JP2023075689A - Sputtering target material and sputtering target - Google Patents

Sputtering target material and sputtering target Download PDF

Info

Publication number
JP2023075689A
JP2023075689A JP2021188745A JP2021188745A JP2023075689A JP 2023075689 A JP2023075689 A JP 2023075689A JP 2021188745 A JP2021188745 A JP 2021188745A JP 2021188745 A JP2021188745 A JP 2021188745A JP 2023075689 A JP2023075689 A JP 2023075689A
Authority
JP
Japan
Prior art keywords
less
target material
powder
knn
sps
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2021188745A
Other languages
Japanese (ja)
Inventor
邦彦 中田
Kunihiko Nakada
宏司 西岡
Koji Nishioka
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Chemical Co Ltd
Original Assignee
Sumitomo Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Chemical Co Ltd filed Critical Sumitomo Chemical Co Ltd
Priority to JP2021188745A priority Critical patent/JP2023075689A/en
Priority to PCT/JP2022/041920 priority patent/WO2023090249A1/en
Priority to TW111143355A priority patent/TW202330967A/en
Publication of JP2023075689A publication Critical patent/JP2023075689A/en
Pending legal-status Critical Current

Links

Images

Abstract

To provide a sputtering target material excellent in characteristics.SOLUTION: A sputtering target material is composed of a sintered body of an oxide including potassium, sodium, niobium, and oxygen. A ratio of a total area of cavities in a unit area of a sputter surface is equal to or less than 12.0%, and a mean diameter of cavities existing in the sputter surface is equal to or less than 0.60 μm.SELECTED DRAWING: Figure 1

Description

本開示は、スパッタリングターゲット材およびスパッタリングターゲットに関する。 The present disclosure relates to sputtering target materials and sputtering targets.

圧電薄膜を製膜する際の材料として、カリウム、ナトリウム、ニオブ、及び酸素を含む酸化物の焼結体からなるスパッタリングターゲット材(以下、KNNターゲット材、あるいは、単にターゲット材ともいう)が用いられる場合がある(例えば特許文献1参照)。 As a material for forming a piezoelectric thin film, a sputtering target material (hereinafter also referred to as a KNN target material or simply a target material) made of a sintered body of an oxide containing potassium, sodium, niobium, and oxygen is used. There is a case (for example, see Patent Document 1).

特開2011-146623号公報JP 2011-146623 A

本開示の目的は、KNNターゲット材の特性を向上させることにある。 An object of the present disclosure is to improve the properties of KNN target materials.

本開示の一態様によれば、
カリウム、ナトリウム、ニオブ、及び酸素を含む酸化物の焼結体からなるスパッタリングターゲット材であって、
スパッタ面の単位面積あたりに占める空隙の合計面積の比率が12.0%以下であり、
前記スパッタ面に存在する空隙の平均径が0.60μm以下である
スパッタリングターゲット材が提供される。
According to one aspect of the present disclosure,
A sputtering target material made of a sintered body of an oxide containing potassium, sodium, niobium, and oxygen,
The ratio of the total area of voids per unit area of the sputtering surface is 12.0% or less,
A sputtering target material is provided in which the average diameter of voids present on the sputtering surface is 0.60 μm or less.

本開示の他の態様によれば、
上述の態様に記載のスパッタリングターゲット材と、
前記スパッタリングターゲット材に接合されているバッキングプレートと、
を備えるスパッタリングターゲットが提供される。
According to another aspect of the present disclosure,
a sputtering target material according to any of the above aspects;
a backing plate bonded to the sputtering target material;
A sputtering target is provided comprising:

本開示によれば、KNNターゲット材の特性を向上させることが可能となる。 According to the present disclosure, it is possible to improve the properties of the KNN target material.

図1は、本開示のターゲット材10の一態様を示す図である。FIG. 1 is a diagram illustrating one aspect of a target material 10 of the present disclosure. 図2は、本開示のターゲット材10の製造フローを例示する図である。FIG. 2 is a diagram illustrating the manufacturing flow of the target material 10 of the present disclosure. 図3は、本開示で用いる焼結装置100の概略構成図である。FIG. 3 is a schematic configuration diagram of a sintering apparatus 100 used in the present disclosure.

<本開示の一態様>
以下、本開示の一態様について、主に、図1~図3を参照しつつ説明する。
<One aspect of the present disclosure>
One aspect of the present disclosure will be described below mainly with reference to FIGS. 1 to 3. FIG.

(1)ターゲット材の構成
本態様におけるターゲット材10は、主として、カリウム(K)、ナトリウム(Na)、ニオブ(Nb)、及び酸素(O)を含有する酸化物(アルカリニオブ酸化物)を含む焼結体、すなわち、KNN焼結体によって構成されている。KNN焼結体を主に構成する結晶粒は、ペロブスカイト構造を有している。KNN焼結体は、具体的には、組成式(K1-xNa)NbO(0<x<1)で表され、前記組成式中の係数x[=Na/(K+Na)]は、0<x<1、好ましくは0.4≦x≦0.8である。本態様のターゲット材10を構成するKNN焼結体は、実質的にカリウム、ナトリウム、ニオブ及び酸素からなる酸化物焼結体、もしくは以下に示すドーパント元素をさらに含む酸化物焼結体である。ここで、「実質的」とは、KNN焼結体を構成する全原子の99%以上が、カリウム、ナトリウム、ニオブ、酸素からなること、或いは、KNN焼結体がドーパント元素を含む場合には、カリウム、ナトリウム、ニオブ、酸素及びドーパント元素からなることを意味する。
(1) Structure of target material The target material 10 in this embodiment mainly contains potassium (K), sodium (Na), niobium (Nb), and an oxide (alkali niobium oxide) containing oxygen (O). It is composed of a sintered body, that is, a KNN sintered body. Crystal grains that mainly constitute the KNN sintered body have a perovskite structure. The KNN sintered body is specifically represented by the composition formula (K 1−x Na x )NbO 3 (0<x<1), and the coefficient x [=Na/(K+Na)] in the composition formula is , 0<x<1, preferably 0.4≦x≦0.8. The KNN sintered body constituting the target material 10 of this embodiment is an oxide sintered body substantially composed of potassium, sodium, niobium and oxygen, or an oxide sintered body further containing dopant elements shown below. Here, "substantially" means that 99% or more of all atoms constituting the KNN sintered body are composed of potassium, sodium, niobium, and oxygen, or when the KNN sintered body contains a dopant element , potassium, sodium, niobium, oxygen and dopant elements.

ターゲット材10におけるK、Na、及びNbの組成((K+Na)/Nb)は、0.90以上1.25以下、より好ましくは0.95以上1.20以下、さらに好ましくは、1.00以上1.10以下の関係を満たしている。なお、ここでの(K+Na)/Nbの式中におけるK、Na、Nbは、それぞれ、KNN焼結体に含まれるK原子、Na原子、Nb原子の個数である。なお、ターゲット材10の組成比は、原料の仕込み量からも見積もれるが、公知の手法により測定することもでき、例えば、誘導結合プラズマ発光分光分析装置(ICP-AES、(例えば、セイコーインスツルメンツ(株)製のSPS5000等))等により求めることができる。 The composition of K, Na, and Nb ((K+Na)/Nb) in the target material 10 is 0.90 or more and 1.25 or less, more preferably 0.95 or more and 1.20 or less, and still more preferably 1.00 or more. It satisfies the relationship of 1.10 or less. K, Na, and Nb in the formula (K+Na)/Nb are the numbers of K atoms, Na atoms, and Nb atoms, respectively, contained in the KNN sintered body. The composition ratio of the target material 10 can also be estimated from the charged amount of raw materials, but can also be measured by a known method. It can be obtained by SPS5000 manufactured by Co., Ltd., etc.).

