JP2023091409A - Sputtering device - Google Patents

Sputtering device Download PDF

Info

Publication number
JP2023091409A
JP2023091409A JP2021206139A JP2021206139A JP2023091409A JP 2023091409 A JP2023091409 A JP 2023091409A JP 2021206139 A JP2021206139 A JP 2021206139A JP 2021206139 A JP2021206139 A JP 2021206139A JP 2023091409 A JP2023091409 A JP 2023091409A
Authority
JP
Japan
Prior art keywords
shielding member
target
substrate
sputtering
sputtering device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2021206139A
Other languages
Japanese (ja)
Other versions
JP7473520B2 (en
Inventor
洋紀 菅原
Hiroki Sugawara
敏治 内田
Toshiharu Uchida
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Tokki Corp
Original Assignee
Canon Tokki Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Tokki Corp filed Critical Canon Tokki Corp
Priority to JP2021206139A priority Critical patent/JP7473520B2/en
Priority to CN202211595476.5A priority patent/CN116288195A/en
Priority to KR1020220172643A priority patent/KR20230094151A/en
Publication of JP2023091409A publication Critical patent/JP2023091409A/en
Application granted granted Critical
Publication of JP7473520B2 publication Critical patent/JP7473520B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/35Sputtering by application of a magnetic field, e.g. magnetron sputtering
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/04Coating on selected surface areas, e.g. using masks
    • C23C14/042Coating on selected surface areas, e.g. using masks using masks
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/3407Cathode assembly for sputtering apparatus, e.g. Target
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/56Apparatus specially adapted for continuous coating; Arrangements for maintaining the vacuum, e.g. vacuum locks
    • C23C14/564Means for minimising impurities in the coating chamber such as dust, moisture, residual gases
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/34Gas-filled discharge tubes operating with cathodic sputtering
    • H01J37/3411Constructional aspects of the reactor
    • H01J37/345Magnet arrangements in particular for cathodic sputtering apparatus
    • H01J37/3455Movable magnets

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Plasma & Fusion (AREA)
  • Analytical Chemistry (AREA)
  • Physical Vapour Deposition (AREA)

Abstract

To reduce frequency of reducing a shield member.SOLUTION: A sputtering device includes: a target for scattering sputtering particles to a substrate; and a shield member positioned between the substrate and the target and regulating a scattering range of sputtering particles with respect to the substrate at the time of depositing a film. The shield member is a rotating body with an outer peripheral surface, where the rotation of the rotating body changes a region opposite to the target of the outer peripheral surface.SELECTED DRAWING: Figure 2

Description

本発明は、スパッタ装置に関する。 The present invention relates to a sputtering apparatus.

有機ELディスプレイ等の製造において、スパッタ装置により基板に成膜を行う技術が知られている。こうしたスパッタ装置として、ターゲットと基板との間に遮蔽部材を設けたスパッタ装置が知られている(例えば特許文献1)。遮蔽部材によってターゲットから飛散するスパッタ粒子の飛散範囲を規制することで、膜厚の均一化や基板の下地層へのダメージの低減等を行える。 2. Description of the Related Art A technique of forming a film on a substrate using a sputtering device is known in the manufacture of organic EL displays and the like. As such a sputtering apparatus, a sputtering apparatus provided with a shielding member between a target and a substrate is known (for example, Patent Document 1). By controlling the scattering range of the sputtered particles scattered from the target by the shielding member, it is possible to make the film thickness uniform and reduce damage to the underlying layer of the substrate.

特開2019-090083号公報JP 2019-090083 A

成膜工程が繰り返されることで遮蔽部材にスパッタ粒子が堆積する。スパッタ粒子の堆積によって遮蔽部材の表面に膜が成膜される。その膜厚に応じて遮蔽部材の寸法が変化し、飛散の規制範囲が変化する。これは成膜精度の低下の要因となる。膜厚が厚くなった遮蔽部材は、その交換が必要であるが、交換のためには製造を一時中断する必要があり、交換頻度が多いと生産性が低下する。 Sputtered particles are deposited on the shielding member by repeating the film formation process. A film is formed on the surface of the shielding member by deposition of the sputtered particles. The dimensions of the shielding member change according to the film thickness, and the scattering control range changes. This causes a decrease in film formation accuracy. A thick shielding member needs to be replaced, but it is necessary to temporarily suspend production for replacement, and frequent replacement lowers productivity.

本発明は、遮蔽部材の交換頻度を低減する技術を提供するものである。 The present invention provides a technique for reducing the replacement frequency of shielding members.

本発明によれば、
基板へスパッタ粒子を飛散するターゲットと、
前記基板と前記ターゲットとの間に位置し、成膜時に前記基板に対するスパッタ粒子の飛散範囲を規制する遮蔽部材と、
を備えたスパッタ装置であって、
前記遮蔽部材は、外周面を有する回転体であり、
前記回転体の回転によって、前記外周面のうち、前記ターゲットに対向する領域が変更される、
ことを特徴とするスパッタ装置が提供される。
According to the invention,
a target for scattering sputtered particles onto the substrate;
a shielding member positioned between the substrate and the target for controlling a scattering range of sputtered particles with respect to the substrate during film formation;
A sputtering apparatus comprising
The shielding member is a rotating body having an outer peripheral surface,
A region of the outer peripheral surface facing the target is changed by the rotation of the rotating body.
There is provided a sputtering apparatus characterized by:

本発明によれば、遮蔽部材の交換頻度を低減する技術を提供することができる。 ADVANTAGE OF THE INVENTION According to this invention, the technique which reduces the exchange frequency of a shielding member can be provided.

