JP2023087528A - Vehicle heating/cooling storage system - Google Patents

Vehicle heating/cooling storage system Download PDF

Info

Publication number
JP2023087528A
JP2023087528A JP2021201962A JP2021201962A JP2023087528A JP 2023087528 A JP2023087528 A JP 2023087528A JP 2021201962 A JP2021201962 A JP 2021201962A JP 2021201962 A JP2021201962 A JP 2021201962A JP 2023087528 A JP2023087528 A JP 2023087528A
Authority
JP
Japan
Prior art keywords
heat exchanger
refrigerant
heating
cooling
cold
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2021201962A
Other languages
Japanese (ja)
Inventor
修 石田
Osamu Ishida
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Honda Motor Co Ltd
Original Assignee
Honda Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Honda Motor Co Ltd filed Critical Honda Motor Co Ltd
Priority to JP2021201962A priority Critical patent/JP2023087528A/en
Publication of JP2023087528A publication Critical patent/JP2023087528A/en
Pending legal-status Critical Current

Links

Images

Abstract

To provide a vehicle heating/cooling storage system capable of efficiently adjusting temperature inside a heating/cooling storage in any state of air-conditioning operation.SOLUTION: A heating/cooling storage system 10 comprises: a heating coolant circuit 15; a cooling coolant circuit 16; a heating/cooling storage 90; a switch valve 65; and a control device 13. The heating/cooling storage 90 has a heating/cooling heat exchanger 95 which performs heat exchange between a coolant flowing therein and air inside the heating/cooling storage. The switch valve 65 selectively allows the coolant in a hot heat passage 41h at a downstream side of a compressor 21 in the heating coolant circuit 15 or the coolant in a cold heat passage 43c at a downstream side of a cooling expansion valve 29 in the cooling coolant circuit 16 to be distributed to the heating/cooling heat exchanger 95. The control device 13 controls operation of the switch valve 65.SELECTED DRAWING: Figure 1

Description

本発明は、食品や飲料水等を収納する温冷蔵庫を備えた車両の温冷蔵システムに関するものである。 TECHNICAL FIELD The present invention relates to a hot and cold storage system for a vehicle equipped with a hot and cold refrigerator for storing food, drinking water, and the like.

食品や飲料水等を収納する温冷蔵庫を備えた車両が知られている(例えば、特許文献1参照)。
特許文献1に記載の車両の温冷蔵システムは、空調装置のエバポレータ(冷房用室内熱交換器)の下流部に接続される冷風導入ダクトと、空調装置のヒータコア(暖房用室内熱交換器)の下流部に接続される温風導入ダクトが温冷蔵庫に接続されている。温冷蔵庫に対する冷風導入ダクトと温風導入ダクトの接続は切換弁によって切換え可能とされている。温冷蔵庫は、エバポレータで冷却された空調用の冷風が導入されることにより冷蔵庫として機能し、ヒータコアで昇温された空調用の温風が導入されることにより温蔵庫として機能する。
2. Description of the Related Art A vehicle equipped with a refrigerator for storing food, drinking water, etc. is known (see, for example, Patent Document 1).
The hot and cold storage system for a vehicle described in Patent Document 1 includes a cool air introduction duct connected to a downstream portion of an evaporator (indoor heat exchanger for cooling) of an air conditioner, and a heater core (indoor heat exchanger for heating) of the air conditioner. A warm air introduction duct connected to the downstream part is connected to the warm refrigerator. The connection between the cold air introduction duct and the hot air introduction duct for the warm refrigerator can be switched by a switching valve. A warm refrigerator functions as a refrigerator by introducing cold air for air conditioning cooled by an evaporator, and functions as a warm storage by introducing warm air for air conditioning heated by a heater core.

特開平3-281425号公報JP-A-3-281425

しかし、上記従来の車両の温冷蔵システムは、空調装置の冷風や温風を温冷蔵庫に導入して導入空気の熱によって庫内の温度を所望の温度に調整するものであるため、温冷蔵庫の庫内を冷却したり、昇温したりする際の熱変換効率の面で改善の余地がある。 However, the above-described conventional vehicle warm/refrigerate system introduces cold or hot air from an air conditioner into the warm refrigerator and adjusts the temperature inside the refrigerator to a desired temperature by the heat of the introduced air. There is room for improvement in terms of heat conversion efficiency when cooling or heating the inside of the refrigerator.

そこで本発明は、いずれの空調運転の状態でも温冷蔵庫の庫内の温度を効率良く調整することができる車両の温冷蔵システムを提供しようとするものである。 SUMMARY OF THE INVENTION Accordingly, it is an object of the present invention to provide a hot and cold storage system for a vehicle that can efficiently adjust the temperature inside the warm refrigerator in any air conditioning operation state.

本発明に係る車両の温冷蔵システムは、上記課題を解決するために、以下の構成を採用した。
即ち、本発明に係る車両の温冷蔵システムは、コンプレッサ(例えば、実施形態のコンプレッサ21)によって圧縮した冷媒を暖房用室内熱交換器(例えば、実施形態の暖房用室内熱交換器55)で室内空気と熱交換した後に暖房用膨張弁(例えば、実施形態の暖房用膨張弁22)で減圧し、その冷媒を室外熱交換器(例えば、実施形態の室外熱交換器24)で外気と熱交換した後に前記コンプレッサに戻す暖房用冷媒回路(例えば、実施形態の暖房用冷媒回路15)と、前記コンプレッサによって圧縮した冷媒を前記室外熱交換器で外気と熱交換した後に冷房用膨張弁(例えば、実施形態の冷房用膨張弁29)で減圧し、その冷媒を冷房用室内熱交換器(例えば、実施形態のエバポレータ53)で室内空気と熱交換した後に前記コンプレッサに戻す冷房用冷媒回路(例えば、実施形態の冷房用冷媒回路16)と、温冷蔵用熱交換器(例えば、実施形態の温冷蔵用熱交換器95)を有し当該温冷蔵用熱交換器が内部を流れる冷媒と庫内の空気の間で熱交換を行う温冷蔵庫(例えば、実施形態の温冷蔵庫90)と、前記暖房用冷媒回路の前記コンプレッサの下流側の温熱通路(例えば、実施形態の温熱通路41h)の冷媒と前記冷房用冷媒回路の前記冷房用膨張弁の下流側の冷熱通路(例えば、実施形態の冷熱通路43c)の冷媒を、前記温冷蔵用熱交換器に選択的に流通させる切換弁(例えば、実施形態の切換弁65)と、前記切換弁の作動を制御する制御装置(例えば、実施形態の制御装置13)と、を備えていることを特徴とする。
In order to solve the above problems, the vehicle warm/refrigerate system according to the present invention employs the following configuration.
That is, in the hot and cold storage system for a vehicle according to the present invention, the refrigerant compressed by the compressor (for example, the compressor 21 of the embodiment) is supplied to the room by the indoor heat exchanger for heating (for example, the indoor heat exchanger 55 for heating of the embodiment). After exchanging heat with air, the pressure is reduced by a heating expansion valve (for example, the heating expansion valve 22 of the embodiment), and the refrigerant is heat-exchanged with the outside air by an outdoor heat exchanger (for example, the outdoor heat exchanger 24 of the embodiment). A heating refrigerant circuit (for example, the heating refrigerant circuit 15 of the embodiment) that is returned to the compressor after being compressed, and a cooling expansion valve (for example, The pressure is reduced by the cooling expansion valve 29 of the embodiment, and the refrigerant is returned to the compressor after being heat-exchanged with indoor air by the indoor heat exchanger for cooling (eg, the evaporator 53 of the embodiment). Refrigerant circuit for cooling 16 of the embodiment) and a heat exchanger for hot and cold storage (for example, the heat exchanger for hot and cold storage 95 of the embodiment), and the refrigerant flowing inside the heat exchanger for hot and cold storage and the inside of the refrigerator A warm refrigerator (for example, the warm refrigerator 90 of the embodiment) that exchanges heat between air, and a refrigerant in a heat passage (for example, the heat passage 41h of the embodiment) on the downstream side of the compressor of the refrigerant circuit for heating and the above-mentioned A switching valve (e.g., a switching valve (e.g., embodiment and a control device (for example, the control device 13 of the embodiment) for controlling the operation of the switching valve.

上記のように構成された車両の温冷蔵システムは、いずれの空調運転時にも制御装置による切換弁の適正な作動制御により、暖房用冷媒回路を流れる高温高圧の冷媒と冷房用冷媒回路を流れる低温低圧の冷媒によって温冷蔵庫の庫内の温度を効率良く調整することができる。 In the vehicle warm/refrigerate system configured as described above, the control device appropriately controls the operation of the switching valve during any air-conditioning operation. The low-pressure refrigerant can efficiently adjust the temperature inside the warm refrigerator.

前記制御装置は、暖房運転時に前記温冷蔵庫を温蔵状態にする場合には、前記温熱通路の冷媒が前記暖房用室内熱交換器と前記温冷蔵用熱交換器を流通するように前記切換弁を制御し、暖房運転時に前記温冷蔵庫を冷蔵状態にする場合には、前記温熱通路の冷媒が前記暖房用室内熱交換器を流通し、かつ、前記冷熱通路の冷媒が前記温冷蔵用熱交換器を流通するように前記切換弁を制御するようにしても良い。 When the warm refrigerator is placed in a warm storage state during heating operation, the control device controls the switching valve so that the refrigerant in the warm passage flows through the indoor heat exchanger for heating and the heat exchanger for warm and cold storage. is controlled, and when the warm refrigerator is placed in a refrigerated state during heating operation, the refrigerant in the warm passage flows through the indoor heat exchanger for heating, and the refrigerant in the cold passage passes through the warm and cold storage heat exchange The switching valve may be controlled so as to circulate the vessel.

この場合、暖房運転時に温冷蔵庫を温蔵状態にするときに、制御装置による上記の制御が行われると、温熱通路を流れる高温高圧の冷媒が、暖房用室内熱交換器で室内空気と熱交換して室内空気を昇温するとともに、温冷蔵用熱交換器で温冷蔵庫の庫内の空気と熱交換して庫内の空気を昇温するようになる。
また、暖房運転時に温冷蔵庫を冷蔵状態にするときに、制御装置による上記の制御が行われると、温熱通路を流れる高温高圧の冷媒が暖房用室内熱交換器で室内空気と熱交換して室内空気を昇温し、冷熱通路を流れる低温低圧の冷媒が温冷蔵用熱交換器で温冷蔵庫の庫内の空気と熱交換して庫内の空気を冷却するようになる。
In this case, when the above-described control is performed by the control device when the refrigerator is placed in the warm storage state during heating operation, the high-temperature, high-pressure refrigerant flowing through the heating passage exchanges heat with the indoor air in the indoor heat exchanger for heating. Then, the temperature of the indoor air is raised, and the temperature of the air inside the warm refrigerator is raised by exchanging heat with the air inside the warm refrigerator by the heat exchanger for hot and cold storage.
In addition, when the above control is performed by the control device when the refrigerator is placed in the refrigerating state during heating operation, the high-temperature, high-pressure refrigerant flowing through the heating passage exchanges heat with the indoor air in the indoor heat exchanger for heating. The temperature of the air is raised, and the low-temperature, low-pressure refrigerant flowing through the cold-heat passage exchanges heat with the air inside the warm-refrigerator in the warm-refrigerating heat exchanger, thereby cooling the air inside the warm-refrigerator.

前記制御装置は、冷房運転時に前記温冷蔵庫を温蔵状態にする場合には、前記冷熱通路の冷媒が前記冷房用室内熱交換器を流通し、かつ、前記温熱通路の冷媒が前記温冷蔵用熱交換器を流通するように前記切換弁を制御し、冷房運転時に前記温冷蔵庫を冷蔵状態にする場合には、前記冷熱通路の冷媒が前記冷房用室内熱交換器と前記温冷蔵用熱交換器を流通するように前記切換弁を制御するようにしても良い。 When the warm refrigerator is placed in a warm storage state during cooling operation, the control device causes the refrigerant in the cold heat passage to flow through the indoor heat exchanger for cooling, When the switching valve is controlled to flow through the heat exchanger and the warm refrigerator is placed in a refrigerated state during cooling operation, the refrigerant in the cold passage passes through the indoor heat exchanger for cooling and the heat exchange for hot and cold storage. The switching valve may be controlled so as to circulate the vessel.

冷房運転時に温冷蔵庫を温蔵状態にするときには、制御装置による上記の制御が行われると、冷熱通路を流れる低温低圧の冷媒が、冷房用室内熱交換器で室内空気と熱交換して室内空気を冷却し、温熱通路を流れる高温高圧の冷媒が、温冷蔵用熱交換器で温冷蔵庫の庫内の空気と熱交換して庫内の空気を昇温するようになる。
また、冷房運転時に温冷蔵庫を冷蔵状態にするときには、制御装置による上記の制御が行われると、冷熱通路を流れる低温低圧の冷媒が、冷房用室内熱交換器で室内空気と熱交換して室内空気を冷却するとともに、温冷蔵用熱交換器で温冷蔵庫の庫内の空気と熱交換して庫内の空気を冷却するようになる。
When the refrigerator is placed in the warm storage state during cooling operation, the low-temperature, low-pressure refrigerant flowing through the cold-heat passage exchanges heat with the indoor air in the indoor heat exchanger for cooling to produce the indoor air. The high-temperature, high-pressure refrigerant flowing through the heating passage exchanges heat with the air inside the warm refrigerator in the warm-refrigerating heat exchanger to raise the temperature of the air inside the warm-refrigerator.
When the refrigerator is placed in the refrigerating state during cooling operation, the low-temperature, low-pressure refrigerant flowing through the cooling passage exchanges heat with the indoor air in the indoor cooling heat exchanger to In addition to cooling the air, the heat exchanger for hot and cold storage exchanges heat with the air in the warm refrigerator to cool the air in the warm refrigerator.

前記制御装置は、除湿暖房運転時に前記温冷蔵庫を温蔵状態にする場合には、前記温熱通路の冷媒が前記暖房用室内熱交換器と前記温冷蔵用熱交換器を流通し、かつ、前記冷熱通路の冷媒が前記冷房用室内熱交換器を連通するように前記切換弁を制御し、除湿暖房運転時に前記温冷蔵庫を冷蔵状態にする場合には、前記温熱通路の冷媒が前記暖房用室内熱交換器を流通するとともに、前記冷熱通路の冷媒が前記冷房用室内熱交換器と前記温冷蔵用熱交換器を流通するように前記切換弁を制御するようにしても良い。 When the warm refrigerator is placed in a warm storage state during dehumidification and heating operation, the control device causes the refrigerant in the hot heat passage to flow through the indoor heat exchanger for heating and the heat exchanger for warm and cold storage, and When the switching valve is controlled so that the refrigerant in the cold/heat passage communicates with the indoor heat exchanger for cooling, and the warm refrigerator is placed in a refrigerating state during the dehumidification/heating operation, the refrigerant in the warm passage passes through the indoor heat exchanger for heating. The switching valve may be controlled so that the refrigerant in the cooling/heat passage flows through the heat exchanger and flows through the indoor heat exchanger for cooling and the heat exchanger for warming/refrigerating.

除湿暖房運転時に温冷蔵庫を温蔵状態にするときには、制御装置による上記の制御が行われると、冷熱通路を流れる低温低圧の冷媒が冷房用室内熱交換器で室内空気と熱交換して除湿を行うとともに、温熱通路を流れる高温高圧の冷媒が暖房用室内熱交換器で室内空気と熱交換して室内空気を昇温するようになる。また、このとき温熱通路を流れる高温高圧の冷媒が温冷蔵用熱交換器で温冷蔵庫の庫内の空気と熱交換して庫内の空気を昇温するようになる。
また、除湿暖房運転時に温冷蔵庫を冷蔵状態にするときには、制御装置による上記の制御が行われると、冷熱通路を流れる低温低圧の冷媒が冷房用室内熱交換器で室内空気と熱交換して除湿を行うとともに、温熱通路を流れる高温高圧の冷媒が暖房用室内熱交換器で室内空気と熱交換して室内空気を昇温するようになる。また、このとき冷熱通路を流れる低温低圧の冷媒が温冷蔵用熱交換器で温冷蔵庫の庫内の空気と熱交換して庫内の空気を冷却するようになる。
When the refrigerator is placed in the warm storage state during the dehumidifying and heating operation, the low-temperature, low-pressure refrigerant flowing through the cooling passage exchanges heat with the indoor air in the cooling indoor heat exchanger to dehumidify. At the same time, the high-temperature, high-pressure refrigerant flowing through the heating passage exchanges heat with the indoor air in the indoor heat exchanger for heating, thereby raising the temperature of the indoor air. Also, at this time, the high-temperature, high-pressure refrigerant flowing through the heating passage exchanges heat with the air inside the warm-refrigerator in the warm-refrigerating heat exchanger, thereby raising the temperature of the air inside the warm-refrigerator.
When the refrigerator is placed in the refrigerating state during the dehumidification and heating operation, the low-temperature, low-pressure refrigerant flowing through the cold passage is dehumidified by exchanging heat with the indoor air in the indoor heat exchanger for cooling. At the same time, the high-temperature, high-pressure refrigerant flowing through the heating passage exchanges heat with the indoor air in the indoor heat exchanger for heating, thereby raising the temperature of the indoor air. Also, at this time, the low-temperature, low-pressure refrigerant flowing through the cold-heat passage exchanges heat with the air inside the warm-refrigerator in the warm-refrigerating heat exchanger, thereby cooling the air inside the warm-refrigerator.

