JP2023077438A - Laminate rubber seismic isolation bearing - Google Patents

Laminate rubber seismic isolation bearing Download PDF

Info

Publication number
JP2023077438A
JP2023077438A JP2021190669A JP2021190669A JP2023077438A JP 2023077438 A JP2023077438 A JP 2023077438A JP 2021190669 A JP2021190669 A JP 2021190669A JP 2021190669 A JP2021190669 A JP 2021190669A JP 2023077438 A JP2023077438 A JP 2023077438A
Authority
JP
Japan
Prior art keywords
rubber
outer peripheral
thickness
plate
seismic isolation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2021190669A
Other languages
Japanese (ja)
Inventor
正祥 生頼
Masayoshi Orai
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyo Tire Corp
Original Assignee
Toyo Tire Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyo Tire Corp filed Critical Toyo Tire Corp
Priority to JP2021190669A priority Critical patent/JP2023077438A/en
Publication of JP2023077438A publication Critical patent/JP2023077438A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Buildings Adapted To Withstand Abnormal External Influences (AREA)
  • Vibration Prevention Devices (AREA)
  • Springs (AREA)

Abstract

To provide a laminate rubber seismic isolation bearing capable of improving weather resistance without using cover rubber.SOLUTION: A laminate rubber seismic isolation bearing comprises a laminate rubber body formed by alternately laminating a rubber plate and a rigid plate, and a pair of flange plates connected to the upper and lower end surfaces of the laminate rubber body. The thickness of the outer peripheral part of the rigid plate is larger than the thickness of a body part, which is the central side of the rigid plate. According to such a configuration, it is possible to reduce an area where the rubber plate is exposed to outside air and improve weather resistance without using cover rubber.SELECTED DRAWING: Figure 1

Description

本開示は、積層ゴム型免震支承に関する。 The present disclosure relates to a laminated rubber type seismic isolation bearing.

建築構造物や土木構造物などの構造物を地震の振動(震動)から保護する免震装置として、積層ゴム型免震支承(以下、単に「免震支承」と呼ぶ場合がある)が知られている。一般に、免震支承は、ゴム板と金属板とを交互に積層した積層ゴム体を備え、その積層ゴム体の上下両端面に接合された一対のフランジ板を介して下部構造物と上部構造物との間隙に設置される。 Laminated rubber-type seismic isolation bearings (hereinafter sometimes simply referred to as "seismic isolation bearings") are known as seismic isolation devices that protect structures such as building structures and civil engineering structures from earthquake vibrations (vibration). ing. In general, a seismic isolation bearing comprises a laminated rubber body in which rubber plates and metal plates are alternately laminated. placed in the gap between

免震支承は外気に晒される状態で使用されるため、酸素やオゾン、紫外線などの影響によるゴム板の劣化が懸念される。劣化したゴム板が剥がれたり割れたりした場合には、免震支承の性能低下を引き起こす恐れがある。したがって、長期の使用によっても免震支承の性能が確保されるよう、耐候性を向上するための対策を講じてゴム板の劣化を抑えることが肝要である。 Since seismic isolation bearings are used in a state where they are exposed to the outside air, there is concern that the rubber plates may deteriorate due to the effects of oxygen, ozone, and ultraviolet rays. If the deteriorated rubber plate peels off or cracks, there is a risk of degrading the performance of the seismic isolation bearing. Therefore, in order to ensure the performance of seismic isolation bearings even after long-term use, it is essential to take measures to improve weather resistance and suppress deterioration of rubber plates.

従来、耐候性に優れたゴム材料からなるカバーゴムによって積層ゴム体の外周面を被覆し、ゴム板が外気に触れないようにする手法が公知である(例えば、特許文献1)。しかしながら、かかる手法では、カバーゴムを形成するためのゴム部材を準備し、それを積層ゴム体に貼り合わせる作業が必要になるので、部材点数や工数が増大してしまうという不都合があった。 Conventionally, there has been known a method of covering the outer peripheral surface of a laminated rubber body with a cover rubber made of a rubber material having excellent weather resistance to prevent the rubber plate from coming into contact with the outside air (for example, Patent Document 1). However, in such a method, it is necessary to prepare a rubber member for forming the cover rubber and to attach it to the laminated rubber body, which is inconvenient in that the number of members and the number of man-hours increase.

特開昭62-83138号公報JP-A-62-83138

本開示は上記実情に鑑みてなされたものであり、その目的は、カバーゴムを使用しなくても耐候性を向上できる積層ゴム型免震支承を提供することにある。 The present disclosure has been made in view of the above circumstances, and an object thereof is to provide a laminated rubber-type seismic isolation bearing capable of improving weather resistance without using a cover rubber.