(A)及び(B)は本発明の一実施形態に係るスパッタ装置の模式図。(A) and (B) are schematic diagrams of a sputtering apparatus according to an embodiment of the present invention. (A)は成膜動作の説明図、(B)は遮蔽部材の他の回転制御例を示す図。(A) is an explanatory diagram of the film formation operation, and (B) is a diagram showing another example of rotation control of the shielding member. (A)はターゲット及び遮蔽部材の回転機構の例を示す図、(B)は遮蔽部材の他の形状例を示す図。(A) is a diagram showing an example of a rotation mechanism of a target and a shielding member, and (B) is a diagram showing another shape example of the shielding member. (A)はターゲットと遮蔽部材との他のレイアウト例を示す図、(B)は基板と、ターゲット及び遮蔽部材との相対移動の他の例を示す図。(A) is a diagram showing another layout example of the target and the shielding member, and (B) is a diagram showing another example of relative movement between the substrate and the target and the shielding member. ターゲット及び磁石ユニットの他の例を示す図。The figure which shows the other example of a target and a magnet unit.

以下、添付図面を参照して実施形態を詳しく説明する。尚、以下の実施形態は特許請求の範囲に係る発明を限定するものではない。実施形態には複数の特徴が記載されているが、これらの複数の特徴の全てが発明に必須のものとは限らず、また、複数の特徴は任意に組み合わせられてもよい。さらに、添付図面においては、同一若しくは同様の構成に同一の参照番号を付し、重複した説明は省略する。 Hereinafter, embodiments will be described in detail with reference to the accompanying drawings. In addition, the following embodiments do not limit the invention according to the scope of claims. Although multiple features are described in the embodiments, not all of these multiple features are essential to the invention, and multiple features may be combined arbitrarily. Furthermore, in the accompanying drawings, the same or similar configurations are denoted by the same reference numerals, and redundant description is omitted.

<第一実施形態>
<スパッタ装置の構成>
図1(A)及び図1(B)は本発明の一実施形態に係るスパッタ装置1の模式図であり、図1(A)はスパッタ装置1を側方から見た図、図1(B)はスパッタ装置1を上方から見た図である。各図において矢印Zは上下方向(重力方向)を示し、矢印X及び矢印Yは互いに直交する水平方向を示す。
<First Embodiment>
<Structure of sputtering device>
1(A) and 1(B) are schematic diagrams of a sputtering apparatus 1 according to an embodiment of the present invention. FIG. 1(A) is a side view of the sputtering apparatus 1, and FIG. ) is a top view of the sputtering apparatus 1. FIG. In each figure, arrow Z indicates the vertical direction (direction of gravity), and arrow X and arrow Y indicate horizontal directions perpendicular to each other.

スパッタ装置1は、基板100に対して膜を形成する成膜装置であり、例えば表示装置(フラットパネルディスプレイなど)や薄膜太陽電池、有機光電変換素子(有機薄膜撮像素子)等の電子デバイスや、光学部材等を製造する製造装置に適用可能であり、特に、有機ELパネルを製造する製造装置に適用可能である。有機ELパネルの製造に適用される場合、例えば、基板100の下面には予め有機膜が成膜され、スパッタ装置1は有機膜の上に電極膜をスパッタリングによって成膜する。 The sputtering apparatus 1 is a film-forming apparatus that forms a film on the substrate 100, and includes electronic devices such as display devices (flat panel displays, etc.), thin-film solar cells, organic photoelectric conversion elements (organic thin-film imaging elements), and the like. The present invention can be applied to a manufacturing apparatus for manufacturing optical members and the like, and particularly applicable to a manufacturing apparatus for manufacturing an organic EL panel. When applied to manufacture of an organic EL panel, for example, an organic film is formed in advance on the lower surface of the substrate 100, and the sputtering device 1 forms an electrode film on the organic film by sputtering.

スパッタ装置1は、箱型の真空チャンバ2を有する。真空チャンバ2は不図示の真空ポンプに接続され、真空ポンプによる排気によって内部空間が減圧可能である。真空チャンバ2の内部空間にはアルゴンなどの不活性ガスがガス供給ユニット3によって供給される。 A sputtering apparatus 1 has a box-shaped vacuum chamber 2 . The vacuum chamber 2 is connected to a vacuum pump (not shown), and the internal space can be evacuated by evacuation by the vacuum pump. An inert gas such as argon is supplied to the internal space of the vacuum chamber 2 by a gas supply unit 3 .

スパッタ装置1は、真空チャンバ2内で基板を搬送する移動ユニット4を備える。移動ユニット4は一対のガイドレール4aと、一対のガイドレール4aに支持されて移動するキャリア5とを備える。各ガイドレール4aはX方向に延設され、一対のガイドレール4aはY方向に離間している。移動ユニット4は、リニアモータや、ボールねじ機構等の駆動機構を有しており、その駆動力によって一対のガイドレール4aに沿ってキャリア5を図1(B)で実線と破線で示すようにX方向に往復させる。 The sputtering apparatus 1 comprises a moving unit 4 that transports the substrate within the vacuum chamber 2 . The moving unit 4 includes a pair of guide rails 4a and a carrier 5 that moves while being supported by the pair of guide rails 4a. Each guide rail 4a extends in the X direction, and a pair of guide rails 4a are spaced apart in the Y direction. The moving unit 4 has a driving mechanism such as a linear motor and a ball screw mechanism, and the driving force of the driving mechanism moves the carrier 5 along the pair of guide rails 4a as indicated by the solid and broken lines in FIG. 1(B). Reciprocate in the X direction.