前記切換弁は、前記温熱通路と前記暖房用室内熱交換器の間に介装される第1切換弁(例えば、実施形態の第1切換弁60)と、前記冷房用膨張弁と前記冷房用室内熱交換器の間に介装される第2切換弁(例えば、実施形態の第2切換弁61)と、前記冷房用室内熱交換器と前記コンプレッサの上流部の間の冷媒戻り通路(例えば、実施形態の冷媒戻り通路49)に介装される第3切換弁(例えば、実施形態の第3切換弁62)と、を備え、前記第1切換弁は、前記温熱通路に接続される温熱流入ポート(例えば、実施形態の温熱流入ポート60a)と、前記冷熱通路に接続可能な冷熱接続通路(例えば、実施形態の冷熱接続通路48)の下流端に接続される庫側導入用冷熱流入ポート(例えば、実施形態の庫側導入用冷熱流入ポート60b)と、前記暖房用室内熱交換器に接続される暖房用流出ポート(例えば、実施形態の暖房用流出ポート60c)と、前記温冷蔵用熱交換器の冷媒導入部(例えば、実施形態の冷媒導入部96i)に接続される庫側流出ポート(例えば、実施形態の庫側流出ポート60d)と、を有するとともに、前記温熱流入ポートを前記暖房用流出ポートと前記庫側流出ポートに連通させる第1切換モードと、前記温熱流入ポートを前記暖房用流出ポートに連通させ、かつ前記庫側導入用冷熱流入ポートを前記庫側流出ポートに連通させる第2切換モードを持ち、前記第2切換弁は、前記冷熱通路に接続される冷熱流入ポート(例えば、実施形態の冷熱流入ポート61a)と、前記冷房用室内熱交換器に接続される冷房用流出ポート(例えば、実施形態の冷房用流出ポート61b)と、前記冷熱接続通路の上流端に接続される冷熱流出ポート(例えば、実施形態の冷熱流出ポート61c)と、を有するとともに、前記冷熱流入ポートを前記冷房用流出ポートと前記冷熱流出ポートに連通させる第1切換モードと、前記冷熱流入ポートを前記冷房用流出ポートのみに連通させる第2切換モードと、前記冷熱流入ポートを前記冷熱流出ポートのみに連通させる第3切換モードを持ち、前記第3切換弁は、前記温冷蔵用熱交換器の冷媒導出部(例えば、実施形態の冷媒導出部96o)に接続される庫側流入ポート(例えば、実施形態の庫側流入ポート62a)と、前記室外熱交換器の冷媒導入側に接続される温排熱流出ポート(例えば、実施形態の温排熱流出ポート62b)と、前記冷媒戻り通路に接続される冷排熱流出ポート(例えば、実施形態の冷排熱流出ポート62c)と、を有するとともに、前記庫側流入ポートを前記温排熱流出ポートに連通させる第1切換モードと、前記庫側流入ポートを前記冷排熱流出ポートに連通させる第2切換モードを持つようにしても良い。 The switching valve includes a first switching valve (for example, the first switching valve 60 of the embodiment) interposed between the thermal passage and the indoor heat exchanger for heating; A second switching valve (for example, the second switching valve 61 in the embodiment) interposed between the indoor heat exchangers, and a refrigerant return passage (for example, , a third switching valve (for example, the third switching valve 62 of the embodiment) interposed in the refrigerant return passage 49 of the embodiment, and the first switching valve is a heating valve connected to the heating passage. An inflow port (for example, the hot heat inflow port 60a in the embodiment) and a cold heat inflow port for cold heat introduction on the storage side connected to the downstream end of a cold heat connection passage (for example, the cold heat connection passage 48 in the embodiment) connectable to the cold heat passage. (For example, the cold heat inflow port 60b for cold storage side introduction in the embodiment), the outflow port for heating connected to the indoor heat exchanger for heating (for example, the outflow port 60c for heating in the embodiment), and the hot and cold storage a refrigerator-side outflow port (for example, the refrigerator-side outflow port 60d in the embodiment) connected to the refrigerant introduction portion (for example, the refrigerant introduction portion 96i in the embodiment) of the heat exchanger; a first switching mode in which the heating outflow port and the refrigerator-side outflow port are communicated; The second switching valve has a cold heat inflow port (for example, cold heat inflow port 61a in the embodiment) connected to the cold heat passage and a cooling heat connected to the indoor heat exchanger for cooling. and a cold heat outflow port (for example, the cold heat outflow port 61c in the embodiment) connected to the upstream end of the cold heat connection passage, and the cold heat a first switching mode in which the inflow port communicates with the cooling outflow port and the cooling outflow port; a second switching mode in which the cooling inflow port communicates only with the cooling outflow port; The third switching valve has a third switching mode that communicates only with the port, and the third switching valve is connected to the refrigerant outlet port (for example, the refrigerant outlet port 96o of the embodiment) of the hot and cold storage heat exchanger. For example, the storage side inflow port 62a of the embodiment), the warm exhaust heat outflow port connected to the refrigerant introduction side of the outdoor heat exchanger (for example, the warm exhaust heat outflow port 62b of the embodiment), and the refrigerant return passage a cold exhaust heat outflow port (for example, the cold exhaust heat outflow port 62c of the embodiment) connected to the A second switching mode may be provided in which the compartment-side inflow port is communicated with the cold exhaust heat outflow port.

この場合、第1切換弁が第1切換モードになると、温熱流入ポートが暖房用流出ポートと庫側流出ポートに連通し、コンプレッサから吐出された高温高圧の冷媒が暖房用室内熱交換器と温冷蔵用熱交換器とに導入可能となる。このとき、暖房用室内熱交換器に導入された冷媒は、室内空気と熱交換された後に室外熱交換器に流入する。暖房運転時や除湿暖房運転時には、暖房用膨張弁で減圧された後に室外熱交換器に流入する。また、温冷蔵用熱交換器の導出側の通路が開いていれば、高温高圧の冷媒が温冷蔵用熱交換器に流入し、温冷蔵庫の庫内の空気を昇温する。
第1切換弁が第2切換モードになると、温熱流入ポートが暖房用流出ポートに連通して、コンプレッサから吐出された高温高圧の冷媒が暖房用室内熱交換器に導入されるとともに、庫側導入用冷熱流入ポートが庫側流出ポートに連通して、冷熱通路の低温低圧の冷媒が温冷蔵用熱交換器に流入可能となる。このとき、暖房用室内熱交換器に導入された冷媒は、室内空気と熱交換された後に室外熱交換器に流入する。また、温冷蔵用熱交換器の導出側の通路が開いていれば、低温低圧の冷媒が温冷蔵用熱交換器に流入し、温冷蔵庫の庫内の空気を冷却する。
第2切換弁が第1切換モードになると、冷熱流入ポートが冷房用流出ポートと冷熱流出ポートに連通し、冷房用膨張弁を通過した低温低圧の液冷媒が冷房用室内熱交換器と冷熱接続通路とに導入可能となる。このとき、冷房用室内熱交換器に導入された冷媒は、室内空気と熱交換された後にコンプレッサの吸入側に戻される。また、このとき温冷蔵用熱交換器への冷媒の流入が可能な状態であれば、冷熱接続通路に導入された冷媒は第1切換弁を経由して温冷蔵用熱交換器に流入し、温冷蔵庫の庫内の空気を冷却する。
第2切換弁が第2切換モードになると、冷熱流入ポートが冷房用流出ポートのみに連通し、冷房用膨張弁を通過した低温低圧の液冷媒は冷房用室内熱交換器にのみ導入される。温冷蔵庫を冷蔵状態で使用しない場合にはこのモードが選択される。
第2切換弁が第3切換モードになると、冷熱流入ポートが冷熱流出ポートのみに連通し、冷房用膨張弁を通過した低温低圧の液冷媒は冷熱接続通路にのみ導入される。冷房用室内熱交換器を使用しない暖房運転時に、温冷蔵庫を冷蔵状態で使用する場合にはこのモードが選択される。
第3切換弁が第1切換モードになると、庫側流入ポートが温排熱流出ポートに連通し、温冷蔵用熱交換器で庫内の空気と熱交換して庫内を昇温させた冷媒が室外熱交換器の冷媒導入側に導入される。
第3切換弁が第2切換モードになると、庫側流入ポートが冷排熱流出ポートに連通し、温冷蔵用熱交換器で庫内の空気と熱交換して庫内を冷却した冷媒が戻り通路を通ってコンプレッサの吸入側に戻される。
本構成の温冷蔵システムは、夫々が複数の切換えモードを持つ第1切換弁と第2切換弁と第3切換弁の組み合わせ作動により、暖房運転、冷房運転、除湿暖房運転の三つの運転状態において、温冷蔵庫の庫内の温度を適温に、かつ効率良く調整することができる。したがって、本構成を採用した場合には、各切換弁の構造を簡素化することができるとともに、各切換弁を分散させて配置することにより、車両内における温冷蔵システムのレイアウトの自由度を高めることができる。
In this case, when the first switching valve is in the first switching mode, the hot heat inflow port communicates with the heating outflow port and the storage side outflow port, and the high-temperature, high-pressure refrigerant discharged from the compressor flows through the indoor heat exchanger for heating and the heating. It can be introduced into a heat exchanger for refrigeration. At this time, the refrigerant introduced into the indoor heat exchanger for heating flows into the outdoor heat exchanger after being heat-exchanged with the indoor air. During heating operation or dehumidifying heating operation, the air flows into the outdoor heat exchanger after being decompressed by the heating expansion valve. Also, if the outlet side passage of the warm/cold storage heat exchanger is open, high-temperature/high-pressure refrigerant flows into the warm/cold storage heat exchanger, thereby raising the temperature of the air in the warm/cold storage compartment.
When the first switching valve is in the second switching mode, the heat inflow port communicates with the heating outflow port, and the high-temperature and high-pressure refrigerant discharged from the compressor is introduced into the indoor heat exchanger for heating, and is introduced into the storage side. The cold heat inflow port communicates with the compartment side outflow port, so that the low-temperature, low-pressure refrigerant in the cold heat passage can flow into the hot and cold storage heat exchanger. At this time, the refrigerant introduced into the indoor heat exchanger for heating flows into the outdoor heat exchanger after being heat-exchanged with the indoor air. Also, if the outlet side passage of the warm/cold storage heat exchanger is open, low-temperature, low-pressure refrigerant flows into the warm/cold storage heat exchanger to cool the air inside the warm/cold storage compartment.
When the second switching valve is in the first switching mode, the cooling heat inflow port communicates with the cooling outflow port and the cold heat outflow port, and the low-temperature, low-pressure liquid refrigerant that has passed through the cooling expansion valve is connected to the cooling indoor heat exchanger. It can be introduced into passages and passages. At this time, the refrigerant introduced into the indoor heat exchanger for cooling is returned to the suction side of the compressor after being heat-exchanged with the indoor air. Also, at this time, if the refrigerant can flow into the hot and cold storage heat exchanger, the refrigerant introduced into the hot and cold connection passage flows through the first switching valve into the hot and cold storage heat exchanger, To cool the air inside the warm refrigerator.
When the second switching valve is in the second switching mode, the cold heat inflow port communicates only with the cooling outflow port, and the low-temperature, low-pressure liquid refrigerant that has passed through the cooling expansion valve is introduced only into the indoor cooling heat exchanger. This mode is selected when the warm refrigerator is not used in a refrigerated state.
When the second switching valve is in the third switching mode, the cold heat inflow port communicates only with the cold heat outflow port, and the low-temperature, low-pressure liquid refrigerant that has passed through the cooling expansion valve is introduced only into the cold heat connection passage. This mode is selected when the warm refrigerator is used in a refrigerated state during heating operation without using the indoor heat exchanger for cooling.
When the third switching valve is in the first switching mode, the refrigerator-side inflow port communicates with the hot exhaust heat outflow port, and the refrigerant heat-exchanged with the air in the refrigerator by the heat exchanger for hot and cold storage to raise the temperature of the refrigerator. is introduced into the refrigerant introduction side of the outdoor heat exchanger.
When the third switching valve is in the second switching mode, the compartment side inflow port communicates with the cold exhaust heat outflow port, and the refrigerant that has cooled the inside of the compartment by exchanging heat with the air in the compartment with the heat exchanger for hot and cold storage returns. It is returned through the passageway to the suction side of the compressor.
The hot and cold storage system of this configuration can operate in three operating states: heating operation, cooling operation, and dehumidifying/heating operation, by the combined operation of the first switching valve, the second switching valve, and the third switching valve, each of which has a plurality of switching modes. , the temperature inside the refrigerator can be adjusted to an appropriate temperature and efficiently. Therefore, when this configuration is adopted, the structure of each switching valve can be simplified, and by arranging the switching valves in a distributed manner, the degree of freedom in the layout of the heating and refrigerating system in the vehicle can be increased. be able to.

本発明に係る車両の温冷蔵システムは、暖房用冷媒回路のコンプレッサの下流側の温熱通路と冷房用冷媒回路の冷房用膨張弁の下流側の冷熱通路を温冷蔵用熱交換器に選択的に連通可能な切換弁を備え、その切換弁の作動が制御装置によって制御される構成とされている。このため、本発明に係る車両の温冷蔵システムを採用した場合には、いずれの空調運転の状態でも、暖房用冷媒回路と冷房用冷媒回路を流れる冷媒によって温冷蔵庫の庫内の温度を効率良く調整することができる。 In the hot and cold storage system for a vehicle according to the present invention, a hot and cold passage on the downstream side of a compressor in a heating refrigerant circuit and a cold and hot passage on the downstream side of a cooling expansion valve in a cooling refrigerant circuit are selectively used as hot and cold storage heat exchangers. A communicable switching valve is provided, and the operation of the switching valve is controlled by a control device. Therefore, when the vehicle heating and refrigerating system according to the present invention is employed, the temperature inside the heating and refrigerating chamber can be efficiently adjusted by the refrigerant flowing through the heating refrigerant circuit and the cooling refrigerant circuit in any air conditioning operation state. can be adjusted.

