JP2023087895A - Cylindrical battery and method of manufacturing cylindrical battery - Google Patents

Cylindrical battery and method of manufacturing cylindrical battery Download PDF

Info

Publication number
JP2023087895A
JP2023087895A JP2021202435A JP2021202435A JP2023087895A JP 2023087895 A JP2023087895 A JP 2023087895A JP 2021202435 A JP2021202435 A JP 2021202435A JP 2021202435 A JP2021202435 A JP 2021202435A JP 2023087895 A JP2023087895 A JP 2023087895A
Authority
JP
Japan
Prior art keywords
current collector
electrode
cylindrical
plate
collector plate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2021202435A
Other languages
Japanese (ja)
Inventor
大倫 若林
Dairin Wakabayashi
剛也 伊藤
Takeya Ito
孝博 福岡
Takahiro Fukuoka
侑紀 飯田
Yuki Iida
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP2021202435A priority Critical patent/JP2023087895A/en
Publication of JP2023087895A publication Critical patent/JP2023087895A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

To provide a cylindrical battery whose resistance is easily reduced and whose mass productivity is easily enhanced.SOLUTION: A cylindrical battery 10 includes: an electrode body 14 in which a positive electrode 11 and a negative electrode 12 are wound with a separator 13 interposed therebetween; a cylindrical outer can 16 with a bottom that houses the electrode body 14; and a current collector plate 60 electrically connected to the negative electrode 12. A cylindrical portion 30 of the outer can 16 has an inner protruding portion 50 that protrudes radially inward toward a bottom plate 68 of the outer can 16 in the axial direction. An outer peripheral surface 60c of the current collecting plate 60 is brought into contact with an inner peripheral surface 50a of the inner protruding portion 50.SELECTED DRAWING: Figure 1

Description

本開示は、円筒形電池、及び円筒形電池の製造方法に関する。 The present disclosure relates to cylindrical batteries and methods of making cylindrical batteries.

従来、円筒形電池としては、特許文献1の図4に図示されているものがある。この円筒形電池は、電極体の負極の軸方向一方側に負極合剤層を設けない無地部を設けている。そして、その無地部を円板状の集電板に溶接すると共に、集電板を外装缶の内側底部に溶接している。このようにして、負極を外装缶に電気的に接続して、外装缶を負極端子としている。 A conventional cylindrical battery is shown in FIG. 4 of Patent Document 1. FIG. In this cylindrical battery, a non-coating portion having no negative electrode mixture layer is provided on one axial side of the negative electrode of the electrode body. The non-coated portion is welded to a disk-shaped current collector, and the current collector is welded to the inner bottom of the outer can. In this manner, the negative electrode is electrically connected to the outer can, and the outer can serves as a negative electrode terminal.

特開平9-161837号公報JP-A-9-161837

上記円筒形電池は、負極の無地部を集電板を介して外装缶に電気的に接続しているので、集電性に優れ、高放電を行うことができる。しかし、集電板を外装缶に確実に電気的に接続するために集電板を外装缶に溶接しており、溶接部の抵抗が大きくなる。また、集電板を外装缶に溶接する際に生じたスパッタで円筒形電池が劣化し、その劣化に起因して量産性が低下する虞がある。 In the cylindrical battery described above, since the non-coated portion of the negative electrode is electrically connected to the outer can via the current collecting plate, the current collecting property is excellent and high discharge can be performed. However, the current collecting plate is welded to the outer can in order to ensure electrical connection of the current collecting plate to the outer can, which increases the resistance of the welded portion. In addition, there is a risk that the cylindrical battery will deteriorate due to spatter generated when the current collecting plate is welded to the outer can, and that the deterioration will reduce the productivity of the battery.

そこで、本開示の目的は、抵抗を低減し易く、量産性も高くし易い円筒形電池を提供することにある。 Accordingly, an object of the present disclosure is to provide a cylindrical battery that can easily reduce resistance and can be easily mass-produced.

上記課題を解決するため、本開示に係る円筒形電池は、第1電極と第2電極がセパレータを介して巻回された電極体と、電極体を収容する有底筒状の外装缶と、第1電極に電気的に接続された集電板と、を備え、外装缶の筒状部が、軸方向における外装缶の底板側に径方向の内方側に突出する内側突出部を有し、集電板の側面が内側突出部に接触する。 In order to solve the above problems, a cylindrical battery according to the present disclosure includes an electrode body in which a first electrode and a second electrode are wound with a separator interposed therebetween, a bottomed cylindrical outer can containing the electrode body, a collector plate electrically connected to the first electrode, wherein the cylindrical portion of the outer can has an inner protruding portion that protrudes radially inward toward the bottom plate side of the outer can in the axial direction. , the side surface of the current collecting plate contacts the inner protrusion.

また、本開示に係る円筒形電池の製造方法は、筒状部及び底板を含み、筒状部の底板側の端部が径方向の外方側に突出する外側突出部を有して肉厚になっている有底筒状の外装缶を用意し、第1電極と第2電極がセパレータを介して巻回された電極体における第1電極を集電板に接合し、電極体が接合された集電板を外装缶内の底側に配置し、外側突出部を径方向の内側に塑性変形させることによって筒状部の底板側の端部に径方向の内方側に突出する内側突出部を形成してその内側突出部で集電板の側面を押圧することで、集電板を外装缶内の底側に拘束する。 In addition, the method for manufacturing a cylindrical battery according to the present disclosure includes a tubular portion and a bottom plate, and the end portion of the tubular portion on the bottom plate side has an outer protruding portion that protrudes radially outward and is thick. A cylindrical outer can with a bottom is prepared, and the first electrode in the electrode body in which the first electrode and the second electrode are wound with a separator interposed is joined to the current collector plate, and the electrode body is joined The current collecting plate is placed on the bottom side of the outer can, and the outer protrusion is plastically deformed radially inward to form an inner protrusion that protrudes radially inward from the bottom plate side end of the tubular portion. By forming a portion and pressing the side surface of the current collector plate with the inner protruding portion, the current collector plate is constrained to the bottom side inside the outer can.

本開示に係る円筒形電池によれば、抵抗を低減し易く、量産性も高くし易い。また、本開示に係る円筒形電池の製造方法によれば、内部抵抗が小さくて量産性が高い円筒形電池を製造できる。 According to the cylindrical battery according to the present disclosure, it is easy to reduce the resistance, and it is easy to increase the productivity. In addition, according to the method of manufacturing a cylindrical battery according to the present disclosure, it is possible to manufacture a cylindrical battery with low internal resistance and high productivity.

本開示の第1実施形態に係る円筒形電池の軸方向の断面図である。1 is an axial cross-sectional view of a cylindrical battery according to a first embodiment of the present disclosure; FIG. 上記円筒形電池の電極体の斜視図である。3 is a perspective view of an electrode body of the cylindrical battery; FIG. 巻回する前の長尺状の負極を厚さ方向の一方側から見たときの平面図である。FIG. 3 is a plan view of a long negative electrode before being wound as viewed from one side in the thickness direction; 製造途中の円筒形電池の軸方向の断面図である。1 is an axial cross-sectional view of a cylindrical battery in the process of being manufactured; FIG. 製造途中の有底筒状の外装缶における外側突出部周辺の軸方向の拡大断面図である。FIG. 4 is an enlarged axial cross-sectional view of the periphery of the outer projecting portion of the bottomed cylindrical outer can in the middle of production. 本開示の第2実施形態に係る円筒形電池の軸方向の断面図である。FIG. 4 is an axial cross-sectional view of a cylindrical battery according to a second embodiment of the present disclosure; 第2実施形態の円筒形電池の製造方法を説明する図である。It is a figure explaining the manufacturing method of the cylindrical battery of 2nd Embodiment. 第2実施形態の円筒形電池の製造方法を説明する図である。It is a figure explaining the manufacturing method of the cylindrical battery of 2nd Embodiment. 比較例1の円筒形電池の負極の平面図である。3 is a plan view of the negative electrode of the cylindrical battery of Comparative Example 1. FIG. 比較例1の円筒形電池の軸方向の断面図である。3 is an axial cross-sectional view of a cylindrical battery of Comparative Example 1. FIG. 比較例2の円筒形電池の軸方向の断面図である。3 is an axial cross-sectional view of a cylindrical battery of Comparative Example 2. FIG.

以下、図面を参照しながら、本開示に係る円筒形電池の実施形態について詳細に説明する。なお、本開示の円筒形電池は、一次電池でもよく、二次電池でもよい。また、水系電解質を用いた電池でもよく、非水系電解質を用いた電池でもよい。以下では、実施形態の円筒形電池10,110として、非水電解質を用いた非水電解質二次電池(リチウムイオン電池)を例示するが、本開示の円筒形電池はこれに限定されない。 Hereinafter, embodiments of the cylindrical battery according to the present disclosure will be described in detail with reference to the drawings. Note that the cylindrical battery of the present disclosure may be a primary battery or a secondary battery. Also, a battery using an aqueous electrolyte or a battery using a non-aqueous electrolyte may be used. Non-aqueous electrolyte secondary batteries (lithium ion batteries) using a non-aqueous electrolyte are exemplified below as the cylindrical batteries 10 and 110 of the embodiments, but the cylindrical battery of the present disclosure is not limited to this.