本開示の積層ゴム型免震支承は、ゴム板と剛性板とを交互に積層して形成された積層ゴム体と、前記積層ゴム体の上下両端面に接合された一対のフランジ板とを備え、前記剛性板の外周部の厚みが、前記剛性板の中心側となる本体部の厚みよりも大きい。 A laminated rubber type seismic isolation bearing of the present disclosure includes a laminated rubber body formed by alternately laminating rubber plates and rigid plates, and a pair of flange plates joined to upper and lower end surfaces of the laminated rubber body. , the thickness of the outer peripheral portion of the rigid plate is larger than the thickness of the body portion which is the central side of the rigid plate.

本開示の積層ゴム型免震支承の一例を模式的に示す縦断面図Longitudinal cross-sectional view schematically showing an example of the laminated rubber type seismic isolation bearing of the present disclosure 図1の矩形枠RFで囲まれた領域の拡大図Enlarged view of the area surrounded by the rectangular frame RF in FIG. 水平方向に撓み変形した免震支承を示す縦断面図Longitudinal cross-sectional view showing a seismic isolation bearing deformed in the horizontal direction 本開示の別実施形態における剛性板の外周部を示す縦断面図FIG. 11 is a vertical cross-sectional view showing the outer peripheral portion of a rigid plate in another embodiment of the present disclosure; 本開示の別実施形態における剛性板の外周部を示す縦断面図FIG. 11 is a vertical cross-sectional view showing the outer peripheral portion of a rigid plate in another embodiment of the present disclosure; 本開示の別実施形態における免震支承の要部を示す縦断面図A vertical cross-sectional view showing a main part of a seismic isolation bearing in another embodiment of the present disclosure 本開示の別実施形態における免震支承の要部を示す縦断面図A vertical cross-sectional view showing a main part of a seismic isolation bearing in another embodiment of the present disclosure

本開示の積層ゴム型免震支承の実施形態について図面を参照しながら説明する。 An embodiment of the laminated rubber type seismic isolation bearing of the present disclosure will be described with reference to the drawings.

図1に示す積層ゴム型免震支承1(以下、単に「免震支承1」と呼ぶ場合がある)は、ゴム板20と剛性板30とを交互に積層して形成された積層ゴム体10と、その積層ゴム体10の上下両端面に接合された一対のフランジ板11,12とを備える。免震支承1は、全体として柱状に形成されている。本実施形態では、免震支承1が円柱状に形成されているが、これに限られず、例えば平面視で四角形や六角形をなす角柱状に形成されていても構わない。 A laminated rubber-type seismic isolation bearing 1 (hereinafter sometimes simply referred to as a "seismic isolation bearing 1") shown in FIG. and a pair of flange plates 11 and 12 joined to the upper and lower end faces of the laminated rubber body 10 . The seismic isolation bearing 1 is formed in a columnar shape as a whole. In this embodiment, the seismic isolation bearing 1 is formed in a columnar shape, but it is not limited to this, and may be formed in a prismatic shape that forms a quadrangle or a hexagon in plan view, for example.

免震支承1は、図示しない下部構造物(例えば、建物基礎)と、図示しない上部構造物(例えば、建物躯体)との間隙に設置される。免震支承1は、フランジ板11を介して下部構造物に取り付けられ、フランジ板12を介して上部構造物に取り付けられる。それらの構造物とフランジ板11,12との間には、必要に応じて滑り板や取付フランジなどを介在させてもよい。尚、図1は、そのような間隙への設置に伴う負荷を受けていない、無負荷状態にある免震支承1を示す。特に断らない限り、後述する隙間30gやゴム板20の寸法などは、免震支承1を間隙に設置する前の無負荷状態における寸法を指す。 The seismic isolation bearing 1 is installed in a gap between a lower structure (eg, building foundation) (not shown) and an upper structure (eg, building frame) (not shown). The seismic isolation bearing 1 is attached to a lower structure via a flange plate 11 and attached to an upper structure via a flange plate 12 . Between those structures and the flange plates 11 and 12, a sliding plate, a mounting flange, or the like may be interposed, if necessary. It should be noted that FIG. 1 shows the seismic isolation bearing 1 in an unloaded state, not subjected to the loads associated with installation in such gaps. Unless otherwise specified, the dimensions of the gap 30g and the rubber plate 20, which will be described later, refer to the dimensions in the no-load state before the seismic isolation bearing 1 is installed in the gap.

積層ゴム体10は、その外周面をゴムで被覆したものではない。即ち、この免震支承1では、カバーゴムが使用されていない。積層ゴム体10は、複数枚のゴム板20と、複数枚の剛性板30とを用いて構成されている。本実施形態では、九枚のゴム板21~29と、八枚の剛性板31~38とが用いられている。本明細書では、各ゴム板を「ゴム板21~29」と個別的に称しつつ、これらを一括して「ゴム板20」と総称する。また、各剛性板を「剛性板31~38」と個別的に称しつつ、これらを一括して「剛性板30」と総称する。 The laminated rubber body 10 does not cover its outer peripheral surface with rubber. That is, the seismic isolation bearing 1 does not use a cover rubber. The laminated rubber body 10 is configured using a plurality of rubber plates 20 and a plurality of rigid plates 30 . In this embodiment, nine rubber plates 21-29 and eight rigid plates 31-38 are used. In this specification, while each rubber plate is referred to individually as "rubber plates 21 to 29", they are collectively referred to as "rubber plate 20". Further, while each rigid plate is individually referred to as "rigid plates 31 to 38", they are collectively referred to as "rigid plate 30".