ターゲット材10には、以下に示す群より選択される少なくとも一種の元素(ドーパント)が、例えば、5at%以下の濃度で添加されている場合がある。ドーパントとしては、リチウム(Li)、マグネシウム(Mg)、カルシウム(Ca)、ストロンチウム(Sr)、バリウム(Ba)、ビスマス(Bi)、アンチモン(Sb)、バナジウム(V)、インジウム(In)、タンタル(Ta)、モリブデン(Mo)、タングステン(W)、クロム(Cr)、チタン(Ti)、ジルコニウム(Zr)、ハフニウム(Hf)、スカンジウム(Sc)、イットリウム(Y)、ランタン(La)、セリウム(Ce)、プラセオジム(Pr)、ネオジム(Nd)、サマリウム(Sm)、ユウロピウム(Eu)、ガドリニウム(Gd)、テルビウム(Tb)、ジスプロシウム(Dy)、ホルミウム(Ho)、エルビウム(Er)、ツリウム(Tm)、イッテルビウム(Yb)、ルテチウム(Lu)、銅(Cu)、亜鉛(Zn)、銀(Ag)、マンガン(Mn)、鉄(Fe)、コバルト(Co)、ニッケル(Ni)、アルミニウム(Al)、シリコン(Si)、ゲルマニウム(Ge)、スズ(Sn)、および、ガリウム(Ga)からなる群より選択される少なくとも一種の元素が例示される。上述の元素を複数含有している場合は合計濃度が5at%以下であり、ドーパントの添加量は通常0.1at%以上である。 At least one element (dopant) selected from the group shown below may be added to the target material 10 at a concentration of, for example, 5 at % or less. Dopants include lithium (Li), magnesium (Mg), calcium (Ca), strontium (Sr), barium (Ba), bismuth (Bi), antimony (Sb), vanadium (V), indium (In), tantalum (Ta), molybdenum (Mo), tungsten (W), chromium (Cr), titanium (Ti), zirconium (Zr), hafnium (Hf), scandium (Sc), yttrium (Y), lanthanum (La), cerium (Ce), Praseodymium (Pr), Neodymium (Nd), Samarium (Sm), Europium (Eu), Gadolinium (Gd), Terbium (Tb), Dysprosium (Dy), Holmium (Ho), Erbium (Er), Thulium (Tm), ytterbium (Yb), lutetium (Lu), copper (Cu), zinc (Zn), silver (Ag), manganese (Mn), iron (Fe), cobalt (Co), nickel (Ni), aluminum (Al), silicon (Si), germanium (Ge), tin (Sn), and at least one element selected from the group consisting of gallium (Ga). When a plurality of the above elements are contained, the total concentration is 5 at % or less, and the dopant addition amount is usually 0.1 at % or more.

ターゲット材10は、例えば、円盤状に成型されており、Cu等からなる不図示のバッキングプレート(冷却板)上に、In、Sn及びそれら金属を含む合金等の接合材を介して接合され(貼り付けられ)、スパッタリングターゲットとして利用される。ターゲット材10が有する両主面のうち、冷却板との接合面とは異なる面が、製膜処理を行う際にアルゴン(Ar)等のプラズマに晒される面、すなわち、膜を構成する原子を放出するスパッタ面10sとして用いられる。 The target material 10 is formed, for example, in a disc shape, and is bonded onto a backing plate (cooling plate) (not shown) made of Cu or the like via a bonding material such as In, Sn, or an alloy containing these metals ( attached) and used as a sputtering target. Of the two main surfaces of the target material 10, the surface different from the bonding surface with the cooling plate is the surface exposed to plasma such as argon (Ar) during the film forming process, that is, the atoms constituting the film. It is used as the emitting sputter surface 10s.

ターゲット材10が円盤状の場合、ターゲット材10の主面の直径、好ましくは、スパッタ面10sの直径は特に限定されないが、好ましくは75mm以上、より好ましくは80mm以上、さらに好ましくは90mm以上、さらにより好ましくは100mm以上、特に好ましくは200mm以上である。ターゲット材10の主面の面積、好ましくは、スパッタ面10sの面積は、好ましくは4500mm以上、より好ましくは5000mm以上、さらに好ましくは6000mm以上、さらにより好ましくは7500mm以上、特に好ましくは15000mm以上である。 When the target material 10 is disc-shaped, the diameter of the main surface of the target material 10, preferably the diameter of the sputtering surface 10s is not particularly limited, but is preferably 75 mm or more, more preferably 80 mm or more, still more preferably 90 mm or more, and further preferably 90 mm or more. More preferably 100 mm or more, particularly preferably 200 mm or more. The area of the main surface of the target material 10, preferably the area of the sputtering surface 10s, is preferably 4,500 mm 2 or more, more preferably 5,000 mm 2 or more, still more preferably 6,000 mm 2 or more, still more preferably 7,500 mm 2 or more, and particularly preferably 15000 mm 2 or more.

ターゲット材10は、主面が長方形に構成された板状であってもよく、ターゲット材10の主面の長辺方向の長さ、好ましくは、スパッタ面10sの長辺方向の長さは、好ましくは80mm以上、より好ましくは100mm以上、さらに好ましくは120mm以上、さらにより好ましくは150mm以上、特に好ましくは200mm以上である。ターゲット材10の主面の短辺方向の長さ、好ましくは、スパッタ面10sの短辺方向の長さは、好ましくは50mm以上、より好ましくは80mm以上、さらに好ましくは100mm以上である。ターゲット材10の主面の面積、好ましくは、スパッタ面10sの面積は、好ましくは4500mm以上、より好ましくは5000mm以上、さらに好ましくは6000mm以上、さらにより好ましくは7500mm以上、特に好ましくは15000mm以上である。 The target material 10 may have a plate shape with a rectangular main surface, and the length of the main surface of the target material 10 in the long side direction, preferably the length of the sputtering surface 10s in the long side direction, is It is preferably 80 mm or more, more preferably 100 mm or more, even more preferably 120 mm or more, even more preferably 150 mm or more, and particularly preferably 200 mm or more. The length of the main surface of the target material 10 in the short side direction, preferably the length of the sputtering surface 10s in the short side direction is preferably 50 mm or more, more preferably 80 mm or more, and still more preferably 100 mm or more. The area of the main surface of the target material 10, preferably the area of the sputtering surface 10s, is preferably 4,500 mm 2 or more, more preferably 5,000 mm 2 or more, still more preferably 6,000 mm 2 or more, still more preferably 7,500 mm 2 or more, and particularly preferably 15000 mm 2 or more.

ターゲット材10の厚さは特に限定されないが、好ましくは3.0mm以上、より好ましくは5.0mm以上、さらに好ましくは7.5mm以上であり、好ましくは25mm以下、より好ましくは20mm以下、さらに好ましくは15mm以下である。 The thickness of the target material 10 is not particularly limited, but is preferably 3.0 mm or more, more preferably 5.0 mm or more, still more preferably 7.5 mm or more, preferably 25 mm or less, more preferably 20 mm or less, and even more preferably. is 15 mm or less.

バッキングプレート(冷却板)は、導電性の材料から構成され、金属またはその合金からなり、例えば、Cu、Cu合金、Al、Al合金、Ti、ステンレス鋼(SUS)等が挙げられる。冷却板のサイズは、ターゲット材10を接合、支持でき、スパッタリング装置に取り付けることができれば特に限定されないが、ターゲット材10の接合面とほぼ同等の大きさであることが好ましく、より大きいことが好ましい。 The backing plate (cooling plate) is made of a conductive material, and is made of metal or its alloy, such as Cu, Cu alloy, Al, Al alloy, Ti, stainless steel (SUS), and the like. The size of the cooling plate is not particularly limited as long as it can bond and support the target material 10 and can be attached to the sputtering apparatus. .

詳しくは後述するが、ターゲット材10を製造する際、K,Na,Nbを含む各種の原料粉体を混合し、仮焼、粉砕等を行って、原料粉(以下、KNN原料粉)を調製する。前記KNN原料粉は、粉体の均質性の観点から、好ましくはK、Na、Nbを固溶した状態で含む酸化物である。そして、本態様においては、所定量のKNN原料粉に対して機械的な圧力を加えることで圧粉体としつつ、同時にこの圧粉体に対してパルス通電による加熱を行うことによって焼結させる、いわゆる、放電プラズマ焼結(Spark Plasma Sintering、以下、単にSPSともいう)を実施する。 Although details will be described later, when manufacturing the target material 10, various raw material powders containing K, Na, and Nb are mixed, calcined, pulverized, etc., to prepare raw material powder (hereinafter referred to as KNN raw material powder). do. The KNN raw material powder is preferably an oxide containing K, Na, and Nb in a solid solution from the viewpoint of powder homogeneity. In this embodiment, a predetermined amount of the KNN raw material powder is subjected to mechanical pressure to form a green compact, and at the same time, the green compact is sintered by heating by pulse energization. So-called spark plasma sintering (Spark Plasma Sintering, hereinafter also simply referred to as SPS) is performed.

この焼結処理の際、本態様においては、まず、圧粉体に対して、比較的低い機械的加圧条件下で、加熱温度が450℃以上となるようパルス通電加熱を行って、圧粉体中から残留ガス等を排出させる(以下、この処理を、脱ガス、あるいは、低加圧SPSともいう)。その後、脱ガス後の圧粉体に対して、焼結反応を進行させるのに必要な大きさ以上の比較的高い機械的加圧条件下でパルス通電加熱を行って、圧粉体を焼結させる(以下、この処理を本加圧SPSともいう)。 During this sintering treatment, in this aspect, first, the green compact is subjected to pulse electric heating under relatively low mechanical pressure conditions so that the heating temperature is 450 ° C. or higher, and the green compact is Residual gases and the like are discharged from the body (hereinafter, this treatment is also referred to as degassing or low-pressure SPS). After that, the green compact after degassing is subjected to pulse electric heating under relatively high mechanical pressure conditions that are greater than or equal to the magnitude necessary for the sintering reaction to proceed, thereby sintering the green compact. (hereinafter, this process is also referred to as main pressurization SPS).