本発明の実施形態の温冷蔵システムの暖房運転かつ温蔵状態における回路構成図である。FIG. 2 is a circuit configuration diagram of the hot/cold storage system of the embodiment of the present invention in heating operation and warm storage state; 本発明の実施形態の温冷蔵庫の側面図である。It is a side view of the warm refrigerator of embodiment of this invention. 本発明の実施形態の温冷蔵用熱交換器の斜視図である。1 is a perspective view of a hot and cold storage heat exchanger according to an embodiment of the present invention; FIG. 本発明の実施形態の第1切換弁の斜視図である。It is a perspective view of the 1st switching valve of embodiment of this invention. 本発明の実施形態の第1切換弁の図4のV-V線に沿う断面図である。FIG. 5 is a cross-sectional view along line VV in FIG. 4 of the first switching valve of the embodiment of the present invention; 本発明の実施形態の第1切換弁の図4のVI-VI線に沿う断面図である。FIG. 5 is a cross-sectional view along line VI-VI of FIG. 4 of the first switching valve of the embodiment of the present invention; 本発明の実施形態の第1切換弁の図4のVII-VII線に沿う断面図である。FIG. 5 is a cross-sectional view along line VII-VII of FIG. 4 of the first switching valve of the embodiment of the present invention; 本発明の実施形態の第1切換弁の機能説明図である。FIG. 4 is a function explanatory diagram of the first switching valve of the embodiment of the present invention; 本発明の実施形態の第2切換弁の斜視図である。FIG. 4 is a perspective view of a second switching valve according to the embodiment of the invention; 本発明の実施形態の第2切換弁の図9のX-X線に沿う断面図である。FIG. 10 is a cross-sectional view along line XX of FIG. 9 of the second switching valve of the embodiment of the present invention; 本発明の実施形態の第2切換弁の機能説明図である。FIG. 4 is a function explanatory diagram of a second switching valve according to the embodiment of the present invention; 本発明の実施形態の第3切換弁の断面図である。It is a sectional view of the 3rd switching valve of the embodiment of the present invention. 本発明の実施形態の第3切換弁の機能説明図である。FIG. 4 is a function explanatory diagram of a third switching valve according to the embodiment of the present invention; 本発明の実施形態の温冷蔵システムの暖房運転かつ温蔵OFF状態における回路構成図である。FIG. 2 is a circuit configuration diagram of the hot and cold storage system according to the embodiment of the present invention in a heating operation and hot storage OFF state; 本発明の実施形態の温冷蔵システムの暖房運転かつ冷蔵状態における回路構成図である。1 is a circuit configuration diagram in a heating operation and a refrigerating state of the hot and refrigerating system according to the embodiment of the present invention; FIG. 本発明の実施形態の温冷蔵システムの暖房運転かつ冷蔵OFF状態における回路構成図である。FIG. 2 is a circuit configuration diagram of the hot/refrigerating system according to the embodiment of the present invention in a heating operation and refrigerating OFF state; 本発明の実施形態の温冷蔵システムの冷房運転かつ温蔵状態における回路構成図である。FIG. 2 is a circuit configuration diagram of the hot/cold storage system of the embodiment of the present invention in a cooling operation and a warm storage state; 本発明の実施形態の温冷蔵システムの冷房運転かつ温蔵OFF状態における回路構成図である。FIG. 2 is a circuit configuration diagram of the hot/cold storage system of the embodiment of the present invention in a cooling operation and hot storage OFF state; 本発明の実施形態の温冷蔵システムの冷房運転かつ冷蔵状態における回路構成図である。FIG. 2 is a circuit configuration diagram of the hot/refrigerating system according to the embodiment of the present invention in a cooling operation and a refrigerating state; 本発明の実施形態の温冷蔵システムの冷房運転かつ冷蔵OFF状態における回路構成図である。FIG. 2 is a circuit configuration diagram of the hot/refrigerating system of the embodiment of the present invention in a cooling operation and refrigeration OFF state; 本発明の実施形態の温冷蔵システムの除湿暖房運転かつ温蔵状態における回路構成図である。FIG. 2 is a circuit configuration diagram of the hot/cold storage system of the embodiment of the present invention in dehumidifying/heating operation and warm storage state; 本発明の実施形態の温冷蔵システムの除湿暖房運転かつ温蔵OFF状態における回路構成図である。FIG. 2 is a circuit configuration diagram of the hot/cold storage system according to the embodiment of the present invention in dehumidifying/heating operation and hot storage OFF state; 本発明の実施形態の温冷蔵システムの除湿暖房運転かつ冷蔵状態における回路構成図である。FIG. 2 is a circuit configuration diagram of the hot/refrigerating system according to the embodiment of the present invention in a dehumidifying/heating operation and a refrigerating state; 本発明の実施形態の温冷蔵システムの除湿暖房運転かつ冷蔵OFF状態における回路構成図である。FIG. 2 is a circuit configuration diagram of the hot/refrigerating system of the embodiment of the present invention in a dehumidifying/heating operation and a refrigerating OFF state;

以下、本発明の一実施形態を図面に基づいて説明する。
図1は、実施形態に係る車両の温冷蔵システム10(以下、単に「温冷蔵システム10」と称する。)の回路構成図である。図1に示す温冷蔵システム10の回路は、車両の車室内の空調機能と温冷蔵庫90の温度調整機能を備えている。空調機能部を含む本実施形態の温冷蔵システム10は、車両の駆動源としてのエンジン(内燃機関)を具備していない電気自動車等に搭載される。温冷蔵システム10の空調機能部は、ヒートポンプサイクル12を利用して暖房、冷房、除湿暖房等の空調運転を行う。温冷蔵システム10は、空調ユニット11と、冷媒が循環可能なヒートポンプサイクル12と、食品や飲料水等を温蔵状態や冷蔵状態で収納する温冷蔵庫90と、システムの各部を制御する制御装置13と、を備えている。
An embodiment of the present invention will be described below with reference to the drawings.
FIG. 1 is a circuit configuration diagram of a vehicle hot and cold storage system 10 (hereinafter simply referred to as "hot and cold storage system 10") according to the embodiment. The circuit of the hot/cold storage system 10 shown in FIG. A hot and cold storage system 10 of the present embodiment including an air conditioning function unit is mounted on an electric vehicle or the like that does not have an engine (internal combustion engine) as a driving source of the vehicle. The air conditioning function part of the hot and cold storage system 10 uses the heat pump cycle 12 to perform air conditioning operations such as heating, cooling, and dehumidifying heating. The hot and cold storage system 10 includes an air conditioning unit 11, a heat pump cycle 12 in which a refrigerant can be circulated, a hot and cold refrigerator 90 that stores food, drinking water, etc. in a hot or cold state, and a control device 13 that controls each part of the system. and have.

空調ユニット11は、空調空気が流通するダクト51と、このダクト51内に収容されたブロワ52と、エバポレータ53(冷房用室内熱交換器)と、エアミックスドア54と、暖房用室内熱交換器55と、を備えている。
ダクト51は、空調空気の流通方向における上流側に位置する空気取込口57、及び下流側に位置する空気吹き出し口58を有している。そして、上述したブロワ52、エバポレータ53、エアミックスドア54、及び、暖房用室内熱交換器55は、空調空気の流通方向の上流側から下流側に向けてこの順で配置されている。
The air conditioning unit 11 includes a duct 51 through which conditioned air flows, a blower 52 accommodated in the duct 51, an evaporator 53 (indoor heat exchanger for cooling), an air mix door 54, and an indoor heat exchanger for heating. 55 and .
The duct 51 has an air intake port 57 located on the upstream side and an air outlet port 58 located on the downstream side in the flow direction of the conditioned air. The blower 52, the evaporator 53, the air mix door 54, and the indoor heat exchanger 55 for heating are arranged in this order from the upstream side to the downstream side in the flow direction of the conditioned air.

ブロワ52は、例えば制御装置13による制御により印加される駆動電圧に応じて駆動し、空気取込口57を通してダクト51内に取り込まれた空調空気(内気及び外気の少なくとも一方)を、下流側に向けて送出する。 The blower 52 is driven, for example, in accordance with a drive voltage applied by control by the control device 13, and blows the conditioned air (at least one of the inside air and the outside air) taken into the duct 51 through the air intake port 57 to the downstream side. Send to.

エバポレータ53は、内部に流入した低圧の冷媒と周囲を通過する空調空気(ダクト51内を流れる空気)との間で熱交換を行い、冷媒が蒸発する際の吸熱によって、エバポレータ53の周囲を通過する空調空気を冷却する。 The evaporator 53 exchanges heat between the low-pressure refrigerant that has flowed into the interior and the conditioned air (the air that flows through the duct 51) passing through the surroundings, and the heat absorbed when the refrigerant evaporates causes the refrigerant to pass through the surroundings of the evaporator 53. Cooling conditioned air.

暖房用室内熱交換器55は、内部を通過する高温かつ高圧の冷媒によって放熱可能であって、暖房用室内熱交換器55の周囲を通過する空調空気を加熱する。 The indoor heat exchanger 55 for heating can radiate heat by the high-temperature and high-pressure refrigerant passing through it, and heats the conditioned air passing around the indoor heat exchanger 55 for heating.

エアミックスドア54は、制御装置13による制御により駆動する不図示の駆動手段によって回動可能とされる。具体的に、エアミックスドア54は、ダクト51内のうち、暖房用室内熱交換器55に向かう通風経路(加熱経路)を開放する加熱位置(図1参照)と、加熱経路を迂回する通風経路(冷却経路)を開放する冷却位置(図17参照)と、の間で回動する。 The air mix door 54 is rotatable by driving means (not shown) driven under the control of the control device 13 . Specifically, the air mix door 54 has a heating position (see FIG. 1) that opens the ventilation path (heating path) toward the indoor heat exchanger 55 for heating in the duct 51, and a ventilation path that bypasses the heating path. It rotates between the cooling position (see FIG. 17) where the (cooling path) is opened.

ヒートポンプサイクル12は、上述したエバポレータ53及び暖房用室内熱交換器55と、コンプレッサ21、暖房用膨張弁22、室外熱交換器24、レシーバタンク25、冷房弁26、サブコンデンサ27、逆止弁28、冷房用膨張弁29、冷房用補助熱交換器31、暖房弁32、アキュムレータ33、及び、蒸発能力制御弁35を備え、これら各構成部材が冷媒流路を介して接続されている。 The heat pump cycle 12 includes the evaporator 53 and the indoor heat exchanger 55 for heating, the compressor 21, the expansion valve 22 for heating, the outdoor heat exchanger 24, the receiver tank 25, the cooling valve 26, the sub-condenser 27, and the check valve 28. , an expansion valve 29 for cooling, an auxiliary heat exchanger 31 for cooling, a heating valve 32, an accumulator 33, and an evaporating capacity control valve 35, and these constituent members are connected via refrigerant flow paths.

コンプレッサ21は、吸入部がアキュムレータ33に接続され、吐出部が暖房用室内熱交換器55に接続されている。コンプレッサ21は、制御装置13によって制御される図示しないモータの動力を受けて駆動され、アキュムレータ33から冷媒の主に気体分を吸入するとともに、その冷媒を圧縮した後、高温高圧の冷媒として上述した暖房用室内熱交換器55側に吐出する。 The compressor 21 has a suction portion connected to the accumulator 33 and a discharge portion connected to the indoor heat exchanger 55 for heating. The compressor 21 is driven by the power of a motor (not shown) controlled by the control device 13, sucks mainly the gaseous portion of the refrigerant from the accumulator 33, compresses the refrigerant, and converts it into the above-described high-temperature and high-pressure refrigerant. It is discharged to the indoor heat exchanger 55 side for heating.

暖房用膨張弁22は、開口部面積を任意に調整可能な電子制御式の可変膨張弁であって、暖房用室内熱交換器55を通過した冷媒の圧力を調整して、室外熱交換器24側に導出する。暖房用膨張弁22は、冷房運転時には、開口部面積が最大になるように調整され、通常の暖房運転時には、開口面積が小さく絞られる。したがって、冷房運転時には、暖房用室内熱交換器55から流出した冷媒は、暖房用膨張弁22をそのまま通過して高温高圧の状態で室外熱交換器24側に流入する。また、通常の暖房運転時には、暖房用室内熱交換器55から流出した冷媒は、暖房用膨張弁22で大きく減圧されて低温低圧の状態で室外熱交換器24側に流入する。また、除湿暖房運転時には、暖房用膨張弁22の開口部面積は、冷房運転時の開口面積よりも大きい設定面積に調整される。
なお、コンプレッサ21の吐出部から暖房用室内熱交換器55を経由して暖房用膨張弁22に至る通路は、冷媒回路の高圧側主通路41とされている。
The heating expansion valve 22 is an electronically controlled variable expansion valve whose opening area can be arbitrarily adjusted. lead to the side. The heating expansion valve 22 is adjusted so that the opening area is maximized during cooling operation, and the opening area is narrowed during normal heating operation. Therefore, during the cooling operation, the refrigerant flowing out from the indoor heat exchanger 55 for heating passes through the expansion valve 22 for heating as it is and flows into the outdoor heat exchanger 24 in a state of high temperature and high pressure. During normal heating operation, the refrigerant flowing out of the indoor heat exchanger 55 for heating is greatly decompressed by the expansion valve 22 for heating and flows into the outdoor heat exchanger 24 in a low temperature and low pressure state. During the dehumidifying and heating operation, the opening area of the heating expansion valve 22 is adjusted to a larger set area than the opening area during the cooling operation.
A passage from the discharge portion of the compressor 21 to the heating expansion valve 22 via the indoor heat exchanger 55 is a high pressure side main passage 41 of the refrigerant circuit.

室外熱交換器24は、内部に流入した冷媒と室外雰囲気との間で熱交換を行なう。室外熱交換器24は、暖房運転の実行時には、内部を通過する低温低圧の冷媒によって室外雰囲気から吸熱可能であって、室外雰囲気からの吸熱によって冷媒を気化させる。一方、冷房運転の実行時には、室外熱交換器24は、内部を通過する高温高圧の冷媒によって室外雰囲気へと放熱可能であって、室外雰囲気への放熱によって冷媒を冷却する。 The outdoor heat exchanger 24 exchanges heat between the refrigerant that has flowed inside and the outdoor atmosphere. The outdoor heat exchanger 24 is capable of absorbing heat from the outdoor atmosphere by the low-temperature, low-pressure refrigerant that passes through the interior during heating operation, and vaporizes the refrigerant by absorbing heat from the outdoor atmosphere. On the other hand, when the cooling operation is performed, the outdoor heat exchanger 24 can release heat to the outdoor atmosphere by the high-temperature, high-pressure refrigerant that passes through the interior, and cools the refrigerant by releasing heat to the outdoor atmosphere.

冷房弁26は、冷媒流路のうち、室外熱交換器24の下流部に接続された冷房用主通路43上に設置され、制御装置13によって開閉制御される。冷房弁26は、冷房運転の実行時と除湿暖房の実行時には開状態とされ、通常の暖房運転の実行時には閉状態とされる。 The cooling valve 26 is installed on the cooling main passage 43 connected to the downstream portion of the outdoor heat exchanger 24 in the refrigerant flow path, and is controlled to be opened/closed by the control device 13 . The cooling valve 26 is open during the cooling operation and the dehumidifying heating operation, and is closed during the normal heating operation.

レシーバタンク25は、冷房用主通路43のうち、冷房弁26の上流側に設置されている。レシーバタンク25は、冷房運転時や除湿暖房時に、室外熱交換器24を通過して冷房用主通路43内に流入する冷媒のうち、余剰の冷媒を貯留する。
サブコンデンサ27は、冷房用主通路43のうち、冷房弁26の下流側に設置され、内部に流入した冷媒と室外雰囲気との間で熱交換を行う。
逆止弁28は、冷房用主通路43のうち、サブコンデンサ27よりも下流側に設置されている。逆止弁28は、冷房運転の実行時や除湿暖房の実行時において、サブコンデンサ27を通過した冷媒を下流側に向けて流通させ、冷房用主通路43のうち、逆止弁28よりも上流側(サブコンデンサ27側)への冷媒の逆流を防止する。
The receiver tank 25 is installed upstream of the cooling valve 26 in the cooling main passage 43 . The receiver tank 25 stores excess refrigerant among the refrigerant that flows into the cooling main passage 43 through the outdoor heat exchanger 24 during cooling operation or dehumidifying/heating operation.
The sub-condenser 27 is installed on the downstream side of the cooling valve 26 in the cooling main passage 43, and performs heat exchange between the refrigerant flowing therein and the outdoor atmosphere.
The check valve 28 is installed downstream of the sub-condenser 27 in the cooling main passage 43 . The check valve 28 circulates the refrigerant that has passed through the sub-condenser 27 toward the downstream side during the execution of the cooling operation or the execution of the dehumidifying/heating operation. side (sub-condenser 27 side).

冷房用膨張弁29は、冷房用主通路43のうちの、逆止弁28とエバポレータ53の流入口との間に設置されている。冷房用膨張弁29は、逆止弁28を通過した冷媒を減圧した後に、低温低圧の気液2相の噴霧状の冷媒としてエバポレータ53に吐出する。 The cooling expansion valve 29 is installed between the check valve 28 and the inlet of the evaporator 53 in the cooling main passage 43 . The cooling expansion valve 29 reduces the pressure of the refrigerant that has passed through the check valve 28 , and then discharges the refrigerant to the evaporator 53 as a low-temperature, low-pressure gas-liquid two-phase atomized refrigerant.

冷房用補助熱交換器31は、冷房用主通路43のうち、冷房用膨張弁29よりも上流側に位置する上流部分と、エバポレータ53よりも下流側に位置する下流部分とに跨るように配置されている。冷房用補助熱交換器31は、冷房運転の実行時において、上述した上流部分及び下流部分の間で熱交換を行い、上流部分の冷媒をエバポレータ53内に流入する前に冷却する。 The cooling auxiliary heat exchanger 31 is arranged to straddle an upstream portion of the cooling main passage 43 located upstream of the cooling expansion valve 29 and a downstream portion of the cooling main passage 43 located downstream of the evaporator 53 . It is The cooling auxiliary heat exchanger 31 exchanges heat between the above-described upstream and downstream portions during cooling operation, and cools the refrigerant in the upstream portion before flowing into the evaporator 53 .