キャリア5は基板100を保持する保持部5aを有している。基板100は入口ゲート2aから真空チャンバ2内に搬送され、キャリア5に保持される。キャリア5の移動によって基板100は、真空チャンバ2内を水平姿勢でX方向に移動する。移動の過程で、基板100の下面にはターゲット6から飛散するスパッタ粒子が堆積し、成膜される。成膜済みの基板100は出口ゲート2bから真空チャンバ2外へ搬出される。 The carrier 5 has a holding portion 5a that holds the substrate 100. As shown in FIG. A substrate 100 is transported into the vacuum chamber 2 from the entrance gate 2a and held by the carrier 5 . The movement of the carrier 5 causes the substrate 100 to move horizontally in the vacuum chamber 2 in the X direction. During the movement, sputtered particles scattered from the target 6 are deposited on the lower surface of the substrate 100 to form a film. The film-formed substrate 100 is carried out of the vacuum chamber 2 through the exit gate 2b.

ターゲット6は、本実施形態の場合、Y方向の回転中心線C1回りに回転自在な回転ターゲットである。ターゲット6は一対の支持台10に支持されている。一方の支持台10にはモータ11が設けられており、ターゲット6はモータ11を駆動源としてモータ11の駆動力によって回転する。 In the case of this embodiment, the target 6 is a rotating target rotatable around a rotation center line C1 in the Y direction. A target 6 is supported by a pair of support bases 10 . A motor 11 is provided on one support table 10, and the target 6 is rotated by the driving force of the motor 11 using the motor 11 as a driving source.

ターゲット6は円筒形状を有しており、その内周面にはカソード電極7が設けられており、電圧印加ユニット8により電圧が印加されてカソード電位に維持されて放電する。また、本実施形態のスパッタ装置1はマグネトロンスパッタ装置であり、ターゲット6の内部空間の上部には、ターゲット6の表面に磁場を形成する磁石9が配置されている。 The target 6 has a cylindrical shape, and a cathode electrode 7 is provided on the inner peripheral surface thereof. Moreover, the sputtering apparatus 1 of this embodiment is a magnetron sputtering apparatus, and a magnet 9 that forms a magnetic field on the surface of the target 6 is arranged above the internal space of the target 6 .

磁石9は、Y方向に延びる中心磁石9aと、中心磁石9aを取り囲む周辺磁石9bと、ヨーク9cとを備える。周辺磁石9bは、中心磁石9aと平行にY方向に延びる一対の直線部と、一対の直線部のY方向の両端部をそれぞれ接続する接続部とを有した環状の磁石であり、図1(A)等においては周辺磁石9bの一対の直線部の断面が図示されている。 The magnet 9 includes a central magnet 9a extending in the Y direction, peripheral magnets 9b surrounding the central magnet 9a, and a yoke 9c. The peripheral magnet 9b is an annular magnet having a pair of linear portions extending in the Y direction parallel to the central magnet 9a and connecting portions connecting both ends of the pair of linear portions in the Y direction. A) and the like show cross sections of a pair of straight portions of the peripheral magnet 9b.

中心磁石9aと周辺磁石9bとは逆極性で、中心磁石9aの着磁方向は中央基準線N0の方向となっている。中央基準線NOは、中心磁石9aの磁極上のX方向中央部を通り、ターゲット6の表面に対して直交方向(ターゲット6の径方向)に延びる直線である。本実施形態の場合、中央基準線NOはZ方向に延び、ターゲット6の回転中心線C1を通る線であり、基板100の搬送面に対して直交している。周辺磁石32の着磁方向は、中心磁石9aと平行に延びており、中心磁石9aと周辺磁石9bの内端とが、ヨーク9cによって連結されている。これにより、ターゲット6の表面近傍の磁場は、中心磁石9aの磁極から、周辺磁石9bの直線部へ向けてループ状に戻る磁力線を有する。この磁場によって、電子が捕捉され、ターゲット6の表面近傍にプラズマを集中させ、スパッタリングの効率が高められる。 The central magnet 9a and the peripheral magnet 9b have opposite polarities, and the magnetization direction of the central magnet 9a is the direction of the central reference line N0. The center reference line NO is a straight line that passes through the center of the magnetic pole of the center magnet 9a in the X direction and extends in the direction orthogonal to the surface of the target 6 (the radial direction of the target 6). In the case of this embodiment, the center reference line NO is a line that extends in the Z direction, passes through the rotation center line C1 of the target 6, and is perpendicular to the transfer surface of the substrate 100. FIG. The magnetization direction of the peripheral magnet 32 extends parallel to the central magnet 9a, and the inner ends of the central magnet 9a and the peripheral magnet 9b are connected by a yoke 9c. As a result, the magnetic field near the surface of the target 6 has magnetic lines of force returning in a loop from the magnetic pole of the central magnet 9a toward the linear portion of the peripheral magnet 9b. This magnetic field traps electrons and concentrates the plasma near the surface of the target 6, increasing the efficiency of sputtering.

遮蔽部材12は、基板100とターゲット6との間に位置し、成膜時に基板100に対するスパッタ粒子の飛散範囲を構造的に規制する防着部材である。遮蔽部材12は、スパッタ粒子が付着する外周面を有し、Y方向の回転中心線C2回りに回転自在な回転体である。遮蔽部材12は、ターゲット6の真上において一対の支持台10に支持されている。中央基準線N0は遮蔽部材12を通過しており、特に、回転中心線C2を通過している。一方の支持台10にはモータ14が設けられており、遮蔽部材12はモータ14を駆動源としてモータ14の駆動力によってターゲット6とは独立して回転する。 The shielding member 12 is positioned between the substrate 100 and the target 6 and is a deposition-inhibiting member that structurally restricts the scattering range of sputtered particles to the substrate 100 during film formation. The shielding member 12 is a rotating body that has an outer peripheral surface to which sputtered particles adhere and is rotatable around the rotation center line C2 in the Y direction. The shield member 12 is supported by a pair of support bases 10 directly above the target 6 . The central reference line N0 passes through the shielding member 12 and, in particular, the rotation centerline C2. A motor 14 is provided on one support base 10 , and the shielding member 12 rotates independently of the target 6 by the driving force of the motor 14 using the motor 14 as a driving source.