本態様におけるターゲット材10は、低加圧SPSを実施してから本加圧SPSを実施するという新規手法を経て焼結されることから、高い相対密度を有するだけではなく、低加圧SPSを実施することなく本加圧SPSを実施することで焼結されるターゲット材や、いわゆるホットプレス法を用いて焼結させるターゲット材においては発現することのない、新規特徴を備えることとなる。具体的には、本態様におけるターゲット材10は、後述する特徴1,2のうちの少なくともいずれかの特徴を備えることとなる。結果、本態様におけるターゲット材10は、機械的強度等に関する特徴3~6のうちの少なくともいずれかの特徴をさらに備えることとなる。本態様におけるターゲット材10の相対密度は、スパッタ面全域にわたり、80%以上、好ましくは85%以上、より好ましくは90%以上、さらに好ましくは95%以上、特に好ましくは98%以上である。なお、ここでいう相対密度(%)とは、(実測密度/KNNの理論密度)×100により算出した値である。なお、KNNの理論密度は、例えば、(K/(Na+K))が0.35のKNNにおいては、4.52g/cmである。 Since the target material 10 in this embodiment is sintered through a new method of performing low-pressure SPS and then performing main-pressure SPS, it not only has a high relative density, but also low-pressure SPS. A target material that is sintered by performing this pressurized SPS without performing it or a target material that is sintered using a so-called hot press method will have new features that do not appear. Specifically, the target material 10 in this aspect has at least one of features 1 and 2 to be described later. As a result, the target material 10 in this aspect further has at least one of features 3 to 6 relating to mechanical strength and the like. The relative density of the target material 10 in this embodiment is 80% or higher, preferably 85% or higher, more preferably 90% or higher, still more preferably 95% or higher, and particularly preferably 98% or higher over the entire sputtering surface. The relative density (%) referred to here is a value calculated by (actual density/theoretical density of KNN)×100. The theoretical density of KNN is, for example, 4.52 g/cm 3 in KNN with (K/(Na+K)) of 0.35.

本態様におけるターゲット材10は、スパッタ面10sに平行な断面にて観察される数平均粒子径が、例えば0.10μm以上20μm以下、好ましくは0.15μm以上10μm以下、さらに好ましくは0.20μm以上5.0μm以下、特に好ましくは0.25μm以上1.5μm以下の結晶粒で構成されている。また、スパッタ面10sに平行な断面にて観察される面積平均粒子径が、例えば0.10μm以上20μm以下、好ましくは0.20μm以上10μm以下、さらに好ましくは0.30μm以上5.0μm以下、特に好ましくは0.45μm以上2.0μm以下の結晶粒で構成されている。ターゲット材10の数平均粒子径及び面積平均粒子径が上記範囲内であると、ターゲット材10の機械的強度を高めやすくなる。本態様におけるターゲット材10の数平均粒子径及び面積平均粒子径は、好ましくは、それぞれ、ターゲット材10のスパッタ面10sの後方散乱電子回折(Electron Back Scattered Diffraction Pattern、EBSD)像を解析すること等により求めることができる。EBSDでの解析によって求められる結晶粒子径は、計測された結晶粒と同じ面積の円の直径で示され、数平均粒子径Nd(μm)は、EBSD測定においてNumber法によって求めた平均粒子径を採用することができる。Number法では、解析対象となった全面積を結晶粒数で除した値が結晶粒の平均面積となり、[測定領域(μm)/結晶の数]で算出された面積を円に仮定した時の直径が平均粒子径となる。解析に株式会社TSLソリューションズ製結晶方位解析ソフトOIMを使用する場合、ターゲット材10の評価する領域に空隙、欠陥等が多くみられるときは、OIMにて定義される信頼性指数(Confidence Index:CI値)が所定値以下の領域を排除し、[(測定領域-CI値が所定以下の領域)/結晶の数]の値から結晶粒子径を算出することで、より高い精度で平均粒子径を算出することができる。一方、面積平均粒子径Nv(μm)は、Area Fraction法で求めた平均粒子径を採用することができ、Area Fraction法では、各結晶粒の面積が全面積に占める割合を各面積値に乗した値の合計値が結晶粒の平均面積となり、算出された面積を円に仮定した時の直径が平均粒子径となる。なお、EBSD解析においては、結晶方位差が一定値以上、例えば15°以上の境界を結晶粒界とみなすことで、数平均粒子径Nd(μm)及び面積平均粒子径Nv(μm)を求めることができる。 The target material 10 in this embodiment has a number average particle diameter observed in a cross section parallel to the sputtering surface 10s of, for example, 0.10 μm or more and 20 μm or less, preferably 0.15 μm or more and 10 μm or less, more preferably 0.20 μm or more. It is composed of crystal grains of 5.0 μm or less, particularly preferably 0.25 μm or more and 1.5 μm or less. Further, the area-average particle diameter observed in a cross section parallel to the sputtering surface 10s is, for example, 0.10 μm or more and 20 μm or less, preferably 0.20 μm or more and 10 μm or less, more preferably 0.30 μm or more and 5.0 μm or less, especially Preferably, it is composed of crystal grains of 0.45 μm or more and 2.0 μm or less. When the number average particle size and area average particle size of the target material 10 are within the above ranges, the mechanical strength of the target material 10 can be easily increased. The number-average particle size and area-average particle size of the target material 10 in this embodiment are preferably obtained by analyzing an Electron Back Scattered Diffraction Pattern (EBSD) image of the sputtering surface 10s of the target material 10, respectively. can be obtained by The crystal grain size determined by EBSD analysis is indicated by the diameter of a circle having the same area as the measured crystal grains, and the number average particle size Nd (μm) is the average particle size determined by the Number method in EBSD measurement. can be adopted. In the Number method, the value obtained by dividing the total area to be analyzed by the number of crystal grains is the average area of the crystal grains. is the average particle size. When using crystal orientation analysis software OIM manufactured by TSL Solutions Co., Ltd. for analysis, when many voids, defects, etc. are seen in the area to be evaluated of the target material 10, the reliability index (Confidence Index: CI value) is less than a predetermined value, and the crystal grain size is calculated from the value of [(measurement area-area where the CI value is less than a predetermined value) / number of crystals], so that the average particle size can be calculated with higher accuracy. can be calculated. On the other hand, as the area average particle diameter Nv (μm), the average particle diameter obtained by the Area Fraction method can be adopted. The total value of the calculated values is the average area of the crystal grains, and the diameter when the calculated area is assumed to be a circle is the average particle diameter. In the EBSD analysis, the number-average grain size Nd (μm) and the area-average grain size Nv (μm) are obtained by regarding the boundary where the crystal orientation difference is a certain value or more, for example, 15° or more, as the grain boundary. can be done.

また、数平均粒子径Nd(μm)及び面積平均粒子径Nv(μm)は、それぞれ、以下の式を用いて算出される値を採用してもよい。以下の式において、dは、観察された結晶粒の粒子径(μm)を、nは、観察された粒子径d(μm)を有する結晶粒の個数を、それぞれ示している。dは、観察された結晶粒の面積と等しい面積を有する真円の直径、すなわち、円相当径(μm)である。 Also, the number average particle size Nd (μm) and the area average particle size Nv (μm) may each adopt values calculated using the following formulas. In the following equations, d i indicates the observed grain size (μm), and ni indicates the number of grains having the observed grain size d i (μm). d i is the diameter of a perfect circle having an area equal to the area of the observed crystal grain, that is, the equivalent circle diameter (μm).