蒸発能力制御弁35は、冷房用主通路43のうち、エバポレータ53の冷媒流出部と冷房用補助熱交換器31との間に設置され、制御装置13によって開度を制御される。蒸発能力制御弁35は、除湿運転の実行時において、冷房運転の実行時に比べて開度が小さくなるように制御される。
なお、本実施形態における冷房用主通路43は、室外熱交換器24の下流部からレシーバタンク25、冷房弁26、サブコンデンサ27、逆止弁28、冷房用補助熱交換器31、冷房用膨張弁29、エバポレータ53、蒸発能力制御弁35を経由してアキュムレータ33に接続される通路である。
The evaporation capacity control valve 35 is installed between the refrigerant outlet portion of the evaporator 53 and the cooling auxiliary heat exchanger 31 in the cooling main passage 43 , and its opening degree is controlled by the control device 13 . The evaporative capacity control valve 35 is controlled so that the degree of opening during the dehumidifying operation is smaller than that during the cooling operation.
The cooling main passage 43 in this embodiment includes, from the downstream portion of the outdoor heat exchanger 24, the receiver tank 25, the cooling valve 26, the sub-condenser 27, the check valve 28, the cooling auxiliary heat exchanger 31, the cooling expansion This passage is connected to the accumulator 33 via the valve 29 , the evaporator 53 and the evaporation capacity control valve 35 .

暖房弁32は、冷房用主通路43を迂回して室外熱交換器24の下流部とアキュムレータ33を接続する暖房用バイパス通路44上に設置されている。暖房弁32は、制御装置13によって開閉制御される。暖房弁32は、暖房運転の実行時には開状態とされ、冷房運転の実行時には閉状態とされる。 The heating valve 32 is installed on a heating bypass passage 44 that bypasses the cooling main passage 43 and connects the downstream portion of the outdoor heat exchanger 24 and the accumulator 33 . The heating valve 32 is controlled to be opened/closed by the controller 13 . The heating valve 32 is opened during the heating operation and closed during the cooling operation.

アキュムレータ33は、冷房用主通路43の下流端と暖房用バイパス通路44の下流端を接続する合流部46と、上述したコンプレッサ21と、の間に接続されている。アキュムレータ33は、合流部46から流入した冷媒を気液に分離し、冷媒の余剰の液体分(液相)を内部に貯留するとともに、冷媒の主に気体分(気相)をコンプレッサ21に吸入させる。 The accumulator 33 is connected between the compressor 21 and the junction 46 that connects the downstream end of the cooling main passage 43 and the heating bypass passage 44 . The accumulator 33 separates the refrigerant flowing from the junction 46 into gas and liquid, stores the excess liquid portion (liquid phase) of the refrigerant inside, and sucks mainly the gas portion (gas phase) of the refrigerant into the compressor 21. Let

本実施形態のヒートポンプサイクル12は、暖房運転時に冷媒が内部を循環する暖房用冷媒回路15と、冷房運転時に冷媒が内部を循環する冷房用冷媒回路16と、を備え、両冷媒回路が、コンプレッサ21と室外熱交換器24とアキュムレータ33を共用している。
暖房用冷媒回路15は、暖房用室内熱交換器55と暖房用膨張弁22を経由して、コンプレッサ21の吐出部と室外熱交換器24の上流部を接続する高圧側主通路41と、冷房用主通路43を迂回して室外熱交換器24の下流部とアキュムレータ33を接続する暖房用バイパス通路44と、を有している。
また、冷房用冷媒回路16は、暖房用室内熱交換器55と暖房用膨張弁22を経由して、コンプレッサ21の吐出部と室外熱交換器24の上流部を接続する高圧側主通路41と、冷房用膨張弁29やエバポレータ53を経由して室外熱交換器24の下流部とアキュムレータ33を接続する冷房用主通路43と、を有している。
高圧側主通路41は、暖房用冷媒回路15と冷房用冷媒回路16で共用している。
The heat pump cycle 12 of this embodiment includes a heating refrigerant circuit 15 in which the refrigerant circulates during heating operation, and a cooling refrigerant circuit 16 in which the refrigerant circulates during cooling operation. 21, the outdoor heat exchanger 24 and the accumulator 33 are shared.
The heating refrigerant circuit 15 includes a high-pressure side main passage 41 that connects the discharge portion of the compressor 21 and the upstream portion of the outdoor heat exchanger 24 via an indoor heat exchanger 55 for heating and an expansion valve 22 for heating, and a cooling A heating bypass passage 44 bypasses the main passage 43 and connects the downstream portion of the outdoor heat exchanger 24 and the accumulator 33 .
The cooling refrigerant circuit 16 also includes a high pressure side main passage 41 that connects the discharge portion of the compressor 21 and the upstream portion of the outdoor heat exchanger 24 via the indoor heat exchanger 55 for heating and the expansion valve 22 for heating. , a cooling main passage 43 that connects the downstream portion of the outdoor heat exchanger 24 and the accumulator 33 via the cooling expansion valve 29 and the evaporator 53 .
The high pressure side main passage 41 is shared by the heating refrigerant circuit 15 and the cooling refrigerant circuit 16 .

図2は、食品や飲料水等を収納する温冷蔵庫90の側面図である。
温冷蔵庫90は、図2に示すように、収納室91を有する収納ケース92と、収納室91の開口部を開閉可能に閉じる開閉扉93と、収納ケース92内(庫内)の温度を調整するための温冷蔵用熱交換器95と、を備えている。
FIG. 2 is a side view of a warm refrigerator 90 that stores food, drinking water, and the like.
As shown in FIG. 2, the warm refrigerator 90 includes a storage case 92 having a storage chamber 91, an opening/closing door 93 that opens and closes the opening of the storage chamber 91, and a temperature inside the storage case 92 (chamber interior). A hot and cold storage heat exchanger 95 is provided.

図3は、温冷蔵用熱交換器95の斜視図である。
温冷蔵用熱交換器95は、図3に示すように、内部を冷媒が流れる冷媒配管96と、冷媒配管96に接触し、冷媒配管96の内部の冷媒と庫内(収納ケース92内)の空気の間で熱交換を行う熱伝導ケース97と、を備えている。熱伝導ケース97には、熱伝導性を高めるために図示しないフィン等が設けられている。図3中の符号96iは、冷媒配管96の冷媒導入部であり、符号96oは、冷媒配管96の冷媒導出部である。
FIG. 3 is a perspective view of the heat exchanger 95 for hot and cold storage.
As shown in FIG. 3, the warm/refrigerate heat exchanger 95 is in contact with a refrigerant pipe 96 through which a refrigerant flows, and is in contact with the refrigerant pipe 96. and a heat-conducting case 97 that exchanges heat between air. The heat conduction case 97 is provided with fins (not shown) or the like for enhancing heat conductivity. Reference numeral 96i in FIG. 3 denotes a refrigerant introduction portion of the refrigerant pipe 96, and reference numeral 96o denotes a refrigerant outlet portion of the refrigerant pipe 96. As shown in FIG.

ここで、図1に示すヒートポンプサイクル12において、高圧側主通路41のうちの、コンプレッサ21と暖房用室内熱交換器55の間には、第1切換弁60が介装されている。冷房用主通路43のうちの、冷房用膨張弁29とエバポレータ53の間には、第2切換弁61が介装されている。また、冷房用主通路43のうちの、エバポレータ53とアキュムレータ33の間には、第3切換弁62が介装されている。
以下、高圧側主通路41のうちの、コンプレッサ21と第1切換弁60の間の通路を温熱通路41hと称し、冷房用主通路43のうちの、冷房用膨張弁29と第2切換弁61の間の通路を冷熱通路43cと称する。第1切換弁60、第2切換弁61、及び、第3切換弁62は、互いの共働によって温熱通路41hの冷媒と冷熱通路43cの冷媒を温冷蔵用熱交換器95に選択的に流通させる切換弁65を構成している。切換弁65を構成する第1切換弁60、第2切換弁61、及び、第3切換弁62は、制御装置13によって夫々作動を制御される。
Here, in the heat pump cycle 12 shown in FIG. 1 , a first switching valve 60 is interposed between the compressor 21 and the indoor heat exchanger 55 for heating in the high pressure side main passage 41 . A second switching valve 61 is interposed between the cooling expansion valve 29 and the evaporator 53 in the cooling main passage 43 . A third switching valve 62 is interposed between the evaporator 53 and the accumulator 33 in the cooling main passage 43 .
Hereinafter, the passage between the compressor 21 and the first switching valve 60 in the high pressure side main passage 41 will be referred to as a heat passage 41h, and the cooling expansion valve 29 and the second switching valve 61 in the cooling main passage 43 will be referred to as a heat passage 41h. The passage between is called a cooling/heating passage 43c. The first switching valve 60, the second switching valve 61, and the third switching valve 62 selectively circulate the refrigerant in the hot passage 41h and the refrigerant in the cold passage 43c to the hot and cold storage heat exchanger 95 by mutual cooperation. It constitutes a switching valve 65 for switching. The operation of the first switching valve 60 , the second switching valve 61 and the third switching valve 62 that constitute the switching valve 65 is controlled by the control device 13 .

第1切換弁60は、温熱通路41hに接続される温熱流入ポート60aと、冷熱通路43cに接続可能な冷熱接続通路48の下流端に接続される庫側導入用冷熱流入ポート60bと、暖房用室内熱交換器55に接続される暖房用流出ポート60cと、温冷蔵用熱交換器95の冷媒導入部96iに接続される庫側流出ポート60dと、を有する。冷熱接続通路48は、後に詳述する第2切換弁61を介して冷熱通路43cに接続可能とされている。 The first switching valve 60 includes a hot heat inflow port 60a connected to the hot heat passage 41h, a cold heat inflow port 60b connected to the downstream end of the cold heat connection passage 48 connectable to the cold heat passage 43c, and a heating inlet port 60b. It has a heating outflow port 60 c connected to the indoor heat exchanger 55 and a storage side outflow port 60 d connected to the refrigerant introduction portion 96 i of the warm/refrigerate heat exchanger 95 . The cold connection passage 48 can be connected to the cold passage 43c via a second switching valve 61 which will be described in detail later.

第2切換弁61は、冷熱通路43cに接続される冷熱流入ポート61aと、エバポレータ53(冷房用室内熱交換器)に接続される冷房用流出ポート61bと、冷熱接続通路48の上流端に接続される冷熱流出ポート61cと、を有する。冷熱流出ポート61cは、冷熱接続通路48を介して第1切換弁60の庫側導入用冷熱流入ポート60bに接続されている。 The second switching valve 61 is connected to a cold heat inflow port 61a connected to the cold heat passage 43c, a cooling outflow port 61b connected to the evaporator 53 (cooling indoor heat exchanger), and an upstream end of the cold heat connection passage 48. and a cooling heat outflow port 61c. The cold heat outflow port 61 c is connected to the cold heat inflow port 60 b of the first switching valve 60 for introducing cold heat through the cold heat connection passage 48 .

第3切換弁62は、温冷蔵用熱交換器95の冷媒導出部96oに接続される庫側流入ポート62aと、排熱通路47を介して室外熱交換器24の冷媒導入側に接続される温排熱流出ポート62bと、エバポレータ53(冷房用室内熱交換器)の下流側の冷媒戻り通路49に接続される冷排熱流出ポート62cと、を有する。冷媒戻り通路49は、冷房用主通路43のうちの、エバポレータ53とアキュムレータ33(コンプレッサ21の上流部)の間の通路である。 The third switching valve 62 is connected to the refrigerant introduction side of the outdoor heat exchanger 24 via the storage side inflow port 62a connected to the refrigerant outlet portion 96o of the warm/refrigerate heat exchanger 95 and the exhaust heat passage 47. It has a hot exhaust heat outflow port 62b and a cold exhaust heat outflow port 62c connected to the refrigerant return passage 49 on the downstream side of the evaporator 53 (indoor heat exchanger for cooling). The refrigerant return passage 49 is a passage between the evaporator 53 and the accumulator 33 (upstream portion of the compressor 21) in the main passage 43 for cooling.

図4は、第1切換弁60の斜視図であり、図5は、第1切換弁60の図4のV-V線に沿う断面図である。また、図6は、第1切換弁60の図4のVI-VI線に沿う断面図であり、図7は、第1切換弁60の図4のVII-VII線に沿う断面図である。
第1切換弁60は、例えば、図4~図7に示すような構造を採用することができる。
図4~図7に示す第1切換弁60は、円筒状の弁ケース66の内部が隔壁67によって第1弁室68と第2弁室69とに隔成されている。第1弁室68は、弁ケース66の軸方向の一端側に配置され、第2弁室69は、弁ケース66の軸方向の他端側に配置されている。弁ケース66の軸心部には、図示しないアクチュエータに連結された操作軸70が回動可能に支持されている。操作軸70は、隔壁67を軸方向に貫通して第1弁室68と第2弁室69の軸心部に位置している。
4 is a perspective view of the first switching valve 60, and FIG. 5 is a cross-sectional view of the first switching valve 60 taken along line VV in FIG. 6 is a cross-sectional view of the first switching valve 60 along line VI-VI in FIG. 4, and FIG. 7 is a cross-sectional view of the first switching valve 60 along line VII-VII in FIG.
For the first switching valve 60, for example, a structure as shown in FIGS. 4 to 7 can be adopted.
4 to 7, the inside of a cylindrical valve case 66 is partitioned into a first valve chamber 68 and a second valve chamber 69 by a partition wall 67 . The first valve chamber 68 is arranged on one end side of the valve case 66 in the axial direction, and the second valve chamber 69 is arranged on the other end side of the valve case 66 in the axial direction. An operating shaft 70 connected to an actuator (not shown) is rotatably supported at the axial center of the valve case 66 . The operating shaft 70 axially penetrates the partition wall 67 and is positioned at the axial center of the first valve chamber 68 and the second valve chamber 69 .

弁ケース66の第1弁室68に臨む周壁には、庫側導入用冷熱流入ポート60bが形成されている。弁ケース66の第2弁室69に臨む周壁には、温熱流入ポート60a、暖房用流出ポート60c、及び、庫側流出ポート60dが周方向に離間して形成されている。また、第1弁室68は、接続通路71によって庫側流出ポート60dの中途部に接続されている。操作軸70には、第1弁室68の内周面に摺接可能な第1弁体72と、第2弁室69の内周面に摺接する第2弁体73が夫々一体に取り付けられている。
第1切換弁60は、アクチュエータによる操作軸70の回動操作により、以下の二つの切換モードの切換えが可能な構造とされている。
A peripheral wall facing the first valve chamber 68 of the valve case 66 is formed with a cold heat inflow port 60b for introduction into the storage side. A heat inflow port 60a, a heating outflow port 60c, and a storage side outflow port 60d are formed circumferentially spaced apart from each other on the peripheral wall facing the second valve chamber 69 of the valve case 66 . Also, the first valve chamber 68 is connected by a connection passage 71 to an intermediate portion of the storage-side outflow port 60d. A first valve body 72 slidably contactable with the inner peripheral surface of the first valve chamber 68 and a second valve body 73 slidably contactable with the inner peripheral surface of the second valve chamber 69 are integrally attached to the operating shaft 70 . ing.
The first switching valve 60 has a structure capable of switching between the following two switching modes by rotating the operating shaft 70 by an actuator.

図8は、第1切換弁60の二つの切換モードを説明するための機能説明図である。
(1)第1切換モード(A-1)
温熱流入ポート60aを暖房用流出ポート60cと庫側流出ポート60dに連通させる切換モード(第1弁体72と第2弁体73は、図5~図7に示す状態)。このとき、庫側導入用冷熱流入ポート60bは、庫側流出ポート60dに対し、第1弁体72によって閉じられて非連通状態とされている。
(2)第2切換モード(A-2)
温熱流入ポート60aを暖房用流出ポート60cに連通させ、かつ庫側導入用冷熱流入ポート60bを庫側流出ポート60dに連通させる切換モード。
FIG. 8 is a functional explanatory diagram for explaining two switching modes of the first switching valve 60. FIG.
(1) First switching mode (A-1)
A switching mode in which the heat inflow port 60a is communicated with the heating outflow port 60c and the storage side outflow port 60d (the first valve body 72 and the second valve body 73 are in the state shown in FIGS. 5 to 7). At this time, the cold heat inflow port 60b for cold introduction on the cold storage side is closed by the first valve body 72 to the cold heat inflow port 60d on the cold storage side so as to be in a non-communication state.
(2) Second switching mode (A-2)
A switching mode in which the hot heat inflow port 60a is communicated with the heating outflow port 60c and the cold heat inflow port 60b for cold storage introduction is communicated with the storage side outflow port 60d.

