwcX(iwcX,k)、eEwcY(iwcY,k)、eEosX(iosX,k)、eEosY(iosY,k)から、各部材のエネルギー吸収量の推定値eEobs(k)を取得し、当該各部材のエネルギー吸収量の推定値eEobs(k)と、各部材に対して設定された損傷判定閾値とを比較して、損傷程度を算定し、各部材の損傷程度に基づき、建物10の健全性を判定する健全性判定部25と、を備えている。
このような構成によれば、柱16及び梁17を含んで建物10に対応するように構成された立体骨組モデルM(M1、M2)を用いて静的増分解析を行い、この静的増分解析において荷重を増加させる段階である増分ステップごとに算出された、各層のエネルギー吸収量の解析値sEwcX(i,j)、sEwcY(i,j)、sEosX(i,j)、sEosY(i,j)と、柱16及び梁17を含む各部材のエネルギー吸収量の解析値eEwcX(i,k)、eEwcY(i,k)、eEosX(i,k)、eEosY(i,k)とが、解析部21によって算出されて、解析結果記録部27に記録されている。地震が生じた際には、エネルギー吸収量の推定部23が、建物10に設置したセンサ12から得られた地震情報、及び建物10の各層11の重量に基づいて、建物10の各層におけるエネルギー吸収量の推定値sEobsX(j)、sEobsY(j)を計算する。健全性判定部25は、各層のエネルギー吸収量の解析値sEwcX(i,j)、sEwcY(i,j)、sEosX(i,j)、sEosY(i,j)のなかから、各層のエネルギー吸収量の推定値sEobsX(j)、sEobsY(j)との差分が最小となる各層のエネルギー吸収量の差分最小解析値を選択することによって、選択された各層のエネルギー吸収量の解析値sEwcX(i,j)、sEwcY(i,j)、sEosX(i,j)、sEosY(i,j)に対応する、当該差分最小解析値が結果として出力された増分ステップを、差分最小の増分ステップiwcX、iwcY、iosX、iosYとして同定する。このようにして同定された差分最小の増分ステップiwcX、iwcY、iosX、iosYにおいては、地震情報が取得された地震が生じた際に各層11が吸収したエネルギーと同程度のエネルギーを各層11が吸収するように、荷重が増加された状態となっている。したがって、静的増分解析の、この差分最小の増分ステップiwcX、iwcY、iosX、iosYの段階における各部材のエネルギー吸収量の解析値eEobs(k)は、地震情報が取得された地震が生じた際に、各部材が吸収したエネルギーの量に近い値と考えられる。したがって、差分最小の増分ステップiwcX、iwcY、iosX、iosYに対応する各部材のエネルギー吸収量の解析値eEwcX(iwcX,k)、eEwcY(iwcY,k)、eEosX(iosX,k)、eEosY(iosY,k)から、各部材のエネルギー吸収量の推定値eEobs(k)を取得し、当該各部材のエネルギー吸収量の推定値eEobs(k)に基づき、損傷判定閾値との比較により損傷程度を算定することによって、建物10を構成する各部材の損傷程度を評価し、建物10の健全性を判定することができる。
このようにして、建物10を構成する部材に生じる損傷の有無、及びその損傷程度を推定することによって、部材ごとに損傷評価を行うことができ、高精度で、信頼性の高い建物10の健全性評価を行うことができる。
更に、上記のような構成においては、部材ごとに損傷評価を行うことができるにもかかわらず、部材ごとにセンサを設けなくともよいため、センサの数を多く必要としない。
したがって、簡易な構成で、健全性を精度よく判定することができる、建物の健全性評価システム1を提供可能である。
The soundness evaluation system 1 for the building 10 as described above is a soundness evaluation system 1 for diagnosing and evaluating the soundness of the building 10, and is configured to correspond to the building 10 including the pillars 16 and the beams 17. Static incremental analysis is performed in advance using the three-dimensional frame model M (M1, M2), and the analytical value sE wcX (i , j), sE wcY (i, j), sE osX (i, j), sE osY (i, j), and the analytical value eE wcX (i, k), eE wcY (i, k), eE osX (i, k), and eE osY (i, k) are calculated and recorded in the analysis result recording unit 27, and the sensor 12 installed in the building 10 Based on the earthquake information recording unit 22 that records the earthquake information obtained from the earthquake information and the weight of each layer 11 of the building 10, the story shear force and interlayer displacement of each story 11 are calculated, and based on the story shear force and interlayer displacement an energy absorption estimator 23 for calculating the estimated values sE obsX (j) and sE obsY (j) of the energy absorption of each layer, and the analytical values of the energy absorption of each layer recorded in the analysis result recording unit 27 From among sE wcX (i, j), sE wcY (i, j), sE osX (i, j), and sE osY (i, j), estimated values sE obsX (j), sE The difference minimum analysis value of the energy absorption amount of each layer that minimizes the difference from obsY (j) (the analysis value of the energy absorption amount of each layer in the layer collapse model M1 sE wcX (i, j), sE wcY (i, j ) and the analytical values sE osX (i, j) and sE osY (i, j) of the energy absorption of each layer in the total collapse model M2), and the corresponding incremental step is set to the minimum difference The identification part 24 of the incremental steps identified as the incremental steps i wcX , i wcY , i osX and i osY , and the energy absorption amount of each member corresponding to the incremental steps i wcX , i wcY , i osX and i osY with the smallest difference. From the analytical values eE wcX (i wcX , k), eE wcY (i wcY , k), eE osX ( iosX , k), and eE osY ( iosY , k), the energy absorption amount eE obs (k) is obtained, the estimated value eE obs (k) of the energy absorption amount of each member is compared with the damage determination threshold set for each member, the degree of damage is calculated, and the degree of damage of each member is calculated. A soundness determination unit 25 that determines the soundness of the building 10 based on the degree of damage.
According to such a configuration, the static incremental analysis is performed using the three-dimensional frame model M (M1, M2) configured to correspond to the building 10 including the columns 16 and the beams 17, and the static incremental analysis Analytical values sE wcX (i, j), sE wcY (i, j), sE osX (i, j), and sE osY (i, j) and the analytical values eE wcX (i, k), eE wcY (i, k), eE osX (i, k), eE osY ( i, k) are calculated by the analysis unit 21 and recorded in the analysis result recording unit 27 . When an earthquake occurs, the energy absorption amount estimating unit 23 estimates energy absorption in each floor of the building 10 based on the earthquake information obtained from the sensor 12 installed in the building 10 and the weight of each floor 11 of the building 10. Calculate the quantity estimates sE obsX (j), sE obsY (j). The soundness determination unit 25 selects from the analytical values sE wcX (i, j), sE wcY (i, j), sE osX (i, j), and sE osY (i, j) of the energy absorption amount of each layer, By selecting the minimum difference analysis value of the energy absorption of each layer that minimizes the difference from the estimated values of energy absorption sE obsX (j) and sE obsY (j) of each layer, the energy absorption of each selected layer corresponding to the analytic values sEwcX (i,j), sEwcY (i,j), sEosX (i,j), sEosY (i,j) of Identify the steps as the incremental steps i wcX , i wcY , i osX , i osY with the smallest difference. At the incremental steps i wcX , i wcY , i osX , and i osY identified in this way with the smallest difference, the energy that is approximately the same as the energy absorbed by each layer 11 when the earthquake for which the earthquake information was obtained occurred occurred. The load is increased so that each layer 11 can absorb it. Therefore, the analysis value eE obs (k) of the energy absorption amount of each member at the stages of the incremental steps i wcX , i wcY , i osX and i osY with the smallest difference in the static incremental analysis is It is considered to be a value close to the amount of energy absorbed by each member when an earthquake occurs. Therefore, the analytical values eEwcX ( iwcX , k ), eEwcY ( iwcY ,k), eEosX From (i osX , k) and eE osY (i osY , k), the estimated value eE obs (k) of the energy absorption of each member is obtained, and the estimated value eE obs (k) of the energy absorption of each member is obtained. By calculating the degree of damage by comparing with the damage determination threshold based on, the degree of damage to each member constituting the building 10 can be evaluated, and the soundness of the building 10 can be determined.
In this way, by estimating the presence or absence of damage occurring in the members constituting the building 10 and the degree of damage, it is possible to perform damage evaluation for each member, and the soundness of the building 10 with high accuracy and high reliability. Gender assessment can be performed.
Furthermore, in the configuration as described above, although the damage evaluation can be performed for each member, it is not necessary to provide a sensor for each member, so a large number of sensors is not required.
Therefore, it is possible to provide the building soundness evaluation system 1 that can accurately determine soundness with a simple configuration.

