JP2023084058A - Method for separating carbon from carbon dioxide or carbon monoxide using nonferrous metal - Google Patents

Method for separating carbon from carbon dioxide or carbon monoxide using nonferrous metal Download PDF

Info

Publication number
JP2023084058A
JP2023084058A JP2021208725A JP2021208725A JP2023084058A JP 2023084058 A JP2023084058 A JP 2023084058A JP 2021208725 A JP2021208725 A JP 2021208725A JP 2021208725 A JP2021208725 A JP 2021208725A JP 2023084058 A JP2023084058 A JP 2023084058A
Authority
JP
Japan
Prior art keywords
reaction
carbon
formula
carbon dioxide
zinc
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2021208725A
Other languages
Japanese (ja)
Inventor
明 細井
Akira Hosoi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Haruno Shigen Gijutsu Co Ltd
Original Assignee
Haruno Shigen Gijutsu Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Haruno Shigen Gijutsu Co Ltd filed Critical Haruno Shigen Gijutsu Co Ltd
Priority to JP2021208725A priority Critical patent/JP2023084058A/en
Publication of JP2023084058A publication Critical patent/JP2023084058A/en
Withdrawn legal-status Critical Current

Links

Images

Landscapes

  • Inorganic Compounds Of Heavy Metals (AREA)
  • Compounds Of Alkaline-Earth Elements, Aluminum Or Rare-Earth Metals (AREA)
  • Carbon And Carbon Compounds (AREA)

Abstract

To solve the problems that 1. a separation device for metal oxides and powder carbon is required, but the selection of a system utilizing centrifugal force is desirable in [claim 1] and [claim 2] and that 2. the confirmation that powdery metal oxides and powdery carbon produced in reaction with carbon dioxide dissolved in respective solutions of [claims 3 to 5] can be accompanied outside of a furnace together with a gas after reaction to the outside of a reaction container is incomplete.SOLUTION: 1. With respect to [claims 1 to 2], the installation of a carbon separation recovery device is required. 2. With respect to [claims 3 to 5], it is considered that the selection of a bottom-blown furnace or a top-blown furnace having reaction efficiency and reduced in troubles for the separation recovery of reaction products is suitable. 3. As the point of controls in reactions of the claims, the monitoring of reaction systems and the controls of air feed ratio and amount using carbon monoxide gas analysis technique or device are made possible, and the same is particularly important for preventing the generation of carbon monoxide or the like.SELECTED DRAWING: Figure 31

Description

冶金反応における熱力学分野の応用技術Applied technology in the field of thermodynamics in metallurgical reactions

亜鉛華製造技術の存在と、炭酸ガスの回収に関する技術の進歩にて高濃の炭酸ガスが得られることが発明の背景にある。The background of the invention is that highly concentrated carbon dioxide can be obtained by the existence of zinc oxide production technology and progress in the technology for recovering carbon dioxide.

特になしnothing special

河岡 豊:日本ゴム協会誌,26-3,147-159,(昭28)Yutaka Kawaoka: Journal of the Rubber Society of Japan, 26-3, 147-159, (Showa 28) 大谷 杉郎:炭素,215,221-224(2004)Sugiro Otani: Carbon, 215, 221-224 (2004)

近年、多くの炭酸ガスの回収技術ついて報告され、回収される炭酸ガスの純度も高濃度化されてきた中、その利用に関した報告も多くなっている。
炭酸ガスを減少させる方法の一つとして地下埋蔵の方法などの国家的実験も進められているなか、更なる地球温暖化防策が求められている。
In recent years, there have been many reports on techniques for recovering carbon dioxide gas, and the purity of the carbon dioxide gas to be recovered has been increased.
As one of the methods for reducing carbon dioxide gas, national experiments such as underground burial are underway, and further measures to prevent global warming are required.

1.亜鉛蒸気と酸素含有ガスを用いて炭酸ガスから酸化亜鉛(亜鉛華)とカーボンを回収する方法においては、空気等の酸素含有ガスを供給することによって、一酸化炭素(COガス)の生成を抑えた炭酸ガスとの反応が可能となり、亜鉛酸化物(亜鉛華)と粉状カーボンが製造さされる。
2.マグネシウム蒸気と酸素含有ガスを用いて炭酸ガスから酸化マグネシシウムとカーボンとを回収する方法においては、空気等の酸素含有ガスを供給することによって、一酸化炭素の生成を抑えた炭酸ガスとの反応が可能となり、マグネシウム酸化物(粉状)と粉状カーボンが製造される。
3.溶融亜鉛、溶融マグネシウム及び溶融アルミニウムへの炭酸ガス及び空気等の酸素含有ガスを供給することによって、一酸化炭素の生成を抑えて酸化亜鉛、マグネシウム酸化物及びアルミナとカーボンが製造・回収される。
4.亜鉛蒸気及びマグネシウム蒸気を用いて一酸化炭素から酸化亜鉛及び酸化マグネシウムとカーボンがそれぞれ製造・回収される。
1. In the method of recovering zinc oxide (zinc white) and carbon from carbon dioxide using zinc vapor and oxygen-containing gas, the production of carbon monoxide (CO gas) is suppressed by supplying an oxygen-containing gas such as air. It becomes possible to react with carbon dioxide gas, and zinc oxide (zinc white) and powdery carbon are produced.
2. In the method of recovering magnesium oxide and carbon from carbon dioxide using magnesium vapor and an oxygen-containing gas, the oxygen-containing gas such as air is supplied to suppress the production of carbon monoxide and the reaction with the carbon dioxide is accelerated. It is possible to produce magnesium oxide (powdered) and powdered carbon.
3. By supplying oxygen-containing gas such as carbon dioxide gas and air to molten zinc, molten magnesium and molten aluminum, zinc oxide, magnesium oxide, alumina and carbon are produced and recovered while suppressing the production of carbon monoxide.
4. Zinc oxide and magnesium oxide and carbon are produced and recovered from carbon monoxide using zinc vapor and magnesium vapor, respectively.