図9は、第2切換弁61の斜視図であり、図10は、図9のX-X線に沿う断面図である。
第2切換弁61は、例えば、図9,図10に示す構造を採用することができる。
図9,図10に示す第2切換弁61は、円筒状の弁ケース74の内部が弁室75とされ、弁ケース74の軸心部には、図示しないアクチュエータに連結された操作軸76が回動可能に支持されている。弁ケース74の周壁には、冷熱流入ポート61a、冷房用流出ポート61b、及び、冷熱流出ポート61cが周方向に離間して形成されている。操作軸76には、弁室75の内周面に摺接する弁体77が一体に取り付けられている。
第2切換弁61は、アクチュエータによる操作軸76の回動操作により、以下の四つつの切換モードの切換えが可能な構造とされている。
9 is a perspective view of the second switching valve 61, and FIG. 10 is a cross-sectional view taken along line XX of FIG.
The structure shown in FIGS. 9 and 10 can be employed for the second switching valve 61, for example.
The second switching valve 61 shown in FIGS. 9 and 10 has a valve chamber 75 inside a cylindrical valve case 74 , and an operating shaft 76 connected to an actuator (not shown) at the axial center of the valve case 74 . It is rotatably supported. A cold heat inflow port 61a, a cooling outflow port 61b, and a cold heat outflow port 61c are formed in the peripheral wall of the valve case 74 so as to be spaced apart in the circumferential direction. A valve body 77 is integrally attached to the operating shaft 76 so as to be in sliding contact with the inner peripheral surface of the valve chamber 75 .
The second switching valve 61 has a structure capable of switching between the following four switching modes by rotating the operating shaft 76 by the actuator.

図11は、第2切換弁61の四つの切換モードを説明するための機能説明図である。
(1)第1切換モード(B-1)
冷熱流入ポート61aを冷房用流出ポート61bと冷熱流出ポート61cに連通させる切換モード。
(2)第2切換モード(B-2)
冷熱流入ポート61aを冷房用流出ポート61bのみに連通させる切換モード。
(3)第3切換モード(B-3)
冷熱流入ポート61aを冷熱流出ポート61cのみに連通させる切換モード。
(4)第4切換モード(B-4)
冷熱流入ポート61aを閉じる切換モード。
FIG. 11 is a functional explanatory diagram for explaining four switching modes of the second switching valve 61. FIG.
(1) First switching mode (B-1)
A switching mode in which the cooling heat inflow port 61a is communicated with the cooling outflow port 61b and the cold heat outflow port 61c.
(2) Second switching mode (B-2)
A switching mode in which the cooling heat inflow port 61a is communicated only with the cooling outflow port 61b.
(3) Third switching mode (B-3)
A switching mode in which the cold heat inflow port 61a is communicated only with the cold heat outflow port 61c.
(4) Fourth switching mode (B-4)
A switching mode in which the cold heat inflow port 61a is closed.

図12は、第3切換弁62の、第2切換弁61を示す図10と同様の断面図である。
第3切換弁62は、例えば、図12に示す構造を採用することができる。
図12に示す第3切換弁62は、第2切換弁61と同様に、円筒状の弁ケース78の内部が弁室79とされ、弁ケース78の軸心部には、図示しないアクチュエータに連結された操作軸80が回動可能に支持されている。弁ケース78の周壁には、庫側流入ポート62a、温排熱流出ポート62b、及び、冷排熱流出ポート62cが周方向に離間して形成されている。操作軸80には、弁室79の内周面に摺接する弁体81が一体に取り付けられている。
第3切換弁62は、アクチュエータによる操作軸76の回動操作により、以下の四つつの切換モードの切換えが可能な構造とされている。
12 is a cross-sectional view similar to FIG. 10 showing the second switching valve 61 of the third switching valve 62. FIG.
For example, the structure shown in FIG. 12 can be adopted for the third switching valve 62 .
Similar to the second switching valve 61, the third switching valve 62 shown in FIG. The operating shaft 80 is rotatably supported. A storage-side inflow port 62a, a warm exhaust heat outflow port 62b, and a cold exhaust heat outflow port 62c are formed in the peripheral wall of the valve case 78 so as to be spaced apart in the circumferential direction. A valve body 81 is integrally attached to the operating shaft 80 so as to be in sliding contact with the inner peripheral surface of the valve chamber 79 .
The third switching valve 62 has a structure capable of switching between the following four switching modes by rotating the operating shaft 76 by the actuator.

(1)第1切換モード(C-1)
庫側流入ポート62aを温排熱流出ポート62bに連通させる切換モード。
(2)第2切換モード(C-2)
庫側流入ポート62aを冷排熱流出ポート62cに連通させる切換モード。
(3)第3切換モード(C-3)
庫側流入ポート62aを閉じる切換モード。
(1) First switching mode (C-1)
A switching mode in which the chamber-side inflow port 62a is communicated with the warm exhaust heat outflow port 62b.
(2) Second switching mode (C-2)
A switching mode in which the chamber-side inflow port 62a is communicated with the cold exhaust heat outflow port 62c.
(3) Third switching mode (C-3)
A switching mode that closes the inflow port 62a on the storage side.

以上説明した第1切換弁60、第2切換弁61、及び、第3切換弁62の操作軸70,76,80を操作する各アクチュエータは、車両の空調運転の状況と、温冷蔵庫90の庫内の温度設定(温蔵や冷蔵の設定)等に応じて制御装置13によって制御される。 Each actuator that operates the operation shafts 70, 76, 80 of the first switching valve 60, the second switching valve 61, and the third switching valve 62 described above is controlled by the air conditioning operation status of the vehicle and the temperature of the refrigerator 90. It is controlled by the control device 13 according to the internal temperature setting (setting of hot storage or refrigeration).

[温冷蔵システム10の作動]
次に、上述した温冷蔵システム10の作動について、図1及び図14~図24を参照して説明する。
図1,図14~図16は、暖房運転時における温冷蔵システム10の状態を示し、図17~図20は、冷房運転時における温冷蔵システム10の状態を示している。また、図21~図24は、除湿暖房時おにける温冷蔵システム10の状態を示している。なお、図1,図14~図24の各図において、回路内の濃いドット(密のドット)は高圧の冷媒の流れを示し、薄いドット(疎のドット)は低圧の冷媒の流れを示している。
[Operation of hot and cold storage system 10]
Next, the operation of the hot and cold storage system 10 described above will be described with reference to FIGS. 1 and 14 to 24. FIG.
1 and 14 to 16 show the state of the hot and cold storage system 10 during heating operation, and FIGS. 17 to 20 show the state of the hot and cold storage system 10 during cooling operation. 21 to 24 show the state of the warm/refrigerate system 10 during dehumidification and heating. 1 and 14 to 24, dark dots (dense dots) in the circuit indicate the flow of high-pressure refrigerant, and thin dots (sparse dots) indicate the flow of low-pressure refrigerant. there is

<暖房運転/温蔵>
暖房運転時に温冷蔵庫90を温蔵状態にする場合には、切換弁65(第1切換弁60、第2切換弁61、第3切換弁62)を図1に示す状態にする。具体的には、第1切換弁60を、図8に示す第1切換モード(A-1)にし、第2切換弁61を、図11に示す第3切換モード(B-3)、第3切換弁62を、図13に示す第1切換モード(C-1)にする。また、このとき空調ユニット11のエアミックスドア54は加熱経路を開放する加熱位置とされ、暖房弁32は開状態とされ、冷房弁26は閉状態とされる。
<Heating operation/Warm storage>
When the warm refrigerator 90 is placed in the warm storage state during the heating operation, the switching valves 65 (the first switching valve 60, the second switching valve 61, and the third switching valve 62) are set to the states shown in FIG. Specifically, the first switching valve 60 is set to the first switching mode (A-1) shown in FIG. 8, and the second switching valve 61 is set to the third switching mode (B-3) shown in FIG. Switching valve 62 is set to the first switching mode (C-1) shown in FIG. At this time, the air mix door 54 of the air conditioning unit 11 is set to the heating position to open the heating path, the heating valve 32 is opened, and the cooling valve 26 is closed.

この状態において、コンプレッサ21が作動して高温高圧の冷媒が温熱通路41hに吐出されると、その冷媒は、第1切換弁60を経由して暖房用室内熱交換器55と温冷蔵用熱交換器95に流入する。 In this state, when the compressor 21 operates and high-temperature and high-pressure refrigerant is discharged into the hot-heat passage 41h, the refrigerant passes through the first switching valve 60 and the indoor heat exchanger 55 for heating and heat exchange for hot and cold storage. It flows into vessel 95 .

暖房用室内熱交換器55に流入した高温高圧の冷媒は、暖房用室内熱交換器55での放熱によって空調ユニット11内の空調空気(室内空気)を加熱する。そして、暖房用室内熱交換器55を通過した冷媒は、暖房用膨張弁22によって減圧されて液相リッチの気液2相の噴霧状とされ、その後、室外熱交換器24において室外雰囲気から吸熱する。室外熱交換器24を通過した冷媒は、暖房用バイパス通路44を通ってアキュムレータ33に流入する。アキュムレータ33に流入した冷媒は、アキュムレータ33の内部において気液分離され、主に気相の冷媒(冷媒の気体分)がコンプレッサ21に吸入される。 The high-temperature, high-pressure refrigerant that has flowed into the indoor heat exchanger 55 for heating heats the conditioned air (indoor air) in the air conditioning unit 11 by releasing heat in the indoor heat exchanger 55 for heating. The refrigerant that has passed through the indoor heat exchanger 55 for heating is decompressed by the expansion valve 22 for heating and turned into a liquid-rich gas-liquid two-phase spray. do. The refrigerant that has passed through the outdoor heat exchanger 24 flows into the accumulator 33 through the heating bypass passage 44 . The refrigerant that has flowed into the accumulator 33 is separated into gas and liquid inside the accumulator 33 , and mainly gas-phase refrigerant (gas portion of the refrigerant) is sucked into the compressor 21 .

また、温冷蔵用熱交換器95に流入した高温高圧の冷媒は、温冷蔵用熱交換器95での放熱によって温冷蔵庫90の庫内の空気を加熱する。温冷蔵用熱交換器95を通過した冷媒は、第2切換弁61と排熱通路47を通って室外熱交換器24の上流側(高圧側主通路41のうちの暖房用室内熱交換器55と暖房用膨張弁22の間の通路)に流出する。 Further, the high-temperature, high-pressure refrigerant that has flowed into the hot/cold storage heat exchanger 95 heats the air inside the warm/cold storage 90 by releasing heat from the warm/cold storage heat exchanger 95 . The refrigerant that has passed through the heat exchanger 95 for hot and cold storage passes through the second switching valve 61 and the exhaust heat passage 47 to the upstream side of the outdoor heat exchanger 24 (the indoor heat exchanger 55 for heating in the main passage 41 on the high pressure side). and the passage between the heating expansion valve 22).

<暖房運転/温蔵OFF>
暖房運転時に温冷蔵庫90の温蔵状態がOFFにされる場合には、切換弁65(第1切換弁60、第2切換弁61、第3切換弁62)を図14に示す状態にする。具体的には、第1切換弁60を、図8に示す第1切換モード(A-1)にし、第2切換弁61を、図11に示す第3切換モード(B-3)、第3切換弁62を、図13に示す第3切換モード(C-3)にする。
<Heating operation/Warm storage OFF>
When the warm storage state of the warm refrigerator 90 is turned off during the heating operation, the switching valves 65 (the first switching valve 60, the second switching valve 61, and the third switching valve 62) are set to the states shown in FIG. Specifically, the first switching valve 60 is set to the first switching mode (A-1) shown in FIG. 8, and the second switching valve 61 is set to the third switching mode (B-3) shown in FIG. Switching valve 62 is set to the third switching mode (C-3) shown in FIG.

この状態において、コンプレッサ21が作動して高温高圧の冷媒が温熱通路41hに吐出されると、その冷媒は、第1切換弁60を経由して暖房用室内熱交換器55に流入する。このとき、温冷蔵用熱交換器95の冷媒導出部96oは、第3切換弁62によって閉じられているため、温冷蔵用熱交換器95には、高温高圧の冷媒は流入しない。この結果、温冷蔵庫90の温蔵状態はOFFにされる。 In this state, when the compressor 21 operates and high-temperature, high-pressure refrigerant is discharged into the thermal passage 41h, the refrigerant flows through the first switching valve 60 into the indoor heat exchanger 55 for heating. At this time, the refrigerant lead-out portion 96 o of the hot/cold storage heat exchanger 95 is closed by the third switching valve 62 , so that no high-temperature/high-pressure refrigerant flows into the warm/cold storage heat exchanger 95 . As a result, the warm storage state of the warm refrigerator 90 is turned off.

<暖房運転/冷蔵>
暖房運転時に温冷蔵庫90を冷蔵状態にする場合には、切換弁65(第1切換弁60、第2切換弁61、第3切換弁62)を図15に示す状態にする。具体的には、第1切換弁60を、図8に示す第2切換モード(A-2)にし、第2切換弁61を、図11に示す第3切換モード(B-3)、第3切換弁62を、図13に示す第2切換モード(C-2)にする。また、このとき、空調ユニット11のエアミックスドア54は加熱経路を開放する加熱位置とされ、暖房弁32と冷房弁26はいずれも開状態とされる。
<Heating operation/Refrigeration>
When the warm refrigerator 90 is placed in the refrigerating state during the heating operation, the switching valves 65 (the first switching valve 60, the second switching valve 61, and the third switching valve 62) are set to the states shown in FIG. Specifically, the first switching valve 60 is set to the second switching mode (A-2) shown in FIG. 8, and the second switching valve 61 is set to the third switching mode (B-3) shown in FIG. Switching valve 62 is set to the second switching mode (C-2) shown in FIG. At this time, the air mix door 54 of the air conditioning unit 11 is set to the heating position to open the heating path, and the heating valve 32 and the cooling valve 26 are both opened.

この状態において、コンプレッサ21が作動して高温高圧の冷媒が温熱通路41hに吐出されると、その冷媒は、第1切換弁60を経由して暖房用室内熱交換器55に流入する。暖房用室内熱交換器55に流入した高温高圧の冷媒は、暖房用室内熱交換器55での放熱によって空調ユニット11内の空調空気(室内空気)を加熱する。そして、暖房用室内熱交換器55を通過した冷媒は、暖房用膨張弁によって減圧されて液相リッチの気液2相の噴霧状とされ、その後、室外熱交換器24において室外雰囲気から吸熱する。 In this state, when the compressor 21 operates and high-temperature, high-pressure refrigerant is discharged into the thermal passage 41h, the refrigerant flows through the first switching valve 60 into the indoor heat exchanger 55 for heating. The high-temperature, high-pressure refrigerant that has flowed into the indoor heat exchanger 55 for heating heats the conditioned air (indoor air) in the air conditioning unit 11 by releasing heat in the indoor heat exchanger 55 for heating. The refrigerant that has passed through the indoor heat exchanger 55 for heating is decompressed by the expansion valve for heating and turned into a liquid-rich gas-liquid two-phase spray, and then in the outdoor heat exchanger 24, it absorbs heat from the outdoor atmosphere. .

室外熱交換器24を通過した冷媒の一部は、暖房用バイパス通路44を通ってアキュムレータ33に流入し、残余の冷媒は冷房用主通路43を通って冷房用膨張弁29によって減圧され、その後、第2切換弁61と冷熱接続通路48を経由して第1切換弁60の庫側導入用冷熱流入ポート60bに流入し、さらに第1切換弁60の庫側流出ポート60dを通って温冷蔵用熱交換器95の冷媒導入部96iに流入する。このとき、温冷蔵用熱交換器95の冷媒導出部96oは第3切換弁62を通して冷媒戻り通路49に連通しているため、冷媒導入部96iに流入した低温低圧の冷媒は温冷蔵用熱交換器95の内部を流通する。温冷蔵用熱交換器95に流入した低温低圧の冷媒は、温冷蔵用熱交換器95での吸熱によって温冷蔵庫90の庫内の空気を冷却する。温冷蔵用熱交換器95を通過した冷媒は、第2切換弁61を介して冷媒戻り通路49に流出する。 Part of the refrigerant that has passed through the outdoor heat exchanger 24 flows through the heating bypass passage 44 into the accumulator 33, and the remaining refrigerant passes through the cooling main passage 43 and is decompressed by the cooling expansion valve 29, and then , through the second switching valve 61 and the cold connection passage 48, into the cold heat inflow port 60b for introducing cold heat into the first switching valve 60, and further through the cold heat inflow port 60d of the first switching valve 60 for hot and cold storage. The refrigerant flows into the refrigerant introduction portion 96i of the heat exchanger 95 for use. At this time, since the refrigerant lead-out portion 96o of the heat exchanger 95 for hot and cold storage communicates with the refrigerant return passage 49 through the third switching valve 62, the low-temperature, low-pressure refrigerant that has flowed into the refrigerant introduction portion 96i is used for heat exchange for hot and cold storage. It circulates inside the container 95 . The low-temperature, low-pressure refrigerant that has flowed into the warm/cold storage heat exchanger 95 cools the air inside the warm/cold storage 90 by absorbing heat in the warm/cold storage heat exchanger 95 . The refrigerant that has passed through the hot and cold storage heat exchanger 95 flows out to the refrigerant return passage 49 via the second switching valve 61 .