遮蔽部材12は、本実施形態の場合、円筒形状を有しており、その内周面にはアノード電極13が設けられており、プラズマを安定化させる効果を持つ。成膜レートに影響するプラズマの安定化は基板間の膜厚ばらつきを小さくし部止まりを向上できる。アノード電極13はアノード電位(アース電位。真空チャンバ2の壁部と同電位)に維持される。 In the case of this embodiment, the shielding member 12 has a cylindrical shape, and the anode electrode 13 is provided on the inner peripheral surface of the shielding member 12, which has the effect of stabilizing the plasma. Stabilization of the plasma, which affects the deposition rate, can reduce variations in film thickness between substrates and improve part stoppage. The anode electrode 13 is maintained at the anode potential (earth potential, the same potential as the wall of the vacuum chamber 2).

スパッタ装置1は遮蔽部材12を冷却する冷却ユニット15を備えている。冷却ユニット15は、真空チャンバ2の外部に配置された循環ユニット15aと、真空チャンバ2の壁部及び他方の支持台10を通って遮蔽部材12へ延設された配管15bとを有する。配管15bは遮蔽部材12の内部をY方向の一方端部から他方端部へ延び、折り返して他方端部から一方端部へ延設されたU字状の配管である。循環ユニット15aは、水などの冷却媒体を循環ユニット15aと配管15bとの間で循環させるポンプと、循環する冷却媒体の熱交換を行って、冷却媒体の温度を一定に保つ熱交換器等を含む。遮蔽部材12を冷却することで、遮蔽部材12に付着したスパッタ粒子が基板100に飛散することを防止できる。 The sputtering apparatus 1 has a cooling unit 15 that cools the shielding member 12 . The cooling unit 15 has a circulation unit 15a arranged outside the vacuum chamber 2, and a pipe 15b extending through the wall of the vacuum chamber 2 and the support base 10 on the other side to the shielding member 12. The pipe 15b is a U-shaped pipe that extends inside the shielding member 12 from one end to the other end in the Y direction, turns back, and extends from the other end to the one end. The circulation unit 15a includes a pump that circulates a cooling medium such as water between the circulation unit 15a and the pipe 15b, and a heat exchanger that exchanges heat with the circulating cooling medium to keep the temperature of the cooling medium constant. include. By cooling the shielding member 12 , sputtered particles adhering to the shielding member 12 can be prevented from scattering to the substrate 100 .

なお、本実施形態では、配管15bを介して遮蔽部材12を冷却することとしたが、遮蔽部材12の内部に水などの冷却媒体を直接供給して遮蔽部材12の内部を冷却媒体で満たし、遮蔽部材12を冷却することも可能である。この場合、アノード電極13との絶縁処理や冷却媒体の漏れを防止するシール処理が遮蔽部材12に対して施される。 In this embodiment, the shielding member 12 is cooled through the pipe 15b. It is also possible to cool the shielding member 12 . In this case, the shielding member 12 is subjected to insulation treatment with respect to the anode electrode 13 and sealing treatment to prevent leakage of the cooling medium.

スパッタ装置1は制御ユニット16を備えている。制御ユニット16は、少なくとも一つのプロセッサ、少なくとも一つの記憶デバイス、及び、センサやアクチュエータとのデータの入出力を行うインタフェースを含み、スパッタ装置1を制御する。記憶デバイスは例えばRAM、ROM等のメモリである。プロセッサは記憶デバイスに記憶されたプログラムを実行し、モータ11、14や移動ユニット4の駆動制御等を行う。 The sputtering device 1 has a control unit 16 . The control unit 16 includes at least one processor, at least one storage device, and an interface for inputting/outputting data with sensors and actuators, and controls the sputtering apparatus 1 . The storage device is memory such as RAM and ROM, for example. The processor executes programs stored in the storage device, and controls the driving of the motors 11 and 14 and the moving unit 4, and the like.

<成膜動作>
図2(A)を参照してスパッタ装置1の成膜動作について説明する。基板100を移動ユニット4によって連続的に移動させつつ、ターゲット6からスパッタ粒子Pを基板100へ飛散させて基板100の下面に堆積し、成膜する。図2(A)に図示されているターゲット6の表面近傍の楕円のループLは、プラズマが集中する部分を模式的に示す。ターゲット6の表面の法線方向の磁束密度成分が零となる位置でプラズマ密度が高く、スパッタ粒子が集中的に飛散することが知られている。この点は、中心磁石31と周辺磁石32の直線部の間に位置する。ターゲット6から放出されるスパッタ粒子が搬送面に堆積するとした場合の単位時間当たりの堆積量である成膜レートの分布は、中央基準線N0付近をピークとして、X方向の上流側、下流側にレートが低下する山形の分布となる。
<Deposition operation>
A film formation operation of the sputtering apparatus 1 will be described with reference to FIG. While the substrate 100 is continuously moved by the moving unit 4, the sputtered particles P are scattered from the target 6 to the substrate 100 and deposited on the lower surface of the substrate 100 to form a film. An elliptical loop L near the surface of the target 6 shown in FIG. 2(A) schematically shows a portion where the plasma concentrates. It is known that the plasma density is high at a position where the magnetic flux density component in the direction normal to the surface of the target 6 is zero, and the sputtered particles are scattered intensively. This point is located between the straight portions of the central magnet 31 and the peripheral magnet 32 . The distribution of the deposition rate, which is the amount of deposition per unit time when the sputtered particles emitted from the target 6 are deposited on the transport surface, has a peak near the central reference line N0, and is distributed upstream and downstream in the X direction. It becomes a mountain-shaped distribution in which the rate decreases.