ゴム板20は、耐クリープ性に優れたゴム材で形成されることが好ましい。特に限定されないが、ゴム板20は、天然ゴムをベースとしたゴム材で形成され、これに各種合成ゴムを併用することも可能である。合成ゴムとしては、イソプレンゴム、ブタジエンゴム、スチレンブタジエンゴム、ブチルゴムなどのジエン系ゴムの他、エチレンプロピレンゴムなどのオレフィン系ゴムが例示される。剛性板30は、鋼板などの金属製の板材で形成されている。但し、これに限られるものではなく、セラミックやプラスチック、繊維強化プラスチックなど非金属製の板材で形成することも可能である。 The rubber plate 20 is preferably made of a rubber material having excellent creep resistance. Although not particularly limited, the rubber plate 20 is formed of a rubber material based on natural rubber, and it is also possible to use various synthetic rubbers in combination therewith. Examples of synthetic rubbers include diene rubbers such as isoprene rubber, butadiene rubber, styrene-butadiene rubber and butyl rubber, and olefin rubbers such as ethylene propylene rubber. The rigid plate 30 is made of a metal plate such as a steel plate. However, it is not limited to this, and can be formed of a non-metallic plate material such as ceramic, plastic, or fiber-reinforced plastic.

図2は、図1の矩形枠RFで囲まれた領域を拡大した図であり、剛性板38の外周部の周辺を示している。本実施形態では剛性板31~38の形状が互いに同じであるため、図2に示した剛性板37,38を参照して「剛性板30」の説明を行う場合がある。同様に、図2に示したゴム板28,29を参照して「ゴム板20」の説明を行う場合がある。本実施形態の免震支承1では、剛性板30の外周部30pの厚みTpが、剛性板30の中心側(図2では左側)となる本体部30bの厚みTbよりも大きい。即ち、Tp>Tbの関係が成立する。これにより、カバーゴムを使用していないにも関わらず、ゴム板20が外気に触れる範囲を減らして耐候性を向上できる。 FIG. 2 is an enlarged view of the area surrounded by the rectangular frame RF in FIG. In this embodiment, since the rigid plates 31 to 38 have the same shape, the “rigid plate 30” may be described with reference to the rigid plates 37 and 38 shown in FIG. Similarly, the “rubber plate 20” may be described with reference to the rubber plates 28 and 29 shown in FIG. In the seismic isolation bearing 1 of the present embodiment, the thickness Tp of the outer peripheral portion 30p of the rigid plate 30 is greater than the thickness Tb of the main body portion 30b on the center side (left side in FIG. 2) of the rigid plate 30 . That is, the relationship of Tp>Tb is established. As a result, although the cover rubber is not used, the area where the rubber plate 20 is exposed to the outside air can be reduced and the weather resistance can be improved.

積層ゴム体10の外周面には、上下方向に並んだ剛性板30の外周部30pの隙間30gが形成されている。隙間30gは、フランジ板11の外周部と剛性板30(剛性板31)の外周部30pとの間、及び、フランジ板12の外周部12pと剛性板30(剛性板38)の外周部30pとの間にも形成されている。かかる隙間30gが形成されていることにより、鉛直方向の免震支承1の撓み変形が可能となる。また、厚みTpが厚みTbよりも大きいために、隙間30gの大きさはゴム板20の厚みT20よりも小さい。これにより、そうでない場合と比べて、ゴム板20が外気に触れる範囲を少なくできる。 On the outer peripheral surface of the laminated rubber body 10, a gap 30g is formed between the outer peripheral portions 30p of the rigid plates 30 arranged in the vertical direction. The gap 30g is formed between the outer peripheral portion of the flange plate 11 and the outer peripheral portion 30p of the rigid plate 30 (rigid plate 31), and between the outer peripheral portion 12p of the flange plate 12 and the outer peripheral portion 30p of the rigid plate 30 (rigid plate 38). is also formed between By forming such a gap 30g, the flexural deformation of the seismic isolation bearing 1 in the vertical direction becomes possible. Also, since the thickness Tp is larger than the thickness Tb, the size of the gap 30g is smaller than the thickness T20 of the rubber plate 20 . As a result, the area where the rubber plate 20 is exposed to the outside air can be reduced compared to the case where it is not so.