以下で説明する第1及び第2実施形態や変形例の特徴部分を適宜に組み合わせて新たな実施形態を構築することは当初から想定されている。また、以下の実施形態では、図面において同一構成に同一符号を付し、重複する説明を省略する。また、複数の図面には、模式図が含まれ、異なる図間において、各部材における、縦、横、高さ等の寸法比は、必ずしも一致しない。また、本明細書では、円筒形電池10の軸方向(高さ方向)の封口体17側を「上」とし、軸方向の外装缶16の底板68側を「下」とする。また、以下で説明する構成要素のうち、最上位概念を示す独立請求項に記載されていない構成要素については、任意の構成要素であり、必須の構成要素ではない。 From the beginning, it is assumed that the features of the first and second embodiments and modifications described below will be appropriately combined to construct a new embodiment. Further, in the following embodiments, the same reference numerals are given to the same configurations in the drawings, and redundant explanations are omitted. In addition, a plurality of drawings include schematic diagrams, and the dimensional ratios of length, width, height, etc. of each member do not necessarily match between different drawings. Further, in this specification, the axial (height) side of the sealing member 17 of the cylindrical battery 10 is referred to as "top", and the axial side of the outer can 16 toward the bottom plate 68 is referred to as "bottom". In addition, among the constituent elements described below, constituent elements that are not described in independent claims indicating the highest concept are optional constituent elements and are not essential constituent elements.

(第1実施形態)
図1は、本開示の第1実施形態に係る円筒形電池10の軸方向の断面図であり、図2は、円筒形電池10の電極体14の斜視図である。また、図3は、巻回する前の長尺状の負極12を厚さ方向の一方側から見たときの平面図である。図1に示すように、円筒形電池10は、巻回型の電極体14、非水電解質(図示せず)、電極体14及び非水電解質を収容する有底筒状で金属製の外装缶16、及び外装缶16の開口部を塞ぐ封口体17を備える。図2に示すように、電極体14は、長尺状の正極11と長尺状の負極12が長尺状の2枚のセパレータ13を介して巻回された巻回構造を有する。
(First embodiment)
FIG. 1 is an axial cross-sectional view of a cylindrical battery 10 according to a first embodiment of the present disclosure, and FIG. 2 is a perspective view of an electrode body 14 of the cylindrical battery 10. FIG. FIG. 3 is a plan view of the elongated negative electrode 12 before being wound as viewed from one side in the thickness direction. As shown in FIG. 1, a cylindrical battery 10 includes a wound electrode body 14, a non-aqueous electrolyte (not shown), and a bottomed cylindrical metal outer can containing the electrode body 14 and the non-aqueous electrolyte. 16, and a sealing member 17 that closes the opening of the outer can 16. As shown in FIG. 2, the electrode assembly 14 has a wound structure in which a long positive electrode 11 and a long negative electrode 12 are wound with two long separators 13 interposed therebetween.

負極12は、第1電極を構成し、正極11は、第2電極を構成する。負極12は、リチウムの析出を防止するために、正極11よりも一回り大きな寸法で形成される。即ち、負極12は、正極11より長手方向及び幅方向(短手方向)に長く形成される。また、2枚のセパレータ13は、正極11よりも一回り大きな寸法で形成され、例えば正極11を挟むように配置される。セパレータ13は正極11及び負極12よりも上方に突出し、負極12は正極11及びセパレータ13よりも下方に突出する。 The negative electrode 12 constitutes a first electrode, and the positive electrode 11 constitutes a second electrode. The negative electrode 12 is formed with a size one size larger than that of the positive electrode 11 in order to prevent deposition of lithium. That is, the negative electrode 12 is formed longer than the positive electrode 11 in the longitudinal direction and the width direction (transverse direction). Moreover, the two separators 13 are formed to have a dimension slightly larger than that of the positive electrode 11, and are arranged so as to sandwich the positive electrode 11, for example. The separator 13 protrudes above the positive electrode 11 and the negative electrode 12 , and the negative electrode 12 protrudes below the positive electrode 11 and the separator 13 .

図2及び図3に示すように、負極12は、負極集電体40において負極合剤層42が設けられていない負極集電体露出部41を長尺状の負極12の長手方向の巻き始め側の端から巻き終わり側の端まで軸方向の下側端部に有する。このため、図2に示すように、電極体14の軸方向の下側端部は、負極集電体露出部41で構成される。負極12は、電極体14の巻き始め端を構成してもよい。しかし、一般的には、セパレータ13が負極12の巻き始め側端を超えて延出し、セパレータ13の巻き始め側端が電極体14の巻き始め端となる。 As shown in FIGS. 2 and 3 , the negative electrode 12 is formed by winding the negative electrode current collector 40 at the negative electrode current collector exposed portion 41 where the negative electrode mixture layer 42 is not provided, in the longitudinal direction of the long negative electrode 12 . It has an axially lower end from the side end to the end of the winding end. Therefore, as shown in FIG. 2 , the axially lower end portion of the electrode body 14 is composed of the negative electrode current collector exposed portion 41 . The negative electrode 12 may constitute the winding start end of the electrode body 14 . Generally, however, the separator 13 extends beyond the winding start end of the negative electrode 12 , and the winding start end of the separator 13 becomes the winding start end of the electrode body 14 .

非水電解質は、非水溶媒と、非水溶媒に溶解した電解質塩とを含む。非水溶媒には、例えばエステル類、エーテル類、ニトリル類、アミド類、およびこれらの2種以上の混合溶媒等を用いてもよい。非水溶媒は、これら溶媒の水素原子の少なくとも一部をフッ素等のハロゲン原子で置換したハロゲン置換体を含有してもよい。なお、非水電解質は液体電解質に限定されず、ゲル状ポリマー等を用いた固体電解質であってもよい。電解質塩には、LiPF等のリチウム塩が使用される。 The non-aqueous electrolyte contains a non-aqueous solvent and an electrolyte salt dissolved in the non-aqueous solvent. Examples of the non-aqueous solvent include esters, ethers, nitriles, amides, and mixed solvents of two or more thereof. The non-aqueous solvent may contain a halogen-substituted product obtained by substituting at least part of the hydrogen atoms of these solvents with halogen atoms such as fluorine. The non-aqueous electrolyte is not limited to a liquid electrolyte, and may be a solid electrolyte using a gel polymer or the like. A lithium salt such as LiPF 6 is used as the electrolyte salt.

正極11は、正極集電体と、正極集電体の両面に形成された正極合剤層とを有する。正極集電体には、アルミニウム、アルミニウム合金など、正極11の電位範囲で安定な金属箔、当該金属を表層に配置したフィルム等を用いることができる。正極合剤層は、正極活物質、導電剤、及び結着剤を含む。正極11は、例えば正極集電体上に正極活物質、導電剤、及び結着剤等を含む正極合剤スラリーを塗布し、塗膜を乾燥させた後、圧縮して正極合剤層を正極集電体の両面に形成することにより作製できる。 The positive electrode 11 has a positive electrode current collector and positive electrode mixture layers formed on both sides of the positive electrode current collector. As the positive electrode current collector, a metal foil stable in the potential range of the positive electrode 11, such as aluminum or an aluminum alloy, or a film in which the metal is arranged on the surface layer can be used. The positive electrode mixture layer contains a positive electrode active material, a conductive agent, and a binder. For example, the positive electrode 11 is formed by coating a positive electrode current collector with a positive electrode mixture slurry containing a positive electrode active material, a conductive agent, a binder, and the like, drying the coating film, and compressing the positive electrode mixture layer to form a positive electrode. It can be produced by forming on both sides of the current collector.

正極活物質は、リチウム含有金属複合酸化物を主成分として構成される。リチウム含有金属複合酸化物に含有される金属元素としては、Ni、Co、Mn、Al、B、Mg、Ti、V、Cr、Fe、Cu、Zn、Ga、Sr、Zr、Nb、In、Sn、Ta、W等が挙げられる。好ましいリチウム含有金属複合酸化物の一例は、Ni、Co、Mn、Alの少なくとも1種を含有する複合酸化物である。 The positive electrode active material is mainly composed of a lithium-containing metal composite oxide. Metal elements contained in the lithium-containing metal composite oxide include Ni, Co, Mn, Al, B, Mg, Ti, V, Cr, Fe, Cu, Zn, Ga, Sr, Zr, Nb, In, Sn , Ta, W, and the like. An example of a preferable lithium-containing metal composite oxide is a composite oxide containing at least one of Ni, Co, Mn and Al.

正極合剤層に含まれる導電剤としては、カーボンブラック、アセチレンブラック、ケッチェンブラック、黒鉛等の炭素材料が例示できる。正極合剤層に含まれる結着剤としては、ポリテトラフルオロエチレン(PTFE)、ポリフッ化ビニリデン(PVdF)等のフッ素樹脂、ポリアクリロニトリル(PAN)、ポリイミド樹脂、アクリル樹脂、ポリオレフィン樹脂などが例示できる。これらの樹脂と、カルボキシメチルセルロース(CMC)又はその塩等のセルロース誘導体、ポリエチレンオキシド(PEO)などが併用されてもよい。 Carbon materials such as carbon black, acetylene black, ketjen black, and graphite can be exemplified as the conductive agent contained in the positive electrode mixture layer. Examples of the binder contained in the positive electrode mixture layer include fluororesins such as polytetrafluoroethylene (PTFE) and polyvinylidene fluoride (PVdF), polyacrylonitrile (PAN), polyimide resins, acrylic resins, and polyolefin resins. . These resins may be used in combination with cellulose derivatives such as carboxymethyl cellulose (CMC) or salts thereof, polyethylene oxide (PEO), and the like.