本実施形態では、中央基準線N0上に遮蔽部材12が位置しているため、スパッタ粒子Pの飛散範囲は中央基準線N0付近で規制される。したがって、飛散範囲は、成膜レートが比較的低い、遮蔽部材12のX方向両側の範囲となる。遮蔽部材12のX方向両側の範囲を飛散するスパッタ粒子は、基板100の法線方向(Z方向)に対して傾斜したD1方向又はD2方向に飛散する傾向にある。図2(A)に例示するように成膜面である基板100の下面が凹凸を有する場合、D1方向又はD2方向に飛散するスパッタ粒子は凹凸の側面に堆積し易くなり、サイドカバレッジを向上できる。 In this embodiment, since the shielding member 12 is positioned on the central reference line N0, the scattering range of the sputtered particles P is restricted near the central reference line N0. Therefore, the scattering range is the range on both sides of the shielding member 12 in the X direction where the film formation rate is relatively low. Sputtered particles that scatter in the range on both sides of the shielding member 12 in the X direction tend to scatter in the D1 direction or the D2 direction that is inclined with respect to the normal direction (Z direction) of the substrate 100 . As illustrated in FIG. 2A, when the bottom surface of the substrate 100, which is the film formation surface, has unevenness, the sputtered particles scattered in the D1 direction or the D2 direction are likely to be deposited on the uneven side surface, and the side coverage can be improved. .

成膜中、モータ11及び14が駆動され、ターゲット6及び遮蔽部材12は例えば矢印R1、R2の方向(時計回り)に連続的に回転(自転)する。上記の通り、中央基準線N0付近では成膜レートが高く、遮蔽部材12に対するスパッタ粒子の堆積量が多くなる。一般に、こうした構成では遮蔽部材の寿命が短く、交換頻度が高い。なぜなら膜厚が厚くなることで、膜を含めた遮蔽部材の寸法が変化して飛散範囲が変動したり、膜が剥がれやすくなってターゲット6表面に付着し、パーティクル発生の要因になり得るからである。 During film formation, the motors 11 and 14 are driven, and the target 6 and shielding member 12 are continuously rotated (rotated) in the directions of arrows R1 and R2 (clockwise), for example. As described above, the deposition rate is high near the central reference line N0, and the deposition amount of sputtered particles on the shielding member 12 increases. Generally, in such a configuration, the shielding member has a short life and needs to be replaced frequently. This is because when the film thickness increases, the dimensions of the shielding member including the film change, the scattering range fluctuates, and the film easily peels off and adheres to the surface of the target 6, which can cause particle generation. be.

しかし、本実施形態では遮蔽部材12が回転して、ターゲット6に対向する領域(本実施形態では中央基準線N0を中心にX方向両側にそれぞれ60度(合計120)程度の範囲)が循環的に変更される。遮蔽部材12上のスパッタ粒子の堆積面をより広くすることができるので、膜厚の増加を遅らせることができる。つまり、遮蔽部材12の交換頻度を低減することができる。遮蔽部材12を連続的に回転させることで、膜厚が部分的に大きくことなることも防止でき、遮蔽部材12の長寿命化を図れる。 However, in this embodiment, the shielding member 12 rotates, and the area facing the target 6 (in this embodiment, the range of about 60 degrees on both sides in the X direction (120 degrees in total) around the central reference line N0) is cyclic. is changed to Since the deposition surface of the sputtered particles on the shielding member 12 can be made wider, the increase in film thickness can be delayed. That is, the replacement frequency of the shielding member 12 can be reduced. By rotating the shielding member 12 continuously, it is possible to prevent the film thickness from partially changing, and to extend the life of the shielding member 12 .

<第二実施形態>
第一実施形態では、成膜中、遮蔽部材12を連続的に回転させたが、成膜中は停止させておき、所定の回転条件が成立した場合に回転させてもよい。言い換えると間欠的に回転させてもよい。回転条件は、例えば、一の基板毎、複数の基板毎、所定の時間毎、作業者の回転指示毎である。図2(B)はその説明図である。図示の例では、状態ST1に示すように遮蔽部材12の回転を停止した状態で基板100に対する成膜を行う。遮蔽部材12の外周面には部分的に(下部に)スパッタ粒子が堆積して膜が形成される。回転条件が成立すると、状態ST2に示すように遮蔽部材12を回転させる。回転量は例えばターゲット6に対向する領域が入れ替わる量(第一実施形態の構成だと120度)である。
<Second embodiment>
In the first embodiment, the shielding member 12 is rotated continuously during film formation, but may be stopped during film formation and rotated when a predetermined rotation condition is satisfied. In other words, it may be rotated intermittently. The rotation conditions are, for example, each substrate, each substrate, each predetermined time, and each operator's rotation instruction. FIG. 2B is an explanatory diagram thereof. In the illustrated example, film formation is performed on the substrate 100 while the rotation of the shielding member 12 is stopped as shown in state ST1. A film is formed on the outer peripheral surface of the shielding member 12 by partially depositing the sputtered particles (on the lower part). When the rotation condition is established, the shielding member 12 is rotated as shown in state ST2. The amount of rotation is, for example, the amount by which the area facing the target 6 is replaced (120 degrees in the configuration of the first embodiment).

このように遮蔽部材12を間欠的に回転した場合も遮蔽部材12の交換頻度を低減することができる。 Even when the shielding member 12 is rotated intermittently in this manner, the replacement frequency of the shielding member 12 can be reduced.

また、遮蔽部材12の回転はモータ14によって自動化せずに手動で行ってもよい。手動で行う場合、例えば、遮蔽部材12の回転軸を真空チャンバ2の側壁を通過して外部に延設し、作業者が回転軸を手動で回せるようにしてもよい。 Moreover, the rotation of the shielding member 12 may be performed manually without being automated by the motor 14 . In the case of manual operation, for example, the rotating shaft of the shielding member 12 may pass through the side wall of the vacuum chamber 2 and extend outside so that the operator can manually rotate the rotating shaft.