隙間30gの大きさは、特に限定されるものではなく、免震支承1の撓み変形などを勘案して適宜に設定可能である。但し、ゴム板20が外気に触れる範囲を減らして耐候性を向上する観点から、隙間30gは、ゴム板20の厚みT20の20%以下であることが好ましく、10%以下であることがより好ましい。同様の観点から、隙間30gは10mm以下であることが好ましく、5mm以下であることがより好ましい。但し、鉛直方向の撓み変形を発揮できるよう、隙間30gは0mmを超えていることが好ましい。尚、免震支承1を間隙に設置した後の負荷状態において、隙間30gは、実質的に0mmでもよいが、鉛直方向の撓み変形を確保する観点から0mmを超えていることが好ましい。外周部30pの厚みTpは、本体部30bの厚みTbの2倍以上であることが好ましく、3倍以上であることがより好ましい。厚みTbは、例えば3.2~4.5mmである。 The size of the gap 30g is not particularly limited, and can be appropriately set in consideration of the bending deformation of the seismic isolation bearing 1 and the like. However, from the viewpoint of improving the weather resistance by reducing the area where the rubber plate 20 is exposed to the outside air, the gap 30g is preferably 20% or less of the thickness T20 of the rubber plate 20, and more preferably 10% or less. . From the same point of view, the gap 30g is preferably 10 mm or less, more preferably 5 mm or less. However, it is preferable that the gap 30g exceeds 0 mm so that bending deformation in the vertical direction can be exhibited. In a loaded state after the seismic isolation bearing 1 is installed in the gap, the gap 30g may be substantially 0 mm, but preferably exceeds 0 mm from the viewpoint of ensuring bending deformation in the vertical direction. The thickness Tp of the outer peripheral portion 30p is preferably two times or more, more preferably three times or more, the thickness Tb of the main body portion 30b. Thickness Tb is, for example, 3.2 to 4.5 mm.

剛性板30の本体部30bの上下面は、それぞれ水平方向に延在した平坦面で形成されている。その本体部30bには、ゴム板20の中心側となる本体部20bが積層されている。ゴム板20の本体部20bの上下面は、それぞれ水平方向に延在した平坦面で形成されている。厚みT20は、本体部20bにおける厚みであり、剛性板30の本体部30bの隙間に相当する。厚みT20は、例えば3.3~12mmである。この厚みT20で延在する本体部20bの領域を十分に確保する観点から、外周部30pの長さLpは本体部30bの長さLb(図1参照)の20%以下であることが好ましい。また、長さLpは、10mm以上であることがより好ましい。 The upper and lower surfaces of the main body portion 30b of the rigid plate 30 are formed of flat surfaces extending in the horizontal direction. A main body portion 20b, which is the center side of the rubber plate 20, is laminated on the main body portion 30b. The upper and lower surfaces of the main body portion 20b of the rubber plate 20 are formed as flat surfaces extending in the horizontal direction. The thickness T20 is the thickness of the main body portion 20b and corresponds to the gap between the main body portions 30b of the rigid plate 30. As shown in FIG. Thickness T20 is, for example, 3.3 to 12 mm. From the viewpoint of sufficiently securing the area of the body portion 20b extending with the thickness T20, the length Lp of the outer peripheral portion 30p is preferably 20% or less of the length Lb (see FIG. 1) of the body portion 30b. Moreover, it is more preferable that the length Lp is 10 mm or more.

剛性板30の外周部30pは、本体部30bから外周側(図2では右側)に向かって厚みが漸増する段差側面30sを有する。外周部30pは、段差側面30sを含む厚み変化部30Xと、剛性板30の外周端30eを含む厚み一定部30Yとで構成されている。この免震支承1では、本体部30bと外周部30pとの厚みの違いによる段差を伴うため、図3のように水平方向の撓み変形を起こすと、その段差付近でゴム体20にせん断応力が作用する。本実施形態では、段差側面30sで剛性板30の厚みを漸増させていることにより、ゴム体20に付与されるせん断応力の軽減を図ることができ、延いてはゴム体20の損傷が抑えられる。かかる観点から、段差側面30sの傾斜角度θは90度以下が好ましく、67.5度以下がより好ましく、45度以下が更に好ましい。 The outer peripheral portion 30p of the rigid plate 30 has a stepped side surface 30s whose thickness gradually increases from the main body portion 30b toward the outer peripheral side (right side in FIG. 2). The outer peripheral portion 30p is composed of a thickness changing portion 30X including the stepped side surface 30s and a constant thickness portion 30Y including the outer peripheral end 30e of the rigid plate 30. As shown in FIG. Since the seismic isolation bearing 1 has a step due to the difference in thickness between the main body portion 30b and the outer peripheral portion 30p, when bending deformation occurs in the horizontal direction as shown in FIG. works. In this embodiment, by gradually increasing the thickness of the rigid plate 30 on the stepped side surface 30s, the shear stress applied to the rubber body 20 can be reduced, and damage to the rubber body 20 can be suppressed. . From this point of view, the inclination angle θ of the stepped side surface 30s is preferably 90 degrees or less, more preferably 67.5 degrees or less, and even more preferably 45 degrees or less.