<暖房運転/冷蔵OFF>
暖房運転時に温冷蔵庫90の冷蔵状態がOFFにされる場合には、切換弁65(第1切換弁60、第2切換弁61、第3切換弁62)を図16に示す状態にする。具体的には、第1切換弁60を、図8に示す第1切換モード(A-1)にし、第2切換弁61を、図11に示す第4切換モード(B-4)、第3切換弁62を、図13に示す第3切換モード(C-3)にする。このとき、暖房弁32と冷房弁26はいずれも開状態とされる。なお、このとき冷房弁26は閉状態としても良い。
<Heating operation/refrigeration OFF>
When the refrigerating state of the warm refrigerator 90 is turned off during the heating operation, the switching valves 65 (the first switching valve 60, the second switching valve 61, and the third switching valve 62) are set to the states shown in FIG. Specifically, the first switching valve 60 is set to the first switching mode (A-1) shown in FIG. 8, and the second switching valve 61 is set to the fourth switching mode (B-4) shown in FIG. Switching valve 62 is set to the third switching mode (C-3) shown in FIG. At this time, both the heating valve 32 and the cooling valve 26 are opened. At this time, the cooling valve 26 may be closed.

この状態において、コンプレッサ21が作動して高温高圧の冷媒が温熱通路41hに吐出されると、その冷媒は、第1切換弁60を経由して暖房用室内熱交換器55に流入する。このとき、温冷蔵用熱交換器95の冷媒導出部96oは、第3切換弁62によって閉じられているため、温冷蔵用熱交換器95には、高温高圧の冷媒は流入しない。この結果、温冷蔵庫90の冷蔵状態はOFFにされる。 In this state, when the compressor 21 operates and high-temperature, high-pressure refrigerant is discharged into the thermal passage 41h, the refrigerant flows through the first switching valve 60 into the indoor heat exchanger 55 for heating. At this time, the refrigerant lead-out portion 96 o of the hot/cold storage heat exchanger 95 is closed by the third switching valve 62 , so that no high-temperature/high-pressure refrigerant flows into the warm/cold storage heat exchanger 95 . As a result, the refrigerating state of the warm refrigerator 90 is turned off.

<冷房運転/温蔵>
冷房運転時に温冷蔵庫90を温蔵状態にする場合には、切換弁65(第1切換弁60、第2切換弁61、第3切換弁62)を図17に示す状態にする。具体的には、第1切換弁60を、図8に示す第1切換モード(A-1)にし、第2切換弁61を、図11に示す第1切換モード(B-1)、第3切換弁62を、図13に示す第1切換モード(C-1)にする。また、このとき空調ユニット11のエアミックスドア54は加熱経路を閉じる冷却位置とされ、暖房弁32は閉状態とされ、冷房弁26は開状態とされる。
<Cooling operation/Warm storage>
When the warm refrigerator 90 is placed in the warm storage state during the cooling operation, the switching valves 65 (the first switching valve 60, the second switching valve 61, and the third switching valve 62) are set to the states shown in FIG. Specifically, the first switching valve 60 is set to the first switching mode (A-1) shown in FIG. 8, and the second switching valve 61 is set to the first switching mode (B-1) shown in FIG. Switching valve 62 is set to the first switching mode (C-1) shown in FIG. At this time, the air mix door 54 of the air conditioning unit 11 is set to the cooling position to close the heating path, the heating valve 32 is closed, and the cooling valve 26 is open.

この状態において、コンプレッサ21が作動して高温高圧の冷媒が温熱通路41hに吐出されると、その冷媒は、第1切換弁60を経由して暖房用室内熱交換器55と温冷蔵用熱交換器95に流入する。 In this state, when the compressor 21 operates and high-temperature and high-pressure refrigerant is discharged into the hot-heat passage 41h, the refrigerant passes through the first switching valve 60 and the indoor heat exchanger 55 for heating and heat exchange for hot and cold storage. It flows into vessel 95 .

暖房用室内熱交換器55に流入した高温高圧の冷媒は、暖房用室内熱交換器55と開口面積の大きい暖房用膨張弁22を通過して室外熱交換器24に流入する。室外熱交換器24に流入した高温高圧の冷媒は、室外熱交換器24において室外雰囲気へと放熱された後、冷房用主通路43内に流入する。冷房用主通路43に流入した冷媒は、レシーバタンク25で余剰分を回収された後、サブコンデンサ27において室外雰囲気へと再び放熱される。その後、冷媒は冷房用膨張弁29によって減圧されて液相リッチの気液2相の噴霧状とされる。噴霧状の冷媒は、第2切換弁61を通ってエバポレータ53に流入し、エバポレータ53における吸熱によって空調ユニット11内の空調空気を冷却する。
そして、エバポレータ53を通過した冷媒は、冷媒戻り通路49を通ってアキュムレータ33内に流入する。アキュムレータ33に流入した冷媒は、その内部において気液分離され、主に気相の冷媒(冷媒の気体分)がコンプレッサ21に吸入される。
The high-temperature, high-pressure refrigerant that has flowed into the indoor heat exchanger 55 for heating flows into the outdoor heat exchanger 24 through the indoor heat exchanger 55 for heating and the expansion valve 22 for heating having a large opening area. The high-temperature, high-pressure refrigerant that has flowed into the outdoor heat exchanger 24 radiates heat to the outdoor atmosphere in the outdoor heat exchanger 24 , and then flows into the cooling main passage 43 . The refrigerant that has flowed into the cooling main passage 43 is recovered in the receiver tank 25 in excess, and then radiated again to the outdoor atmosphere in the sub-condenser 27 . After that, the refrigerant is depressurized by the cooling expansion valve 29 and is made into a liquid-rich gas-liquid two-phase spray. The atomized refrigerant flows into the evaporator 53 through the second switching valve 61 and cools the conditioned air in the air conditioning unit 11 by absorbing heat in the evaporator 53 .
After passing through the evaporator 53 , the refrigerant flows through the refrigerant return passage 49 into the accumulator 33 . The refrigerant that has flowed into the accumulator 33 is separated into gas and liquid inside the accumulator 33 , and mainly gas-phase refrigerant (gas portion of the refrigerant) is sucked into the compressor 21 .

また、温冷蔵用熱交換器95に流入した高温高圧の冷媒は、温冷蔵用熱交換器95での放熱によって温冷蔵庫90の庫内の空気を加熱する。温冷蔵用熱交換器95を通過した冷媒は、第2切換弁61と排熱通路47を通って室外熱交換器24の上流側(高圧側主通路41のうちの暖房用室内熱交換器55と暖房用膨張弁22の間の通路)に流出する。 Further, the high-temperature, high-pressure refrigerant that has flowed into the hot/cold storage heat exchanger 95 heats the air inside the warm/cold storage 90 by releasing heat from the warm/cold storage heat exchanger 95 . The refrigerant that has passed through the heat exchanger 95 for hot and cold storage passes through the second switching valve 61 and the exhaust heat passage 47 to the upstream side of the outdoor heat exchanger 24 (the indoor heat exchanger 55 for heating in the main passage 41 on the high pressure side). and the passage between the heating expansion valve 22).

<冷房運転/温蔵OFF>
冷房運転時に温冷蔵庫90の温蔵状態がOFFにされる場合には、切換弁65(第1切換弁60、第2切換弁61、第3切換弁62)を図18に示す状態にする。具体的には、第1切換弁60を、図8に示す第1切換モード(A-1)にし、第2切換弁61を、図11に示す第1切換モード(B-1)、第3切換弁62を、図13に示す第3切換モード(C-3)にする。
<Cooling operation/Warm storage OFF>
When the warm storage state of the warm refrigerator 90 is turned off during cooling operation, the switching valves 65 (the first switching valve 60, the second switching valve 61, and the third switching valve 62) are set to the states shown in FIG. Specifically, the first switching valve 60 is set to the first switching mode (A-1) shown in FIG. 8, and the second switching valve 61 is set to the first switching mode (B-1) shown in FIG. Switching valve 62 is set to the third switching mode (C-3) shown in FIG.

この状態において、コンプレッサ21が作動して高温高圧の冷媒が温熱通路41hに吐出されると、その冷媒は、第1切換弁60を経由して暖房用室内熱交換器55側に流入する。暖房用室内熱交換器55を通過し冷媒は、上述と同様に室外熱交換器24を通過して冷房用主通路43を流れる。このとき、温冷蔵用熱交換器95の冷媒導出部96oは、第3切換弁62によって閉じられているため、温冷蔵用熱交換器95には、高温側と低温側のいずれ側の冷媒も流入しない。この結果、温冷蔵庫90の冷蔵状態はOFFにされる。 In this state, when the compressor 21 operates and high-temperature, high-pressure refrigerant is discharged into the thermal passage 41h, the refrigerant flows through the first switching valve 60 into the indoor heat exchanger 55 for heating. After passing through the indoor heat exchanger 55 for heating, the refrigerant flows through the main passage 43 for cooling through the outdoor heat exchanger 24 in the same manner as described above. At this time, since the refrigerant lead-out portion 96o of the hot/cold storage heat exchanger 95 is closed by the third switching valve 62, the hot/cold storage heat exchanger 95 receives the refrigerant from either the high temperature side or the low temperature side. do not flow. As a result, the refrigerating state of the warm refrigerator 90 is turned off.

<冷房運転/冷蔵>
冷房運転時に温冷蔵庫90を冷蔵状態にする場合には、切換弁65(第1切換弁60、第2切換弁61、第3切換弁62)を図19に示す状態にする。具体的には、第1切換弁60を、図8に示す第2切換モード(A-2)にし、第2切換弁61を、図11に示す第1切換モード(B-1)、第3切換弁62を、図13に示す第2切換モード(C-2)にする。また、このとき空調ユニット11のエアミックスドア54は加熱経路を閉じる冷却位置とされ、暖房弁32は閉状態とされ、冷房弁26は開状態とされる。
<Cooling operation/Refrigeration>
When the warm refrigerator 90 is placed in the refrigerating state during the cooling operation, the switching valves 65 (the first switching valve 60, the second switching valve 61, and the third switching valve 62) are set to the states shown in FIG. Specifically, the first switching valve 60 is set to the second switching mode (A-2) shown in FIG. 8, and the second switching valve 61 is set to the first switching mode (B-1) shown in FIG. Switching valve 62 is set to the second switching mode (C-2) shown in FIG. At this time, the air mix door 54 of the air conditioning unit 11 is set to the cooling position to close the heating path, the heating valve 32 is closed, and the cooling valve 26 is open.

この状態において、コンプレッサ21が作動して高温高圧の冷媒が温熱通路41hに吐出されると、その冷媒は、第1切換弁60を経由して暖房用室内熱交換器55に流入する。暖房用室内熱交換器55に流入した高温高圧の冷媒は、暖房用室内熱交換器55と開口面積の大きい暖房用膨張弁22を通過して室外熱交換器24に流入する。室外熱交換器24を通過した冷媒は、冷房用主通路43を流れる。このとき、冷房用膨張弁29を通過した冷媒は、第2切換弁61において、エバポレータ53側と冷熱接続通路48側とに分流する。エバポレータ53を通過する低温低圧の冷媒は、空調ユニット11内の空調空気を冷却し、その後に冷媒戻り通路49を通ってアキュムレータ33に流入する。 In this state, when the compressor 21 operates and high-temperature, high-pressure refrigerant is discharged into the thermal passage 41h, the refrigerant flows through the first switching valve 60 into the indoor heat exchanger 55 for heating. The high-temperature, high-pressure refrigerant that has flowed into the indoor heat exchanger 55 for heating flows into the outdoor heat exchanger 24 through the indoor heat exchanger 55 for heating and the expansion valve 22 for heating having a large opening area. The refrigerant that has passed through the outdoor heat exchanger 24 flows through the cooling main passage 43 . At this time, the refrigerant that has passed through the cooling expansion valve 29 is split at the second switching valve 61 into the evaporator 53 side and the cooling/heat connection passage 48 side. The low-temperature, low-pressure refrigerant that passes through the evaporator 53 cools the conditioned air in the air conditioning unit 11 and then flows through the refrigerant return passage 49 into the accumulator 33 .

一方、冷熱接続通路48に流入した低温低圧の冷媒は、第1切換弁60の庫側導入用冷熱流入ポート60bに流入する。庫側導入用冷熱流入ポート60bに流入した低温低圧の冷媒は、庫側流出ポート60dを通って温冷蔵用熱交換器95の冷媒導入部96iに流入する。このとき、温冷蔵用熱交換器95の冷媒導出部96oは第3切換弁62を通して冷媒戻り通路49に連通しているため、冷媒導入部96iに流入した低温低圧の冷媒は温冷蔵用熱交換器95の内部を流通する。温冷蔵用熱交換器95に流入した低温低圧の冷媒は、温冷蔵用熱交換器95での吸熱によって温冷蔵庫90の庫内の空気を冷却する。温冷蔵用熱交換器95を通過した冷媒は、第2切換弁61を介して冷媒戻り通路49に流出する。 On the other hand, the low-temperature, low-pressure refrigerant that has flowed into the cooling-heat connection passage 48 flows into the cold-heat inflow port 60b of the first switching valve 60 for introduction into the refrigerator side. The low-temperature, low-pressure refrigerant that has flowed into the cold heat inflow port 60b for introducing cold heat flows into the refrigerant introduction portion 96i of the heat exchanger 95 for warming and refrigerating through the outflow port 60d. At this time, since the refrigerant lead-out portion 96o of the heat exchanger 95 for hot and cold storage communicates with the refrigerant return passage 49 through the third switching valve 62, the low-temperature, low-pressure refrigerant that has flowed into the refrigerant introduction portion 96i is used for heat exchange for hot and cold storage. It circulates inside the container 95 . The low-temperature, low-pressure refrigerant that has flowed into the warm/cold storage heat exchanger 95 cools the air inside the warm/cold storage 90 by absorbing heat in the warm/cold storage heat exchanger 95 . The refrigerant that has passed through the hot and cold storage heat exchanger 95 flows out to the refrigerant return passage 49 via the second switching valve 61 .

<冷房運転/冷蔵OFF>
冷房運転時に温冷蔵庫90の冷蔵状態がOFFにされる場合には、切換弁65(第1切換弁60、第2切換弁61、第3切換弁62)を図20に示す状態にする。具体的には、第1切換弁60を、図8に示す第2切換モード(A-2)にし、第2切換弁61を、図11に示す第2切換モード(B-2)、第3切換弁62を、図13に示す第3切換モード(C-3)にする。
<Cooling operation/refrigeration OFF>
When the refrigerating state of the warm refrigerator 90 is turned off during the cooling operation, the switching valves 65 (the first switching valve 60, the second switching valve 61, and the third switching valve 62) are set to the states shown in FIG. Specifically, the first switching valve 60 is set to the second switching mode (A-2) shown in FIG. 8, and the second switching valve 61 is set to the second switching mode (B-2) shown in FIG. Switching valve 62 is set to the third switching mode (C-3) shown in FIG.

この状態において、コンプレッサ21が作動して高温高圧の冷媒が温熱通路41hに吐出されると、その冷媒は、第1切換弁60を経由して暖房用室内熱交換器55側に流入する。暖房用室内熱交換器55を通過し冷媒は、上述と同様に室外熱交換器24を通過して冷房用主通路43を流れる。このとき、温冷蔵用熱交換器95の冷媒導出部96oは、第3切換弁62によって閉じられているため、温冷蔵用熱交換器95には、高温側と低温側のいずれの冷媒も流入しない。この結果、温冷蔵庫90の冷蔵状態はOFFにされる。なお、このとき冷熱接続通路48の上流側も第2切換弁61によって閉じられている。 In this state, when the compressor 21 operates and high-temperature, high-pressure refrigerant is discharged into the thermal passage 41h, the refrigerant flows through the first switching valve 60 into the indoor heat exchanger 55 for heating. After passing through the indoor heat exchanger 55 for heating, the refrigerant flows through the main passage 43 for cooling through the outdoor heat exchanger 24 in the same manner as described above. At this time, since the refrigerant lead-out portion 96o of the hot/cold storage heat exchanger 95 is closed by the third switching valve 62, both the high temperature side and the low temperature side refrigerant flow into the hot/cold storage heat exchanger 95. do not. As a result, the refrigerating state of the warm refrigerator 90 is turned off. At this time, the upstream side of the cooling/heat connection passage 48 is also closed by the second switching valve 61 .