また、解析部21は、立体骨組モデルM(M1、M2)に対して建物10が層崩壊するようにパラメータが設定された層崩壊型モデルM1と、立体骨組モデルM(M1、M2)に対して建物10が全体崩壊するようにパラメータが設定された全体崩壊型モデルM2の各々に対して、静的増分解析を行って、増分ステップごとに、各層のエネルギー吸収量の解析値sEwcX(i,j)、sEwcY(i,j)、sEosX(i,j)、sEosY(i,j)と、各部材のエネルギー吸収量の解析値eEwcX(i,k)、eEwcY(i,k)、eEosX(i,k)、eEosY(i,k)を算出して解析結果記録部27に記録し、増分ステップの同定部24は、解析結果記録部27に記録された、層崩壊型モデルM1における各層のエネルギー吸収量の解析値sEwcX(i,j)、sEwcY(i,j)と全体崩壊型モデルM2における各層のエネルギー吸収量の解析値sEosX(i,j)、sEosY(i,j)の各組み合わせに対して、層ごとに、層崩壊型モデルM1における各層のエネルギー吸収量の解析値sEwcX(i,j)、sEwcY(i,j)と全体崩壊型モデルM2における各層のエネルギー吸収量の解析値sEosX(i,j)、sEosY(i,j)との和と、各層のエネルギー吸収量の推定値sEobsX(j)、sEobsY(j)との差分を計算して、差分の全層における総和e、eが最小となるような組み合わせである差分最小組み合わせを、各層のエネルギー吸収量の差分最小解析値として選択し、当該差分最小組み合わせ中の、層崩壊型モデルM1における各層のエネルギー吸収量の解析値sEwcX(i,j)、sEwcY(iwcY,j)と全体崩壊型モデルM2における各層のエネルギー吸収量の解析値sEosX(i,j)、sEosY(iosY,j)に対応する、層崩壊型モデルM1における増分ステップiwcX、iwcYと、全体崩壊型モデルM2における増分ステップiosX、iosYを、それぞれ、第1差分最小の増分ステップiwcX、iwcYと、第2差分最小の増分ステップiosX、iosYとして同定し、健全性判定部25は、第1差分最小の増分ステップiwcX、iwcYと、第2差分最小の増分ステップiosX、iosYを基に、建物10の健全性を判定する。
このような構成によれば、立体骨組モデルM(M1、M2)に対して建物10が層崩壊するようにパラメータが設定された層崩壊型モデルM1と、立体骨組モデルM(M1、M2)に対して建物10が全体崩壊するようにパラメータが設定された全体崩壊型モデルM2の各々に対して、静的増分解析を行う。解析結果記録部27に記録された、層崩壊型モデルM1における各層のエネルギー吸収量の解析値sEwcX(i,j)、sEwcY(i,j)と全体崩壊型モデルM2における各層のエネルギー吸収量の解析値sEosX(i,j)、sEosY(i,j)の、各組み合わせに対して、層11ごとに、層崩壊型モデルM1における各層のエネルギー吸収量の解析値sEwcX(i,j)、sEwcY(i,j)と全体崩壊型モデルM2における各層のエネルギー吸収量の解析値sEosX(i,j)、sEosY(i,j)との和と、各層のエネルギー吸収量の推定値sEobsX(j)、sEobsY(j)との差分を計算して、この差分の全層11における総和e、eが最小となるような組み合わせである差分最小組み合わせを、各層のエネルギー吸収量の差分最小解析値として選択する。そして、このようにして選択された差分最小組み合わせに対応する、層崩壊型モデルM1における増分ステップiwcX、iwcYと、全体崩壊型モデルM2における増分ステップiosX、iosYを、それぞれ、第1差分最小の増分ステップiwcX、iwcY、及び第2差分最小の増分ステップiosX、iosYとして同定する。
ここで、静的増分解析によって、層崩壊と全体崩壊がそれぞれ、上記のようにして同定された第1差分最小の増分ステップiwcX、iwcY及び第2差分最小の増分ステップiosX、iosYまで進行した状態を組み合わせると、各層のエネルギー吸収量が、地震情報が取得された地震が生じた際におけるエネルギー吸収量の推定値sEosX(i,j)、sEosY(i,j)と近い値となっている。すなわち、第1差分最小の増分ステップiwcX、iwcYと第2差分最小の増分ステップiosX、iosYは、地震情報が取得された地震における、層崩壊と全体崩壊の各々の進行度と見做すことができる。
このようにして同定された、第1差分最小の増分ステップiwcX、iwcYと、第2差分最小の増分ステップiosX、iosYとに基づいて、建物10の健全性を判定することにより、実際に生じた地震荷重によって建物10に生じる被害に、より近い崩壊状態を推定し、建物10の健全性の評価を、より高い精度で行うことができる。
In addition, the analysis unit 21 performs a layer collapse model M1 in which parameters are set so that the building 10 undergoes a layer collapse with respect to the three-dimensional frame model M (M1, M2), and the three-dimensional frame model M (M1, M2). Static incremental analysis is performed on each of the total collapse model M2, the parameters of which are set so that the building 10 totally collapses, and the analytical value sE wcX (i , j), sE wcY (i, j), sE osX (i, j), sE osY (i, j), and analytical values eE wcX (i, k), eE wcY (i , k), eE osX (i, k), and eE osY (i, k) are calculated and recorded in the analysis result recording unit 27, and the incremental step identification unit 24 is recorded in the analysis result recording unit 27, Analysis values sE wcX (i, j) and sE wcY (i, j) of the energy absorption of each layer in the layer collapse model M1 and analysis values sE osX (i, j) of the energy absorption of each layer in the total collapse model M2 ), sE osY (i, j), the analytical values sE wcX (i, j) and sE wcY (i, j) of the energy absorption of each layer in the layer collapse model M1 for each layer The sum of the analytical values sE osX (i, j) and sE osY (i, j) of the energy absorption of each layer in the total collapse model M2, and the estimated values sE obsX (j) and sE obsY of the energy absorption of each layer calculating the difference from (j), and selecting the minimum difference combination, which is the combination that minimizes the total sum e X and e Y of the differences in all layers, as the minimum difference analysis value of the energy absorption amount of each layer; Analysis values sE wcX (i, j) and sE wcY (i wcY , j) of the energy absorption of each layer in the layer collapse model M1 and the energy absorption of each layer in the total collapse model M2 in the minimum difference combination Incremental steps i wcX and i wcY in the layer collapse model M1 and incremental steps i osX and i osY in the total collapse model M2 corresponding to the analytical values sE osX (i, j ) and sE osY (i osY , j ) are respectively identified as the first difference minimum incremental steps i wcX and i wcY and the second difference minimum incremental steps i osX and i osY , and the soundness determination unit 25 identifies the first difference minimum incremental steps i wcX , i wcY and the incremental steps i osX and i osY with the smallest second difference, the soundness of the building 10 is determined.
According to such a configuration, the layer collapse type model M1 whose parameters are set so that the building 10 undergoes a layer collapse with respect to the three-dimensional frame model M (M1, M2), and the three-dimensional frame model M (M1, M2). On the other hand, static incremental analysis is performed for each of the total collapse model M2 whose parameters are set so that the building 10 totally collapses. The analytical values sE wcX (i, j) and sE wcY (i, j) of the energy absorption of each layer in the layer collapse model M1 and the energy absorption of each layer in the total collapse model M2 recorded in the analysis result recording unit 27 The analytical value sE wcX ( i , j), sE wcY (i, j) and the sum of the analytical values sE osX (i, j) and sE osY (i, j) of the energy absorption of each layer in the total collapse model M2, and the energy absorption of each layer Calculate the difference between the estimated values sE obsX (j) and sE obsY (j) of the amounts, and select the minimum difference combination that minimizes the total sum e X and e Y of this difference in all layers 11, It is selected as the difference minimum analysis value of the energy absorption amount of each layer. Then, the incremental steps i wcX and i wcY in the layer collapse model M1 and the incremental steps i osX and i osY in the total collapse model M2 corresponding to the combination of the minimum difference selected in this manner are set to the first Identify the minimum difference increment steps i wcX , i wcY and the second minimum difference increment steps i osX , i osY .
Here, by static incremental analysis, the first difference minimum incremental steps i wcX , i wcY and the second difference minimum incremental steps i osX , i osY identified above for layer and global collapse, respectively The energy absorption of each layer is close to the estimated energy absorption sE osX (i, j) and sE osY (i, j) at the time of the earthquake for which the seismic information was acquired. value. That is, the incremental steps i wcX and i wcY with the smallest first difference and the incremental steps i osX and i osY with the smallest second difference can be regarded as the degree of progression of layer collapse and total collapse in the earthquake for which the earthquake information was acquired. can be made.
By determining the soundness of the building 10 based on the incremental steps i wcX and i wcY for the first difference minimum and the incremental steps i osX and i osY for the second minimum difference thus identified, It is possible to estimate a state of collapse that is closer to the damage caused to the building 10 by an actual seismic load, and to evaluate the soundness of the building 10 with higher accuracy.