1.炭酸ガスと空気等の酸素含有ガスの供給によって、亜鉛蒸気及びマグネシウム蒸気、また亜鉛溶体、マグネシウム溶体及びアルミニウム溶体と反応させることで、それぞれの金属酸化物とカーボンが回収できるため地球温暖化防止策としても有効あり、経済性のある反応生成物の販売も可能である。
2.一酸化炭素と空気等の酸素含有ガスの供給によって、亜鉛蒸気及びマグネシウム蒸気と反応させ、一酸化炭素を分解してそれぞれの金属酸化物とカーボンが回収できる。これも地球温暖化防止の一助となる。
1. By supplying oxygen-containing gas such as carbon dioxide gas and air, zinc vapor, magnesium vapor, and zinc solution, magnesium solution, and aluminum solution can be reacted to recover metal oxides and carbon, thus preventing global warming. It is also effective as a raw material, and it is possible to sell the economical reaction product.
2. By supplying oxygen-containing gas such as carbon monoxide and air, it reacts with zinc vapor and magnesium vapor, decomposes carbon monoxide, and recovers respective metal oxides and carbon. This also helps prevent global warming.

亜鉛蒸気と酸素富化時の炭酸ガスとの反応データReaction data between zinc vapor and carbon dioxide during oxygen enrichment 亜鉛蒸気と酸素富化比率変更時の炭酸ガスとの反応データReaction data between zinc vapor and carbon dioxide when oxygen enrichment ratio is changed 亜鉛蒸気と炭酸ガスとの反応データReaction data of zinc vapor and carbon dioxide gas 亜鉛蒸気と炭酸ガスとの反応における一酸化炭素生成時の反応データReaction data of carbon monoxide generation in the reaction of zinc vapor and carbon dioxide gas 亜鉛蒸気と炭酸ガスとの反応における一酸化炭素とカーボン生成時の反応データReaction data during the formation of carbon monoxide and carbon in the reaction between zinc vapor and carbon dioxide gas 亜鉛蒸気圧表(温度と標準気圧)Zinc vapor pressure table (temperature and standard atmospheric pressure) 1,000℃での蒸気亜鉛と酸素富化時の炭酸ガスとの反応における熱バランスの計算例Calculation example of heat balance in the reaction of vaporized zinc and carbon dioxide during oxygen enrichment at 1,000°C マグネシウム蒸気と酸素富化時の炭酸ガスとの反応データReaction data between magnesium vapor and carbon dioxide during oxygen enrichment マグネシウム蒸気と酸素富化比率アップ時の炭酸ガスとの反応データReaction data between magnesium vapor and carbon dioxide when the oxygen enrichment ratio is increased マグネシウム蒸気と炭酸ガスとの反応データReaction data between magnesium vapor and carbon dioxide マグネシウム蒸気と炭酸ガスとの反応における一酸化炭素生成時の反応データReaction data of carbon monoxide generation in the reaction of magnesium vapor and carbon dioxide gas 亜鉛溶体と酸素富化時の炭酸ガスとの反応データReaction data between zinc solution and carbon dioxide during oxygen enrichment 亜鉛溶体と炭酸ガスとの反応データReaction data between zinc solution and carbon dioxide gas 亜鉛溶体と炭酸ガスとの反応における一酸化炭素生成時の反応データReaction data of carbon monoxide generation in reaction of zinc solution and carbon dioxide gas 亜鉛溶体と炭酸ガスとの反応における一酸化炭素及びカーボン生成時の反応データReaction data during the formation of carbon monoxide and carbon in the reaction between zinc solution and carbon dioxide gas マグネシウム溶体と酸素富化時の炭酸ガスとの反応データReaction data between magnesium solution and carbon dioxide during oxygen enrichment マグネシウム溶体と炭酸ガスとの反応データReaction data of magnesium solution and carbon dioxide gas マグネシウム溶体と炭酸ガスとの反応における一酸化炭素発生時の反応データReaction data when carbon monoxide is generated in the reaction between magnesium solution and carbon dioxide gas マグネシウム溶体と炭酸ガスとの反応における一酸化炭素及びカーボン生成時の反応データReaction data during the formation of carbon monoxide and carbon in the reaction between magnesium solution and carbon dioxide gas アルミニウム溶体と酸素富化時の炭酸ガスとの反応データReaction data between aluminum solution and carbon dioxide during oxygen enrichment アルミニウム溶体と炭酸ガスとの反応データReaction data between aluminum solution and carbon dioxide gas アルミニウム溶体と炭酸ガスとの反応における一酸化炭素及びカーボン生成時の反応データReaction data during the formation of carbon monoxide and carbon in the reaction between aluminum solution and carbon dioxide gas アルミニウム溶体と反応性が比較的高い窒素を含む酸素富化時の炭酸ガスとの反応データReaction data between aluminum solution and carbon dioxide during enrichment of oxygen containing relatively highly reactive nitrogen (18)式のアルミニウム溶体との反応で酸素を空気にて供給時の随伴窒素によるアルミニウム溶体との反応データ(随伴窒素の全モル数がアルミニウム溶体と反応した時の反応データ)(18) Reaction data with aluminum solution by accompanying nitrogen when oxygen is supplied as air in reaction with aluminum solution (reaction data when all moles of accompanying nitrogen react with aluminum solution) 亜鉛蒸気と一酸化炭素の反応データReaction data of zinc vapor and carbon monoxide 亜鉛蒸気と酸素富化時の一酸化炭素との反応データReaction data between zinc vapor and carbon monoxide during oxygen enrichment 亜鉛蒸気と酸素富化比率を変えた一酸化炭素との反応データReaction data of zinc vapor and carbon monoxide with different oxygen enrichment ratios マグネシウム蒸気と一酸化炭素の反応データReaction Data of Magnesium Vapor and Carbon Monoxide マグネシウム蒸気と酸素富化時の一酸化炭素との反応データReaction data between magnesium vapor and carbon monoxide during oxygen enrichment マグネシウム蒸気と酸素富化比率を変えた一酸化炭素との反応データReaction data between magnesium vapor and carbon monoxide with different oxygen enrichment ratios 亜鉛溶体、マグネシウム溶体及びアルミニウム溶体と酸素富化時の炭酸ガスとの反応容器として候補に挙げたい底吹き型炉の概略図Schematic diagram of a bottom-blown furnace that can be considered as a reaction vessel for zinc solution, magnesium solution, aluminum solution, and carbon dioxide gas during oxygen enrichment.