図3に示すように、負極12は、負極集電体40と、負極集電体40の両面に形成された負極合剤層42を有する。負極集電体40には、銅、銅合金など、負極12の電位範囲で安定な金属箔、当該金属を表層に配置したフィルム等を用いることができる。負極合剤層42は、負極活物質、及び結着剤を含む。負極12は、例えば負極集電体40上に負極活物質、及び結着剤等を含む負極合剤スラリーを塗布し、塗膜を乾燥させた後、圧縮して負極合剤層42を負極集電体40の両面に形成することにより作製できる。 As shown in FIG. 3 , the negative electrode 12 has a negative electrode current collector 40 and negative electrode mixture layers 42 formed on both sides of the negative electrode current collector 40 . For the negative electrode current collector 40, a metal foil such as copper or a copper alloy that is stable in the potential range of the negative electrode 12, a film having the metal on the surface layer, or the like can be used. The negative electrode mixture layer 42 contains a negative electrode active material and a binder. For the negative electrode 12, for example, a negative electrode mixture slurry containing a negative electrode active material, a binder, and the like is applied onto the negative electrode current collector 40, the coating film is dried, and then compressed to form the negative electrode mixture layer 42 as the negative electrode collector. It can be produced by forming on both sides of the electric body 40 .

負極活物質には、一般的に、リチウムイオンを可逆的に吸蔵、放出する炭素材料が用いられる。好ましい炭素材料は、鱗片状黒鉛、塊状黒鉛、土状黒鉛等の天然黒鉛、塊状人造黒鉛、黒鉛化メソフェーズカーボンマイクロビーズ等の人造黒鉛などの黒鉛である。負極合剤層42には、負極活物質として、ケイ素(Si)を含有するSi材料が含まれていてもよい。また、負極活物質には、Si以外のリチウムと合金化する金属、当該金属を含有する合金、当該金属を含有する化合物等が用いられてもよい。 A carbon material that reversibly absorbs and releases lithium ions is generally used as the negative electrode active material. Preferred carbon materials are graphite such as natural graphite such as flake graphite, massive graphite and earthy graphite, massive artificial graphite and artificial graphite such as graphitized mesophase carbon microbeads. The negative electrode mixture layer 42 may contain a Si material containing silicon (Si) as a negative electrode active material. In addition, a metal other than Si that forms an alloy with lithium, an alloy containing the metal, a compound containing the metal, or the like may be used as the negative electrode active material.

負極合剤層42に含まれる結着剤には、正極11の場合と同様に、フッ素樹脂、PAN、ポリイミド樹脂、アクリル樹脂、ポリオレフィン樹脂等を用いてもよいが、好ましくはスチレン-ブタジエンゴム(SBR)又はその変性体を用いる。負極合剤層には、例えばSBR等に加えて、CMC又はその塩、ポリアクリル酸(PAA)又はその塩、ポリビニルアルコールなどが含まれていてもよい。 As in the case of the positive electrode 11, the binder contained in the negative electrode mixture layer 42 may be fluorine resin, PAN, polyimide resin, acrylic resin, polyolefin resin, or the like, but preferably styrene-butadiene rubber ( SBR) or its modified form is used. The negative electrode mixture layer may contain, for example, CMC or its salt, polyacrylic acid (PAA) or its salt, polyvinyl alcohol, etc. in addition to SBR or the like.

セパレータ13には、イオン透過性及び絶縁性を有する多孔性シートが用いられる。多孔性シートの具体例としては、微多孔薄膜、織布、不織布等が挙げられる。セパレータ13の材質としては、ポリエチレン、ポリプロピレン等のポリオレフィン樹脂、セルロースなどが好ましい。セパレータ13は、単層構造、積層構造のいずれでもよい。セパレータ13の表面には、耐熱層などが形成されてもよい。 A porous sheet having ion permeability and insulation is used for the separator 13 . Specific examples of porous sheets include microporous thin films, woven fabrics, and non-woven fabrics. As the material of the separator 13, polyolefin resins such as polyethylene and polypropylene, cellulose, and the like are preferable. The separator 13 may have either a single layer structure or a laminated structure. A heat-resistant layer or the like may be formed on the surface of the separator 13 .

図1に示すように、正極11には、正極リード20が接合される。円筒形電池10は、電極体14の上方に絶縁板18を有する。正極リード20は、絶縁板18の貫通孔を通って封口体17側に延びる。正極リード20は、封口体17の底板23の下面に溶接等で接続される。封口体17の天板を構成する端子キャップ27が底板23と電気的に接続され、端子キャップ27が正極端子となる。 As shown in FIG. 1 , a positive electrode lead 20 is joined to the positive electrode 11 . Cylindrical battery 10 has an insulating plate 18 above electrode body 14 . The positive electrode lead 20 extends through the through hole of the insulating plate 18 toward the sealing member 17 . The positive electrode lead 20 is connected to the lower surface of the bottom plate 23 of the sealing member 17 by welding or the like. A terminal cap 27 forming a top plate of the sealing member 17 is electrically connected to the bottom plate 23, and the terminal cap 27 serves as a positive electrode terminal.

図1に示す例では、正極リード20は、正極集電体における巻回方向の中央部等の中間部に電気的に接続される。なお、図1に示す例では、正極リード20を1つのみを用いて正極11を端子キャップ27に電気的に接続しているが、正極は、如何なる構成で端子キャップに電気的に接続されてもよい。例えば、正極は、マルチリード構造で端子キャップに電気的に接続されてもよい。詳しくは、正極の長手方向に間隔をおいて正極の正極集電体露出部に複数の正極リードの一方側端部を溶接等で接合し、その複数の正極リードの夫々の他方側端部を、直接又は導電性の部位を介して間接的に端子キャップに接合してもよい。又は、正極集電体露出部を導電性を有する集電板に溶接等で接合し、その集電板を直接又は導電性の部位を介して間接的に端子キャップに接合してもよい。この構成を採用する場合、集電板は、例えば、アルミニウムやアルミニウム合金等の金属で構成することができる。 In the example shown in FIG. 1, the positive electrode lead 20 is electrically connected to an intermediate portion such as a central portion in the winding direction of the positive electrode current collector. In the example shown in FIG. 1, only one positive lead 20 is used to electrically connect the positive electrode 11 to the terminal cap 27, but the positive electrode may be electrically connected to the terminal cap in any configuration. good too. For example, the positive electrode may be electrically connected to the terminal cap in a multi-lead configuration. Specifically, one side end of a plurality of positive electrode leads is joined to the positive electrode current collector exposed portion of the positive electrode at intervals in the longitudinal direction of the positive electrode by welding or the like, and the other side end of each of the plurality of positive electrode leads is connected. , directly or indirectly through a conductive portion, to the terminal cap. Alternatively, the exposed portion of the positive electrode current collector may be joined to a conductive current collector plate by welding or the like, and the current collector plate may be directly or indirectly joined to the terminal cap via a conductive portion. When adopting this configuration, the current collector plate can be made of, for example, a metal such as aluminum or an aluminum alloy.

円筒形電池10は、電極体14よりも軸方向の下側にニッケルやニッケル合金等で構成される金属製の集電板60を備える。集電板60は、円板形状を有し、集電板60の上面60aには、電極体14の負極集電体露出部41が接合されている。電極体14を外装缶16に挿入する前に、集電板60の上面60aを電極体14の軸方向の下側端部を構成する負極集電体露出部41に押圧した状態で集電板60の下面60bにレーザ光を照射する。 The cylindrical battery 10 is provided with a metallic collector plate 60 made of nickel, a nickel alloy, or the like, below the electrode assembly 14 in the axial direction. The current collector plate 60 has a disk shape, and the negative electrode current collector exposed portion 41 of the electrode body 14 is joined to the upper surface 60 a of the current collector plate 60 . Before inserting the electrode assembly 14 into the outer can 16, the upper surface 60a of the current collector plate 60 is pressed against the negative electrode current collector exposed portion 41 forming the lower end portion of the electrode assembly 14 in the axial direction. The lower surface 60b of 60 is irradiated with laser light.

このようにして、集電板60への負極集電体露出部41の押圧で、負極集電体露出部41のうちで折れ曲がって集電板60の上面60aに沿って延在している部分41aを集電板60の上面60aにレーザ溶接することで、負極集電体露出部41を集電板60に接合できる。なお、負極集電体露出部41を集電板60に接合するのに、超音波溶接や抵抗溶接を用いてもよい。 In this way, when the negative electrode current collector exposed portion 41 is pressed against the current collector plate 60 , the portion of the negative electrode current collector exposed portion 41 that is bent and extends along the upper surface 60 a of the current collector plate 60 . By laser-welding 41 a to the upper surface 60 a of the current collector plate 60 , the negative electrode current collector exposed portion 41 can be joined to the current collector plate 60 . Ultrasonic welding or resistance welding may be used to join the negative electrode current collector exposed portion 41 to the current collector plate 60 .

外装缶16の筒状部30は、軸方向における外装缶16の底板68側に径方向の内方側に突出する内側突出部50を有する。内側突出部50は、周方向の全周に亘って径方向の内方側に突出する環状突出部である。集電板60の外周面60cは、内側突出部50の内周面50aに接触し、内周面50aから径方向の内方側に力を付与されている。集電板60は、静止摩擦力によって内側突出部50に対して静止し、軸方向位置が位置決めされている。負極集電体露出部41が集電板60を介して電気的に接続される外装缶16は負極端子を構成している。 The cylindrical portion 30 of the outer can 16 has an inner protruding portion 50 that protrudes radially inward toward the bottom plate 68 of the outer can 16 in the axial direction. The inner protruding portion 50 is an annular protruding portion that protrudes radially inward along the entire circumference. The outer peripheral surface 60c of the current collector plate 60 contacts the inner peripheral surface 50a of the inner protrusion 50, and a force is applied radially inward from the inner peripheral surface 50a. The current collector plate 60 is stationary with respect to the inner protrusion 50 by static frictional force, and is positioned in the axial direction. The outer can 16 to which the negative electrode current collector exposed portion 41 is electrically connected via the current collector plate 60 constitutes a negative electrode terminal.