本実施形態では、フランジ板12の外周部12pの厚みが、そのフランジ板12の中心側となる本体部12bの厚みよりも大きい。本体部12bの厚みは、例えば25~38mmである。図2に示すように、フランジ板12の外周部12pの厚みを大きくしていることにより、剛性板38の上面における段差の高さhを大きくしなくても隙間30gを小さくできる。このことは、上述したゴム体20に作用するせん断応力を軽減するうえで都合がよい。本実施形態では、外周部12pのうち剛性板30の外周部30pに相対する箇所で部分的に厚みを大きくしているが、これに限られず、外周部12pの全体で厚みを大きくしてもよい。フランジ板11と剛性板31の下面との間においても、これと同じ構成であり、フランジ板11の外周部の厚みは、そのフランジ板11の中心側となる本体部の厚みよりも大きい。 In this embodiment, the thickness of the outer peripheral portion 12p of the flange plate 12 is greater than the thickness of the main body portion 12b, which is the center side of the flange plate 12. As shown in FIG. The thickness of the body portion 12b is, for example, 25 to 38 mm. As shown in FIG. 2, by increasing the thickness of the outer peripheral portion 12p of the flange plate 12, the gap 30g can be reduced without increasing the height h of the step on the upper surface of the rigid plate . This is convenient for reducing shear stress acting on the rubber body 20 described above. In this embodiment, the portion of the outer peripheral portion 12p that faces the outer peripheral portion 30p of the rigid plate 30 is partially thickened. good. The same configuration is used between the flange plate 11 and the lower surface of the rigid plate 31, and the thickness of the outer peripheral portion of the flange plate 11 is greater than the thickness of the main body portion of the flange plate 11 on the center side.

図2に示すように、ゴム板20の外周部は隙間30gに侵入していることが好ましい。かかる構成によれば、剛性板30と剛性板30(またはフランジ板11、12)との隙間(特に本体部30bの隙間)にゴムが適正に充填された構造となるため、免震機能を確保するうえで好適である。隙間30gに侵入したゴムは、剛性板30の外周端30eに達していてもよく、外周端30eから突出していてもよい。或いは、外周端30eから突出したゴムを切除することにより、ゴム板20の外周端を剛性板30の外周端30eと面一にしてもよい。 As shown in FIG. 2, the outer peripheral portion of the rubber plate 20 preferably enters the gap 30g. According to this configuration, the gap between the rigid plates 30 (or the flange plates 11 and 12) (especially the gap between the main body portions 30b) is properly filled with rubber, thereby ensuring the seismic isolation function. It is suitable for The rubber that has entered the gap 30g may reach the outer peripheral edge 30e of the rigid plate 30, or may protrude from the outer peripheral edge 30e. Alternatively, the outer peripheral edge of the rubber plate 20 may be made flush with the outer peripheral edge 30e of the rigid plate 30 by cutting off the rubber protruding from the outer peripheral edge 30e.

本実施形態において、剛性板30の外周部30pは、剛性板30の本体部30bに対して上下方向の両側に厚みを大きくした形状を有する。図2に示すように、剛性板30は、本体部30bの上面から上方に向かう立ち上がり面(段差側面30s)と、本体部30bの下面から下方に向かう立ち上がり面(段差側面30s)とを有する。このように上下方向の両側に厚みを大きくしていることにより、剛性板38の上面及び下面における段差の高さhを大きくしなくても隙間30gを小さくできる。このことは、上述したゴム体20に作用するせん断応力を軽減するうえで都合がよい。 In this embodiment, the outer peripheral portion 30p of the rigid plate 30 has a shape in which the thickness is increased on both sides in the vertical direction with respect to the body portion 30b of the rigid plate 30 . As shown in FIG. 2, the rigid plate 30 has a raised surface (stepped side surface 30s) directed upward from the upper surface of the main body portion 30b and a raised surface (stepped side surface 30s) directed downward from the lower surface of the main body portion 30b. By increasing the thickness on both sides in the vertical direction in this manner, the gap 30g can be reduced without increasing the height h of the step between the upper and lower surfaces of the rigid plate 38 . This is convenient for reducing shear stress acting on the rubber body 20 described above.

以上のように、本実施形態の免震支承1は、ゴム板20と剛性板30とを交互に積層して形成された積層ゴム体10と、その積層ゴム体10の上下両端面に接合された一対のフランジ板11,12とを備え、剛性板30の外周部30pの厚みTpが、その剛性板30の中心側となる本体部30bの厚みTbよりも大きい。かかる構成によれば、カバーゴムを使用しなくても、ゴム板20が外気に触れる範囲を減らして耐候性を向上することができる。 As described above, the seismic isolation bearing 1 of this embodiment includes the laminated rubber body 10 formed by alternately laminating the rubber plates 20 and the rigid plates 30, and the upper and lower end faces of the laminated rubber body 10. The thickness Tp of the outer peripheral portion 30p of the rigid plate 30 is larger than the thickness Tb of the body portion 30b on the center side of the rigid plate 30. As shown in FIG. According to such a configuration, even if cover rubber is not used, the area where the rubber plate 20 is exposed to the outside air can be reduced, and the weather resistance can be improved.