図表の作成上参照した各種データ及び計算ソフト等による支援など
1)亜鉛蒸気圧表は、AIST:Network Databaseを参照して計算を実施
2)顕熱等データは、東所沢-31-12 HOMWPAGE,「熱力学と流体」;表-1低圧比熱Cp及び早稲田 嘉夫,大倉隆彦,森芳秋,岡部徹,宇田哲也:矢沢彬の熱力学問題集を参照
3)熱力学データは、秋田大学大学院国際資源学研究科資源開発環境学専攻 製錬プロセス工学研究室の御支援(HSC Chemistry 5.11計算)による
1) The zinc vapor pressure table was calculated with reference to AIST: Network Database. Thermodynamics and fluids"; Table 1 Low-pressure specific heat Cp and Yoshio Waseda, Takahiko Okura, Yoshiaki Mori, Toru Okabe, Tetsuya Uda: Refer to Akira Yazawa's Thermodynamics Problems With the support of Smelting Process Engineering Laboratory, Department of Resource Development and Environmental Studies, Graduate School (HSC Chemistry 5.11 calculation)

1.発明の使用権を有償で付与又は発明の使用権の売却。1. granting the right to use the invention for a fee or selling the right to use the invention;

実施例はないが亜鉛蒸留電熱炉による亜鉛蒸気からの亜鉛華の生産技術による応用には期待が持てる。Although there are no working examples, there are expectations for the application of zinc white production technology from zinc vapor in a zinc distillation electric heating furnace.

反応生成物の製品化による収益の確保が可能である。
炭酸ガス処理費の収益が見込まれる。(現状では未定)
It is possible to secure profits by commercializing reaction products.
Earnings from carbon dioxide treatment costs are expected. (currently undecided)

Claims (7)