なお、集電板60の外周面60cは、内側突出部50の内周面50aに全周に亘って接触していれば、集電板60を内側突出部50に確実に拘束できて好ましい。しかし、集電板60や外装缶16の公差や、製造誤差によって、集電板60の外周面60cが、周方向の一部で内側突出部50の内周面50aに接触していなくてもよい。要は、集電板60が静止摩擦力によって内側突出部50に対して静止して、集電板60の軸方向位置が位置決めされていればよい。 It is preferable that the outer peripheral surface 60c of the current collector plate 60 is in contact with the inner peripheral surface 50a of the inner protrusion 50 over the entire circumference, because the current collector plate 60 can be reliably restrained by the inner protrusion 50. FIG. However, even if the outer peripheral surface 60c of the current collecting plate 60 does not contact the inner peripheral surface 50a of the inner projecting portion 50 partially in the circumferential direction due to tolerances of the current collecting plate 60 and the outer can 16 or manufacturing errors. good. The point is that the current collector plate 60 is stationary with respect to the inner projecting portion 50 by static frictional force, and the axial position of the current collector plate 60 is positioned.

円筒形電池10は、外装缶16と封口体17との間に配置される樹脂製のガスケット28を更に備える。封口体17は、ガスケット28を介して外装缶16の開口部にかしめ固定される。これにより、円筒形電池10の内部空間が密閉される。ガスケット28は、外装缶16と封口体17に挟持され、封口体17を外装缶16に対して絶縁する。ガスケット28は、電池内部の気密性を保つためのシール材の役割と、外装缶16と封口体17を絶縁する絶縁材としての役割を有する。 The cylindrical battery 10 further includes a resin gasket 28 arranged between the outer can 16 and the sealing member 17 . The sealing member 17 is crimped and fixed to the opening of the outer can 16 via a gasket 28 . Thereby, the internal space of the cylindrical battery 10 is sealed. The gasket 28 is sandwiched between the outer can 16 and the sealing member 17 to insulate the sealing member 17 from the outer can 16 . The gasket 28 has the role of a sealing material for keeping the inside of the battery airtight and the role of an insulating material for insulating the outer can 16 and the sealing body 17 .

外装缶16は、電極体14と非水電解質を収容し、肩部38、溝入れ部34、筒状部30、及び底板68を有する。溝入れ部34は、例えば、外装缶16の側面の一部を、径方向内側にスピニング加工して径方向内方側に環状に窪ませることで形成できる。肩部38は、封口体17を外装缶16にかしめ固定する際に、外装缶16の上端部を封口体17の周縁部45に向かって内側に折り曲げて形成される。 The outer can 16 contains the electrode body 14 and the non-aqueous electrolyte, and has a shoulder portion 38 , a grooved portion 34 , a tubular portion 30 and a bottom plate 68 . The grooved portion 34 can be formed, for example, by spinning a portion of the side surface of the outer can 16 radially inward to form an annular depression radially inward. The shoulder portion 38 is formed by bending the upper end portion of the outer can 16 inward toward the peripheral edge portion 45 of the outer can 17 when the sealing member 17 is crimped and fixed to the outer can 16 .

封口体17は、電極体14側から順に、底板23、下弁体24、絶縁部材25、上弁体26、及び端子キャップ27が積層された構造を有する。封口体17を構成する各部材は、例えば円板形状又はリング形状を有し、絶縁部材25を除く各部材は互いに電気的に接続されている。底板23は、少なくとも1つの貫通孔23aを有する。また、下弁体24と上弁体26は、各々の中央部で接続され、各々の周縁部の間には絶縁部材25が介在している。 The sealing body 17 has a structure in which a bottom plate 23, a lower valve body 24, an insulating member 25, an upper valve body 26, and a terminal cap 27 are layered in this order from the electrode body 14 side. Each member constituting the sealing member 17 has, for example, a disk shape or a ring shape, and each member except for the insulating member 25 is electrically connected to each other. The bottom plate 23 has at least one through hole 23a. The lower valve body 24 and the upper valve body 26 are connected at their central portions, and an insulating member 25 is interposed between their peripheral edge portions.

円筒形電池10が異常発熱して、円筒形電池10の内圧が上昇すると、下弁体24が上弁体26を端子キャップ27側に押し上げるように変形して破断し、下弁体24と上弁体26の間の電流経路が遮断される。さらに内圧が上昇すると、上弁体26が破断して、端子キャップ27の貫通孔27aからガスが排出される。このガスの排出により、円筒形電池10の内圧が過度に上昇して円筒形電池10が破裂することを防止でき、円筒形電池10の安全性を高くできる。 When the cylindrical battery 10 generates abnormal heat and the internal pressure of the cylindrical battery 10 rises, the lower valve body 24 deforms and breaks so as to push the upper valve body 26 upward toward the terminal cap 27, thereby separating the lower valve body 24 and the upper valve body. A current path between the valve bodies 26 is cut off. When the internal pressure further increases, the upper valve body 26 is broken, and the gas is discharged from the through hole 27a of the terminal cap 27. As shown in FIG. This gas discharge prevents the cylindrical battery 10 from bursting due to an excessive increase in the internal pressure of the cylindrical battery 10, thereby enhancing the safety of the cylindrical battery 10. FIG.

次に、円筒形電池10の製造方法について説明する。先ず、図7を参照して、筒状部30′及び底板68′を含み、筒状部30′の底板68′側の端部が径方向の外方側に突出する外側突出部70を有して肉厚になっている有底筒状の外装缶16′を用意する。本実施形態では、外側突出部70は、周方向の全周に亘って径方向の外方に突出し、環状構造を有する。この外装缶16′は、上述のスピニング加工や、かしめを行う前のものであり、肩部38や溝入れ部34を有さない。 Next, a method for manufacturing the cylindrical battery 10 will be described. First, referring to FIG. 7, it includes a tubular portion 30' and a bottom plate 68', and the end portion of the tubular portion 30' on the side of the bottom plate 68' has an outer projecting portion 70 projecting radially outward. Then, a cylindrical outer can 16' having a thick wall and a bottom is prepared. In the present embodiment, the outer protruding portion 70 protrudes radially outward over the entire circumference and has an annular structure. This outer can 16' has not been subjected to the above-described spinning process and caulking, and does not have the shoulder portion 38 or the grooved portion 34. As shown in FIG.

次に、図1を参照して、上述の方法で、正極11と負極12がセパレータ13を介して巻回された電極体14における負極12を集電板60に接合する。次に、電極体14が接合された集電板60を外装缶16′内の底側に配置する。その後、上述のスピニング加工やかしめを行って、図4に示すように、電池10(図1参照)との比較において、内側突出部50(図1参照)の替わりに外側突出部70を有する点が異なる外装缶16′′を備える電池10′を作製する。 Next, referring to FIG. 1, the negative electrode 12 in the electrode body 14 in which the positive electrode 11 and the negative electrode 12 are wound with the separator 13 interposed therebetween is joined to the collector plate 60 by the method described above. Next, the collector plate 60 to which the electrode assembly 14 is joined is placed on the bottom side of the outer can 16'. After that, the above-mentioned spinning processing and crimping are performed, and as shown in FIG. A battery 10' having outer cans 16'' with different values is fabricated.

その後、絞り加工を行って、外側突出部70の外径が筒状部30′′において外側突出部70を有さない円筒部30′′aの外径と略同一になるように絞り加工を行う。この絞り加工は、絞り加工装置80の絞り部81を筒状部30に対して矢印Aで示す軸方向に相対移動させることで行う。絞り部81は、環状の部材であり、円筒内周面81aを有する。円筒内周面81aの内径は、円筒部30′′aの外径と略同一になっている。このことから、しぼり加工を行うことで、外側突出部70を径方向の内側に塑性変形させることによって、外側突出部70が存在しなくなるようにできると共に筒状部30(図1参照)の底板68(図1参照)側の端部に径方向の内方側に突出する内側突出部50を形成できる。 After that, drawing is performed so that the outer diameter of the outer protruding portion 70 becomes substantially the same as the outer diameter of the cylindrical portion 30''a that does not have the outer protruding portion 70 in the cylindrical portion 30''. conduct. This drawing is performed by moving the drawing portion 81 of the drawing device 80 relative to the cylindrical portion 30 in the axial direction indicated by the arrow A. The throttle portion 81 is an annular member and has a cylindrical inner peripheral surface 81a. The inner diameter of the cylindrical inner peripheral surface 81a is substantially the same as the outer diameter of the cylindrical portion 30''a. Therefore, by performing the squeezing process, the outer protruding portion 70 is plastically deformed inward in the radial direction, so that the outer protruding portion 70 does not exist and the bottom plate of the cylindrical portion 30 (see FIG. 1) can be removed. An inner protrusion 50 that protrudes radially inward can be formed at the end on the 68 (see FIG. 1) side.