また、健全性判定部25は、部材ごとに、第1差分最小の増分ステップiwcX、iwcYに対応する、層崩壊型モデルM1における各部材のエネルギー吸収量の解析値eEwcX(iwcX,k)、eEwcY(iwcY,k)と、第2差分最小の増分ステップiosX、iosYに対応する、全体崩壊型モデルM2における各部材のエネルギー吸収量の解析値eEosX(iosX,k)、eEosY(iosY,k)の和eEobs(k)を計算し、これを各部材のエネルギー吸収量の推定値eEobs(k)として、損傷判定閾値と比較して、損傷程度を算定する。
上記のようにして同定された第1差分最小の増分ステップiwcX、iwcYに対応する、層崩壊型モデルM1における各部材のエネルギー吸収量の解析値eEwcX(iwcX,k)、eEwcY(iwcY,k)と、第2差分最小の増分ステップiosX、iosYに対応する、全体崩壊型モデルM2における各部材のエネルギー吸収量の解析値eEosX(iosX,k)、eEosY(iosY,k)とを、それぞれ求める。既に説明したように、第1差分最小の増分ステップiwcX、iwcYと第2差分最小の増分ステップiosX、iosYは、地震情報が取得された地震における、層崩壊と全体崩壊の各々の進行度であるから、上記のようにして求められた、第1差分最小の増分ステップiwcX、iwcYと第2差分最小の増分ステップiosX、iosYのそれぞれに対応する、各部材のエネルギー吸収量の解析値eEwcX(iwcX,k)、eEwcY(iwcY,k)、eEosX(iosX,k)、eEosY(iosY,k)の和eEobs(k)は、地震情報が取得された地震が生じた際に、各部材が吸収したエネルギーに近い値と考えられる。この和を、各部材のエネルギー吸収量の推定値eEobs(k)として、部材ごとに、損傷判定閾値と比較することで、建物10の健全性を判定することで、建物10の健全性の評価を、より高い精度で行うことができる。
In addition, the soundness determination unit 25 calculates the analytical values eE wcX (i wcX , k), eE wcY (i wcY , k), and the analytical value eE osX (i osX , k) of the energy absorption amount of each member in the total collapse type model M2 corresponding to the incremental steps i osX and i osY with the smallest second difference k), calculate the sum eE obs (k) of eE osY (i osY , k), use this as the estimated value eE obs (k) of the energy absorption amount of each member, and compare it with the damage determination threshold to determine the degree of damage to calculate
Analytical values eE wcX (i wcX , k) and eE wcY of the energy absorption of each member in the layer collapse model M1 corresponding to the incremental steps i wcX and i wcY with the minimum first difference identified as described above (i wcY , k) and the analytical values eE osX ( iosX , k) and eE osY of the energy absorption amount of each member in the total collapse model M2 corresponding to the incremental steps i osX and i osY with the smallest second difference (i osY , k) are obtained respectively. As already explained, the increment steps i wcX and i wcY for the first difference minimum and the increment steps i osX and i osY for the second difference minimum are each of the layer collapse and the global collapse in the earthquake for which the earthquake information was acquired. Since it is the degree of progress, the energy of each member corresponding to the incremental steps i wcX and i wcY with the smallest first difference and the incremental steps i osX and i osY with the smallest second difference, which are obtained as described above, The sum of the analytical absorption values eE wcX (i wcX , k), eE wcY (i wcY , k), eE osX ( iosX , k), and eE osY ( iosY , k) eE obs (k) is the It is considered to be a value close to the energy absorbed by each member when the earthquake for which the information was acquired occurred. This sum is used as an estimated value eE obs (k) of the energy absorption amount of each member, and is compared with the damage determination threshold for each member to determine the soundness of the building 10. Evaluations can be made with greater accuracy.