亜鉛蒸気と酸素もしくは酸素含有ガスを用いた炭酸ガスとの反応による炭素の分離回収と酸化亜鉛(亜鉛華)の回収の方法;
最も優位な反応を(1)式に記述した。
Zn(g)+1/4CO(g)+1/4O(g)=ZnO+1/4C・・・(1)
反応温度 800℃~1000℃ の範囲で,亜鉛蒸気と酸素もしくは酸素含有ガスを供給し、炭酸ガスと反応させてカーボン(粉体炭素;C)と酸化亜鉛;ZnO)を回収する反応である。この反応は発熱反応である。
反応データを図1に示す。
上記の反応以外に、生成物としてカーボンだけではなく、一酸化炭素が生成物となる反応も記述している。
(1)式の反応優位性を比較するためのその他の反応式と反応データを以下に示す。
まず、(1)式に類似した反応で、亜鉛蒸気と酸素富化比率変更時の炭酸ガスとの反応を(2)式に示す。
Zn(g)+1/3CO(g)+1/6O(g)=ZnO+1/3C・・・(2)
この反応データを図2に示す。
酸素を供給しない時の反応を(3)式に示す。
Zn(g)+1/2CO(g)=ZnO+1/2C・・・(3)
この反応データを図3に示す。
(3)式は、(1)式に酸素を供給しない時の一般的な反応式である。
次に、一酸化炭素の発生のある反応を(4)式に示す。
Zn(g)+CO(g)=ZnO+CO(g)・・・(4)
この反応データを図4に示す。
(4)式の反応は、亜鉛の揮発温度付近もしくはそれ以上の高温側の反応領域において亜鉛蒸気と炭酸ガスが反応し、酸化亜鉛(亜鉛華)と一酸化炭素を生成するものである。
(3)、(4)式の反応データを比較すると、800℃以上の反応平衡定数KのLog(K)値は(4)式の方が大きいため、一酸化炭酸発生型の反応が平衡状態からやや優位と判断され、(3)式の反応では、亜鉛華とカーボンの回収は難しい。
また、以下の(5)式には、酸化亜鉛に加え、一酸化炭素とカーボンが生成する反応を示す。
Figure 2023084058000002
この反応データを図5に示す。
(5)の反応は、(1)式よりも炭酸ガス量の供給割合が大きく、酸素の供給量が少ない時の反応である
(1)、(2)、(5)式の反応データを比較すると、以下の結論が得られる。
(2)式と(5)式の反応データを比較すると、(2)式の反応平衡定数KのLog(K)値の比較から、(2)式の反応が優位であるが、950℃で考察すれば供給さした炭酸ガスに対して比較的高い濃度の一酸化炭素が反応後の排ガスに存在できると思われる。
(1)式のように炭酸ガスに対しての酸素使用比率を高めた時の反応データと(5)式の反応データを950℃にて比較すると、(1)式の反応平衡定数K値が(5)式K値の値よりも100倍近く大きいことが分かる。
このように、一酸化炭素の生成量をより少ない状態に維持できる条件として、酸素の供給を加え、亜鉛蒸気による効率の良い炭酸ガス分解プロセスを成立させた。
(1)式の反応で示したように酸素供給を行うことや、さらに供給率を高めることで、反応平衡定数K値を大きくすることができることを見出した。
反応温度については、沸点よりも低い温度では、亜鉛蒸気圧も低いため、亜鉛華及びカーボンの生成速度が低下することは明らかなので、温度別の亜鉛蒸気圧を確認するため、亜鉛蒸気圧表(温度と標準気圧)を図6に示す。
亜鉛の蒸気圧の比較的高くなる温度が反応上で望ましい温度と考えて、特許請求温度範囲を、「800℃~1,000℃」 とする。
(1)式で示したように酸素含有ガス(空気等を含む)の供給(以降、酸素富化時と記述する)を行なって、一酸化炭素の生成を抑えることが、炭酸ガスのカーボン分離と回収効率を高めるには最も重要な点である。
次に(1)式の熱バランスについて記述する。
(1)式の反応モル数を使用し、1,000℃での反応とした。
反応熱 Δ―80.6 Kcal/mol、顕熱等を含む熱バランスの計算例を図7に示す。酸素の供給を空気で行った際でも安定した反応が維持できる熱バランンスである。
空気を酸素供給ガスとする場合、窒素N(g)が含まれるが、主目的の亜鉛蒸気と炭酸ガス反応において窒素酸化物の生成はなく、問題のない安定した反応を維持することが可能である。
また、詳細は記載しないが、酸素の代替えとしてNO(g)やNO(g)なども酸化剤としての利用も可能である。
特許請求温度範囲は、900℃から975℃とする。
A method for separating and recovering carbon and recovering zinc oxide (zinc white) by reacting zinc vapor with oxygen or carbon dioxide gas using oxygen-containing gas;
The most dominant reaction is described in equation (1).
Zn(g)+1/ 4CO2 (g)+1/ 4O2 (g)=ZnO+1/4C (1)
It is a reaction in which zinc vapor and oxygen or an oxygen-containing gas are supplied at a reaction temperature of 800° C. to 1000° C. and reacted with carbon dioxide gas to recover carbon (powder carbon; C) and zinc oxide; ZnO). This reaction is exothermic.
Reaction data are shown in FIG.
In addition to the above reactions, reactions in which carbon monoxide is the product are also described, in addition to carbon as the product.
Other reaction formulas and reaction data for comparing the reaction superiority of formula (1) are shown below.
First, in a reaction similar to the equation (1), the reaction between zinc vapor and carbon dioxide when the oxygen enrichment ratio is changed is shown in the equation (2).
Zn(g)+1/ 3CO2 (g)+1/ 6O2 (g)=ZnO+1/3C (2)
This reaction data is shown in FIG.
Equation (3) shows the reaction when oxygen is not supplied.
Zn(g)+1/ 2CO2 (g)=ZnO+1/2C (3)
This reaction data is shown in FIG.
Formula (3) is a general reaction formula when oxygen is not supplied to formula (1).
Next, the reaction with generation of carbon monoxide is shown in the formula (4).
Zn(g)+ CO2 (g)=ZnO+CO(g) (4)
This reaction data is shown in FIG.
In the reaction of formula (4), zinc vapor and carbon dioxide gas react in a reaction region near or above the volatilization temperature of zinc to produce zinc oxide (zinc white) and carbon monoxide.
Comparing the reaction data of equations (3) and (4), the Log (K) value of the reaction equilibrium constant K at 800 ° C. or higher is larger in equation (4), so the carbon monoxide generation type reaction is in equilibrium. Therefore, it is difficult to recover zinc oxide and carbon in the reaction of formula (3).
In addition, the following formula (5) shows the reaction in which carbon monoxide and carbon are produced in addition to zinc oxide.
Figure 2023084058000002
This reaction data is shown in FIG.
Reaction (5) is a reaction when the rate of supply of carbon dioxide gas is larger than that of equation (1) and the amount of oxygen supply is small. Compare the reaction data of equations (1), (2), and (5). Then, the following conclusions are obtained.
Comparing the reaction data of formula (2) and formula (5), the reaction of formula (2) is superior from the comparison of the Log (K) value of the reaction equilibrium constant K of formula (2), but at 950 ° C. Considering this, it seems that carbon monoxide can exist in the exhaust gas after the reaction at a relatively high concentration relative to the supplied carbon dioxide gas.
Comparing the reaction data when the ratio of oxygen used to carbon dioxide gas is increased as in formula (1) and the reaction data of formula (5) at 950 ° C, the reaction equilibrium constant K value of formula (1) is (5) It can be seen that it is nearly 100 times larger than the value of the formula K value.
In this way, oxygen was added as a condition for maintaining the amount of carbon monoxide produced in a lower state, and an efficient carbon dioxide gas decomposition process was established by zinc vapor.
It was found that the reaction equilibrium constant K value can be increased by supplying oxygen as shown in the reaction of formula (1) or by further increasing the supply rate.