数平均粒子径Nd(μm)=Σ(d×n)/Σn
面積平均粒子径Nv(μm)=Σ(d ×n)/Σ(d ×n
Number average particle size Nd (μm) = Σ (d i ×n i )/Σn i
Area-average particle diameter Nv (μm)=Σ(d i 3 ×n i )/Σ(d i 2 ×n i )

面積平均粒子径Nv(μm)は、粒子面積の大きさに応じて重みづけされた平均値となる。一部の結晶粒が、他の結晶粒に比べて大きく成長した場合、面積平均粒子径Nv(μm)は、数平均粒子径Nd(μm)に比べて大きくなるが、本態様におけるターゲット材10の面積平均粒子径Nv(μm)と数平均粒子径Nd(μm)との差は小さく、前記差(Nv-Nd)が好ましくは1.1μm以下、より好ましくは1.0μm以下、さらに好ましくは0.75μm以下、特に好ましくは0.50μm以下であり、また、(Nv-Nd)/Ndの値が小さく、前記値が好ましくは2.1以下、好ましくは1.5以下、より好ましくは1.0以下、さらに好ましくは0.80以下、さらにより好ましくは0.70以下、特に好ましくは0.60以下、特により好ましくは0.50以下であり、粒子径の均一性に優れている。なお、本態様におけるターゲット材10の数平均粒子径及び面積平均粒子径については、後述する製造工程において、酸素含有雰囲気もしくは大気中での熱処理(以下、酸化処理と称することもある)を省略した場合、および、酸化処理を実施した場合、のいずれにおいても同等の値を示す。 The area-average particle diameter Nv (μm) is an average value weighted according to the size of the particle area. When some crystal grains grow larger than other crystal grains, the area average particle size Nv (μm) becomes larger than the number average particle size Nd (μm), but the target material 10 in this aspect The difference between the area average particle size Nv (μm) and the number average particle size Nd (μm) is small, and the difference (Nv−Nd) is preferably 1.1 μm or less, more preferably 1.0 μm or less, and even more preferably It is 0.75 μm or less, particularly preferably 0.50 μm or less, and the value of (Nv−Nd)/Nd is small, and the value is preferably 2.1 or less, preferably 1.5 or less, more preferably 1 0.0 or less, more preferably 0.80 or less, still more preferably 0.70 or less, particularly preferably 0.60 or less, and even more preferably 0.50 or less, and the uniformity of the particle size is excellent. Regarding the number average particle size and area average particle size of the target material 10 in this embodiment, heat treatment in an oxygen-containing atmosphere or air (hereinafter sometimes referred to as oxidation treatment) is omitted in the manufacturing process described later. Equivalent values are obtained both in the case where oxidation treatment is performed and in the case where oxidation treatment is performed.

以下に、本態様のターゲット材10が備え得る種々の新規特徴について説明する。 Various new features that the target material 10 of this embodiment can have will be described below.

(特徴1)
ターゲット材10が備え得る特徴の一つとして、
スパッタ面10sにおける観察面積Sに対する、観察視野内に存在する空隙の合計面積Svの比率であるSv/S×100[%]、すなわち、スパッタ面10sの単位面積あたりに占めるSvの比率(以下、空隙率ともいう)が12.0%以下であり、
かつ、スパッタ面10sに存在する空隙の平均径が0.60μm以下である、
ことが挙げられる。
(Feature 1)
As one of the features that the target material 10 can have,
Sv / S × 100 [%], which is the ratio of the total area Sv of the voids present in the observation field to the observation area S on the sputtering surface 10 s, that is, the ratio of Sv per unit area of the sputtering surface 10 s (hereinafter referred to as (also referred to as porosity) is 12.0% or less,
and the average diameter of the voids present on the sputtering surface 10s is 0.60 μm or less,
Things are mentioned.

この特徴は、後述する製造工程において、酸化処理を実施した場合に発現し得るものである。 This feature can appear when an oxidation treatment is performed in the manufacturing process described below.

空隙とは、ターゲット材10の内部に発生したボイド等に起因してスパッタ面10s内に発現するものであり、スパッタ面10s内において、凹部空間の開口として観察される。スパッタ面10s内に存在する空隙の合計面積及び空隙の平均径は、スパッタ面10sの光学顕微鏡像や走査型電子顕微鏡(以下、SEMと称することがある)像を画像解析ソフトにより解析すること等により算出することができる。空隙の合計面積とは、前記開口の平面積(断面積)の合計値のことを意味しており、前記画像解析によって空隙部の合計面積を算出することで求められ、測定面積に対する空隙部の合計面積の割合を算出することで空隙の合計面積の比率を求めることができる。空隙の平均径とは、スパッタ面10s内における任意の観察視野内にて観察される複数の空隙の円相当径(μm)の平均値のことであり、この値は、スパッタ面10sに存在する空隙の平均径と実質的に同等となる。空隙の平均径は、例えば、画像解析によって各空隙の面積を算出し、全ての該面積を足し合わせた総面積に対する、累積面積が50%となる時の面積から算出した円相当径(50%面積平均径)とすることができる。 The voids appear in the sputtering surface 10s due to voids or the like generated inside the target material 10, and are observed as openings of recessed spaces in the sputtering surface 10s. The total area of the voids present in the sputtering surface 10s and the average diameter of the voids can be determined by analyzing an optical microscope image or a scanning electron microscope (hereinafter sometimes referred to as SEM) image of the sputtering surface 10s using image analysis software. It can be calculated by The total area of the voids means the total value of the flat areas (cross-sectional areas) of the openings, and is obtained by calculating the total area of the voids by the image analysis. By calculating the ratio of the total area, the ratio of the total area of the voids can be obtained. The average diameter of voids is the average value of circle-equivalent diameters (μm) of a plurality of voids observed in an arbitrary observation field within the sputtering surface 10s, and this value exists on the sputtering surface 10s. It becomes substantially the same as the average diameter of the voids. The average diameter of the voids is, for example, the area of each void calculated by image analysis, and the equivalent circle diameter (50% area average diameter).

本態様におけるターゲット材10では、その製造過程において、低加圧SPSを実施してから本加圧SPSを実施するという新規手法を採用することにより、低加圧SPSを実施することなく本加圧SPSを実施して焼結させる場合や、ホットプレス法を用いて焼結させる場合に比べ、スパッタ面10s内における空隙の発現を抑制し、また、空隙を微小化させることが可能となり、上述の特徴が得られるようになる。なお、低加圧SPSを実施せずに本加圧SPSを実施して焼結させる場合や、ホットプレス法を用いて焼結させる場合には、空隙率あるいは空隙の平均径のうち少なくともいずれかについての上述の特徴は得られない。 In the target material 10 in this aspect, in the manufacturing process, by adopting a new method of performing the main pressure SPS after performing the low pressure SPS, the main pressure is not performed without performing the low pressure SPS. Compared to sintering by performing SPS or sintering by hot pressing, it is possible to suppress the appearance of voids in the sputtering surface 10 s and to make the voids minute, as described above. characteristics can be obtained. In addition, when sintering is performed by performing main pressure SPS without performing low pressure SPS, or when sintering by using a hot press method, at least one of the porosity and the average diameter of the pores The above-mentioned features for are not obtained.

(特徴2)
ターゲット材10が備え得る特徴の一つとして、
スパッタ面10sに存在する空隙の最大径が1.0μm以下である、
ことが挙げられる。
(Feature 2)
As one of the features that the target material 10 can have,
The maximum diameter of the voids present on the sputtering surface 10s is 1.0 μm or less,
Things are mentioned.

この特徴は、後述する製造工程において、酸化処理を実施した場合に発現し得るものである。 This feature can appear when an oxidation treatment is performed in the manufacturing process described below.

空隙の最大径とは、スパッタ面10s内における任意の観察視野内にて観察される複数の空隙のうちの最大のサイズを有する空隙の円相当径(μm)のことであり、この値は、スパッタ面10sに存在する空隙の最大径と実質的に同等となる。本態様におけるターゲット材10では、その製造過程において、低加圧SPSを実施してから本加圧SPSを実施するという新規手法を採用することにより、低加圧SPSを実施することなく本加圧SPSを実施して焼結させる場合や、ホットプレス法を用いて焼結させる場合に比べ、空隙を微小化させることができ、上述の特徴が得られるようになる。なお、低加圧SPSを実施せずに本加圧SPSを実施して焼結させる場合や、ホットプレス法を用いて焼結させる場合には、上述の特徴は得られない。 The maximum diameter of the void is the equivalent circle diameter (μm) of the void having the largest size among the plurality of voids observed in an arbitrary observation field within the sputtering surface 10s, and this value is It is substantially the same as the maximum diameter of the voids present on the sputtering surface 10s. In the target material 10 in this aspect, in the manufacturing process, by adopting a new method of performing the main pressure SPS after performing the low pressure SPS, the main pressure is not performed without performing the low pressure SPS. Compared to sintering by SPS or sintering by hot pressing, the voids can be made smaller, and the above characteristics can be obtained. In addition, when sintering is performed by performing main pressure SPS without performing low pressure SPS, or when sintering is performed using a hot press method, the above characteristics cannot be obtained.

(特徴3)
ターゲット材10が備え得る特徴の一つとして、
25℃における体積抵抗率が6.0×1011Ω・cm未満であり、
ビッカース硬度が460以上であり、抗折強度が90MPa以上である、
ことが挙げられる。
(Feature 3)
As one of the features that the target material 10 can have,
A volume resistivity at 25° C. of less than 6.0×10 11 Ω·cm,
Vickers hardness is 460 or more, bending strength is 90 MPa or more,
Things are mentioned.