(実施形態の第1変形例)
なお、本発明の健全性評価システム1は、図面を参照して説明した上述の実施形態に限定されるものではなく、その技術的範囲において他の様々な変形例が考えられる。
例えば、上記実施形態において、例えば地震力が作用する方向がX方向にほぼ沿うような状態である場合には、増分ステップの同定部24と健全性判定部25においては、Y方向における解析は実行せず、X方向のみにおいて解析するようにしてもよい。
この場合には、増分ステップの同定部は、式(1)のX方向載荷時層エネルギー差分eのみを計算し、式(2)のY方向載荷時層エネルギー差分eは計算しなくてもよい。また、健全性判定部25は、式(3)において各部材のエネルギー吸収量の推定値eEobs(k)を計算するに際し、X方向における各部材のエネルギー吸収量の解析値eEwcX(i,k)、eEosX(i,k)のみを加算し、Y方向における各部材のエネルギー吸収量の解析値eEwcY(i,k)、eEosY(i,k)は使用しない。
地震力が作用する方向がY方向にほぼ沿うような状態である場合も同様である。
(First modification of the embodiment)
It should be noted that the soundness evaluation system 1 of the present invention is not limited to the above-described embodiments described with reference to the drawings, and various other modifications are conceivable within the technical scope thereof.
For example, in the above embodiment, if the direction in which the seismic force acts is substantially along the X direction, the incremental step identification unit 24 and soundness determination unit 25 perform analysis in the Y direction. Alternatively, the analysis may be performed only in the X direction without performing the analysis.
In this case, the incremental step identification unit should calculate only the X-direction loading layer energy difference e x in Equation (1), and not calculate the Y-direction loading layer energy difference e Y in Equation (2). good too. Further, when calculating the estimated value eE obs (k) of the energy absorption amount of each member in Equation (3), the soundness determination unit 25 calculates the analytical value eE wcX (i, k), add only eE osX (i, k) and do not use the analytical values eE wcY (i, k), eE osY (i, k) of the energy absorption of each member in the Y direction.
The same applies when the direction in which the seismic force acts is substantially along the Y direction.