Regarding the reaction temperature, since the vapor pressure of zinc is also low at temperatures lower than the boiling point, it is clear that the formation rate of zinc white and carbon decreases. temperature and standard atmospheric pressure) are shown in FIG.
Considering that the temperature at which the vapor pressure of zinc becomes relatively high is desirable for the reaction, the claimed temperature range is defined as "800°C to 1,000°C".
(1) Supplying an oxygen-containing gas (including air, etc.) as shown in the formula (hereinafter referred to as oxygen enrichment) to suppress the production of carbon monoxide is the separation of carbon dioxide from carbon dioxide. This is the most important point to increase the recovery efficiency.
Next, the heat balance of formula (1) will be described.
Using the number of reaction moles in formula (1), the reaction was carried out at 1,000°C.
FIG. 7 shows a calculation example of the heat balance including reaction heat Δ−80.6 Kcal/mol, sensible heat, and the like. This heat balance allows a stable reaction to be maintained even when oxygen is supplied by air.
When air is used as the oxygen supply gas, nitrogen N 2 (g) is included, but no nitrogen oxides are generated in the reaction of zinc vapor and carbon dioxide gas, which is the main purpose, and it is possible to maintain a stable reaction without problems. is.
Although not described in detail, NO(g) or NO 2 (g) can be used as an oxidizing agent in place of oxygen.
The claimed temperature range is from 900°C to 975°C.
マグネシウム蒸気を用いた炭酸ガスからの炭素の分離回収と酸化マグネシウムの回収方法;
Zn以外で炭酸ガスを利用することのできる非鉄金属元素としてのマグネシウムの選択も可能であることが分かる。
マグネシウム蒸気と酸素富化時の炭酸ガスとの反応を(6)式に示す。
Mg(g)+1/3CO(g)+1/6O(g)=MgO+1/3C・・・(6)
反応データを図8に示す。
また、マグネシウム蒸気と酸素富化割合アップ時の炭酸ガスとの反応を(7)式に示す。
Mg(g)+1/4CO(g)+1/4O(g)=MgO+1/4C・・・(7)
反応データを図9に示す。
マグネシウム蒸気と炭酸ガスの反応を(8)式に示す。
Mg(g)+1/2CO(g)=MgO+1/2C・・・(8)
反応データを図10に示す。
マグネシウム蒸気と炭酸ガスとの反応において、一酸化炭素生成時の反応を(9)式に示す
Mg(g)+CO(g)=MgO+CO(g)・・・(9)
反応データを図11に示す。
(8)式と(9)式の反応において反応定数のLog(K)値を比較すると、(9)式の値が大きいことから、一酸化炭素の生成する反応が優位と認められる。
(6)及び(7)式の反応定数のLog(K)値は、一酸化炭素の発生する(9)式の値と比較して大きい値であることから炭酸ガスの分解とカーボンの生成がより優位であると判断される。
また、(6)式及び(7)式の酸素富化時の反応による炭酸ガスの分解は、マグネシウムの沸点1,091℃から1,110℃程度の範囲にて反応を継続させることが望ましい。ただ、(7)式に示したような酸素富化の割合を増加させた反応では、1,200℃程度まで一酸化炭素の生成を抑えることが可能である。
MgOの増産など、特別な理由がなければ、1,110℃程度までの範囲で反応を継続することが、炭酸ガスの分解数量の低減を防止するに有効である。
特許請求温度範囲は、酸素富化割合の増加の式も考慮して1,070℃から1,200℃とする。
A method for separating and recovering carbon from carbon dioxide and recovering magnesium oxide using magnesium vapor;
It can be seen that it is possible to select magnesium as a non-ferrous metal element that can utilize carbon dioxide gas other than Zn.
Equation (6) shows the reaction between magnesium vapor and carbon dioxide during oxygen enrichment.
Mg(g)+1/ 3CO2 (g)+1/ 6O2 (g)=MgO+1/3C (6)
Reaction data are shown in FIG.
Also, the reaction between magnesium vapor and carbon dioxide when the oxygen enrichment ratio is increased is shown in equation (7).
Mg(g)+1/ 4CO2 (g)+1/ 4O2 (g)=MgO+1/4C (7)
Reaction data are shown in FIG.
The reaction between magnesium vapor and carbon dioxide is shown in equation (8).
Mg(g)+1/ 2CO2 (g)=MgO+1/2C (8)
Reaction data are shown in FIG.
In the reaction between magnesium vapor and carbon dioxide gas, Mg(g)+CO 2 (g)=MgO+CO(g) (9) where the reaction at the time of carbon monoxide generation is represented by the formula (9)
Reaction data are shown in FIG.
Comparing the Log(K) values of the reaction constants in the reactions of formulas (8) and (9), the reaction in which carbon monoxide is produced is recognized to be dominant because the value of formula (9) is large.
The Log (K) values of the reaction constants in equations (6) and (7) are large values compared to the values in equation (9), in which carbon monoxide is generated. judged to be superior.
Further, it is desirable to continue the reaction at the boiling point of magnesium in the range of about 1,091°C to 1,110°C for the decomposition of carbon dioxide by the reaction during oxygen enrichment in the formulas (6) and (7). However, it is possible to suppress the production of carbon monoxide up to about 1,200° C. in the reaction in which the oxygen enrichment ratio is increased as shown in the formula (7).
If there is no special reason such as increased production of MgO, continuing the reaction in the range up to about 1,110° C. is effective in preventing a decrease in the number of carbon dioxide gas decompositions.
The claimed temperature range is 1,070° C. to 1,200° C., also considering the formula for increasing the oxygen enrichment rate.
亜鉛溶体を用いた酸素富化時の炭酸ガスとの反応による炭素の分離回収と亜鉛酸化物の回収方法;
亜鉛溶体と炭酸ガスの酸素富化時の反応を(10)式に示す。
Zn+1/3CO(g)+1/6O(g)=ZnO+1/3C・・・(10)
反応データを図12に示す。
亜鉛溶体と炭酸ガスとの反応を(11)式に示す。
Zn+1/2CO(g)=ZnO+1/2C・・・(11)
反応データを図13に示す。
亜鉛溶体と炭酸ガスとの反応における一酸化炭素発生時の反応を(12)式に示す。
Zn+CO(g)=ZnO+CO(g)・・・(12)
反応データを図14に示す。
亜鉛溶体と炭酸ガスとの反応において一酸化炭素とカーボン生成時の反応を(13)式に示す。
Zn+2/3CO(g)=ZnO+1/3CO(g)+1/3C・・・(13)
反応データを図15に示す。
(10)式の反応データと、(11)、(12)、(13)式の反応データを比較すると、(10)式の反応平衡定数KのLog(K)値が、(11)式、(12)式、(13)式のそれぞれのLog(K)値よりもかなり大きい値を示していることが分かる。
(10)式の反応が、亜鉛の溶融温度420℃から沸点に達する前までの温度領域で一酸化炭素の発生をおさえた反応が可能である。
特許請求温度範囲を溶融温度420℃から850℃の亜鉛蒸気圧の低い温度域とする。
A method for separating and recovering carbon and recovering zinc oxide by reaction with carbon dioxide gas during oxygen enrichment using a zinc solution;
Equation (10) shows the reaction of the zinc solution and carbon dioxide during oxygen enrichment.