本実施形態のように、剛性板30の外周部30pは、剛性板30の本体部30bから外周側に向かって厚みが漸増する段差側面30sを有することが好ましい。かかる構成によれば、免震支承1が水平方向に撓み変形したときにゴム体20に作用するせん断応力の軽減を図ることができ、延いてはゴム体20の損傷を抑えることができる。 As in the present embodiment, the outer peripheral portion 30p of the rigid plate 30 preferably has a stepped side surface 30s whose thickness gradually increases from the body portion 30b of the rigid plate 30 toward the outer peripheral side. According to such a configuration, it is possible to reduce the shear stress acting on the rubber body 20 when the seismic isolation bearing 1 is flexurally deformed in the horizontal direction, thereby suppressing damage to the rubber body 20 .

本実施形態のように、フランジ板11,12の外周部11p,12pの厚みが、フランジ板11,12の中心側となる本体部11b,12bの厚みよりも大きいことが好ましい。かかる構成によれば、剛性板38の上面または剛性板31の下面における段差の高さhを大きくしなくても隙間30gを小さくできるため、ゴム体20に作用するせん断応力を軽減するうえで都合がよい。 As in the present embodiment, it is preferable that the thickness of the outer peripheral portions 11p and 12p of the flange plates 11 and 12 is larger than the thickness of the main body portions 11b and 12b on the center side of the flange plates 11 and 12 . With such a configuration, the gap 30g can be reduced without increasing the height h of the step on the upper surface of the rigid plate 38 or the lower surface of the rigid plate 31, which is convenient for reducing the shear stress acting on the rubber body 20. is good.

本実施形態のように、ゴム板20の外周部は、上下方向に並んだ複数の剛性板30の外周部30pの隙間30gに侵入していることが好ましい。かかる構成によれば、剛性板30と剛性板30との間(特に本体部30bの隙間)にゴムが適正に充填された構造となるため、免震機能を確保するうえで好適となる。 As in this embodiment, the outer peripheral portion of the rubber plate 20 preferably enters the gap 30g between the outer peripheral portions 30p of the plurality of rigid plates 30 aligned in the vertical direction. According to such a configuration, the rubber is appropriately filled between the rigid plates 30 (especially the gap between the main body portions 30b), which is suitable for securing the seismic isolation function.

本実施形態のように、剛性板30の外周部30pは、剛性板30の本体部30bに対して上下方向の両側に厚みを大きくした形状を有することが好ましい。かかる構成によれば、剛性板30の上面及び下面における段差の高さhを大きくしなくても隙間30gを小さくできるため、ゴム体20に作用するせん断応力を軽減するうえで都合がよい。 As in the present embodiment, the outer peripheral portion 30p of the rigid plate 30 preferably has a shape in which the thickness is increased on both sides in the vertical direction with respect to the body portion 30b of the rigid plate 30 . With this configuration, the gap 30g can be reduced without increasing the height h of the step between the upper and lower surfaces of the rigid plate 30, which is convenient for reducing the shear stress acting on the rubber body 20.

免震支承1は、前述の実施形態の構成に限定されるものではなく、前述の作用効果に限定されるものではない。また、免震支承1は、その趣旨を逸脱しない範囲内で種々の改良変更が可能である。例えば、後述する変形例に係る構成から任意に一つ又は複数を選択し、前述した実施形態に代えて又は加えて採用してもよい。下記[1]~[4]に示す変形例は、以下に説明する構成の他は前述の実施形態と同様に構成できるため、共通点を省略して主に相違点について説明する。前述の実施形態で既に説明した構成には、同一の符号を付し、重複した説明を省略する。 The seismic isolation bearing 1 is not limited to the configuration of the embodiment described above, and is not limited to the effects described above. In addition, the seismic isolation bearing 1 can be modified in various ways without departing from its gist. For example, one or a plurality of configurations may be arbitrarily selected from configurations according to modified examples described later, and employed in place of or in addition to the above-described embodiments. Modifications shown in [1] to [4] below can be configured in the same manner as the above-described embodiment except for the configuration described below, so common points will be omitted and differences will be mainly described. The same reference numerals are assigned to the configurations that have already been described in the above-described embodiments, and redundant descriptions are omitted.