この特徴は、後述する製造工程において、酸化処理を省略した場合に発現し得るものである。なお、ターゲット材10(もしくはKNN焼結体)のビッカース硬度(Hv)は、JIS R 1610:2003に準拠し、ビッカース硬度計を用いて測定でき、例えば実施例に記載の方法により測定できる。また、ターゲット材10(もしくはKNN焼結体)の抗折強度は、JIS R 1601:2008に準拠し、3点曲げ試験により求めることができ、例えば実施例に記載の方法により測定することができる。 This characteristic can be expressed when the oxidation treatment is omitted in the manufacturing process described later. The Vickers hardness (Hv) of the target material 10 (or KNN sintered body) can be measured using a Vickers hardness tester according to JIS R 1610:2003, for example, by the method described in Examples. In addition, the bending strength of the target material 10 (or KNN sintered body) can be obtained by a three-point bending test in accordance with JIS R 1601: 2008, and can be measured, for example, by the method described in Examples. .

本態様におけるターゲット材10では、その製造過程において、低加圧SPSを実施してから本加圧SPSを実施するという新規手法を採用することにより、上述の特徴1,2のうちの少なくともいずれかの特徴が得られるようになる。結果、ターゲット材10のビッカース硬度を高めつつ、抗折強度をも高めることが可能となる。なお、低加圧SPSを実施せずに本加圧SPSを実施して焼結させる場合や、ホットプレス法を用いて焼結させる場合には、上述の特徴1,2が発現しなくなり、酸化処理を省略した場合(25℃における体積抵抗率が6.0×1011Ω・cm未満である場合)において、ビッカース硬度あるいは抗折強度のうち少なくともいずれかについての上述の特徴は得られない。 In the target material 10 in this aspect, in the manufacturing process, by adopting a novel method of performing the low pressure SPS and then performing the main pressure SPS, at least one of the above features 1 and 2 characteristics can be obtained. As a result, while increasing the Vickers hardness of the target material 10, it is also possible to increase the transverse strength. In addition, when sintering is performed by performing main pressure SPS without performing low pressure SPS, or when sintering is performed using a hot press method, the above-mentioned features 1 and 2 are not expressed, and oxidation When the treatment is omitted (when the volume resistivity at 25° C. is less than 6.0×10 11 Ω·cm), the above characteristics of at least one of Vickers hardness and bending strength cannot be obtained.

(特徴4)
ターゲット材10が備え得る特徴の一つとして、
25℃における体積抵抗率が6.0×1011Ω・cm以上であり、
ビッカース硬度が250以上であり、抗折強度が90MPa以上である、
ことが挙げられる。
(Feature 4)
As one of the features that the target material 10 can have,
A volume resistivity at 25° C. of 6.0×10 11 Ω·cm or more,
Vickers hardness is 250 or more, bending strength is 90 MPa or more,
Things are mentioned.

この特徴は、後述する製造工程において、酸化処理を実施した場合に発現し得るものである。 This feature can appear when an oxidation treatment is performed in the manufacturing process described below.

本態様におけるターゲット材10では、その製造過程において、低加圧SPSを実施してから本加圧SPSを実施するという新規手法を採用することにより、上述の特徴1,2のうちの少なくともいずれかの特徴が得られるようになる。結果、ターゲット材10のビッカース硬度を高めつつ、抗折強度をも高めることが可能となる。なお、低加圧SPSを実施せずに本加圧SPSを実施して焼結させる場合や、ホットプレス法を用いて焼結させる場合には、上述の特徴1,2が発現しなくなり、酸化処理を実施した場合(25℃における体積抵抗率が6.0×1011Ω・cm以上である場合)において、ビッカース硬度あるいは抗折強度のうち少なくともいずれかについての上述の特徴は得られない。 In the target material 10 in this aspect, in the manufacturing process, by adopting a novel method of performing the low pressure SPS and then performing the main pressure SPS, at least one of the above features 1 and 2 characteristics can be obtained. As a result, while increasing the Vickers hardness of the target material 10, it is also possible to increase the transverse strength. In addition, when sintering is performed by performing main pressure SPS without performing low pressure SPS, or when sintering is performed using a hot press method, the above-mentioned features 1 and 2 are not expressed, and oxidation When the treatment is performed (when the volume resistivity at 25° C. is 6.0×10 11 Ω·cm or more), the above-described characteristics of at least one of Vickers hardness and bending strength cannot be obtained.

(特徴5)
ターゲット材10が備え得る特徴の一つとして、
大気中、900℃、5時間の条件下で熱処理を行った後のビッカース硬度が、熱処理を行う前のビッカース硬度に対して、50%を超える大きさに維持される、
ことが挙げられる。
(Feature 5)
As one of the features that the target material 10 can have,
The Vickers hardness after heat treatment at 900 ° C. for 5 hours in the air is maintained at a value exceeding 50% of the Vickers hardness before heat treatment.
Things are mentioned.

この特徴は、後述する製造工程において、酸化処理を省略した場合、および、酸化処理を実施した場合、のいずれにおいても発現し得るものである。 This feature can be expressed both when the oxidation treatment is omitted and when the oxidation treatment is performed in the manufacturing process described later.

本態様におけるターゲット材10では、その製造過程において、低加圧SPSを実施してから本加圧SPSを実施するという新規手法を採用することにより、上述の特徴1,2のうちの少なくともいずれかの特徴が得られるようになり、結果、熱処理前後のビッカース硬度に関して、上述の特徴が得られるようになる。なお、低加圧SPSを実施せずに本加圧SPSを実施して焼結させる場合や、ホットプレス法を用いて焼結させる場合には、上述の特徴1,2が発現しなくなり、上述の特徴は得られない。 In the target material 10 in this aspect, in the manufacturing process, by adopting a novel method of performing the low pressure SPS and then performing the main pressure SPS, at least one of the above features 1 and 2 As a result, the above-mentioned characteristics can be obtained with respect to the Vickers hardness before and after the heat treatment. In addition, when sintering is performed by performing main pressure SPS without performing low pressure SPS, or when sintering by using a hot press method, the above-mentioned features 1 and 2 are not expressed, and the above-mentioned characteristics are not obtained.

(特徴6)
ターゲット材10が備え得る特徴の一つとして、
大気中、900℃、5時間の条件下で熱処理を行った後の相対密度が、熱処理を行う前の相対密度に対して、95%を超える大きさに維持される、
ことが挙げられる。
(Feature 6)
As one of the features that the target material 10 can have,
The relative density after heat treatment under the conditions of 900 ° C. for 5 hours in the air is maintained at a magnitude exceeding 95% with respect to the relative density before heat treatment.
Things are mentioned.

この特徴は、後述する製造工程において、酸化処理を省略した場合、および、酸化処理を実施した場合、のいずれにおいても発現し得るものである。 This feature can be expressed both when the oxidation treatment is omitted and when the oxidation treatment is performed in the manufacturing process described later.

本態様におけるターゲット材10では、その製造過程において、低加圧SPSを実施してから本加圧SPSを実施するという新規手法を採用することにより、上述の特徴1,2のうちの少なくともいずれかの特徴が得られるようになり、結果、熱処理前後の相対密度に関して、上述の特徴が得られるようになる。なお、低加圧SPSを実施せずに本加圧SPSを実施して焼結させる場合や、ホットプレス法を用いて焼結させる場合には、上述の特徴1,2が発現しなくなり、上述の特徴は得られない。 In the target material 10 in this aspect, in the manufacturing process, by adopting a novel method of performing the low pressure SPS and then performing the main pressure SPS, at least one of the above features 1 and 2 As a result, the above-described characteristics can be obtained with respect to the relative density before and after the heat treatment. In addition, when sintering is performed by performing main pressure SPS without performing low pressure SPS, or when sintering by using a hot press method, the above-mentioned features 1 and 2 are not expressed, and the above-mentioned characteristics are not obtained.

(2)ターゲット材の製造方法
本態様におけるターゲット材10の製造方法の好適な実施形態について、図2、図3を参照しながら詳細に説明する。
(2) Method for Manufacturing Target Material A preferred embodiment of the method for manufacturing the target material 10 in this aspect will be described in detail with reference to FIGS. 2 and 3. FIG.

(出発原料粉準備)
まず、出発原料粉として、Kを含む粉、Naを含む粉、Nbを含む粉、例えば、炭酸カリウム(KCO)粉、炭酸ナトリウム(NaCO)粉、五酸化ニオブ(Nb)粉を用意する。
(Preparation of starting raw material powder)
First, starting raw material powders include K-containing powder, Na-containing powder, and Nb-containing powder, such as potassium carbonate (K 2 CO 3 ) powder, sodium carbonate (Na 2 CO 3 ) powder, and niobium pentoxide (Nb 2 ) . O 5 ) Prepare flour.