(実施形態の第2変形例)
あるいは、建物の構造上、層崩壊が全体崩壊に対し支配的であると予め判明しているような場合においては、層崩壊モデルM1のみを対象として、建物の健全性評価システム1が動作するように構成してもよい。
この場合においては、解析部21は、立体骨組モデルM(M1)に対して建物10が層崩壊するようにパラメータが設定された層崩壊型モデルM1に対して、静的増分解析を行って、増分ステップごとに、各層のエネルギー吸収量の解析値sEwcX(i,j)、sEwcY(i,j)と、各部材のエネルギー吸収量の解析値eEwcX(i,k)、eEwcY(i,k)を算出して解析結果記録部27に記録する。
次に、エネルギー吸収量の推定部23は、上記実施形態と同様に、各層11におけるエネルギー吸収量の推定値sEobsX(j)、sEobsY(j)を計算する。
そして、増分ステップの同定部24は、解析結果記録部27に記録された、層崩壊型モデルM1における各層のエネルギー吸収量の解析値sEwcX(i,j)、sEwcY(i,j)の各々に対して、層ごとに、層崩壊型モデルM1における各層のエネルギー吸収量の解析値sEwcX(i,j)、sEwcY(i,j)と、各層のエネルギー吸収量の推定値sEobsX(j)、sEobsY(j)との差分を計算して、差分の全層における総和e、eが最小となるようなエネルギー吸収量の解析値を、各層のエネルギー吸収量の差分最小解析値として選択し、これに対応する、層崩壊型モデルM1における増分ステップiwcX、iwcYを、第1差分最小の増分ステップiwcX、iwcYとして同定する。
更に、健全性判定部25は、部材ごとに、第1差分最小の増分ステップiwcX、iwcYに対応する、層崩壊型モデルM1における各部材のエネルギー吸収量の解析値eEwcX(i,k)、eEwcY(i,k)の和eEobs(k)を計算し、これを各部材のエネルギー吸収量の推定値eEobs(k)として、損傷判定閾値と比較して、損傷程度を算定する。
(Second modification of the embodiment)
Alternatively, in the case where it is known in advance that the layer collapse is dominant over the total collapse due to the structure of the building, the building soundness evaluation system 1 is operated only for the layer collapse model M1. can be configured to
In this case, the analysis unit 21 performs a static incremental analysis on the layer collapse model M1 in which the parameters are set so that the building 10 will collapse from the three-dimensional frame model M (M1), At each incremental step, the analytical values sE wcX (i, j), sE wcY (i, j) of the energy absorption of each layer and the analytical values eE wcX (i, k), eE wcY ( i, k) are calculated and recorded in the analysis result recording unit 27 .
Next, the energy absorption estimation unit 23 calculates the estimated values sE obsX (j) and sE obsY (j) of the energy absorption in each layer 11 in the same manner as in the above embodiment.
Then, the incremental step identification unit 24 calculates the analytical values sE wcX (i, j) and sE wcY (i, j) of the energy absorption of each layer in the layer collapse model M1 recorded in the analysis result recording unit 27. For each layer, the analytical values sE wcX (i, j) and sE wcY (i, j) of the energy absorption of each layer in the layer collapse model M1 and the estimated value sE obsX of the energy absorption of each layer (j), the difference from sE obsY (j) is calculated, and the analytical value of the energy absorption that minimizes the sum of the differences e X and e Y in all layers is determined as the minimum difference in the energy absorption of each layer. The incremental steps i wcX and i wcY in the layer collapse type model M1 selected as the analytical values and corresponding thereto are identified as the incremental steps i wcX and i wcY with the smallest first difference.
Furthermore, the soundness judging unit 25 determines the analytical values eE wcX (i, k ), calculate the sum eE obs (k) of eE wcY (i, k), use this as the estimated value eE obs (k) of the energy absorption amount of each member, and compare it with the damage determination threshold to calculate the degree of damage do.