Zn+1/ 3CO2 (g)+1/ 6O2 (g)=ZnO+1/3C (10)
Reaction data are shown in FIG.
The reaction between zinc solution and carbon dioxide gas is shown in formula (11).
Zn+1/ 2CO2 (g)=ZnO+1/2C (11)
Reaction data are shown in FIG.
Equation (12) shows the reaction when carbon monoxide is generated in the reaction between the zinc solution and carbon dioxide gas.
Zn+CO 2 (g)=ZnO+CO (g) (12)
Reaction data are shown in FIG.
In the reaction between the zinc solution and carbon dioxide gas, the reaction during the generation of carbon monoxide and carbon is shown in equation (13).
Zn+2/3CO2( g )=ZnO+1/3CO(g)+1/3C (13)
Reaction data are shown in FIG.
Comparing the reaction data of formula (10) with the reaction data of formulas (11), (12), and (13), the Log (K) value of the reaction equilibrium constant K of formula (10) is expressed by formula (11), It can be seen that the value is considerably larger than the Log(K) value of each of the formulas (12) and (13).
The reaction of formula (10) can be carried out in a temperature range from the melting temperature of zinc of 420° C. to before reaching the boiling point while suppressing the generation of carbon monoxide.
The claimed temperature range is defined as the melting temperature range of 420°C to 850°C, where the vapor pressure of zinc is low.
マグネシウム溶体を用いた酸素富化時の炭酸ガスとの反応による炭素の分離回収とマグネシウム酸化物の回収方法;
マグネシウム溶体と酸素富化時の炭酸ガスとの反応を(14)式に示す。
Mg+1/3CO+1/6O(g)=MgO+1/3C・・・(14)
反応データを図16に示す。
マグネシウム溶体と炭酸ガスの反応を(15)式に示す。
Mg+1/2CO(g)=MgO+1/2C・・・(15)
反応データを図17に示す。(Mg融点:650℃、沸点:1091℃)
反応式(14)と(15)の反応データを比較すると、(14)式のマグネシウム溶体と酸素富化時の炭酸ガスとの反応が大きく優位であることが分かる。
さらに、一酸化炭素の生成時の(16)式と一酸化炭素及びカーボン生成時の反応を(17)式に示す。
Mg+CO(g)=MgO+CO(g)・・・(16)
反応データを図18に示す
Mg+2/3CO(g)=MgO+1/3CO(g)+1/3C・・・(17)
反応データを図19に示す
マグネシウム溶体と酸素富化時の反応式(14)式の反応平衡定数KのLog(K)値が、(15),(16)式の値よりも大きい。(14)式の酸素富化をした反応を行えば、溶体化する650℃℃以上から1,050℃程度の範囲内で一酸化炭素の発生を抑えて反応が可能なことが分かる。
マグネシウム酸化物及びカーボンの生成と回収の特許請求温度範囲は、溶融温度650℃から1,050℃程度までとする。
A method for separating and recovering carbon and recovering magnesium oxide by reaction with carbon dioxide gas during oxygen enrichment using a magnesium solution;
Equation (14) shows the reaction between the magnesium solution and carbon dioxide during oxygen enrichment.
Mg+1/ 3CO2 +1/ 6O2 (g)=MgO+1/3C (14)
Reaction data are shown in FIG.
The reaction between magnesium solution and carbon dioxide is shown in equation (15).
Mg+1/ 2CO2 (g)=MgO+1/2C (15)
Reaction data are shown in FIG. (Mg melting point: 650°C, boiling point: 1091°C)
Comparing the reaction data of the reaction formulas (14) and (15), it can be seen that the reaction between the magnesium solution of the formula (14) and the carbon dioxide gas during oxygen enrichment is significantly superior.
Furthermore, equation (16) when carbon monoxide is produced and reaction when carbon monoxide and carbon are produced are shown in equation (17).
Mg+CO 2 (g)=MgO+CO (g) (16)
Mg+ 2 /3CO2(g)=MgO+1/3CO(g)+1/3C (17)
The Log(K) value of the reaction equilibrium constant K of the reaction formula (14) at the time of magnesium solution and oxygen enrichment shown in FIG. 19 is larger than the values of the formulas (15) and (16). It can be seen that if the oxygen-enriched reaction of formula (14) is carried out, the reaction can be carried out while suppressing the generation of carbon monoxide within the range of about 650° C. or higher to about 1,050° C. for solution formation.
The claimed temperature range for the production and recovery of magnesium oxide and carbon is from the melting temperature of 650°C to about 1,050°C.
アルミニウム溶体を用いた酸素富化時の炭酸ガスとの反応による炭素の分離回収とアルミニウム酸化物の回収方法;
アルミニウム溶体と酸素富化した炭酸ガとの反応にてアルミニウム酸化物及びカーボンの生成と回収は、アルミニウムの溶融温度の660.3℃以上の溶融範囲で一酸化炭素の発生及び窒素化合物の生成を抑えて、アルミニウム酸化粉とカーボン粉の回収が可能である。
その反応を(18)式に示す。
Figure 2023084058000003
反応データを図20に示す。
アルミニウム溶体と炭酸ガスとの反応を(19)式に示す。
Al+3/4CO(g)=1/2Al+3/4C・・・(19)
反応データを図21に示す。
アルミニウム溶体と炭酸ガスとの反応における一酸化炭素及びカーボンの生成時の反応を(20)式に示す。
Al+CO(g)=1/2Al+1/2CO(g)+1/2C・・・(20)
反応データを図22に示す。
(18)式の酸素富化時の反応を空気で行った場合に、アルミニウム溶体と随伴される窒素との反応について(21)式に示す。
Figure 2023084058000004
反応データを図23に示す。
(18)式の酸素供給を空気で行った際の随伴する窒素のモル数を計算して、直接全量がアルミニウムと反応したと仮定して反応平衡定数KのLog(K)の値の大小を確認する。
随伴窒素の全てが反応すると仮に置いて算出した反応式平衡定数KのLog(K)値を算出して(18)式のLog(K)の数値と比較した。
随伴した窒素は、(5/12*878/21)=65/63 モルであり、この数量がアルミニウム溶体との反応について(22)式に示す。
130/63Al+65/63N(g)=130/63AlN・・・(22)
反応データを図24に示す。
随伴窒素がアルミニウムと直接反応したと仮定したとしても(18)式に示した酸素富化時の炭酸ガスとの反応でアルミナとカーボンを回収する反応データのLog(K)の値が680℃~980℃の範囲で最も高いことから(18)式で安定した酸化物の回収が可能であると確認される。
特許請求温度範囲を680℃から980℃とする。
A method for separating and recovering carbon and recovering aluminum oxide by reaction with carbon dioxide gas during oxygen enrichment using an aluminum solution;
The production and recovery of aluminum oxide and carbon in the reaction between the aluminum solution and the oxygen-enriched carbon dioxide gas is the production of carbon monoxide and the production of nitrogen compounds in the melting range of 660.3°C or higher, which is the melting temperature of aluminum. It is possible to recover the aluminum oxide powder and the carbon powder while suppressing the amount.
The reaction is shown in formula (18).
Figure 2023084058000003
Reaction data are shown in FIG.
The reaction between aluminum solution and carbon dioxide gas is shown in equation (19).
Al+3/4CO2 ( g )=1/ 2Al2O3 + 3 /4C (19)
Reaction data are shown in FIG.