[1]前述の実施形態では、段差側面30sにおいて剛性板30の厚みが直線状(テーパ状)に漸増する例を示したが、これに限られず、例えば図4(A)~(E)に示すような形態でもよい。(A)の例では、剛性板30の厚みが凸円弧状に漸増している。(B)の例では、剛性板30の厚みが凹円弧状に漸増している。これらの場合、段差側面30sの傾斜角度θは、例えば円弧の始点と終点とを結ぶ直線に基づいて求めればよい。(C)の例では、剛性板30が段差側面30sを有していない。(D)の例では、(C)の例における本体部30bと外周部30pとの隅部に傾斜面が設けられている。(E)の例では、(C)の例における本体部30bと外周部30pとの隅部に小段差が設けられている。 [1] In the above-described embodiment, the thickness of the rigid plate 30 gradually increases linearly (tapered) on the side surface 30s of the step. It may be in the form shown. In the example of (A), the thickness of the rigid plate 30 gradually increases in the shape of a convex arc. In the example of (B), the thickness of the rigid plate 30 gradually increases in the shape of a concave arc. In these cases, the inclination angle θ of the stepped side surface 30s may be obtained, for example, based on a straight line connecting the start point and end point of the arc. In the example of (C), the rigid plate 30 does not have the stepped side surface 30s. In the example of (D), an inclined surface is provided at the corner between the body portion 30b and the outer peripheral portion 30p in the example of (C). In the example of (E), a small step is provided at the corner between the body portion 30b and the outer peripheral portion 30p in the example of (C).

[2]前述の実施形態では、剛性板30の外周部30pが厚み変化部30Xと厚み一定部30Yとを含んでいる例を示したが、これに限られず、例えば図5(A)~(C)に示すように外周部30pが厚み一定部30Yを有していない形態でもよい。尚、(A)の例では、図2で示した段差側面30sが厚み変化部30Xに設けられている。(B)の例では、図4(A)で示した段差側面30sが厚み変化部30Xに設けられている。(C)の例では、図4(B)で示した段差側面30sが厚み変化部30Xに設けられている。 [2] In the above-described embodiment, the outer peripheral portion 30p of the rigid plate 30 includes the thickness changing portion 30X and the constant thickness portion 30Y. As shown in C), the outer peripheral portion 30p may not have the constant thickness portion 30Y. In addition, in the example of (A), the stepped side surface 30s shown in FIG. 2 is provided in the thickness change portion 30X. In the example of (B), the stepped side surface 30s shown in FIG. 4A is provided in the thickness change portion 30X. In the example of (C), the stepped side surface 30s shown in FIG. 4B is provided in the thickness change portion 30X.

[3]前述の実施形態では、剛性板30の外周部30pが本体部30bに対して上下方向の両側に厚みを大きくした形状を有する例を示したが、これに限られず、例えば図6に示すような形態でもよい。図6に示す剛性板30の外周部30pは、本体部30bに対して上側(即ち、上下方向の片側)にだけ厚みを大きくした形状を有している。かかる構成によれば、フランジ板12の外周部の厚みを大きくする必要がないので、厚み一定の一般的な板材をフランジ板12に用いることができる。図6の例では上側にだけ厚みを大きくしているが、これに代えて下側にだけ厚みを大きくした形態でもよい。 [3] In the above-described embodiment, the outer peripheral portion 30p of the rigid plate 30 has a shape in which the thickness is increased on both sides in the vertical direction with respect to the main body portion 30b. It may be in the form shown. The outer peripheral portion 30p of the rigid plate 30 shown in FIG. 6 has a shape in which the thickness is increased only on the upper side (that is, one side in the vertical direction) with respect to the main body portion 30b. With such a configuration, it is not necessary to increase the thickness of the outer peripheral portion of the flange plate 12 , so that a general plate material having a constant thickness can be used for the flange plate 12 . In the example of FIG. 6, the thickness is increased only on the upper side, but instead of this, the thickness may be increased only on the lower side.

[4]前述の実施形態では、剛性板31~38が互いに同じ形状を有する例を示したが、これに限られず、互いに異なる形状を任意に組み合わせて用いることも可能である。例えば、図7の例では、下側にだけ厚みを大きくした外周部30pを剛性板31~33に適用し、上下両側に厚みを大きくした外周部30pを剛性板34,35に適用し、上側にだけ厚みを大きくした外周部30pを剛性板36~38に適用している。かかる構成によれば、厚み一定の一般的な板材を一対のフランジ板11,12に用いることができるという利点がある。 [4] In the above-described embodiment, the rigid plates 31 to 38 have the same shape. For example, in the example of FIG. 7, the outer peripheral portion 30p having a thicker thickness only on the lower side is applied to the rigid plates 31 to 33, the outer peripheral portion 30p having a thicker thickness on both the upper and lower sides is applied to the rigid plates 34 and 35, and the upper side The outer peripheral portion 30p, which is only thicker than the other, is applied to the rigid plates 36-38. According to such a configuration, there is an advantage that a general plate material having a constant thickness can be used for the pair of flange plates 11 and 12 .