<除湿暖房運転/温蔵>
除湿暖房運転時に温冷蔵庫90を温蔵状態にする場合には、切換弁65(第1切換弁60、第2切換弁61、第3切換弁62)を図21に示す状態にする。具体的には、第1切換弁60を、図8に示す第1切換モード(A-1)にし、第2切換弁61を、図11に示す第1切換モード(B-1)、第3切換弁62を、図13に示す第1切換モード(C-1)にする。また、このとき空調ユニット11のエアミックスドア54は加熱経路を開く加熱位置とされ、暖房弁32は閉状態とされ、冷房弁26は開状態とされる。
<Dehumidification/heating operation/warm storage>
When the warm refrigerator 90 is placed in the warm storage state during the dehumidifying and heating operation, the switching valves 65 (the first switching valve 60, the second switching valve 61, and the third switching valve 62) are set to the states shown in FIG. Specifically, the first switching valve 60 is set to the first switching mode (A-1) shown in FIG. 8, and the second switching valve 61 is set to the first switching mode (B-1) shown in FIG. Switching valve 62 is set to the first switching mode (C-1) shown in FIG. At this time, the air mix door 54 of the air conditioning unit 11 is set to the heating position to open the heating path, the heating valve 32 is closed, and the cooling valve 26 is open.

この状態において、コンプレッサ21が作動して高温高圧の冷媒が温熱通路41hに吐出されると、その冷媒は、第1切換弁60を経由して暖房用室内熱交換器55と温冷蔵用熱交換器95に流入する。 In this state, when the compressor 21 operates and high-temperature and high-pressure refrigerant is discharged into the hot-heat passage 41h, the refrigerant passes through the first switching valve 60 and the indoor heat exchanger 55 for heating and heat exchange for hot and cold storage. It flows into vessel 95 .

暖房用室内熱交換器55に流入した高温高圧の冷媒は、暖房用室内熱交換器55での放熱によって空調ユニット11内の空調空気(室内空気)を加熱する。そして、暖房用室内熱交換器55を通過した冷媒は、暖房用膨張弁22を通過して室外熱交換器24に流入する。冷媒は、室外熱交換器24を通過した後に冷房用主通路43に流入し、冷房用膨張弁29において減圧される。冷房用膨張弁29を通過した低温低圧の冷媒は、第2切換弁61を通ってエバポレータ53に流入する。エバポレータ53では、内部を通過する冷媒が空調ユニット11の空調空気から吸熱を行い、それによって空調空気を除湿する。エバポレータ53で除湿された空調空気は、暖房用室内熱交換器55で加熱された後に車室内に吹き出される。また、エバポレータ53を通過した冷媒は、冷媒戻り通路49を通ってアキュムレータ33に流入する。 The high-temperature, high-pressure refrigerant that has flowed into the indoor heat exchanger 55 for heating heats the conditioned air (indoor air) in the air conditioning unit 11 by releasing heat in the indoor heat exchanger 55 for heating. After passing through the indoor heat exchanger 55 for heating, the refrigerant passes through the expansion valve 22 for heating and flows into the outdoor heat exchanger 24 . After passing through the outdoor heat exchanger 24 , the refrigerant flows into the cooling main passage 43 and is decompressed in the cooling expansion valve 29 . The low-temperature, low-pressure refrigerant that has passed through the cooling expansion valve 29 flows through the second switching valve 61 into the evaporator 53 . In the evaporator 53, the refrigerant passing through the inside absorbs heat from the conditioned air of the air conditioning unit 11, thereby dehumidifying the conditioned air. The conditioned air dehumidified by the evaporator 53 is heated by the indoor heat exchanger 55 for heating and then blown into the vehicle interior. Also, the refrigerant that has passed through the evaporator 53 flows into the accumulator 33 through the refrigerant return passage 49 .

また、温冷蔵用熱交換器95に流入した高温高圧の冷媒は、温冷蔵用熱交換器95での放熱によって温冷蔵庫90の庫内の空気を加熱する。温冷蔵用熱交換器95を通過した冷媒は、第2切換弁61と排熱通路47を通って室外熱交換器24の上流側(高圧側主通路41のうちの暖房用室内熱交換器55と暖房用膨張弁22の間の通路)に流出する。 Further, the high-temperature, high-pressure refrigerant that has flowed into the hot/cold storage heat exchanger 95 heats the air inside the warm/cold storage 90 by releasing heat from the warm/cold storage heat exchanger 95 . The refrigerant that has passed through the heat exchanger 95 for hot and cold storage passes through the second switching valve 61 and the exhaust heat passage 47 to the upstream side of the outdoor heat exchanger 24 (the indoor heat exchanger 55 for heating in the main passage 41 on the high pressure side). and the passage between the heating expansion valve 22).

<除湿暖房運転/温蔵OFF>
除湿暖房運転時に温冷蔵庫90の温蔵状態がOFFにされる場合には、切換弁65(第1切換弁60、第2切換弁61、第3切換弁62)を図22に示す状態にする。具体的には、第1切換弁60を、図8に示す第1切換モード(A-1)にし、第2切換弁61を、図11に示す第1切換モード(B-1)、第3切換弁62を、図13に示す第3切換モード(C-3)にする。
<Dehumidification/heating operation/Warm storage OFF>
When the warm storage state of the warm refrigerator 90 is turned off during the dehumidifying and heating operation, the switching valves 65 (the first switching valve 60, the second switching valve 61, and the third switching valve 62) are set to the states shown in FIG. . Specifically, the first switching valve 60 is set to the first switching mode (A-1) shown in FIG. 8, and the second switching valve 61 is set to the first switching mode (B-1) shown in FIG. Switching valve 62 is set to the third switching mode (C-3) shown in FIG.

この状態において、コンプレッサ21が作動して高温高圧の冷媒が温熱通路41hに吐出されると、その冷媒は、第1切換弁60を経由して暖房用室内熱交換器55に流入する。暖房用室内熱交換器55に流入した冷媒は、前述と同様に室外熱交換器24を経由して冷房用主通路43を流れる。冷房用膨張弁29で減圧されてエバポレータ53に流入した冷媒は、エバポレータ53において空調空気の除湿を行う。
一方、温冷蔵用熱交換器95の冷媒導出部96oは、第3切換弁62によって閉じられているため、温冷蔵用熱交換器95には、高温高圧の冷媒は流入しない。この結果、温冷蔵庫90の温蔵状態はOFFにされる。
In this state, when the compressor 21 operates and high-temperature, high-pressure refrigerant is discharged into the thermal passage 41h, the refrigerant flows through the first switching valve 60 into the indoor heat exchanger 55 for heating. The refrigerant that has flowed into the indoor heat exchanger 55 for heating flows through the main passage 43 for cooling via the outdoor heat exchanger 24 in the same manner as described above. The refrigerant decompressed by the cooling expansion valve 29 and flowed into the evaporator 53 dehumidifies the conditioned air in the evaporator 53 .
On the other hand, since the refrigerant lead-out portion 96 o of the warm/cold storage heat exchanger 95 is closed by the third switching valve 62 , no high-temperature/high-pressure refrigerant flows into the warm/cold storage heat exchanger 95 . As a result, the warm storage state of the warm refrigerator 90 is turned off.

<除湿暖房運転/冷蔵>
除湿暖房運転時に温冷蔵庫90を冷蔵状態にする場合には、切換弁65(第1切換弁60、第2切換弁61、第3切換弁62)を図23に示す状態にする。具体的には、第1切換弁60を、図8に示す第2切換モード(A-2)にし、第2切換弁61を、図11に示す第1切換モード(B-1)、第3切換弁62を、図13に示す第2切換モード(C-2)にする。このとき、空調ユニット11のエアミックスドア54は加熱経路を開く加熱位置とされ、暖房弁32は閉状態とされ、冷房弁26は開状態とされる。
<Dehumidification/heating operation/refrigeration>
When the warm refrigerator 90 is placed in the refrigerating state during the dehumidifying and heating operation, the switching valves 65 (the first switching valve 60, the second switching valve 61, and the third switching valve 62) are set to the states shown in FIG. Specifically, the first switching valve 60 is set to the second switching mode (A-2) shown in FIG. 8, and the second switching valve 61 is set to the first switching mode (B-1) shown in FIG. Switching valve 62 is set to the second switching mode (C-2) shown in FIG. At this time, the air mix door 54 of the air conditioning unit 11 is set to the heating position to open the heating path, the heating valve 32 is closed, and the cooling valve 26 is open.

この状態において、コンプレッサ21が作動して高温高圧の冷媒が温熱通路41hに吐出されると、その冷媒は、第1切換弁60を経由して暖房用室内熱交換器55に流入する。暖房用室内熱交換器55に流入した高温高圧の冷媒は、暖房用室内熱交換器55での放熱によって空調ユニット11内の空調空気(室内空気)を加熱する。暖房用室内熱交換器55を通過した冷媒は、暖房用膨張弁22を通過して室外熱交換器24に流入する。冷媒は、室外熱交換器24を通過した後に冷房用主通路43に流入し、冷房用膨張弁29において減圧される。冷房用膨張弁29を通過した低温低圧の冷媒は、第2切換弁61においてエバポレータ53側と冷熱接続通路48側とに分流する。エバポレータ53側に流入した低温低圧の冷媒は前述と同様に空調空気を除湿し、エバポレータ53を通過した冷媒は、冷媒戻り通路49を通ってアキュムレータ33に流入する。 In this state, when the compressor 21 operates and high-temperature, high-pressure refrigerant is discharged into the thermal passage 41h, the refrigerant flows through the first switching valve 60 into the indoor heat exchanger 55 for heating. The high-temperature, high-pressure refrigerant that has flowed into the indoor heat exchanger 55 for heating heats the conditioned air (indoor air) in the air conditioning unit 11 by releasing heat in the indoor heat exchanger 55 for heating. After passing through the indoor heat exchanger 55 for heating, the refrigerant passes through the expansion valve 22 for heating and flows into the outdoor heat exchanger 24 . After passing through the outdoor heat exchanger 24 , the refrigerant flows into the cooling main passage 43 and is decompressed in the cooling expansion valve 29 . The low-temperature, low-pressure refrigerant that has passed through the cooling expansion valve 29 is split at the second switching valve 61 into the evaporator 53 side and the cooling/heat connection passage 48 side. The low-temperature, low-pressure refrigerant that has flowed into the evaporator 53 side dehumidifies the conditioned air in the same manner as described above, and the refrigerant that has passed through the evaporator 53 flows through the refrigerant return passage 49 into the accumulator 33 .

一方、冷熱接続通路48に流入した低温低圧の冷媒は、第1切換弁60の庫側導入用冷熱流入ポート60bに流入する。庫側導入用冷熱流入ポート60bに流入した低温低圧の冷媒は、庫側流出ポート60dを通って温冷蔵用熱交換器95の冷媒導入部96iに流入する。このとき、温冷蔵用熱交換器95の冷媒導出部96oは第3切換弁62を通して冷媒戻り通路49に連通しているため、冷媒導入部96iに流入した低温低圧の冷媒は温冷蔵用熱交換器95の内部を流通する。温冷蔵用熱交換器95に流入した低温低圧の冷媒は、温冷蔵用熱交換器95での吸熱によって温冷蔵庫90の庫内の空気を冷却する。温冷蔵用熱交換器95を通過した冷媒は、第2切換弁61を介して冷媒戻り通路49に流出する。 On the other hand, the low-temperature, low-pressure refrigerant that has flowed into the cooling-heat connection passage 48 flows into the cold-heat inflow port 60b of the first switching valve 60 for introduction into the refrigerator side. The low-temperature, low-pressure refrigerant that has flowed into the cold heat inflow port 60b for introducing cold heat flows into the refrigerant introduction portion 96i of the heat exchanger 95 for warming and refrigerating through the outflow port 60d. At this time, since the refrigerant lead-out portion 96o of the heat exchanger 95 for hot and cold storage communicates with the refrigerant return passage 49 through the third switching valve 62, the low-temperature, low-pressure refrigerant that has flowed into the refrigerant introduction portion 96i is used for heat exchange for hot and cold storage. It circulates inside the container 95 . The low-temperature, low-pressure refrigerant that has flowed into the warm/cold storage heat exchanger 95 cools the air inside the warm/cold storage 90 by absorbing heat in the warm/cold storage heat exchanger 95 . The refrigerant that has passed through the hot and cold storage heat exchanger 95 flows out to the refrigerant return passage 49 via the second switching valve 61 .

<除湿暖房運転/冷蔵OFF>
除湿暖房運転時に温冷蔵庫90の冷蔵状態をOFFにする場合には、切換弁65(第1切換弁60、第2切換弁61、第3切換弁62)を図24に示す状態にする。具体的には、第1切換弁60を、図8に示す第1切換モード(A-1)にし、第2切換弁61を、図11に示す第2切換モード(B-2)、第3切換弁62を、図13に示す第3切換モード(C-3)にする。
<Dehumidification/heating operation/refrigeration OFF>
When the refrigerating state of the warm refrigerator 90 is turned off during the dehumidifying and heating operation, the switching valves 65 (the first switching valve 60, the second switching valve 61, and the third switching valve 62) are set to the states shown in FIG. Specifically, the first switching valve 60 is set to the first switching mode (A-1) shown in FIG. 8, and the second switching valve 61 is set to the second switching mode (B-2) shown in FIG. Switching valve 62 is set to the third switching mode (C-3) shown in FIG.

この状態において、コンプレッサ21が作動して高温高圧の冷媒が温熱通路41hに吐出されると、その冷媒は、第1切換弁60を経由して暖房用室内熱交換器55に流入する。暖房用室内熱交換器55に流入した冷媒は、前述と同様に室外熱交換器24を経由して冷房用主通路43を流れる。冷房用膨張弁29で減圧されてエバポレータ53に流入した冷媒は、エバポレータ53において空調空気の除湿を行う。
一方、温冷蔵用熱交換器95の冷媒導出部96oは、第3切換弁62によって閉じられているため、温冷蔵用熱交換器95には、高温側と低温側のいずれ側の冷媒も流入しない。この結果、温冷蔵庫90の冷蔵状態はOFFにされる。
In this state, when the compressor 21 operates and high-temperature, high-pressure refrigerant is discharged into the thermal passage 41h, the refrigerant flows through the first switching valve 60 into the indoor heat exchanger 55 for heating. The refrigerant that has flowed into the indoor heat exchanger 55 for heating flows through the main passage 43 for cooling via the outdoor heat exchanger 24 in the same manner as described above. The refrigerant decompressed by the cooling expansion valve 29 and flowed into the evaporator 53 dehumidifies the conditioned air in the evaporator 53 .
On the other hand, since the refrigerant lead-out portion 96o of the hot/cold storage heat exchanger 95 is closed by the third switching valve 62, the hot/cold storage heat exchanger 95 receives refrigerant from either the high temperature side or the low temperature side. do not. As a result, the refrigerating state of the warm refrigerator 90 is turned off.

[実施形態の効果]
以上のように、本実施形態の温冷蔵システム10は、コンプレッサ21の下流側の温熱通路41hと冷房用膨張弁29の下流側の冷熱通路43cを温冷蔵用熱交換器95に選択的に連通可能な切換弁65を備え、その切換弁65の作動が制御装置13によって制御される構成とされている。したがって、本実施形態の温冷蔵システム10を採用した場合には、いずれの空調運転の状態においても、暖房用冷媒回路と冷房用冷媒回路を流れる冷媒によって温冷蔵庫90の庫内の温度を効率良く調整することができる。
[Effects of Embodiment]
As described above, in the hot and cold storage system 10 of the present embodiment, the hot and cold passage 41h on the downstream side of the compressor 21 and the cold and hot passage 43c on the downstream side of the cooling expansion valve 29 selectively communicate with the hot and cold storage heat exchanger 95. A switching valve 65 is provided, and the operation of the switching valve 65 is controlled by the control device 13 . Therefore, when the hot and cold storage system 10 of the present embodiment is employed, the temperature inside the hot and cold refrigerator 90 can be efficiently adjusted by the refrigerant flowing through the heating refrigerant circuit and the cooling refrigerant circuit in any air conditioning operation state. can be adjusted.