Equation (20) shows the reaction during the production of carbon monoxide and carbon in the reaction between the aluminum solution and carbon dioxide gas.
Al+ CO2 (g)=1/ 2Al2O3 +1/2CO(g)+ 1 /2C (20)
Reaction data are shown in FIG.
Eq. (21) shows the reaction between the aluminum solution and accompanying nitrogen when the oxygen enrichment reaction of Eq. (18) is carried out in air.
Figure 2023084058000004
Reaction data are shown in FIG.
(18) Calculate the number of moles of accompanying nitrogen when air is used to supply oxygen in the equation, and assume that the entire amount directly reacts with aluminum. confirm.
The Log(K) value of the equilibrium constant K of the reaction formula was calculated on the assumption that all of the accompanying nitrogen reacted, and was compared with the value of Log(K) in the formula (18).
Accompanying nitrogen is (5/12*878/21)=65/63 moles and this quantity is shown in equation (22) for reaction with aluminum solution.
130/63Al+65/63N 2 (g)=130/63AlN (22)
Reaction data are shown in FIG.
Even if it is assumed that the accompanying nitrogen reacts directly with aluminum, the value of Log (K) of the reaction data for recovering alumina and carbon by the reaction with carbon dioxide gas during oxygen enrichment shown in equation (18) is 680 ° C. Since it is the highest in the range of 980° C., it is confirmed by the formula (18) that stable oxide recovery is possible.
The claimed temperature range is from 680°C to 980°C.
亜鉛蒸気と酸素富化時(空気による酸素供給を含む)の一酸化炭素との反応による炭素の分離回収と亜鉛酸化物(亜鉛華)の回収方法;
亜鉛蒸気と一酸化炭素の反応を(23)式に示す。
Zn(g)+CO(g)=ZnO+C・・・(23)
反応データを図25に示す。
この反応は、単位時間当たりに反応生成物を形成する量が少ない反応であり、特許請求には該当しない。
亜鉛蒸気と酸素富化時の一酸化炭素との反応を(24)式に示す。
Zn(g)+1/3CO(g)+1/3O(g)=ZnO+1/3C・・・(24)
反応データを図26に示す。
さらに、亜鉛蒸気と酸素富化比率を変えた一酸化炭素との反応を(25)に示す。
Zn(g)+1/2CO(g)+1/O(g)=ZnO+1/2C・・・(25)
反応データを図27に示す。
(24)式、(25)式の反応データを比較すると、一酸化炭素と酸素富化比率とカーボンの生成量に違いは出るものの、反応平衡定数K値等に問題はない。(24)式、(25)式の反応での製造することを請求項とする。
特許請求温度範囲は、900℃から975℃とする。
A method for separating and recovering carbon and recovering zinc oxide (zinc white) by reaction of zinc vapor with carbon monoxide during oxygen enrichment (including oxygen supply by air);
Equation (23) shows the reaction between zinc vapor and carbon monoxide.
Zn(g)+CO(g)=ZnO+C (23)
Reaction data are shown in FIG.
This reaction is a reaction that forms a small amount of reaction product per unit time and does not fall under the claims.
Equation (24) shows the reaction between zinc vapor and carbon monoxide during oxygen enrichment.
Zn(g)+1/3CO(g)+1/ 3O2 (g)=ZnO+1/3C (24)
Reaction data are shown in FIG.
Furthermore, reaction of zinc vapor with carbon monoxide with different oxygen enrichment ratios is shown in (25).
Zn(g)+1/2CO(g)+1/ O2 (g)=ZnO+1/2C (25)
Reaction data are shown in FIG.
Comparing the reaction data of equations (24) and (25), there is no problem with the reaction equilibrium constant K value, etc., although there are differences in the carbon monoxide and oxygen enrichment ratios and the amount of carbon produced. It is claimed to be produced by the reactions of formulas (24) and (25).
The claimed temperature range is from 900°C to 975°C.
マグネシウム蒸気と酸素素富化時(空気による酸素供給を含む)の一酸化炭素との反応による炭素の分離回収とマグネシウム酸化物の回収方法;
マグネシウム蒸気と一酸化炭素の反応を(26)式に示す。
Zn(g)+CO(g)=MnO+C・・・(26)
反応データを図28に示す。
この反応は、反応後の冷却等に空気を使用することが考えられるが、一酸化炭素からのカーボンの分離回収可能である。
マグネシウム蒸気と酸素富化時の一酸化炭素との反応を(27式に示す。
Mg(g)+1/3CO(g)+1/3O(g)=ZnO+1/3C・・・(27)
反応データを図29に示す。
さらに、マグネシウム蒸気と酸素富化比率を変えた一酸化炭素との反応を(28)に示す。
Mg(g)+1/2(g)+1/O(g)=MgO+1/2C・・・(28)
反応データを図30に示す。
(27)式、(28)式の反応データを比較すると、一酸化炭素と酸素富化比率とカーボンの生成量に違いは出るものの、反応平衡定数K値等に問題はない。(27)式、(25)式の反応での製造することを請求項とする。
特許請求温度範囲は、1,070℃から1,200℃とする。
A method for separation and recovery of carbon and recovery of magnesium oxides by reaction of magnesium vapor with carbon monoxide during oxygen enrichment (including oxygen supply by air);
The reaction between magnesium vapor and carbon monoxide is shown in equation (26).
Zn(g)+CO(g)=MnO+C (26)
Reaction data are shown in FIG.
In this reaction, air may be used for cooling after the reaction, but carbon can be separated and recovered from carbon monoxide.
The reaction between magnesium vapor and carbon monoxide during oxygen enrichment is shown in Equation 27.
Mg (g) + 1/3CO (g) + 1/ 3O2 (g) = ZnO + 1/3C (27)
Reaction data are shown in FIG.
Further, reactions of magnesium vapor with carbon monoxide with different oxygen enrichment ratios are shown in (28).
Mg (g) + 1/2 (g) + 1/ O2 (g) = MgO + 1/2C (28)
Reaction data are shown in FIG.
Comparing the reaction data of formulas (27) and (28), there is no problem with the reaction equilibrium constant K value, etc., although there are differences in the carbon monoxide and oxygen enrichment ratios and the amount of carbon produced. It is claimed to be produced by the reactions of formulas (27) and (25).
The claimed temperature range is from 1,070°C to 1,200°C.
JP2021208725A 2021-12-06 2021-12-06 Method for separating carbon from carbon dioxide or carbon monoxide using nonferrous metal Withdrawn JP2023084058A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2021208725A JP2023084058A (en) 2021-12-06 2021-12-06 Method for separating carbon from carbon dioxide or carbon monoxide using nonferrous metal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2021208725A JP2023084058A (en) 2021-12-06 2021-12-06 Method for separating carbon from carbon dioxide or carbon monoxide using nonferrous metal