(実施形態の第3変形例)
更には、建物の構造上、全体崩壊が層崩壊に対し支配的であると予め判明しているような場合においては、全体崩壊モデルM2のみを対象として、建物の健全性評価システム1が動作するように構成してもよい。
この場合においては、解析部21は、立体骨組モデルM(M2)に対して建物10が全体崩壊するようにパラメータが設定された全体崩壊型モデルM2に対して、静的増分解析を行って、増分ステップごとに、各層のエネルギー吸収量の解析値sEosX(i,j)、sEosY(i,j)と、各部材のエネルギー吸収量の解析値eEosX(i,k)、eEosY(i,k)を算出して解析結果記録部27に記録する。
次に、エネルギー吸収量の推定部23は、上記実施形態と同様に、各層11におけるエネルギー吸収量の推定値sEobsX(j)、sEobsY(j)を計算する。
そして、増分ステップの同定部24は、解析結果記録部27に記録された、全体崩壊型モデルM2における各層のエネルギー吸収量の解析値sEosX(i,j)、sEosY(i,j)の各々に対して、層ごとに、全体崩壊型モデルM2における各層のエネルギー吸収量の解析値sEosX(i,j)、sEosY(i,j)と、各層のエネルギー吸収量の推定値sEobsX(j)、sEobsY(j)との差分を計算して、差分の全層における総和e、eが最小となるようなエネルギー吸収量の解析値を、各層のエネルギー吸収量の差分最小解析値として選択し、これに対応する、全体崩壊型モデルM2における増分ステップiosX、iosYを、第2差分最小の増分ステップiosX、iosYとして同定する。
更に、健全性判定部25は、部材ごとに、第2差分最小の増分ステップiosX、iosYに対応する、全体崩壊型モデルM2における各部材のエネルギー吸収量の解析値eEosX(i,k)、eEosY(i,k)の和eEobs(k)を計算し、これを各部材のエネルギー吸収量の推定値eEobs(k)として、損傷判定閾値と比較して、損傷程度を算定する。
(Third modification of the embodiment)
Furthermore, in the case where it is known in advance that the total collapse is dominant over the layer collapse due to the structure of the building, the building soundness evaluation system 1 operates only for the total collapse model M2. It may be configured as
In this case, the analysis unit 21 performs static incremental analysis on the total collapse model M2 in which parameters are set so that the building 10 totally collapses with respect to the three-dimensional frame model M (M2), At each incremental step, the analytical values sE osX (i, j), sE osY (i, j) of the energy absorption of each layer and the analytical values eE osX (i, k), eE osY ( i, k) are calculated and recorded in the analysis result recording unit 27 .
Next, the energy absorption estimation unit 23 calculates the estimated values sE obsX (j) and sE obsY (j) of the energy absorption in each layer 11 in the same manner as in the above embodiment.
Then, the incremental step identification unit 24 calculates the analytical values sE osX (i, j) and sE osY (i, j) of the energy absorption amounts of the layers in the total collapse model M2 recorded in the analysis result recording unit 27. For each layer, the analytical values sE osX (i, j) and sE osY (i, j) of the energy absorption of each layer in the global collapse model M2 and the estimated value sE obsX of the energy absorption of each layer (j), the difference from sE obsY (j) is calculated, and the analytical value of the energy absorption that minimizes the sum of the differences e X and e Y in all layers is determined as the minimum difference in the energy absorption of each layer. The incremental steps i osX and i osY in the total collapse model M2 selected as the analysis values and corresponding thereto are identified as the incremental steps i osX and i osY with the smallest second difference.
Furthermore, the soundness judging unit 25 determines, for each member , the analytical value eE osX (i, k ), calculate the sum eE obs (k) of eE osY (i, k), use this as the estimated value eE obs (k) of the energy absorption amount of each member, and compare it with the damage determination threshold to calculate the degree of damage do.

このように、上記実施形態においては複数のモデルM1、M2を用い、かつこの複数のモデルの各々に対して複数の方向X、Yにおける解析値を有するように、静的増分解析が実行されたが、上記第1~第3変形例として示したように、2つの解析値を有するように静的増分解析が実行されてもよい。あるいは、例えば上記第1変形例と第2変形例を組み合わせて、例えば静的増分解析が層崩壊モデルの一方向のみに対して、計1個の解析値を有するように実行されてもよいし、第1変形例と第3変形例を組み合わせて、静的増分解析が全体崩壊モデルの一方向のみに対して、計1個の解析値を有するように実行されてもよい。
これ以外にも、本発明の主旨を逸脱しない限り、上記各実施形態及び各変形例で挙げた構成を取捨選択したり、他の構成に適宜変更したりすることが可能である。
Thus, in the above embodiment, a static incremental analysis was performed using multiple models M1, M2 and having analytical values in multiple directions X, Y for each of the multiple models. However, static incremental analysis may be performed so as to have two analysis values as shown as the first to third modifications above. Alternatively, for example, by combining the first modification and the second modification, for example, a static incremental analysis may be performed for only one direction of the layer collapse model so as to have a total of one analysis value. , by combining the first and third variations, the static incremental analysis may be performed with a total of one analysis value for only one direction of the global collapse model.
In addition to this, it is possible to select the configurations mentioned in each of the above-described embodiments and modifications, or to change them to other configurations as appropriate without departing from the gist of the present invention.