<第三実施形態>
第一実施形態では、ターゲット6、遮蔽部材12にそれぞれ駆動源としてモータ11、14を設けたが、一つのモータを共用してターゲット6、遮蔽部材12を回転してもよい。図3(A)はその機構例を示す。
<Third Embodiment>
In the first embodiment, the target 6 and the shielding member 12 are provided with the motors 11 and 14 as driving sources, respectively, but one motor may be shared to rotate the target 6 and the shielding member 12 . FIG. 3A shows an example of the mechanism.

共用のモータ17の出力軸には歯車18が設けられている。ターゲット6、遮蔽部材12には、それぞれ回転中心軸上に歯車19、20が設けられており、これらの歯車19、20は歯車18と噛み合っている。モータ17を駆動することで、ターゲット6、遮蔽部材12を同時に回転することができる。歯車18~20のギア比によって、ターゲット6、遮蔽部材12の回転速度比を調整することもできる。 A gear 18 is provided on the output shaft of the shared motor 17 . The target 6 and the shielding member 12 are provided with gears 19 and 20 on their central axes of rotation, respectively. By driving the motor 17, the target 6 and the shielding member 12 can be rotated simultaneously. The rotation speed ratio of the target 6 and the shielding member 12 can also be adjusted by the gear ratio of the gears 18-20.

図3(A)の例は共用のモータ17からターゲット6、遮蔽部材12に駆動力を伝達する機構として歯車機構を用いたが、ベルト伝動機構等、他の機構であってもよい。 In the example of FIG. 3A, a gear mechanism is used as a mechanism for transmitting driving force from the shared motor 17 to the target 6 and the shielding member 12, but other mechanisms such as a belt transmission mechanism may be used.

<第四実施形態>
第一実施形態では、円筒形状の遮蔽部材12を例示したが、遮蔽部材12は角筒形状であってもよい。図3(B)はその一例を示す。図示の例では遮蔽部材12は断面形状が聖子角形の角筒形状を有しており、その外周面は5つの平面で構成されている。図示の例のように、5つの平面のうちの一の平面をターゲット6に対向させて基板100の成膜を行う。遮蔽部材12を72度回転させることで、別の平面をターゲット6に対向させることができる。本実施形態の場合、第二実施形態で説明したように遮蔽部材12を間欠的に回転させることで、スパッタ粒子Pの飛散範囲の均一性を維持しつつ、遮蔽部材12の5つの平面を順次活用することができる。
<Fourth embodiment>
Although the cylindrical shielding member 12 is illustrated in the first embodiment, the shielding member 12 may have a rectangular tubular shape. FIG. 3B shows an example thereof. In the illustrated example, the shielding member 12 has a prismatic cross-sectional shape, and its outer peripheral surface is composed of five planes. As in the illustrated example, film formation is performed on the substrate 100 with one of the five planes facing the target 6 . A different plane can be made to face the target 6 by rotating the shielding member 12 by 72 degrees. In the case of this embodiment, by intermittently rotating the shielding member 12 as described in the second embodiment, five planes of the shielding member 12 are sequentially rotated while maintaining the uniformity of the scattering range of the sputtered particles P. can be utilized.

<第五実施形態>
第一実施形態では、ターゲット6と遮蔽部材12とを上下に配置したが、別の配置も採用可能である。図4(A)はその一例を示す。図示の例では、遮蔽部材12がターゲット6の真上の位置からX方向にずれて配置されている。また、磁石9は、その中央基準線N0は、Z方向から、基板100の搬送方向で上流側に傾斜するように配置されている。遮蔽部材12は、成膜レートが比較的低い領域においてスパッタ粒子Pの飛散範囲を規制している。基板100は、スパッタ粒子Pの飛散範囲に進入した直後に、成膜レートが高い中央基準線N0上に位置することになり、成膜初期段階から厚い成膜を施すことができる。
<Fifth embodiment>
In the first embodiment, the targets 6 and shielding members 12 are arranged vertically, but other arrangements can be adopted. FIG. 4A shows an example thereof. In the illustrated example, the shielding member 12 is arranged at a position shifted in the X direction from the position right above the target 6 . Also, the magnet 9 is arranged such that the center reference line N0 thereof is inclined upstream in the direction of transport of the substrate 100 from the Z direction. The shielding member 12 regulates the scattering range of the sputtered particles P in a region where the film formation rate is relatively low. Immediately after entering the scattering range of the sputtered particles P, the substrate 100 is positioned on the central reference line N0 where the film formation rate is high, so that a thick film can be formed from the initial stage of film formation.

また、図4(A)の例では配管15bが上下に配置されている。下側の配管15bを冷却媒体の供給側、上側の配管15bを冷却媒体の排出側とすることで、遮蔽部材12のターゲット6の側の冷却性能を向上できる。 Further, in the example of FIG. 4A, the pipes 15b are arranged vertically. By setting the lower pipe 15b on the cooling medium supply side and the upper pipe 15b on the cooling medium discharge side, the cooling performance of the shielding member 12 on the target 6 side can be improved.

<第六実施形態>
第一実施形態では、成膜時に、基板100と、遮蔽部材12及びターゲット6と、を相対的に移動するユニットとして、基板100をX方向に移動する移動ユニット4を例示したが、遮蔽部材12及びターゲット6を移動してもよい。図4(B)はその一例を示す。
<Sixth Embodiment>
In the first embodiment, the moving unit 4 that moves the substrate 100 in the X direction was exemplified as a unit that relatively moves the substrate 100, the shielding member 12, and the target 6 during film formation. and the target 6 may be moved. FIG. 4B shows an example thereof.