また、本実施形態の温冷蔵システム10では、夫々が複数の切換えモードを持つ第1切換弁60と第2切換弁61と第3切換弁62の組み合わせ作動により、暖房運転、冷房運転、除湿暖房運転の三つの運転状態において、温冷蔵庫90の庫内の温度を適温に、かつ効率良く調整することができる。したがって、本構成を採用した場合には、各切換弁60,61,62の構造を簡素化することができるとともに、各切換弁60,61,62を分散させて配置することにより、車両内における温冷蔵システム10のレイアウトの自由度を高めることができる。
さらに、本実施形態の温冷蔵システム10は、切換弁60,61,62が各空調運転時に温冷蔵用熱交換器95に対する冷媒の流通を遮断できる切換モードを備えているため、専用の遮断弁等を設けることなく、温冷蔵庫90の温蔵や冷蔵を確実にOFFにすることができる。
In addition, in the hot and cold storage system 10 of the present embodiment, the combined operation of the first switching valve 60, the second switching valve 61, and the third switching valve 62, each of which has a plurality of switching modes, enables the heating operation, the cooling operation, the dehumidifying heating operation, and the heating operation. The temperature inside the warm refrigerator 90 can be adjusted to an appropriate temperature and efficiently in three operating states of operation. Therefore, when this configuration is adopted, the structure of each switching valve 60, 61, 62 can be simplified, and by dispersing and arranging each switching valve 60, 61, 62, the The degree of freedom in layout of the hot and cold storage system 10 can be increased.
Furthermore, in the hot/cold storage system 10 of the present embodiment, the switching valves 60, 61, and 62 are provided with switching modes capable of shutting off the flow of refrigerant to the hot/cold storage heat exchanger 95 during each air conditioning operation. The hot storage and cold storage of the warm refrigerator 90 can be turned off without fail.

なお、本発明は上記の実施形態に限定されるものではなく、その要旨を逸脱しない範囲で種々の設計変更が可能である。
例えば、上記の実施形態では、暖房用膨張弁22が、開口部面積を任意に調整可能な電子制御式の可変膨張弁によって構成されているが、暖房用膨張弁は開口部面積が固定の膨張弁によって構成することも可能である。この場合、例えば、暖房用膨張弁を迂回して暖房用室内熱交換器と車外熱交換器の間を接続するバイパス通路と、そのバイパス通路を開閉する開閉弁を設け、暖房運転時には開閉弁によってバイパス通路を閉じ、冷房運転時には開閉弁によってバイパス通路を開くようにすれば良い。
The present invention is not limited to the above-described embodiments, and various design changes are possible without departing from the gist of the present invention.
For example, in the above embodiment, the heating expansion valve 22 is configured by an electronically controlled variable expansion valve whose opening area can be arbitrarily adjusted. It can also consist of valves. In this case, for example, a bypass passage that bypasses the heating expansion valve and connects between the indoor heat exchanger for heating and the outside heat exchanger, and an on-off valve that opens and closes the bypass passage are provided. The bypass passage may be closed, and the bypass passage may be opened by an on-off valve during cooling operation.

10…温冷蔵システム
13…制御装置
15…暖房用冷媒回路
16…冷房用冷媒回路
21…コンプレッサ
22…暖房用膨張弁
24…室外熱交換器
29…冷房用膨張弁
41h…温熱通路
43c…冷熱通路
48…冷熱接続通路
49…冷媒戻り通路
60…第1切換弁
60a…温熱流入ポート
60b…庫側導入用冷熱流入ポート
60c…暖房用流出ポート
60d…庫側流出ポート
61…第2切換弁
61a…冷熱流入ポート
61b…冷房用流出ポート
61c…冷熱流出ポート
62…第3切換弁
62a…庫側流入ポート
62b…温排熱流出ポート
62c…冷排熱流出ポート
65…切換弁
53…エバポレータ(冷房用室内熱交換器)
55…暖房用室内熱交換器
90…温冷蔵庫
95…温冷蔵用熱交換器
96i…冷媒導入部
96o…冷媒導出部
REFERENCE SIGNS LIST 10 warm and cold storage system 13 controller 15 heating refrigerant circuit 16 cooling refrigerant circuit 21 compressor 22 heating expansion valve 24 outdoor heat exchanger 29 cooling expansion valve 41h hot passage 43c cold passage 48 Cold heat connection passage 49 Refrigerant return passage 60 First switching valve 60a Hot heat inflow port 60b Cooling heat inflow port for introducing cold heat into the storage side 60c Outflow port for heating 60d Outflow port on the storage side 61 Second switching valve 61a Cooling heat inflow port 61b Cooling outflow port 61c Cooling outflow port 62 Third switching valve 62a Warehouse side inflow port 62b Hot exhaust heat outflow port 62c Cooling exhaust heat outflow port 65 Switching valve 53 Evaporator (for cooling indoor heat exchanger)
55... Indoor heat exchanger for heating 90... Warm refrigerator 95... Heat exchanger for hot and cold storage 96i... Refrigerant introduction part 96o... Refrigerant lead-out part

Claims (5)

コンプレッサによって圧縮した冷媒を暖房用室内熱交換器で室内空気と熱交換した後に暖房用膨張弁で減圧し、その冷媒を室外熱交換器で外気と熱交換した後に前記コンプレッサに戻す暖房用冷媒回路と、
前記コンプレッサによって圧縮した冷媒を前記室外熱交換器で外気と熱交換した後に冷房用膨張弁で減圧し、その冷媒を冷房用室内熱交換器で室内空気と熱交換した後に前記コンプレッサに戻す冷房用冷媒回路と、
温冷蔵用熱交換器を有し当該温冷蔵用熱交換器が内部を流れる冷媒と庫内の空気の間で熱交換を行う温冷蔵庫と、
前記暖房用冷媒回路の前記コンプレッサの下流側の温熱通路の冷媒と前記冷房用冷媒回路の前記冷房用膨張弁の下流側の冷熱通路の冷媒を、前記温冷蔵用熱交換器に選択的に流通させる切換弁と、
前記切換弁の作動を制御する制御装置と、を備えていることを特徴とする車両の温冷蔵システム。
Refrigerant compressed by the compressor is heat-exchanged with indoor air in an indoor heat exchanger for heating, then decompressed by an expansion valve for heating, and the refrigerant is returned to the compressor after heat-exchanged with outdoor air in an outdoor heat exchanger. and,
For cooling, after the refrigerant compressed by the compressor is heat-exchanged with the outside air in the outdoor heat exchanger, the pressure is reduced by the cooling expansion valve, the refrigerant is heat-exchanged with the indoor air in the indoor heat exchanger for cooling, and then returned to the compressor. a refrigerant circuit;
A warm refrigerator that has a hot and cold heat exchanger and that exchanges heat between the refrigerant flowing inside and the air in the refrigerator,
Refrigerant in a hot passage downstream of the compressor in the heating refrigerant circuit and refrigerant in a cold passage downstream of the cooling expansion valve in the cooling refrigerant circuit are selectively circulated to the hot and cold storage heat exchanger. a switching valve for
and a control device for controlling the operation of the switching valve.
前記制御装置は、暖房運転時に前記温冷蔵庫を温蔵状態にする場合には、前記温熱通路の冷媒が前記暖房用室内熱交換器と前記温冷蔵用熱交換器を流通するように前記切換弁を制御し、暖房運転時に前記温冷蔵庫を冷蔵状態にする場合には、前記温熱通路の冷媒が前記暖房用室内熱交換器を流通し、かつ、前記冷熱通路の冷媒が前記温冷蔵用熱交換器を流通するように前記切換弁を制御することを特徴とする請求項1に記載の車両の温冷蔵システム。 When the warm refrigerator is placed in a warm storage state during heating operation, the control device controls the switching valve so that the refrigerant in the warm passage flows through the indoor heat exchanger for heating and the heat exchanger for warm and cold storage. is controlled, and when the warm refrigerator is placed in a refrigerated state during heating operation, the refrigerant in the warm passage flows through the indoor heat exchanger for heating, and the refrigerant in the cold passage passes through the warm and cold storage heat exchange 2. The hot and cold storage system for a vehicle according to claim 1, wherein said switching valve is controlled so as to circulate a container. 前記制御装置は、冷房運転時に前記温冷蔵庫を温蔵状態にする場合には、前記冷熱通路の冷媒が前記冷房用室内熱交換器を流通し、かつ、前記温熱通路の冷媒が前記温冷蔵用熱交換器を流通するように前記切換弁を制御し、冷房運転時に前記温冷蔵庫を冷蔵状態にする場合には、前記冷熱通路の冷媒が前記冷房用室内熱交換器と前記温冷蔵用熱交換器を流通するように前記切換弁を制御することを特徴とする請求項1または2に記載の車両の温冷蔵システム。 When the warm refrigerator is placed in a warm storage state during cooling operation, the control device causes the refrigerant in the cold heat passage to flow through the indoor heat exchanger for cooling, When the switching valve is controlled to flow through the heat exchanger and the warm refrigerator is placed in a refrigerated state during cooling operation, the refrigerant in the cold passage passes through the indoor heat exchanger for cooling and the heat exchange for hot and cold storage. 3. The vehicle warm/refrigerate system according to claim 1 or 2, wherein the switching valve is controlled so as to circulate the container. 前記制御装置は、除湿暖房運転時に前記温冷蔵庫を温蔵状態にする場合には、前記温熱通路の冷媒が前記暖房用室内熱交換器と前記温冷蔵用熱交換器を流通し、かつ、前記冷熱通路の冷媒が前記冷房用室内熱交換器を連通するように前記切換弁を制御し、除湿暖房運転時に前記温冷蔵庫を冷蔵状態にする場合には、前記温熱通路の冷媒が前記暖房用室内熱交換器を流通するとともに、前記冷熱通路の冷媒が前記冷房用室内熱交換器と前記温冷蔵用熱交換器を流通するように前記切換弁を制御することを特徴とする請求項1~3のいずれか1項に記載の車両の温冷蔵システム。 When the warm refrigerator is placed in a warm storage state during dehumidification and heating operation, the control device causes the refrigerant in the hot heat passage to flow through the indoor heat exchanger for heating and the heat exchanger for warm and cold storage, and When the switching valve is controlled so that the refrigerant in the cold/heat passage communicates with the indoor heat exchanger for cooling, and the warm refrigerator is placed in a refrigerating state during the dehumidification/heating operation, the refrigerant in the warm passage passes through the indoor heat exchanger for heating. 4. The switching valve is controlled so that the refrigerant in the cold/heat passage flows through the heat exchanger and flows through the indoor heat exchanger for cooling and the heat exchanger for warming and refrigerating. 1. A vehicle heating and refrigerating system according to any one of Claims 1 to 3. 前記切換弁は、
前記温熱通路と前記暖房用室内熱交換器の間に介装される第1切換弁と、
前記冷房用膨張弁と前記冷房用室内熱交換器の間に介装される第2切換弁と、
前記冷房用室内熱交換器と前記コンプレッサの上流部の間の冷媒戻り通路に介装される第3切換弁と、を備え、
前記第1切換弁は、前記温熱通路に接続される温熱流入ポートと、前記冷熱通路に接続可能な冷熱接続通路の下流端に接続される庫側導入用冷熱流入ポートと、前記暖房用室内熱交換器に接続される暖房用流出ポートと、前記温冷蔵用熱交換器の冷媒導入部に接続される庫側流出ポートと、を有するとともに、前記温熱流入ポートを前記暖房用流出ポートと前記庫側流出ポートに連通させる第1切換モードと、前記温熱流入ポートを前記暖房用流出ポートに連通させ、かつ前記庫側導入用冷熱流入ポートを前記庫側流出ポートに連通させる第2切換モードを持ち、
前記第2切換弁は、前記冷熱通路に接続される冷熱流入ポートと、前記冷房用室内熱交換器に接続される冷房用流出ポートと、前記冷熱接続通路の上流端に接続される冷熱流出ポートと、を有するとともに、前記冷熱流入ポートを前記冷房用流出ポートと前記冷熱流出ポートに連通させる第1切換モードと、前記冷熱流入ポートを前記冷房用流出ポートのみに連通させる第2切換モードと、前記冷熱流入ポートを前記冷熱流出ポートのみに連通させる第3切換モードを持ち、
前記第3切換弁は、前記温冷蔵用熱交換器の冷媒導出部に接続される庫側流入ポートと、前記室外熱交換器の冷媒導入側に接続される温排熱流出ポートと、前記冷媒戻り通路に接続される冷排熱流出ポートと、を有するとともに、前記庫側流入ポートを前記温排熱流出ポートに連通させる第1切換モードと、前記庫側流入ポートを前記冷排熱流出ポートに連通させる第2切換モードを持つことを特徴とすることを特徴とする請求項1~4のいずれか1項に記載の車両の温冷蔵システム。
The switching valve is
a first switching valve interposed between the thermal passage and the indoor heat exchanger for heating;
a second switching valve interposed between the cooling expansion valve and the cooling indoor heat exchanger;
a third switching valve interposed in a refrigerant return passage between the indoor heat exchanger for cooling and an upstream portion of the compressor;
The first switching valve includes a hot heat inflow port connected to the hot heat passage, a cold heat inflow port for introducing cold heat connected to a downstream end of a cold heat connection passage connectable to the cold heat passage, and the indoor heat for heating. a heating outflow port connected to a heat exchanger; and a chamber-side outflow port connected to a refrigerant introduction portion of the heat exchanger for warming and refrigerating; It has a first switching mode in which the side outflow port is communicated, and a second switching mode in which the hot heat inflow port is communicated with the heating outflow port and the cold heat inflow port for cold storage introduction is communicated with the storage side outflow port. ,
The second switching valve includes a cold heat inflow port connected to the cold heat passage, a cooling outflow port connected to the cooling indoor heat exchanger, and a cold heat outflow port connected to an upstream end of the cold heat connection passage. and a first switching mode in which the cold heat inflow port communicates with the cooling outflow port and the cold heat outflow port, and a second switching mode in which the cold heat inflow port communicates only with the cooling outflow port; Having a third switching mode in which the cold heat inflow port is communicated only with the cold heat outflow port,
The third switching valve includes a storage side inflow port connected to a refrigerant outlet portion of the warm/refrigerate heat exchanger, a warm exhaust heat outflow port connected to the refrigerant introduction side of the outdoor heat exchanger, and the refrigerant a cold exhaust heat outflow port connected to a return passage, a first switching mode in which the storage side inflow port is communicated with the hot exhaust heat outflow port; 5. The heating and refrigerating system for a vehicle according to any one of claims 1 to 4, characterized in that it has a second switching mode for communicating with the .
JP2021201962A 2021-12-13 2021-12-13 Vehicle heating/cooling storage system Pending JP2023087528A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2021201962A JP2023087528A (en) 2021-12-13 2021-12-13 Vehicle heating/cooling storage system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2021201962A JP2023087528A (en) 2021-12-13 2021-12-13 Vehicle heating/cooling storage system

Publications (1)

Publication Number Publication Date
JP2023087528A true JP2023087528A (en) 2023-06-23

Family

ID=86850958

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2021201962A Pending JP2023087528A (en) 2021-12-13 2021-12-13 Vehicle heating/cooling storage system

Country Status (1)

Country Link
JP (1) JP2023087528A (en)

Similar Documents

Publication Publication Date Title
KR101637968B1 (en) Heat pump system for vehicle
JP4505510B2 (en) Vehicle air conditioning system
EP3623185B1 (en) Heat pump system for vehicle
EP2572910A1 (en) Vehicle heating and cooling device
JP2012030603A (en) Vehicle air conditioner
KR20160084882A (en) Heat pump system for vehicle
JP2002019443A (en) Heat pump cycle
JP2020153557A (en) Air conditioning device
JP2005214558A (en) Heating/cooling system
KR102613353B1 (en) Air conditioner for vehicle
KR102158496B1 (en) Heat pump system for vehicle
WO2022163712A1 (en) Temperature control system
JP2023087528A (en) Vehicle heating/cooling storage system
CN111380256A (en) Heat pump system
JP2998115B2 (en) Automotive air conditioners
CN109900023B (en) Thermal management system
KR20160047024A (en) Heat pump system for vehicle
JPH06347111A (en) Cooling and heating cycle of air conditioner for vehicle
KR101127463B1 (en) The air-conditioning and heating cycle for the vehicle
KR20160027526A (en) Heat pump system for vehicle
CN220374230U (en) Air conditioning system and vehicle
WO2022163194A1 (en) Temperature control system
WO2020246306A1 (en) Vehicle air conditioning device
JPH1071848A (en) Brine type air conditioner
WO2020246305A1 (en) Vehicle air conditioning device