1 健全性評価システム 22 地震情報記録部
10 建物 23 エネルギー吸収量の推定部
11 層 24 増分ステップの同定部
12 センサ 25 健全性判定部
16 柱 27 解析結果記録部
17 梁 M 立体骨組モデル
19 パネル M1 層崩壊型モデル
21 解析部 M2 全体崩壊型モデル
1 soundness evaluation system 22 earthquake information recording unit 10 building 23 energy absorption estimation unit 11 layer 24 incremental step identification unit 12 sensor 25 soundness determination unit 16 column 27 analysis result recording unit 17 beam M three-dimensional frame model 19 panel M1 Layer Collapse Model 21 Analysis Part M2 Overall Collapse Model

Claims (3)

建物の健全性を診断、評価する健全性評価システムであって、
柱及び梁を含んで前記建物に対応するように構成された立体骨組モデルを用いて、事前に静的増分解析を行い、当該解析において荷重を増加させる段階である増分ステップごとに、各層のエネルギー吸収量の解析値、及び前記柱及び前記梁を含む各部材のエネルギー吸収量の解析値を算出し、解析結果記録部に記録する解析部と、
前記建物に設置したセンサから得られる地震情報を記録する地震情報記録部と、
前記地震情報、及び前記建物の各層の重量に基づき、各層の層せん断力と層間変位を算出し、前記層せん断力及び前記層間変位に基づいて各層のエネルギー吸収量の推定値を計算するエネルギー吸収量の推定部と、
前記解析結果記録部に記録された、前記各層のエネルギー吸収量の解析値のなかから、前記各層のエネルギー吸収量の推定値との差分が最小となる各層のエネルギー吸収量の差分最小解析値を選択して、これに対応する前記増分ステップを、差分最小の増分ステップとして同定する増分ステップの同定部と、
前記差分最小の増分ステップに対応する前記各部材のエネルギー吸収量の解析値から、各部材のエネルギー吸収量の推定値を取得し、当該各部材のエネルギー吸収量の推定値と、前記各部材に対して設定された損傷判定閾値とを比較して、損傷程度を算定し、各部材の前記損傷程度に基づき、前記建物の健全性を判定する健全性判定部と、
を備えていることを特徴とする建物の健全性評価システム。
A soundness evaluation system for diagnosing and evaluating the soundness of a building,
Static incremental analysis is performed in advance using a three-dimensional frame model configured to correspond to the building including columns and beams, and the energy of each layer is calculated at each incremental step, which is the step of increasing the load in the analysis. an analysis unit that calculates an analysis value of an absorption amount and an analysis value of an energy absorption amount of each member including the pillar and the beam, and records the analysis result in an analysis result recording unit;
an earthquake information recording unit that records earthquake information obtained from a sensor installed in the building;
Energy absorption of calculating a story shear force and a story displacement of each story based on the earthquake information and the weight of each story of the building, and calculating an estimated value of the energy absorption amount of each story based on the story shear force and the story displacement. a quantity estimator;
Among the analyzed values of the energy absorption amount of each layer recorded in the analysis result recording unit, the minimum difference analysis value of the energy absorption amount of each layer that minimizes the difference from the estimated value of the energy absorption amount of each layer. an incremental step identifier that selects and identifies the corresponding incremental step as the incremental step with the smallest difference;
An estimated value of the energy absorption amount of each member is obtained from the analytical value of the energy absorption amount of each member corresponding to the incremental step with the minimum difference, and the estimated value of the energy absorption amount of each member and the a soundness determination unit that calculates the degree of damage by comparing with a damage determination threshold set for each member, and determines the soundness of the building based on the degree of damage of each member;
A building soundness evaluation system comprising:
前記解析部は、前記立体骨組モデルに対して前記建物が層崩壊するようにパラメータが設定された層崩壊型モデルと、前記立体骨組モデルに対して前記建物が全体崩壊するようにパラメータが設定された全体崩壊型モデルの各々に対して、静的増分解析を行って、増分ステップごとに、前記各層のエネルギー吸収量の解析値と、前記各部材のエネルギー吸収量の解析値を算出して前記解析結果記録部に記録し、
前記増分ステップの同定部は、前記解析結果記録部に記録された、前記層崩壊型モデルにおける前記各層のエネルギー吸収量の解析値と前記全体崩壊型モデルにおける前記各層のエネルギー吸収量の解析値の各組み合わせに対して、層ごとに、前記層崩壊型モデルにおける当該各層のエネルギー吸収量の解析値と前記全体崩壊型モデルにおける当該各層のエネルギー吸収量の解析値との和と、前記各層のエネルギー吸収量の推定値との差分を計算して、前記差分の全層における総和が最小となるような組み合わせである差分最小組み合わせを、前記各層のエネルギー吸収量の差分最小解析値として選択し、当該差分最小組み合わせ中の、前記層崩壊型モデルにおける前記各層のエネルギー吸収量の解析値と前記全体崩壊型モデルにおける前記各層のエネルギー吸収量の解析値に対応する、前記層崩壊型モデルにおける前記増分ステップと、前記全体崩壊型モデルにおける前記増分ステップを、それぞれ、第1差分最小の増分ステップと、第2差分最小の増分ステップとして同定し、
前記健全性判定部は、前記第1差分最小の増分ステップと、前記第2差分最小の増分ステップを基に、前記建物の健全性を判定することを特徴とする請求項1に記載の建物の健全性評価システム。
The analysis unit includes a layer collapse model in which parameters are set so that the building collapses in layers for the three-dimensional frame model, and a parameter for the three-dimensional frame model in which parameters are set so that the building totally collapses. Static incremental analysis is performed for each of the total collapse type models, and for each incremental step, the analytical value of the energy absorption amount of each layer and the analytical value of the energy absorption amount of each member are calculated. Record in the analysis result recording unit,
The identification unit of the incremental step stores the analysis value of the energy absorption amount of each layer in the layer collapse model and the analysis value of the energy absorption amount of each layer in the global collapse model recorded in the analysis result recording unit. For each combination, for each layer, the sum of the analytical value of the energy absorption amount of each layer in the layer collapse model and the analytical value of the energy absorption amount of each layer in the global collapse model, and the energy of each layer Calculate the difference from the estimated value of the absorption amount, select the minimum difference combination that is the combination that minimizes the sum of the differences in all layers, as the minimum difference analysis value of the energy absorption amount of each layer, The incremental step in the layer collapse type model corresponding to the analytical value of the energy absorption amount of each layer in the layer collapse type model and the analytical value of the energy absorption amount of each layer in the total collapse type model in the minimum difference combination. and identifying the incremental steps in the total collapse model as the incremental step of the first difference minimum and the incremental step of the second difference minimum, respectively;
2. The building according to claim 1, wherein the soundness judging unit judges the soundness of the building based on the incremental step of the first difference minimum and the incremental step of the second difference minimum. Health rating system.
前記健全性判定部は、部材ごとに、前記第1差分最小の増分ステップに対応する、前記層崩壊型モデルにおける前記各部材のエネルギー吸収量の解析値と、前記第2差分最小の増分ステップに対応する、前記全体崩壊型モデルにおける前記各部材のエネルギー吸収量の解析値の和を計算し、これを前記各部材のエネルギー吸収量の推定値として、前記損傷判定閾値と比較して、前記損傷程度を算定することを特徴とする請求項2に記載の建物の健全性評価システム。
For each member, the soundness judging unit determines the analysis value of the energy absorption amount of each member in the layer collapse model corresponding to the incremental step of the minimum first difference and the incremental step of the minimum second difference. Calculate the sum of the corresponding analytical values of the energy absorption amount of each member in the total collapse model, and compare this as an estimated value of the energy absorption amount of each member with the damage determination threshold to determine the damage 3. The building soundness evaluation system according to claim 2, wherein the degree is calculated.
JP2021206571A 2021-12-21 2021-12-21 Structural soundness evaluation system for building Pending JP2023091792A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2021206571A JP2023091792A (en) 2021-12-21 2021-12-21 Structural soundness evaluation system for building