なお、ここでいう「Kの化合物からなる粉体」は、Kの化合物を主成分とする粉体を意味し、Kの化合物の粉体のみで構成される場合の他、主成分であるKの化合物の粉体に加えて他の化合物の粉体が含まれる場合もある。同様に、「Naの化合物からなる粉体」は、Naの化合物を主成分とする粉体を意味し、Naの化合物の粉体のみで構成される場合の他、主成分であるNaの化合物の粉体に加えて他の化合物の粉体が含まれる場合もある。「Nbの化合物からなる粉体」は、Nbの化合物を主成分とする粉体を意味し、Nbの化合物の粉体のみで構成される場合の他、主成分であるNbの化合物の粉体に加えて他の化合物の粉体が含まれる場合もある。Kの化合物とは、Kの酸化物、Kの複合酸化物、及び加熱することにより酸化物となるKの化合物からなる群より選択される少なくとも一種であり、例えば、上記に示す炭酸塩の他、シュウ酸塩等が挙げられる。Naの化合物とは、Naの酸化物、Naの複合酸化物、及び加熱することにより酸化物となるNaの化合物からなる群より選択される少なくとも一種であり、例えば上記に示す炭酸塩の他、シュウ酸塩等が挙げられる。Nbの化合物とは、Nbの酸化物、Nbの複合酸化物、又は加熱することにより酸化物となるNbの化合物からなる群より選択される少なくとも一種であり、例えば上記に示す五酸化ニオブ等が挙げられる。 In addition, the "powder composed of the compound of K" here means a powder composed mainly of the compound of K, and in addition to the case where it is composed only of the powder of the compound of K, the powder composed of K as the main component In addition to the powder of the compound, powders of other compounds may also be included. Similarly, "powder composed of a Na compound" means a powder composed mainly of a Na compound, and in addition to the case where it is composed only of a Na compound powder, the Na compound as a main component powder of other compounds may be included in addition to the powder of "Powder composed of Nb compound" means powder composed mainly of Nb compound, and in addition to the case where it is composed only of Nb compound powder, powder of Nb compound as the main component In addition to the powders of other compounds may also be included. The compound of K is at least one selected from the group consisting of an oxide of K, a composite oxide of K, and a compound of K that becomes an oxide by heating. , oxalates, and the like. The compound of Na is at least one selected from the group consisting of an oxide of Na, a composite oxide of Na, and a compound of Na that becomes an oxide by heating. oxalate and the like. The compound of Nb is at least one selected from the group consisting of oxides of Nb, composite oxides of Nb, and compounds of Nb that become oxides upon heating. mentioned.

また必要に応じ、出発原料粉として、Li、Mg、Ca、Sr、Ba、Bi、Sb、V、In、Ta、Mo、W、Cr、Ti、Zr、Hf、Sc、Y、La、Ce、Pr、Nd、Sm、Eu、Gd、Tb、Dy、Ho、Er、Tm、Yb、Lu、Cu、Zn、Ag、Mn、Fe、Co、Ni、Al、Si、Ge、Sn、Gaからなる群より選択される少なくとも一種のドーパント元素を含む粉末、例えば、該元素単体の粉末、該元素を含む酸化物粉末、該元素含む複合酸化物粉末、及び加熱することにより酸化物となる該元素を含む化合物(例えば、炭酸塩、シュウ酸塩)の粉末を用意する。 In addition, if necessary, as starting raw material powders, Li, Mg, Ca, Sr, Ba, Bi, Sb, V, In, Ta, Mo, W, Cr, Ti, Zr, Hf, Sc, Y, La, Ce, the group consisting of Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu, Cu, Zn, Ag, Mn, Fe, Co, Ni, Al, Si, Ge, Sn, Ga A powder containing at least one dopant element selected from the above, for example, a powder of the element alone, an oxide powder containing the element, a composite oxide powder containing the element, and the element that becomes an oxide by heating. A powder of a compound (eg, carbonate, oxalate) is prepared.

なお、これら出発原料粉の平均粒子径は、例えば、メジアン径D50が1mm未満であることが好ましく、必要に応じ、秤量前に出発原料粉を予め粗粉砕等しておくことが好ましい。 As for the average particle size of these starting raw material powders, for example, the median diameter D50 is preferably less than 1 mm, and if necessary, the starting raw material powders are preferably coarsely pulverized in advance before weighing.

(秤量、混合)
続いて、出発原料粉のそれぞれを秤量し、最終的に得られるターゲット材10の組成が所望の組成となるように、出発原料粉の混合比率を調整する。秤量は、大気中で行ってもよいが、不活性ガス雰囲気中、真空中及び乾燥空気雰囲気中等、湿度が小さい雰囲気中で行うことが好ましく、また、各出発原料粉を充分に乾燥させてから行うことが好ましい。続いて、秤量後の出発原料粉を、ヘンシェルミキサー、ブレンダー、リボンミキサー、スーパーミキサー、ナウターミキサー、インテンシブミキサー、自動乳鉢等の混合器を用いて乾式で混合する。
(weighing, mixing)
Subsequently, each of the starting raw material powders is weighed, and the mixing ratio of the starting raw material powders is adjusted so that the finally obtained target material 10 has a desired composition. Weighing may be carried out in the air, but it is preferable to carry out the weighing in an atmosphere with low humidity such as in an inert gas atmosphere, in a vacuum or in a dry air atmosphere. preferably. Subsequently, the weighed starting material powders are dry-mixed using a mixer such as a Henschel mixer, a blender, a ribbon mixer, a super mixer, a Nauta mixer, an intensive mixer and an automatic mortar.

(一次焼成、粗粉砕)
得られた混合粉を、電気炉等を用いて、大気下、酸素ガス雰囲気下等の酸化性雰囲気下にて、一次焼成して、K,Na,Nbを含む焼成物を得る。好ましくは、一次焼成において、原料の混合粉を固相反応させることで、K,Na,Nbが固溶状態となった焼成物を得る。その後、ボールミル、ビーズミル、振動ミル、アトライタ、ジェットミル、アトマイザー、カッターミル等の粉砕手段を用い、得られた焼成物を粗粉砕することで、焼成粉(以下、KNN焼成粉)を得る。一次焼成にて、K,Na,Nbを固溶状態とした場合には、K,Na,Nbが固溶状態であるKNN焼成粉(以下、KNN固溶粉)を得ることができる。
(primary firing, coarse pulverization)
The obtained mixed powder is primarily fired using an electric furnace or the like in an oxidizing atmosphere such as air or an oxygen gas atmosphere to obtain a fired product containing K, Na, and Nb. Preferably, in the primary sintering, a sintered product in which K, Na, and Nb are in a solid solution state is obtained by causing a solid phase reaction of the mixed powder of raw materials. After that, the fired product obtained is coarsely ground using a grinding means such as a ball mill, a bead mill, a vibration mill, an attritor, a jet mill, an atomizer, or a cutter mill to obtain a fired powder (hereinafter referred to as KNN fired powder). When K, Na, and Nb are in a solid solution state in the primary firing, a KNN fired powder in which K, Na, and Nb are in a solid solution state (hereinafter referred to as KNN solid solution powder) can be obtained.

一次焼成を行う際の加熱温度は、好ましくは500℃以上、より好ましくは550℃以上、さらに好ましくは600℃以上であり、好ましくは750℃以下、より好ましくは700℃以下である。加熱温度が上記下限以上であると、K,Na,Nbを固溶状態であるKNN固溶粉を得やすく、また均質性の高い焼成粉を得やすい。加熱温度が上記上限以下であると、KNN焼成粉及びKNN固溶粉のBET比表面積を大きくしやすく、焼結性の高い焼成粉を得やすい。 The heating temperature for primary firing is preferably 500° C. or higher, more preferably 550° C. or higher, still more preferably 600° C. or higher, and preferably 750° C. or lower, more preferably 700° C. or lower. When the heating temperature is at least the above lower limit, it is easy to obtain a KNN solid-solution powder in which K, Na, and Nb are in a solid solution state, and it is easy to obtain a highly homogeneous fired powder. When the heating temperature is equal to or lower than the above upper limit, the BET specific surface area of the KNN sintered powder and the KNN solid-solution powder can be easily increased, and a highly sinterable sintered powder can be easily obtained.

一次焼成の時間は、特に限定されないが、好ましくは3時間以上20時間以下、より好ましくは4時間以上15時間以下、さらに好ましくは5時間以上10時間以下である。 The primary firing time is not particularly limited, but is preferably 3 hours or more and 20 hours or less, more preferably 4 hours or more and 15 hours or less, and still more preferably 5 hours or more and 10 hours or less.

(仮焼、粗粉砕)
得られたKNN焼成粉(もしくはKNN固溶粉)を、さらに大気下、酸素ガス雰囲気下等の酸化性雰囲気下にて仮焼し、その後、ボールミル、ビーズミル、振動ミル、アトライタ、ジェットミル、アトマイザー等の粉砕手段で粗粉砕することでKNN仮焼粉を得る。該仮焼を行うことにより、KNN焼成粉から、水分、炭素成分、塩素等の不純物を除去でき、純度の高いKNN仮焼粉を得ることができる。
(calcination, coarse grinding)
The obtained KNN sintered powder (or KNN solid solution powder) is further calcined in an oxidizing atmosphere such as an atmosphere or an oxygen gas atmosphere, and then subjected to a ball mill, bead mill, vibration mill, attritor, jet mill, or atomizer. KNN calcined powder is obtained by coarsely pulverizing by a pulverizing means such as. By performing the calcination, impurities such as moisture, carbon components, and chlorine can be removed from the KNN calcined powder, and a KNN calcined powder with high purity can be obtained.