更には、図5、すなわち、有底筒状の外装缶16′′における外側突出部70周辺の軸方向の拡大断面図を参照して、外側突出部70の内周面と、円筒部30′′aの内周面とは、同一の円筒内周面85に含まれる。また、外側突出部70の径方向厚さt2から円筒部30′′aの径方向厚さt1を引いた値の2倍である2×(t2-t1)を、円筒内周面85の内径から、負極集電体露出部41を接合する前の集電板60の外径を引いた値よりも大きくしている。したがって、内側突出部50で集電板60の外周面60c(この外周面60cは、集電板の側面の一例)を確実に押圧できて、集電板60を外装缶16内の底側に確実に拘束でき、図1に示す電池10を製造できる。なお、集電板60は、外装缶16に溶接等で接合されておらず、集電板60は、外装缶16と一体に構成されていない。集電板60は、静止摩擦力により外装缶16に拘束されている。 Further, referring to FIG. 5, that is, an enlarged axial cross-sectional view of the periphery of the outer projecting portion 70 in the bottomed cylindrical outer can 16'', the inner peripheral surface of the outer projecting portion 70 and the cylindrical portion 30' are shown. The inner peripheral surface of 'a is included in the same cylindrical inner peripheral surface 85 . Further, 2×(t2−t1), which is twice the value obtained by subtracting the radial thickness t1 of the cylindrical portion 30″a from the radial thickness t2 of the outer protruding portion 70, is the inner diameter of the cylindrical inner peripheral surface 85. is larger than the value obtained by subtracting the outer diameter of the current collector plate 60 before joining the negative electrode current collector exposed portion 41 from the above. Therefore, the inner projecting portion 50 can reliably press the outer peripheral surface 60c of the current collector plate 60 (the outer peripheral surface 60c is an example of the side surface of the current collector plate), and the current collector plate 60 can be pushed toward the bottom side of the outer can 16. It can be reliably restrained, and the battery 10 shown in FIG. 1 can be manufactured. The current collector plate 60 is not joined to the outer can 16 by welding or the like, and the current collector plate 60 is not configured integrally with the outer can 16 . The current collector plate 60 is bound to the outer can 16 by static friction.

以上、円筒形電池10は、正極11と負極12がセパレータ13を介して巻回された電極体14と、電極体14を収容する有底筒状の外装缶16と、負極12に電気的に接続された集電板60と、を備える。また、外装缶16の筒状部30が、軸方向における外装缶16の底板68側に径方向の内方側に突出する内側突出部50を有し、集電板60の外周面60cが内側突出部50の内周面50aに接触する。 As described above, the cylindrical battery 10 includes the electrode body 14 in which the positive electrode 11 and the negative electrode 12 are wound with the separator 13 interposed therebetween; and a connected current collector plate 60 . In addition, the cylindrical portion 30 of the outer can 16 has an inner protruding portion 50 that protrudes radially inward toward the bottom plate 68 side of the outer can 16 in the axial direction, and the outer peripheral surface 60c of the current collector plate 60 extends inward. It contacts the inner peripheral surface 50a of the projecting portion 50 .

本開示によれば、集電板60を静止摩擦力によって外装缶16に固定できるので、集電板60を外装缶16に溶接で接合する必要がない。したがって、集電板を外装缶に溶接した場合に生じると共に抵抗が大きい溶接部を省略でき、その結果、電池10の内部抵抗を小さくできる。 According to the present disclosure, the current collector plate 60 can be secured to the outer can 16 by static friction, so there is no need to weld the current collector plate 60 to the outer can 16 . Therefore, the welded portion, which is generated when the current collector plate is welded to the outer can and has a large resistance, can be omitted, and as a result, the internal resistance of the battery 10 can be reduced.

また、集電板60を外装缶16に固定する際にスパッタが生じることがないので、そのスパッタで電池10が劣化することがない。よって、電池10の品質を高くできて、電池10の歩留まり率を高くでき、電池10の量産性を向上させることができる。 Moreover, since no spatter occurs when the current collector plate 60 is fixed to the outer can 16, the battery 10 is not deteriorated by the spatter. Therefore, the quality of the battery 10 can be improved, the yield rate of the battery 10 can be increased, and the mass productivity of the battery 10 can be improved.

更には、大掛かりな溶接装置を用いず、外装缶16′′を塑性変形させるだけで、集電板60を外装缶16に固定できる。 Furthermore, the collector plate 60 can be fixed to the outer can 16 simply by plastically deforming the outer can 16'' without using a large-scale welding device.

また、内側突出部50が、周方向の全周に亘って径方向の内方側に突出する環状突出部でもよい。 Alternatively, the inner protrusion 50 may be an annular protrusion that protrudes radially inward along the entire circumference.

本構成によれば、内側突出部50の内周面で集電板60の側面における周方向の広範囲部分を拘束でき、集電板60を更に確実に外装缶16に固定できる。 According to this configuration, the inner peripheral surface of the inner protrusion 50 can constrain a wide circumferential portion of the side surface of the current collector plate 60 , so that the current collector plate 60 can be fixed to the outer can 16 more reliably.

(第2実施形態)
図6は、本開示の第2実施形態に係る円筒形電池110の軸方向の断面図である。第2実施形態の電池110は、円板状の集電板160が折り曲げられた折曲部161を有する点のみが第1実施形態の円筒形電池10と異なる。第2実施形態では、第1実施形態と同一の構成に第1実施形態と同一の参照番号を付して説明を省略する。また、第2実施形態では、第1実施形態と同様の作用効果及び変形例についての説明を省略する。
(Second embodiment)
FIG. 6 is an axial cross-sectional view of a cylindrical battery 110 according to a second embodiment of the present disclosure. The battery 110 of the second embodiment differs from the cylindrical battery 10 of the first embodiment only in that it has a bent portion 161 in which a disk-shaped collector plate 160 is bent. In the second embodiment, the same reference numerals as in the first embodiment are given to the same configurations as in the first embodiment, and the description thereof is omitted. In addition, in the second embodiment, the description of the effects and modifications similar to those of the first embodiment will be omitted.

図6では、集電板160における折曲部161よりも径方向の外側に位置する第1部分165を、集電板160における折曲部161以外の第2部分166と異なるハッチングで示している。第1部分165は、集電板160の環状の外縁部に一致している。 In FIG. 6 , the first portion 165 of the current collector plate 160 positioned radially outside the bent portion 161 is indicated by hatching different from the second portion 166 of the current collector plate 160 other than the bent portion 161 . . The first portion 165 coincides with the annular outer edge of the current collector plate 160 .

電池110は、例えば、次の方法で作製することができる。詳しくは、図7に示すように、負極集電体露出部41に接合する前の集電板160′として、外縁部の少なくとも一部が厚さ方向の第1の側に屈曲する屈曲部170を有するものを採用する。また、集電板160′の外径が、有底筒状の外装缶16′の内周面の内径よりも小さいものを採用する。 Battery 110 can be produced, for example, by the following method. Specifically, as shown in FIG. 7, as a current collector plate 160′ before being joined to the negative electrode current collector exposed portion 41, at least a part of the outer edge portion is bent toward the first side in the thickness direction. adopt those with Further, the outer diameter of the collector plate 160' is smaller than the inner diameter of the inner peripheral surface of the bottomed cylindrical outer can 16'.

その集電板160′に第1実施形態と同一の方法で電極体14の負極集電体露出部41を接合した後、集電板160′の屈曲部170の先端が外装缶16′の底板68′の内面に接触するように集電板160′及び電極体14を外装缶16′内に収容する。この状態で、屈曲部170は、集電板160′における屈曲部170以外の中央部175の径方向外方側の端部から外装缶16′の径方向外側かつ軸方向の底板68′側に延在する。 After joining the negative electrode current collector exposing portion 41 of the electrode body 14 to the current collector plate 160' by the same method as in the first embodiment, the tip of the bent portion 170 of the current collector plate 160' is attached to the bottom plate of the outer can 16'. The current collecting plate 160' and the electrode assembly 14 are accommodated in the outer can 16' so as to contact the inner surface of 68'. In this state, the bent portion 170 extends from the radially outer end of the central portion 175 of the collector plate 160' other than the bent portion 170 to the radially outer side of the outer can 16' toward the bottom plate 68' in the axial direction. Extend.

その後、電極体14に軸方向上側から軸方向下側に力Fを付与する。なお、図7に示すように、集電板160′を外装缶16′内に収容する前に正極リード20を正極11に接合すると共に、電極体14における軸方向の集電板160′側とは反対側に絶縁板18を載置した上で、電極体14を外装缶16′内に収容してもよい。そして、絶縁板18の上面18aに軸方向下側の力Fを付与してもよい。このようにして、電極体14に絶縁板18を介して軸方向下側の力を間接的に付与してもよい。 After that, a force F is applied to the electrode body 14 from the upper side in the axial direction to the lower side in the axial direction. As shown in FIG. 7, the positive electrode lead 20 is joined to the positive electrode 11 before housing the collector plate 160' in the outer can 16', and the axial direction of the collector plate 160' side of the electrode body 14 is After placing the insulating plate 18 on the opposite side, the electrode body 14 may be accommodated in the exterior can 16'. Then, an axially downward force F may be applied to the upper surface 18 a of the insulating plate 18 . In this manner, an axial downward force may be applied indirectly to the electrode body 14 via the insulating plate 18 .

電極体14に軸方向下側の力を付与することで、集電板160′の中央部175に軸方向の底板68′側の力を付与し、図8に示すように、屈曲部170が略径方向に延在するように屈曲部170を塑性変形し、上述の集電板160を作製する。この塑性変形により集電板160に折曲部161が生じる。折曲部161は、それ以外の部分との比較において僅かに変形しているので、特定することができる。その後、第1実施形態と同一の方法により、外側突出部70を内側突出部50に塑性変形して、図6に示す電池110を作製する。 By applying a downward axial force to the electrode body 14, a force is applied to the center portion 175 of the collector plate 160' in the axial direction toward the bottom plate 68', and as shown in FIG. The bent portion 170 is plastically deformed so as to extend substantially in the radial direction, thereby fabricating the current collector plate 160 described above. This plastic deformation causes a bent portion 161 in the current collector plate 160 . The bent portion 161 can be identified because it is slightly deformed in comparison with other portions. After that, the outer projecting portion 70 is plastically deformed into the inner projecting portion 50 by the same method as in the first embodiment to fabricate the battery 110 shown in FIG.