Publications (1)

Publication Number Publication Date
JP2023084058A true JP2023084058A (en) 2023-06-16

Family

ID=86731823

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2021208725A Withdrawn JP2023084058A (en) 2021-12-06 2021-12-06 Method for separating carbon from carbon dioxide or carbon monoxide using nonferrous metal

Country Status (1)

Country Link
JP (1) JP2023084058A (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020164888A (en) * 2019-03-28 2020-10-08 株式会社 テツゲン Method and apparatus for recovering zinc and iron from electric furnace dust
WO2021230271A1 (en) * 2020-05-13 2021-11-18 アンヴァール株式会社 Carbon fixation apparatus for power generation

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020164888A (en) * 2019-03-28 2020-10-08 株式会社 テツゲン Method and apparatus for recovering zinc and iron from electric furnace dust
WO2021230271A1 (en) * 2020-05-13 2021-11-18 アンヴァール株式会社 Carbon fixation apparatus for power generation

Similar Documents

Publication Publication Date Title
US4053301A (en) Process for the direct production of steel
CA2264684A1 (en) Method for production of magnesium
US4409021A (en) Slag decarbonization with a phase inversion
US20150368753A1 (en) Method for improving quality of titanium-containing feedstock
JP2023084058A (en) Method for separating carbon from carbon dioxide or carbon monoxide using nonferrous metal
Wulandari et al. Magnesium: current and alternative production routes
EP4279453A2 (en) Process for the production of commercial grade silicon
US20120034154A1 (en) Production of hydrogen through oxidation of metal sulfides
US3794482A (en) Carbothermic reduction method for converting metal oxides to metal form
US3607221A (en) Carbothermic production of aluminum
CN106744960A (en) A kind of method that oxidation of coal titanium or/and titanium carbide are prepared with carburetted hydrogen gas reduction
US4033759A (en) Process for producing magnesium utilizing aluminum metal reductant
EP0759887B1 (en) Preparation of anhydrous magnesium chloride-containing melts from hydrated magnesium chloride and production of magnesium metal
US3186833A (en) Method for reducing copper oxide
EP2176169B1 (en) Process for preparing titanium tetrachloride using off-gases from a silica and zircon carbo-chlorination process
GB2048310A (en) Carbothermic production of aluminium
US5316565A (en) Carbothermic reduction product gas treatment
US4033758A (en) Process for producing magnesium utilizing aluminum-silicon alloy reductant
JPH0438826B2 (en)
US2391727A (en) Method of producing magnesium
US3404957A (en) Ammonia synthesis
Maier Sponge chromium
CN115215292A (en) Method for preparing hydrogen by using secondary aluminum ash
CA1113225A (en) Recovery of chlorine values
US3758290A (en) Carbothermic production of aluminum

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220225

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220408

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230530

A761 Written withdrawal of application

Free format text: JAPANESE INTERMEDIATE CODE: A761

Effective date: 20230606