仮焼を行う際の加熱温度は、好ましくは500℃以上、より好ましくは600℃以上、さらに好ましくは650℃以上、特に好ましくは700℃以上であり、好ましくは1150℃以下、より好ましくは1100℃以下、さらに好ましくは1000℃以下である。加熱温度が上記下限以上であると、純度の高いKNN仮焼粉を得やすく、加熱温度が上記上限以下であると、BET比表面積が大きく、焼結性の高いKNN原料粉を得やすくなる。 The heating temperature for calcination is preferably 500°C or higher, more preferably 600°C or higher, still more preferably 650°C or higher, particularly preferably 700°C or higher, and preferably 1150°C or lower, more preferably 1100°C. 1000° C. or less, more preferably 1000° C. or less. When the heating temperature is at least the above lower limit, it is easy to obtain a KNN calcined powder with high purity.

仮焼時の加熱時間は、特に限定されないが、好ましくは3時間以上50時間以下、より好ましくは3.5時間以上30時間以下、さらに好ましくは4時間以上20時間以下、特に好ましくは5時間以上12時間以下である。 The heating time during calcination is not particularly limited, but is preferably 3 hours or more and 50 hours or less, more preferably 3.5 hours or more and 30 hours or less, still more preferably 4 hours or more and 20 hours or less, and particularly preferably 5 hours or more. 12 hours or less.

該仮焼の工程においては、不純物を除去しやすい観点から、異なる加熱温度において、多段階の熱処理を行ってもよい。 In the calcining step, multistage heat treatment may be performed at different heating temperatures from the viewpoint of facilitating removal of impurities.

(微粉砕)
粗粉砕により得られたKNN仮焼粉を、ボールミル、ビーズミル、振動ミル、アトライタ、アトマイザー及びジェットミル等の粉砕手段、好ましくはジェットミルを用いてさらに粉砕し、必要に応じて粉砕後に乾燥を行うことにより、所定の仕様(比表面積、不純物濃度等)を有するKNN原料粉を得る。
(fine pulverization)
The KNN calcined powder obtained by coarse pulverization is further pulverized using a pulverizing means such as a ball mill, bead mill, vibration mill, attritor, atomizer, and jet mill, preferably a jet mill, and dried after pulverization as necessary. Thus, a KNN raw material powder having predetermined specifications (specific surface area, impurity concentration, etc.) is obtained.

例えば、ジェットミルで仮焼粉の粉砕を行う場合、処理速度は、1.0kg/h以上8.0kg/h以下、好ましくは1.2kg/h以上6.0kg/h以下、より好ましくは1.5kg/h以上3.0kg/h以下である。また、導入圧は、0.1MPa以上2.0MPa以下、好ましくは0.5MPa以上1.8MPa以下、より好ましくは1.0MPa以上1.7MPa以下であり、粉砕圧は、0.1MPa以上2.0MPa以下、好ましくは0.5MPa以上1.8MPa以下、より好ましくは1.0MPa以上1.7MPa以下である。上記条件で仮焼粉の粉砕を行うと、BET比表面積が大きく、焼結性の高い原料粉を得やすくなる。 For example, when pulverizing the calcined powder with a jet mill, the processing speed is 1.0 kg/h or more and 8.0 kg/h or less, preferably 1.2 kg/h or more and 6.0 kg/h or less, more preferably 1 .5 kg/h or more and 3.0 kg/h or less. The introduction pressure is 0.1 MPa or more and 2.0 MPa or less, preferably 0.5 MPa or more and 1.8 MPa or less, more preferably 1.0 MPa or more and 1.7 MPa or less, and the pulverization pressure is 0.1 MPa or more and 2.0 MPa or more. 0 MPa or less, preferably 0.5 MPa or more and 1.8 MPa or less, more preferably 1.0 MPa or more and 1.7 MPa or less. When the calcined powder is pulverized under the above conditions, it becomes easier to obtain a raw material powder having a large BET specific surface area and high sinterability.

以上の工程を経ることで、本態様のSPS焼結に用いるKNN原料粉が得られる。KNN原料粉のBET比表面積は、好ましくは1.0m/g以上、より好ましくは2.0m/g以上、さらに好ましくは2.5m/g以上、特に好ましくは3.0m/g以上であり、好ましくは10m/g以下、より好ましくは8.0m/g以下、さらに好ましくは7.0m/g以下、特に好ましくは6.0m/g以下である。KNN原料粉のBET比表面積が上記下限値以上であると、焼結性が高まり、高密度なKNN焼結体が得られやすい。また、KNN原料粉のBET比表面積が上記上限値以下であると、製造後の原料粉へ吸着するガス成分(例えば、大気中に含まれるガス成分、二酸化炭素、一酸化炭素、メタン等)や水分を減らすことができ、不純物や空隙の少ないKNN焼結体が得られやすい。KNN原料粉のBET比表面積は、ガス吸着装置により測定でき、実施例に記載の方法により求められる。得られたKNN原料粉は、必要に応じ、例えば、180~200℃の条件下で加熱して乾燥させて用いられる。 Through the above steps, the KNN raw material powder used for the SPS sintering of this embodiment is obtained. The BET specific surface area of the KNN raw material powder is preferably 1.0 m 2 /g or more, more preferably 2.0 m 2 /g or more, still more preferably 2.5 m 2 /g or more, and particularly preferably 3.0 m 2 /g. It is preferably 10 m 2 /g or less, more preferably 8.0 m 2 /g or less, even more preferably 7.0 m 2 /g or less, and particularly preferably 6.0 m 2 /g or less. When the BET specific surface area of the KNN raw material powder is at least the above lower limit, the sinterability is enhanced, and a high-density KNN sintered body can be easily obtained. In addition, when the BET specific surface area of the KNN raw material powder is equal to or less than the above upper limit, gas components adsorbed to the raw material powder after production (for example, gas components contained in the atmosphere, carbon dioxide, carbon monoxide, methane, etc.) The water content can be reduced, and a KNN sintered body with few impurities and voids can be easily obtained. The BET specific surface area of the KNN raw material powder can be measured with a gas adsorption apparatus and obtained by the method described in the Examples. The obtained KNN raw material powder is dried by heating at, for example, 180 to 200° C., if necessary.

また、該KNN原料粉に含まれる炭素の濃度は、好ましくは250ppm以下、好ましくは200ppm以下である。 Also, the concentration of carbon contained in the KNN raw material powder is preferably 250 ppm or less, preferably 200 ppm or less.

なお、上述した、一次焼成、粗粉砕、仮焼、粗粉砕、ジェットミル粉砕といった処理は、必要に応じて、一部あるいは全てを繰り返し実施することができ、また、いずれかの処理を省略することができる。また、これらの処理の完了後、あるいは、各処理の合間に、篩分け処理等を追加することができる。混合や粉砕の手段は、上述の例示に限定されることなく、他の粉砕手段から広く採用することができ、また、その際の条件も、上述の仕様を得る目的に応じて広く選択することができる。 It should be noted that some or all of the above-described treatments such as primary firing, coarse pulverization, calcining, coarse pulverization, and jet mill pulverization can be repeated as necessary, and any of the treatments can be omitted. be able to. In addition, a sieving process or the like can be added after these processes are completed or between each process. Mixing and pulverization means are not limited to the above examples, and can be widely adopted from other pulverization means, and the conditions at that time can also be widely selected according to the purpose of obtaining the above specifications. can be done.

次いで、低加圧SPS、本加圧SPS工程の好適な一実施形態について、図3を参照しながら説明する。図3は、これらの工程で用いる焼結装置100の概略構成図である。焼結装置100は、チャンバ101、ダイス102、パンチ103,104、加圧装置105,106、真空ポンプ110、圧力計111、パルス通電装置120等を備えている。 Next, a preferred embodiment of the low-pressure SPS and main-pressure SPS steps will be described with reference to FIG. FIG. 3 is a schematic configuration diagram of a sintering apparatus 100 used in these steps. The sintering apparatus 100 includes a chamber 101, a die 102, punches 103, 104, pressurizing devices 105, 106, a vacuum pump 110, a pressure gauge 111, a pulse applying device 120, and the like.