第2実施形態によれば、集電板160′の外径が小さい状態で集電板160′を外装缶16′に収容できるので、集電板160′を外装缶16′に円滑かつ容易に収容できる。また、集電板160′を外装缶16′に収容した後で、集電板160′を塑性変形させることで、塑性変形後の集電板160の外径を外装缶16′の内周面の内径に近づけることができて、外装缶16′の内周面と、集電板160の外周面との間の径方向の隙間を小さくできる。したがって、外側突出部70を塑性変形することで形成した内側突出部50によって集電板160に径方向内側の大きな力を付与でき、集電板160を内側突出部50に確実に固定できる。 According to the second embodiment, the current collecting plate 160' can be accommodated in the outer can 16' while the outer diameter of the current collecting plate 160' is small. can accommodate. Further, by plastically deforming the current collecting plate 160' after the current collecting plate 160' is accommodated in the outer can 16', the outer diameter of the current collecting plate 160 after plastic deformation is equal to the inner peripheral surface of the outer can 16'. , and the radial gap between the inner peripheral surface of the outer can 16' and the outer peripheral surface of the collector plate 160 can be reduced. Therefore, the inner protruding portion 50 formed by plastically deforming the outer protruding portion 70 can apply a large radially inner force to the current collecting plate 160 , and the current collecting plate 160 can be securely fixed to the inner protruding portion 50 .

(内部抵抗確認試験)
本願発明者は、比較例1、2の円筒形電池と、実施例1、2の円筒形電池を作製し、各円筒形電池に関して、25℃、0.2C放電容量、及び作製後初期にAC(alternating current)内部抵抗(1kHz)を測定すると共に、4.2V、60℃、20日の保存試験を行った後にAC内部抵抗(1kHz)を測定した。
(Internal resistance confirmation test)
The inventors of the present application produced cylindrical batteries of Comparative Examples 1 and 2 and cylindrical batteries of Examples 1 and 2, and tested each cylindrical battery at 25°C, 0.2C discharge capacity, and AC (Alternating current) Internal resistance (1 kHz) was measured, and AC internal resistance (1 kHz) was measured after performing a storage test at 4.2 V, 60° C., and 20 days.

<比較例1の電池>
図9に平面図を示す負極212を用いた。詳しくは、負極212の負極集電体240の長手方向の巻き終わり側の端部に負極合剤層242を設けない負極集電体露出部241を形成した。そして、この負極集電体露出部241に負極リード221を接合した。負極212を、正極11及び2枚のセパレータ13と共に巻回して電極体214を作製した。電極体14を、有底筒状の外装缶216に挿入し、負極リード221を缶底に溶接し、正極リード20を封口体17に溶接した。電解液注液後、ガスケット28を介して缶開口部をかしめることで、外径が18mm、高さが65mm、容量が2000mAhで、図10に軸方向の断面図を示す円筒形電池210を作製した。電池210は、負極リード221を用いた点と、セパレータ13が電極体214の下側端部を構成する点と、筒状部230が内側突出部を有さない有底筒状の外装缶216を用いた点と、電極体214と外装缶216の底板268との間に絶縁板19を配置した点とが、図1に示す電池10と異なり、電池210の他の構成は、図1に示す電池10と同一である。
<Battery of Comparative Example 1>
A negative electrode 212 whose plan view is shown in FIG. 9 was used. Specifically, a negative electrode current collector exposed portion 241 where the negative electrode mixture layer 242 is not provided is formed at the end portion of the negative electrode current collector 240 of the negative electrode 212 on the winding end side in the longitudinal direction. Then, the negative electrode lead 221 was joined to the negative electrode current collector exposed portion 241 . An electrode body 214 was produced by winding the negative electrode 212 together with the positive electrode 11 and two separators 13 . The electrode body 14 was inserted into a bottomed cylindrical outer can 216 , the negative electrode lead 221 was welded to the can bottom, and the positive electrode lead 20 was welded to the sealing member 17 . After pouring the electrolyte, the can opening was crimped through the gasket 28 to obtain a cylindrical battery 210 having an outer diameter of 18 mm, a height of 65 mm, and a capacity of 2000 mAh, the axial cross-sectional view of which is shown in FIG. made. The battery 210 uses a negative electrode lead 221, the separator 13 constitutes the lower end portion of the electrode body 214, and the cylindrical portion 230 is a bottomed cylindrical outer can 216 that does not have an inwardly projecting portion. and that an insulating plate 19 is arranged between the electrode body 214 and the bottom plate 268 of the outer can 216. The battery 210 is different from the battery 10 shown in FIG. It is the same as the battery 10 shown.

<比較例2の電池>
図11に軸方向の断面図を示す円筒形電池310を比較例2の円筒形電池とした。詳しくは、図1に示す電池10との比較において、有底筒状の外装缶16の代わりに筒状部230が内側突出部を有さない有底筒状の外装缶216を用いた点のみが、図1に示す電池10と異なり、他の構成は、図1に示す電池10と同一である円筒形電池310を作製した。円筒形電池310は、外径が18mmで、高さが65mmで、容量が2000mAhであった。
<Battery of Comparative Example 2>
A cylindrical battery 310 whose axial cross-sectional view is shown in FIG. 11 was used as a cylindrical battery of Comparative Example 2. Specifically, in comparison with the battery 10 shown in FIG. 1, the only difference is that a bottomed cylindrical outer can 216 in which the cylindrical portion 230 does not have an inward protrusion is used instead of the bottomed cylindrical outer can 16. However, unlike the battery 10 shown in FIG. 1, a cylindrical battery 310 having the same configuration as the battery 10 shown in FIG. 1 was fabricated. The cylindrical battery 310 had an outer diameter of 18 mm, a height of 65 mm and a capacity of 2000 mAh.

<実施例1の電池>
第1実施形態の円筒形電池10を実施例1の円筒形電池10とした。構成を再度簡単に説明すると、負極集電体露出部41に集電板60を溶接した。底側部の外径を大きくし内径は一定である有底筒状の外装缶16′を準備し、集電板60が缶底に接触するように電極体14を挿入した。正極リード20を封口体17に接続した。電解液注液後、缶開口部にガスケット28を介して封口体17をかしめた。その後、外装缶16′に絞り加工を実施し、外装缶16の底側部に内側突出部50を形成して底側部の内径を小さくすることで、缶底だけでなく側面側からも集電板60と外装缶16を接触させた。このようにして、外径が18mmで、高さが65mmで、容量が2000mAの円筒形電池10を作製した。
<Battery of Example 1>
The cylindrical battery 10 of the first embodiment was used as the cylindrical battery 10 of Example 1. FIG. To briefly explain the configuration again, the current collector plate 60 was welded to the negative electrode current collector exposed portion 41 . A cylindrical outer can 16' with a bottom having a large outer diameter and a constant inner diameter was prepared, and the electrode body 14 was inserted so that the collector plate 60 was in contact with the bottom of the can. The positive electrode lead 20 was connected to the sealing member 17 . After pouring the electrolytic solution, the sealant 17 was crimped to the opening of the can via a gasket 28 . Thereafter, the outer can 16' is subjected to a drawing process to form an inner protruding portion 50 on the bottom side of the outer can 16 to reduce the inner diameter of the bottom side. The electric plate 60 and the outer can 16 were brought into contact with each other. Thus, a cylindrical battery 10 having an outer diameter of 18 mm, a height of 65 mm and a capacity of 2000 mA was produced.

<実施例2の電池>
第2実施形態の円筒形電池110を実施例2の円筒形電池110とした。再度構成を簡単に説明すると、底側部の外径を大きくし内径は一定である有底筒状の外装缶16′と、端部を一方に反らす加工をしたNi製の集電板160′を準備し、電極体14側とは反対側に反らした側が向くように集電板160′を負極集電体露出部41に溶接し、その後、外装缶16′に電極体14を挿入した。電極体14を上部からプレスして集電板160′を平坦な形状の集電板160に変形させた。正極リード20を封口体17に接続し、電解液注液後、缶開口部にガスケット28を介して封口体17をかしめた。その後、外装缶16′に絞り加工を実施し、外装缶16の底側部に内側突出部50を形成して底側部の内径を小さくすることで、缶底だけでなく側面側からも集電板160と外装缶16を接触させた。このようにして、外径が18mmで、高さが65mmで、容量が2000mAの円筒形電池110を作製した。
<Battery of Example 2>
The cylindrical battery 110 of the second embodiment was used as the cylindrical battery 110 of Example 2. FIG. Briefly explaining the structure again, a bottomed cylindrical outer can 16' having a large outer diameter at the bottom side and a constant inner diameter, and a current collecting plate 160' made of Ni whose ends are bent to one side. was prepared, and the current collector plate 160' was welded to the negative electrode current collector exposed portion 41 so that the side warped away from the electrode body 14 side faced, and then the electrode body 14 was inserted into the outer can 16'. The electrode assembly 14 was pressed from above to transform the collector plate 160 ′ into a flat collector plate 160 . The positive electrode lead 20 was connected to the sealing body 17, and after the electrolytic solution was injected, the sealing body 17 was crimped to the opening of the can with a gasket 28 interposed therebetween. Thereafter, the outer can 16' is subjected to a drawing process to form an inner protruding portion 50 on the bottom side of the outer can 16 to reduce the inner diameter of the bottom side. The electric plate 160 and the outer can 16 were brought into contact with each other. Thus, a cylindrical battery 110 with an outer diameter of 18 mm, a height of 65 mm, and a capacity of 2000 mA was produced.