図示の移動ユニット21は、X方向に延設されたガイドレール22と、ガイドレール22に案内されてX方向に移動可能なスライダ23とを備える。一対の支持台10はスライダ23に搭載されている。移動ユニット21は、リニアモータや、ボールねじ機構等の駆動機構を有しており、その駆動力によって一対のガイドレール22に沿ってスライダ23を実線位置と破線位置との間でX方向に往復させる。基板100は成膜中、その位置が停止されている。スライダ23を移動させつつ、ターゲット6からスパッタ粒子を放出して基板100に対する成膜を行う。 The illustrated moving unit 21 includes a guide rail 22 extending in the X direction, and a slider 23 guided by the guide rail 22 and movable in the X direction. A pair of support bases 10 are mounted on sliders 23 . The moving unit 21 has a driving mechanism such as a linear motor and a ball screw mechanism, and the driving force of the driving mechanism reciprocates the slider 23 along the pair of guide rails 22 between the solid line position and the broken line position in the X direction. Let The position of the substrate 100 is stopped during film formation. While the slider 23 is moved, sputtered particles are emitted from the target 6 to form a film on the substrate 100 .

図4(B)の例でも配管15bが上下に配置されている。下側の配管15bを冷却媒体の供給側、上側の配管15bを冷却媒体の排出側とすることで、遮蔽部材12のターゲット6の側の冷却性能を向上できる。 In the example of FIG. 4B as well, the pipes 15b are arranged vertically. By setting the lower pipe 15b on the cooling medium supply side and the upper pipe 15b on the cooling medium discharge side, the cooling performance of the shielding member 12 on the target 6 side can be improved.

<第七実施形態>
第一実施形態では、ターゲット6として回転ターゲット6を例示したが、平板ターゲットを用いてもよい。図5はその一例を示す。図示の例では回転ターゲット6に代えて平板ターゲット25が設けられている。磁石9の構成は第一実施形態と基本的に同じである。図5の例でも配管15bが上下に配置されている。下側の配管15bを冷却媒体の供給側、上側の配管15bを冷却媒体の排出側とすることで、遮蔽部材12のターゲット25の側の冷却性能を向上できる。
<Seventh embodiment>
Although the rotating target 6 is exemplified as the target 6 in the first embodiment, a flat target may be used. FIG. 5 shows an example thereof. In the illustrated example, a flat target 25 is provided instead of the rotating target 6 . The configuration of the magnet 9 is basically the same as that of the first embodiment. In the example of FIG. 5 as well, the pipes 15b are arranged vertically. By setting the lower pipe 15b on the cooling medium supply side and the upper pipe 15b on the cooling medium discharge side, the cooling performance of the shielding member 12 on the target 25 side can be improved.

また、第一実施形態では、ターゲットの上方の基板にスパッタ粒子を放出する構成を例示したが、ターゲットの下方の基板にスパッタ粒子を放出する構成であってもよい。 Further, in the first embodiment, the configuration in which the sputtered particles are emitted to the substrate above the target was exemplified, but the configuration may be such that the sputtered particles are emitted to the substrate below the target.

<他の実施形態>
本発明は、上述の実施形態の1以上の機能を実現するプログラムを、ネットワーク又は記憶媒体を介してシステム又は装置に供給し、そのシステム又は装置のコンピュータにおける1つ以上のプロセッサがプログラムを読出し実行する処理でも実現可能である。また、1以上の機能を実現する回路(例えば、ASIC)によっても実現可能である。
<Other embodiments>
The present invention supplies a program that implements one or more functions of the above-described embodiments to a system or apparatus via a network or a storage medium, and one or more processors in the computer of the system or apparatus reads and executes the program. It can also be realized by processing to It can also be implemented by a circuit (for example, ASIC) that implements one or more functions.

発明は上記実施形態に制限されるものではなく、発明の精神及び範囲から離脱することなく、様々な変更及び変形が可能である。従って、発明の範囲を公にするために請求項を添付する。 The invention is not limited to the embodiments described above, and various modifications and variations are possible without departing from the spirit and scope of the invention. Accordingly, the claims are appended to make public the scope of the invention.

1 スパッタ装置、6 ターゲット、12 遮蔽部材、100 基板 1 sputtering device, 6 target, 12 shielding member, 100 substrate

Claims (7)