1 積層ゴム型免震支承
10 積層ゴム体
11 フランジ板
12 フランジ板
20 ゴム板
21~29 ゴム板
30 剛性板
30b 本体部
30g 隙間
30p 外周部
30s 段差側面
31~38 剛性板
1 Laminated rubber type seismic isolation bearing 10 Laminated rubber body 11 Flange plate 12 Flange plate 20 Rubber plate 21-29 Rubber plate 30 Rigid plate 30b Body portion 30g Gap 30p Peripheral portion 30s Step side surface 31-38 Rigid plate

Claims (5)

ゴム板と剛性板とを交互に積層して形成された積層ゴム体と、前記積層ゴム体の上下両端面に接合された一対のフランジ板とを備え、
前記剛性板の外周部の厚みが、前記剛性板の中心側となる本体部の厚みよりも大きい、積層ゴム型免震支承。
A laminated rubber body formed by alternately laminating rubber plates and rigid plates, and a pair of flange plates joined to both upper and lower end surfaces of the laminated rubber body,
A laminated rubber type seismic isolation bearing, wherein the thickness of the outer peripheral portion of the rigid plate is greater than the thickness of the main body portion of the rigid plate, which is located on the center side of the rigid plate.
前記剛性板の外周部は、前記剛性板の本体部から外周側に向かって厚みが漸増する段差側面を有する、請求項1に記載の積層ゴム型免震支承。 2. The laminated rubber type seismic isolation bearing according to claim 1, wherein the outer peripheral portion of said rigid plate has a stepped side surface whose thickness gradually increases from the body portion of said rigid plate toward the outer peripheral side. 前記フランジ板の外周部の厚みが、前記フランジ板の中心側となる本体部の厚みよりも大きい、請求項1または2に記載の積層ゴム型免震支承。 The laminated rubber type seismic isolation bearing according to claim 1 or 2, wherein the thickness of the outer peripheral portion of the flange plate is larger than the thickness of the body portion on the center side of the flange plate. 前記ゴム板の外周部は、上下方向に並んだ複数の前記剛性板の外周部の隙間に侵入している、請求項1~3いずれか1項に記載の積層ゴム型免震支承。 The laminated rubber type seismic isolation bearing according to any one of claims 1 to 3, wherein the outer peripheral portion of said rubber plate is inserted into a gap between the outer peripheral portions of said plurality of rigid plates arranged in the vertical direction. 前記剛性板の外周部は、前記剛性板の本体部に対して上下方向の両側に厚みを大きくした形状を有する、請求項1~4いずれか1項に記載の積層ゴム型免震支承。
The laminated rubber type seismic isolation bearing according to any one of claims 1 to 4, wherein the outer peripheral portion of said rigid plate has a shape in which the thickness is increased on both sides in the vertical direction with respect to the body portion of said rigid plate.
JP2021190669A 2021-11-25 2021-11-25 Laminate rubber seismic isolation bearing Pending JP2023077438A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2021190669A JP2023077438A (en) 2021-11-25 2021-11-25 Laminate rubber seismic isolation bearing

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2021190669A JP2023077438A (en) 2021-11-25 2021-11-25 Laminate rubber seismic isolation bearing

Publications (1)

Publication Number Publication Date
JP2023077438A true JP2023077438A (en) 2023-06-06

Family

ID=86622661

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2021190669A Pending JP2023077438A (en) 2021-11-25 2021-11-25 Laminate rubber seismic isolation bearing

Country Status (1)

Country Link
JP (1) JP2023077438A (en)

Similar Documents

Publication Publication Date Title
JP3018291B2 (en) Sliding elastic bearing device for structures
EP2412624A1 (en) Cargo tank for liquefied gas carrier ship
JP2023077438A (en) Laminate rubber seismic isolation bearing
JP4810959B2 (en) Buried formwork mounting structure, mounting method, concrete structure reinforcing method, and concrete structure
JP2016223586A (en) Lamination rubber support
JP2004211837A (en) Base-isolation device
JP4734146B2 (en) Filled steel segment for shield tunnel
KR101300687B1 (en) Installation structure of lining board
KR101466239B1 (en) Elastic supporting apparatus without demage of elastic rubber
JP4868435B2 (en) Laminated rubber body with lead plug
JP2013163930A (en) Joint member for rubber laminate, and rubber laminate and structure using the joint member
JP5136622B2 (en) Laminated rubber body with lead plug
JP5763981B2 (en) Laminated rubber bearing
JP2011089305A (en) Bearing device for bridge
KR101461805B1 (en) Buckling-restrained brace having high-ductility coreplate
KR20030040882A (en) Seismic Isolation Bearing of Flange Type for Improving Peel Strength
JP2011032666A (en) Rubber bearing device
JP5327645B2 (en) Wall structure in hydrogen related facilities
JP2002188687A (en) Base-isolation device
JP6496597B2 (en) Seismic isolation device
JP6239802B1 (en) Structural support device
JP2005265165A (en) Laminated rubber bearing
CN216919986U (en) Vertical elastic structure and vertical elastic support
JP4462171B2 (en) Steel plate panel, integrated body, tunnel reinforcement structure and method using the same
JP2000081087A (en) Base isolation device