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2021206571A JP2023091792A (en) 2021-12-21 2021-12-21 Structural soundness evaluation system for building

Publications (1)

Publication Number Publication Date
JP2023091792A true JP2023091792A (en) 2023-07-03

Family

ID=86995826

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2021206571A Pending JP2023091792A (en) 2021-12-21 2021-12-21 Structural soundness evaluation system for building

Country Status (1)

Country Link
JP (1) JP2023091792A (en)

Similar Documents

Publication Publication Date Title
JP5809174B2 (en) Building safety verification system, building safety verification method and program
Bozorgnia et al. Damage spectra: characteristics and applications to seismic risk reduction
JP5547029B2 (en) Building damage evaluation method and building damage evaluation apparatus
Bozorgnia et al. Improved shaking and damage parameters for post-earthquake applications
Skalomenos et al. Modeling level selection for seismic analysis of concrete‐filled steel tube/moment‐resisting frames by using fragility curves
Mwafy et al. Significance of severe distant and moderate close earthquakes on design and behavior of tall buildings
Ghobarah Seismic assessment of existing RC structures
Matarazzo et al. Postearthquake strength assessment of steel moment-resisting frame with multiple beam-column fractures using local monitoring data
Kunnath et al. Modeling and response prediction in performance-based seismic evaluation: Case studies of instrumented steel moment-frame buildings
JP2023091792A (en) Structural soundness evaluation system for building
JP5799183B2 (en) Building safety verification system, building safety verification method and program
Benavent-Climent A seismic index method for vulnerability assessment of existing frames: application to RC structures with wide beams in Spain
Pierdicca et al. Vibration-based SHM of ordinary buildings: Detection and quantification of structural damage
Colapietro et al. On the definition of seismic recovery interventions in rc buildings by non-linear static and incremental dynamic analyses
Hoult et al. Torsional displacement for asymmetric low-rise buildings with RC C-shaped cores
JP6635887B2 (en) Method of estimating building damage
Al-Fadhli Performance of multistory building under nonlinear static push-over
Koodiani et al. Validation of ACI 369.1 Code Nonlinear Modeling Parameters Using Non-Ductile Reinforced Concrete Building.
Gerami et al. Proposition of New Method for Quick Assessment of Maximum Beam Ductility in Steel Moment Frame under Higher Mode Effects
Jiao et al. Low-cycle fatigue Behavior of Japanese steel beam-to-column connections
Wu Seismic Assessment of Low-Rise Existing Infilled Steel Frames Under Earthquake Sequences Using Machine Learning-based Fragility Analysis
Islam Seismic assessment of RC frame building designed using gross and cracked sections
Roohi et al. Dissipated hysteretic energy reconstruction for high-resolution seismic monitoring of instrumented buildings
Gutiérrez‐Urzúa et al. Critical Comparison of Assessment Codes for Steel Moment Resisting Frames
Yavarian Quantification of global seismic performance factors for a dual lateral-force-resisting system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20240514