[試験結果]
以下の表1に試験結果を示す。

Figure 2023087895000002
[Test results]
The test results are shown in Table 1 below.
Figure 2023087895000002

試験結果によれば、比較例1~2、実施例1~2の電池の全てで、略同等の放電容量が得られた。また、初期のAC内部抵抗に関し、比較例2の電池の初期のAC内部抵抗は、比較例1の電池に対して7.5mΩ低く、実施例1、2の電池の初期のAC内部抵抗は、比較例1の電池に対して8mΩ引かった。比較例1の電池は、負極212の巻き終わり側の端部に接合した負極リード221を介して集電を行っている。よって、比較例1の電池は、負極212の巻き始め側を通過する電荷の集電経路が長くなること等の理由によって抵抗が大きくなっているものと考えられる。 According to the test results, substantially the same discharge capacity was obtained in all of the batteries of Comparative Examples 1 and 2 and Examples 1 and 2. Regarding the initial AC internal resistance, the initial AC internal resistance of the battery of Comparative Example 2 is 7.5 mΩ lower than that of the battery of Comparative Example 1, and the initial AC internal resistance of the batteries of Examples 1 and 2 is Compared to the battery of Comparative Example 1, 8 mΩ was pulled. In the battery of Comparative Example 1, current is collected via the negative electrode lead 221 joined to the end of the winding end of the negative electrode 212 . Therefore, in the battery of Comparative Example 1, it is considered that the resistance is increased due to reasons such as the longer current collection path of the charge passing through the winding start side of the negative electrode 212 .

保存試験後では、比較例1の電池では、抵抗が初期に比べて2mΩしか上昇していないのに対し、比較例2の電池では、抵抗が初期に比べて5mΩも上昇している。これは、保存試験中にセル内部でガスが発生して内圧が上がり、缶底が膨れたことで缶底における集電板との接触領域が小さくなったためであると考えられる。 After the storage test, the resistance of the battery of Comparative Example 1 increased by only 2 mΩ compared to the initial stage, while the resistance of the battery of Comparative Example 2 increased by 5 mΩ compared to the initial stage. This is presumably because gas was generated inside the cell during the storage test, the internal pressure increased, and the bottom of the can swelled, reducing the contact area between the bottom of the can and the current collector plate.

一方で、実施例1の電池においては、抵抗が初期に比べて3mΩしか上昇せず、比較例2と比べて抵抗上昇を抑制できた。更には、実施例2の電池においては、抵抗が初期と比べて2mΩしか上昇せず、負極リード221を缶底に溶接した比較例1の電池と同等の結果が得られた。 On the other hand, in the battery of Example 1, the resistance increased by only 3 mΩ compared to the initial stage, and compared with Comparative Example 2, the increase in resistance could be suppressed. Furthermore, in the battery of Example 2, the resistance increased by only 2 mΩ compared to the initial state, and a result equivalent to that of the battery of Comparative Example 1 in which the negative electrode lead 221 was welded to the bottom of the can was obtained.

保存試験後に関し、比較例2の電池の内部抵抗の増大と比較して実施例1、2の電池の内部抵抗の増大を低減できた理由は、集電板60,160と外装缶16との接触面積が、側面同士の接触面積だけ増えたことと、比較例2の電池では缶底膨れにより缶底面との接触が減っているが、実施例1、2の電池では、集電板の側面と外装缶の側面との接触が安定しているため、良好な導通性能を保持できているためであると考えられる。また、実施例2の電池においては、外装缶16′に挿入する前は、集電板160′の外縁側の端部を反らしておき、外装缶16′への挿入後に平坦になるように加工している。したがって、集電板160′の外装缶16′への挿入を容易に行うことができて、集電板160′の取り扱い性を向上でき、集電板160の絞り後の外装缶16の側面との安定な接触も実現できる。 The reason why the increase in the internal resistance of the batteries of Examples 1 and 2 could be reduced compared to the increase of the internal resistance of the battery of Comparative Example 2 after the storage test is that the current collector plates 60 and 160 and the outer can 16 The contact area increased by the contact area between the side surfaces, and in the battery of Comparative Example 2, the contact with the bottom surface of the can decreased due to the swelling of the bottom of the can. It is believed that this is because the contact with the side surface of the outer can is stable, and good conduction performance can be maintained. In addition, in the battery of Example 2, the end of the current collector plate 160' on the outer edge side was warped before being inserted into the outer can 16', and was processed so as to be flat after being inserted into the outer can 16'. are doing. Therefore, the current collector plate 160' can be easily inserted into the outer can 16', and the handleability of the current collector plate 160' can be improved. stable contact can also be realized.

(変形例)
本開示は、上記実施形態およびその変形例に限定されるものではなく、本願の特許請求の範囲に記載された事項およびその均等な範囲において種々の改良や変更が可能である。例えば、上記実施形態では、円板状の集電板60,160を用いると共に、外装缶16が、環状の内側突出部50を有していた。しかし、集電体は、円板形状を有さなくてもよい。例えば、集電体として、電池の径方向中央部のみに配置される板状部と、板状部の外縁部から放射状に径方向に延在すると共に周方向に間隔をおいて配置される複数の径方向延在部とを有する集電体を採用してもよい。そして、集電板の側面を複数の径方向延在部の先端面で構成してもよい。この場合でも、各径方向延在部の先端面を内側突出部の径方向内側の先端面に接触させることで集電板を外装缶に固定することができる。
(Modification)
The present disclosure is not limited to the above embodiments and modifications thereof, and various improvements and modifications are possible within the scope of the claims of the present application and their equivalents. For example, in the above embodiments, the disk-shaped collector plates 60 and 160 are used, and the outer can 16 has the annular inner projecting portion 50 . However, the current collector does not have to have a disk shape. For example, as current collectors, a plate-shaped portion arranged only in the radial center portion of the battery, and a plurality of collectors extending radially from the outer edge portion of the plate-shaped portion in the radial direction and arranged at intervals in the circumferential direction A current collector having a radially extending portion of . Then, the side surface of the current collector plate may be configured by the distal end surfaces of the plurality of radially extending portions. Even in this case, the current collector plate can be fixed to the outer can by bringing the tip surface of each radially extending portion into contact with the radially inner tip surface of the inner projecting portion.

また、内側突出部も、環状でなくてもよく、例えば、内側突出部は、周方向に間隔をおいて配置されると共に、外装缶の筒状部から径方向の内方側に延在する複数の径方向延在突出部で構成されてもよい。この場合でも、各径方向延在突出部の径方向の内方側の先端面を集電板の側面に接触させることで集電板を外装缶に固定することができる。 Also, the inner protrusions may not be annular. For example, the inner protrusions may be spaced apart in the circumferential direction and extend radially inward from the cylindrical portion of the outer can. It may consist of a plurality of radially extending protrusions. Even in this case, the current collector plate can be fixed to the outer can by bringing the radially inner end surface of each radially extending projecting portion into contact with the side surface of the current collector plate.

また、第1電極が、負極12であると共に第2電極が正極11であって、端子キャップ27が正極端子を構成すると共に外装缶16が負極端子を構成する場合について説明した。しかし、第1電極が、正極であると共に第2電極が負極であり、端子キャップ27が負極端子を構成すると共に外装缶が正極端子を構成してもよい。 Also, the case where the first electrode is the negative electrode 12 and the second electrode is the positive electrode 11, the terminal cap 27 constitutes the positive terminal, and the outer can 16 constitutes the negative terminal has been described. However, the first electrode may be the positive electrode, the second electrode may be the negative electrode, the terminal cap 27 may constitute the negative terminal, and the outer can may constitute the positive terminal.

10,110 円筒形電池、 11 正極、 12 負極、 13 セパレータ、 14 電極体、 16 外装缶、 17 封口体、 18 絶縁板、 18a 絶縁板の上面、 20 正極リード、 23 底板、 23a 貫通孔、 24 下弁体、 25 絶縁部材、 26 上弁体、 27 端子キャップ、 27a 貫通孔、 28 ガスケット、 30 筒状部、 30a 円筒部、 34 溝入れ部、 38 肩部、 40 負極集電体、 41 負極集電体露出部、 42 負極合剤層、 45 周縁部、 50 内側突出部、 50a 内側突出部の内周面、 60,160 集電板、 60a 集電板の上面、 60b 集電板の下面、 60c 集電板の外周面、 68 外装缶の底板、 70 外側突出部、 80 絞り加工装置、 81 絞り部、 81a 絞り部の円筒内周面、 85 円筒内周面、 161 折曲部、 165 第1部分、 166 第2部分、 170 屈曲部、 175 中央部。 10,110 Cylindrical Battery 11 Positive Electrode 12 Negative Electrode 13 Separator 14 Electrode Body 16 Outer Can 17 Sealing Body 18 Insulating Plate 18a Upper Surface of Insulating Plate 20 Positive Electrode Lead 23 Bottom Plate 23a Through Hole 24 Lower valve body 25 Insulating member 26 Upper valve body 27 Terminal cap 27a Through hole 28 Gasket 30 Cylindrical part 30a Cylindrical part 34 Groove part 38 Shoulder part 40 Negative electrode current collector 41 Negative electrode Exposed current collector 42 Negative electrode mixture layer 45 Peripheral edge 50 Inner protrusion 50a Inner peripheral surface of inner protrusion 60,160 Current collector 60a Upper surface of current collector 60b Lower surface of current collector , 60c Outer peripheral surface of collector plate 68 Bottom plate of outer can 70 Outer protrusion 80 Drawing device 81 Drawn portion 81a Cylindrical inner peripheral surface of drawn portion 85 Cylindrical inner peripheral surface 161 Bent portion 165 first portion 166 second portion 170 bend 175 central portion;