基板へスパッタ粒子を飛散するターゲットと、
前記基板と前記ターゲットとの間に位置し、成膜時に前記基板に対するスパッタ粒子の飛散範囲を規制する遮蔽部材と、
を備えたスパッタ装置であって、
前記遮蔽部材は、外周面を有する回転体であり、
前記遮蔽部材の回転によって、前記外周面のうち、前記ターゲットに対向する領域が変更される、
ことを特徴とするスパッタ装置。
a target for scattering sputtered particles onto the substrate;
a shielding member positioned between the substrate and the target for controlling a scattering range of sputtered particles with respect to the substrate during film formation;
A sputtering apparatus comprising
The shielding member is a rotating body having an outer peripheral surface,
By rotating the shielding member, a region of the outer peripheral surface facing the target is changed.
A sputtering device characterized by:
請求項1に記載のスパッタ装置であって、
前記遮蔽部材は円筒形状である、
ことを特徴とするスパッタ装置。
The sputtering apparatus according to claim 1,
The shielding member has a cylindrical shape,
A sputtering device characterized by:
請求項1に記載のスパッタ装置であって、
前記遮蔽部材を回転する駆動力を出力する駆動源と、
前記駆動源を制御する制御手段と、を備える、
ことを特徴とするスパッタ装置。
The sputtering apparatus according to claim 1,
a driving source that outputs driving force to rotate the shielding member;
and a control means for controlling the drive source,
A sputtering device characterized by:
請求項3に記載のスパッタ装置であって、
前記ターゲットは回転ターゲットであり、
前記駆動源は、前記遮蔽部材の回転と前記ターゲットの回転とに共用の駆動源である、
ことを特徴とするスパッタ装置。
A sputtering apparatus according to claim 3,
the target is a rotating target;
The drive source is a common drive source for rotation of the shielding member and rotation of the target.
A sputtering device characterized by:
請求項1乃至請求項4のいずれか一項に記載のスパッタ装置であって、
前記遮蔽部材を冷却する冷却手段を更に備える、
ことを特徴とするスパッタ装置。
The sputtering apparatus according to any one of claims 1 to 4,
Further comprising cooling means for cooling the shielding member,
A sputtering device characterized by:
請求項1乃至請求項5のいずれか一項に記載のスパッタ装置であって、
前記スパッタ装置は、マグネトロンスパッタ装置であり、
前記遮蔽部材がアノード電位に、前記ターゲットがカソード電位にそれぞれ維持される、
ことを特徴とするスパッタ装置。
The sputtering apparatus according to any one of claims 1 to 5,
The sputtering device is a magnetron sputtering device,
the shielding member is maintained at an anodic potential and the target is maintained at a cathodic potential,
A sputtering device characterized by:
請求項1乃至請求項6のいずれか一項に記載のスパッタ装置であって、
成膜時に、前記基板と、前記遮蔽部材及び前記ターゲットと、を相対的に移動する移動手段を備える、
ことを特徴とするスパッタ装置。
The sputtering apparatus according to any one of claims 1 to 6,
moving means for relatively moving the substrate, the shielding member, and the target during film formation;
A sputtering device characterized by:
JP2021206139A 2021-12-20 2021-12-20 Sputtering Equipment Active JP7473520B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2021206139A JP7473520B2 (en) 2021-12-20 2021-12-20 Sputtering Equipment
CN202211595476.5A CN116288195A (en) 2021-12-20 2022-12-12 Sputtering apparatus
KR1020220172643A KR20230094151A (en) 2021-12-20 2022-12-12 Sputtering apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2021206139A JP7473520B2 (en) 2021-12-20 2021-12-20 Sputtering Equipment

Publications (2)

Publication Number Publication Date
JP2023091409A true JP2023091409A (en) 2023-06-30
JP7473520B2 JP7473520B2 (en) 2024-04-23

Family

ID=86813826

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2021206139A Active JP7473520B2 (en) 2021-12-20 2021-12-20 Sputtering Equipment

Country Status (3)

Country Link
JP (1) JP7473520B2 (en)
KR (1) KR20230094151A (en)
CN (1) CN116288195A (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001115259A (en) * 1999-10-15 2001-04-24 Nachi Fujikoshi Corp Magnetron sputtering system
WO2009028055A1 (en) * 2007-08-29 2009-03-05 Canon Anelva Corporation Film deposition method and device by sputtering
JP2009127090A (en) * 2007-11-22 2009-06-11 Sharp Corp Sputtering system
JP2019189901A (en) * 2018-04-23 2019-10-31 株式会社アルバック Vacuum evaporation device

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6583930B2 (en) 2017-11-15 2019-10-02 キヤノントッキ株式会社 Sputtering apparatus and organic EL panel manufacturing method

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001115259A (en) * 1999-10-15 2001-04-24 Nachi Fujikoshi Corp Magnetron sputtering system
WO2009028055A1 (en) * 2007-08-29 2009-03-05 Canon Anelva Corporation Film deposition method and device by sputtering
JP2009127090A (en) * 2007-11-22 2009-06-11 Sharp Corp Sputtering system
JP2019189901A (en) * 2018-04-23 2019-10-31 株式会社アルバック Vacuum evaporation device

Also Published As

Publication number Publication date
KR20230094151A (en) 2023-06-27
CN116288195A (en) 2023-06-23
JP7473520B2 (en) 2024-04-23

Similar Documents

Publication Publication Date Title
EP3187618A1 (en) Evaporation source for organic material, deposition apparatus for depositing organic materials in a vacuum chamber having an evaporation source for organic material, and method for evaporating organic material
JP2015133321A (en) Neutral particle beam generating source including belt type magnet
US20130032476A1 (en) Rotary cathodes for magnetron sputtering system
KR20140003440A (en) Soft supttering magnetron system
US20210269912A1 (en) Evaporation source for organic material, deposition apparatus for depositing organic materials in a vacuum chamber having an evaporation source for organic material, and method for evaporating organic material
JP2012102384A (en) Magnetron sputtering apparatus
JP5969856B2 (en) Sputtering equipment
JP2660951B2 (en) Sputtering equipment
TWI613306B (en) Plasma processing apparatus and plasma processing method
US20130161184A1 (en) Apparatus for forming gas blocking layer and method thereof
JP7229014B2 (en) Film forming apparatus, film forming method, and electronic device manufacturing method
JP7278193B2 (en) Deposition equipment
JP2023091409A (en) Sputtering device
KR20210089577A (en) Film forming apparatus and method
TWI809039B (en) Magnet aggregate of magnetron sputtering apparatus
KR20030023205A (en) Sputtering apparatus for depositing a film
JP2928479B2 (en) Sputtering equipment
US11668003B2 (en) Deposition system with a multi-cathode
TW201936960A (en) Film forming system and method for forming film on substrate
JP7419114B2 (en) Sputtering equipment and sputtering method
JP2617439B2 (en) Sputtering equipment
JP7229015B2 (en) Film forming apparatus, film forming method, and electronic device manufacturing method
JP2023091411A (en) Sputtering apparatus
JP2020200520A (en) Film deposition apparatus, sputtering target mechanism and film deposition method
KR20170095362A (en) Apparatus and method for coating a substrate with a movable sputter assembly and control over process gas parameters

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20221104

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20231010

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20231102

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20240104

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20240405

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20240411

R150 Certificate of patent or registration of utility model

Ref document number: 7473520

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150