Claims (6)

第1電極と第2電極がセパレータを介して巻回された電極体と、
前記電極体を収容する有底筒状の外装缶と、
前記第1電極に電気的に接続された集電板と、を備え、
前記外装缶の筒状部が、軸方向における前記外装缶の底板側に径方向の内方側に突出する内側突出部を有し、
前記集電板の側面が前記内側突出部に接触する、円筒形電池。
an electrode body in which the first electrode and the second electrode are wound with a separator interposed therebetween;
a cylindrical outer can with a bottom that houses the electrode body;
a collector plate electrically connected to the first electrode;
The cylindrical portion of the outer can has an inner protruding portion that protrudes radially inward toward the bottom plate of the outer can in the axial direction,
A cylindrical battery, wherein a side surface of the current collector plate contacts the inner protrusion.
前記内側突出部が、周方向の全周に亘って前記径方向の内方側に突出する環状突出部である、請求項1に記載の円筒形電池。 2. The cylindrical battery according to claim 1, wherein said inner protrusion is an annular protrusion that protrudes radially inward over the entire circumference. 前記集電板が、折り曲げられた折曲部を有する、請求項1又は2に記載の円筒形電池。 3. The cylindrical battery according to claim 1 or 2, wherein the current collector plate has a bent portion. 前記第1電極が、長尺状の集電体と、前記集電体上に設けられた合剤層とを有し、
前記集電体上において前記合剤層が設けられなかった集電体露出部が前記集電板に接合されている、請求項1から3のいずれか1つに記載の円筒形電池。
The first electrode has an elongate current collector and a mixture layer provided on the current collector,
4. The cylindrical battery according to any one of claims 1 to 3, wherein an exposed current collector portion on which said mixture layer is not provided on said current collector is joined to said current collector plate.
筒状部及び底板を含み、前記筒状部の前記底板側の端部が径方向の外方側に突出する外側突出部を有して肉厚になっている有底筒状の外装缶を用意し、
第1電極と第2電極がセパレータを介して巻回された電極体における前記第1電極を集電板に接合し、
前記電極体が接合された前記集電板を前記外装缶内の底側に配置し、
前記外側突出部を前記径方向の内側に塑性変形させることによって前記筒状部の前記底板側の端部に前記径方向の内方側に突出する内側突出部を形成してその内側突出部で前記集電板の側面を押圧することで、前記集電板を前記外装缶内の底側に拘束する、円筒形電池の製造方法。
A bottomed cylindrical outer can including a cylindrical portion and a bottom plate, wherein the end portion of the cylindrical portion on the bottom plate side has an outer protruding portion that protrudes radially outward and is thick. prepare,
joining the first electrode in the electrode body in which the first electrode and the second electrode are wound with a separator interposed to a current collector plate;
disposing the current collector plate to which the electrode body is joined on the bottom side in the outer can;
By plastically deforming the outer protruding portion inward in the radial direction, an inner protruding portion protruding inward in the radial direction is formed at the end portion of the cylindrical portion on the bottom plate side, and the inner protruding portion protrudes inward in the radial direction. A method for manufacturing a cylindrical battery, wherein the side surface of the current collector plate is pressed to constrain the current collector plate to the bottom side of the outer can.
前記集電板を前記外装缶内に収容する前に、前記集電板の外縁部の少なくとも一部が厚さ方向の第1の側に屈曲する屈曲部を有し、
前記電極体は、前記電極体の前記厚さ方向の第2の側に接合され、
前記電極体が接合された前記集電板は、前記第1の側が前記底板側に位置するように前記外装缶内に配置され、
前記外側突出部を塑性変形させる前に、前記電極体における軸方向の前記底板側とは反対側から前記電極体に力を付与することで前記屈曲部に前記厚さ方向の前記第2の側に力を付与して前記屈曲部を塑性変形させる、請求項5に記載の円筒形電池の製造方法。
At least a part of the outer edge of the current collector has a bent portion that bends to a first side in the thickness direction before the current collector is housed in the outer can;
the electrode body is joined to a second side in the thickness direction of the electrode body;
The current collector plate to which the electrode assembly is joined is arranged in the outer can so that the first side is positioned on the bottom plate side,
Before plastically deforming the outer protruding portion, a force is applied to the electrode body from a side opposite to the bottom plate side in the axial direction of the electrode body, so that the bent portion is deformed to the second side in the thickness direction. 6. The method of manufacturing a cylindrical battery according to claim 5, wherein force is applied to plastically deform the bent portion.
JP2021202435A 2021-12-14 2021-12-14 Cylindrical battery and method of manufacturing cylindrical battery Pending JP2023087895A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2021202435A JP2023087895A (en) 2021-12-14 2021-12-14 Cylindrical battery and method of manufacturing cylindrical battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2021202435A JP2023087895A (en) 2021-12-14 2021-12-14 Cylindrical battery and method of manufacturing cylindrical battery

Publications (1)

Publication Number Publication Date
JP2023087895A true JP2023087895A (en) 2023-06-26

Family

ID=86899734

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2021202435A Pending JP2023087895A (en) 2021-12-14 2021-12-14 Cylindrical battery and method of manufacturing cylindrical battery

Country Status (1)

Country Link
JP (1) JP2023087895A (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2023053388A (en) * 2018-03-08 2023-04-12 株式会社三洋物産 game machine
JP2023053387A (en) * 2022-02-04 2023-04-12 株式会社三洋物産 game machine
JP2023054225A (en) * 2019-04-11 2023-04-13 株式会社三洋物産 game machine
JP2023054226A (en) * 2017-12-29 2023-04-13 株式会社三洋物産 game machine
JP2023054223A (en) * 2019-03-28 2023-04-13 株式会社三洋物産 game machine
JP2023054222A (en) * 2019-03-28 2023-04-13 株式会社三洋物産 game machine
JP2023054224A (en) * 2019-04-11 2023-04-13 株式会社三洋物産 game machine
JP2023054227A (en) * 2018-02-15 2023-04-13 株式会社三洋物産 game machine
JP2023060270A (en) * 2022-04-01 2023-04-27 株式会社三洋物産 game machine
JP2023060269A (en) * 2022-04-01 2023-04-27 株式会社三洋物産 game machine
JP2023063369A (en) * 2022-01-07 2023-05-09 株式会社三洋物産 game machine
JP2023071934A (en) * 2019-02-15 2023-05-23 株式会社三洋物産 game machine

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2023054226A (en) * 2017-12-29 2023-04-13 株式会社三洋物産 game machine
JP2023054227A (en) * 2018-02-15 2023-04-13 株式会社三洋物産 game machine
JP2023053388A (en) * 2018-03-08 2023-04-12 株式会社三洋物産 game machine
JP2023071934A (en) * 2019-02-15 2023-05-23 株式会社三洋物産 game machine
JP2023054223A (en) * 2019-03-28 2023-04-13 株式会社三洋物産 game machine
JP2023054222A (en) * 2019-03-28 2023-04-13 株式会社三洋物産 game machine
JP2023054225A (en) * 2019-04-11 2023-04-13 株式会社三洋物産 game machine
JP2023054224A (en) * 2019-04-11 2023-04-13 株式会社三洋物産 game machine
JP2023063369A (en) * 2022-01-07 2023-05-09 株式会社三洋物産 game machine
JP2023053387A (en) * 2022-02-04 2023-04-12 株式会社三洋物産 game machine
JP2023060270A (en) * 2022-04-01 2023-04-27 株式会社三洋物産 game machine
JP2023060269A (en) * 2022-04-01 2023-04-27 株式会社三洋物産 game machine

Similar Documents

Publication Publication Date Title
JP2023087895A (en) Cylindrical battery and method of manufacturing cylindrical battery
US20100316897A1 (en) Secondary battery
KR20120024503A (en) Terminal of sealed battery and manufacturing method thereof
US11495833B2 (en) Cylindrical battery
US20190221824A1 (en) Non-aqueous electrolyte secondary battery
WO2021124995A1 (en) Cylindrical battery
WO2018168628A1 (en) Non-aqueous electrolyte secondary battery
JP3588264B2 (en) Rechargeable battery
WO2022202395A1 (en) Cylindrical battery
JPWO2020004135A1 (en) Non-aqueous electrolyte secondary battery
JP2022152423A (en) cylindrical battery
US20220255121A1 (en) Battery
WO2023085030A1 (en) Cylindrical battery
WO2019235259A1 (en) Non-aqueous electrolyte secondary battery
US20240039093A1 (en) Hermetically sealed battery
WO2023162710A1 (en) Cylindrical nonaqueous electrolyte secondary battery
WO2022186039A1 (en) Cylindrical battery
WO2023286600A1 (en) Cylindrical battery and method for manufacturing cylindrical battery
WO2023054005A1 (en) Cylindrical battery
WO2024070513A1 (en) Cylindrical battery
WO2023145830A1 (en) Power storage device
WO2023223791A1 (en) Cylindrical battery
WO2024071239A1 (en) Power storage device
WO2022158378A1 (en) Cylindrical battery
WO2023281973A1 (en) Cylindrical battery

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20230424