(低加圧SPS)
まず、上述の仕様を有する所定量のKNN原料粉を、筒状のダイス(焼結用型)102内に充填する。次いで、KNN原料粉が充填されたダイス102を、チャンバ101内に収容し、上下一対のパンチ103,104の間に配置する。そして、真空ポンプ110を用いてチャンバ101内を真空排気しながら、チャンバ101内の圧力を圧力計111によってモニタする。ダイス102及びパンチ103、104は導電性の材料であればよいが、好ましくはグラファイト等のカーボン材である。
(low pressure SPS)
First, a predetermined amount of KNN raw material powder having the above specifications is filled in a cylindrical die (sintering mold) 102 . Next, the die 102 filled with the KNN raw material powder is accommodated in the chamber 101 and arranged between the pair of upper and lower punches 103 and 104 . Then, the pressure inside the chamber 101 is monitored by the pressure gauge 111 while the inside of the chamber 101 is being evacuated using the vacuum pump 110 . The die 102 and the punches 103 and 104 may be made of a conductive material, preferably a carbon material such as graphite.

チャンバ101内が所望の圧力となったら、加圧装置105,106を作動させ、ダイス102内に充填されたKNN原料粉に対し、パンチ103,104を介して機械的な圧力を加えつつ、パルス通電装置120を用いて、KNN原料粉に対するパルス通電による加熱を開始する。パルス通電の開始により、KNN原料粉が加圧されてなる圧粉体の温度は、室温(25℃)程度の開始時温度から、以下に示す所定の脱ガス時温度にまで、次第に上昇することとなる。 When the chamber 101 reaches a desired pressure, the pressurizing devices 105 and 106 are operated to apply mechanical pressure to the KNN raw material powder filled in the die 102 via the punches 103 and 104 while applying a pulse. Using the energizing device 120, heating of the KNN raw material powder by pulse energization is started. With the start of the pulse energization, the temperature of the green compact formed by pressurizing the KNN raw material powder gradually rises from the starting temperature of about room temperature (25° C.) to the predetermined degassing temperature shown below. becomes.

この脱ガス時温度は、450℃以上であり、以下に示す本加圧SPSにおける焼結時温度と同程度の温度とすることができるが、この際に加える機械的圧力(脱ガス時圧力)は、本加圧SPSにおける機械的圧力(焼結時圧力)に比べてずっと小さなものとする。これにより、低加圧SPSにおいては、圧粉体中におけるKNN原料粉の焼結反応が緩やかに進行しつつ、同時に行う加熱による圧粉体中からの脱ガスが生じやすくなる。 The degassing temperature is 450° C. or higher, and can be set to a temperature similar to the sintering temperature in the main pressurized SPS described below, but the mechanical pressure applied at this time (degassing pressure) is much smaller than the mechanical pressure (sintering pressure) in this pressurized SPS. As a result, in the low-pressure SPS, the sintering reaction of the KNN raw material powder in the green compact progresses slowly, and at the same time, the green compact is easily degassed by heating.

該低加圧SPS工程における機械的圧力は、SPS装置にて、安定した通電が可能であればよいが、圧粉体中から残留ガスを排出させやすい観点から、好ましくは1MPa以上、より好ましくは5MPa以上、さらに好ましくは7MPa以上、さらにより好ましくは8MPa以上である。好ましくは15MPa以下、より好ましくは12MPa以下、さらに好ましくは10MPa以下である。 The mechanical pressure in the low-pressure SPS step may be 1 MPa or more, more preferably 1 MPa or more, more preferably, from the viewpoint of easy discharge of residual gas from the green compact, although it is sufficient that the SPS apparatus allows stable energization. It is 5 MPa or higher, more preferably 7 MPa or higher, and even more preferably 8 MPa or higher. It is preferably 15 MPa or less, more preferably 12 MPa or less, still more preferably 10 MPa or less.

また、該低加圧SPS工程における脱ガス時温度は、好ましくは500℃以上、より好ましくは600℃以上、さらに好ましくは700℃以上、さらにより好ましくは800℃以上、特に好ましくは900℃以上であり、また好ましくは1200℃以下、より好ましくは1100℃以下である。低加圧SPS工程における脱ガス時温度が上記範囲内であると、残留ガスを排出させやすく、機械的強度の高い焼結体が得られやすい。 The degassing temperature in the low pressure SPS step is preferably 500° C. or higher, more preferably 600° C. or higher, still more preferably 700° C. or higher, still more preferably 800° C. or higher, and particularly preferably 900° C. or higher. It is preferably 1200° C. or lower, more preferably 1100° C. or lower. When the degassing temperature in the low-pressure SPS step is within the above range, residual gas is easily discharged, and a sintered body with high mechanical strength is easily obtained.

上記脱ガス時温度での加熱時間は、特に限定されず、昇温時間を十分に設けることで一定時間前記加熱温度以上で加熱することにしてもよいし、脱ガス時温度に達した状態を一定時間保持してもよい。脱ガス時温度に達した状態を保持する場合、その保持時間は、好ましくは5分以上、より好ましくは10分以上、さらに好ましくは20分以上であり、好ましくは10時間以下、より好ましくは5時間以下、さらに好ましくは3時間以下、さらにより好ましくは60分以下、特に好ましくは50分以下、特により好ましくは40分以下である。 The heating time at the above degassing temperature is not particularly limited, and by providing a sufficient heating time, heating may be performed at the above heating temperature or higher for a certain period of time, or the state when the degassing temperature is reached. It may be held for a certain period of time. When the state of reaching the degassing temperature is maintained, the holding time is preferably 5 minutes or longer, more preferably 10 minutes or longer, still more preferably 20 minutes or longer, and preferably 10 hours or shorter, more preferably 5 minutes. hours or less, more preferably 3 hours or less, even more preferably 60 minutes or less, particularly preferably 50 minutes or less, and even more preferably 40 minutes or less.

また、低加圧SPSにおいては、パルス通電による加熱を行うため、電磁的エネルギー、ジュール加熱、粒子間に発生する放電プラズマ等の作用により、結晶粒の表面に吸着している残留ガス(例えば、一酸化炭素、二酸化炭素、水分の他、塩素系の不純物等を含むガス分子)を、結晶粒の表面から効率的に脱離させ、圧粉体中から放出させることが可能となる。低加圧SPSでは、KNN原料粉の焼結反応を生じさせつつも、結晶粒の過度な成長を抑制しながら、効率よく圧粉体からの脱ガスを行うことができるため、圧粉体中の空隙を縮小させ、圧粉体を緻密化させることが可能となる。すなわち、圧粉体中に含まれる結晶粒周囲の余剰空間を減らし、結晶粒を、より高密度に凝縮させた状態とすることが可能となる。 In addition, in the low pressure SPS, since heating is performed by pulse energization, the residual gas (for example, gas molecules (including carbon monoxide, carbon dioxide, moisture, and chlorine-based impurities) can be efficiently desorbed from the surface of the crystal grains and released from the green compact. In the low-pressure SPS, the sintering reaction of the KNN raw material powder can be induced, and excessive growth of crystal grains can be suppressed while efficiently degassing the green compact. It is possible to reduce the voids and densify the green compact. That is, it is possible to reduce the excess space around the crystal grains contained in the powder compact, and to make the crystal grains more densely condensed.

圧粉体からのガス放出が始まると、チャンバ101内の圧力が上昇するが、圧粉体からのガス放出が完了すると、チャンバ101内の圧力が再び低下する。したがって、この圧力変化を圧力計111によりモニタすることで、低加圧SPSの完了タイミングを決定することができる。 When the gas release from the green compact starts, the pressure in the chamber 101 increases, but when the gas release from the green compact is completed, the pressure in the chamber 101 decreases again. Therefore, by monitoring this pressure change with the pressure gauge 111, it is possible to determine the completion timing of the low pressurization SPS.

低加圧SPSを行う際のその他条件としては、以下が例示される。
圧粉体温度(開始時温度):室温(25℃)~80℃
雰囲気圧力(チャンバ内の圧力):10Pa以下
Other conditions for performing low pressure SPS are as follows.
Green compact temperature (starting temperature): room temperature (25°C) to 80°C
Atmospheric pressure (pressure in chamber): 10 Pa or less

(本加圧SPS)
圧粉体からのガス放出が完了したら、チャンバ101内の排気を継続しつつ、また、パルス通電装置120を用いたパルス通電による加熱を継続しつつ、圧粉体に加える機械的圧力を、低加圧SPSにおける機械的圧力よりも大きくする。この際に加える機械的圧力(焼結時圧力)は、圧粉体の焼結反応を十分に進行させるのに必要な大きさ以上の圧力とする。
(Main pressure SPS)
When the release of gas from the green compact is completed, the mechanical pressure applied to the green compact is reduced while continuing to evacuate the chamber 101 and continue heating by pulse energization using the pulse energizing device 120. Greater than the mechanical pressure in pressurized SPS. The mechanical pressure applied at this time (pressure during sintering) is set to a pressure that is greater than or equal to the magnitude required for sufficiently advancing the sintering reaction of the green compact.

該本加圧SPS工程における機械的圧力は、高密度かつ割れに強い焼結体が得られる観点から、好ましくは25MPa以上、より好ましくは30MPa以上、さらに好ましくは35MPa以上であり、好ましくは70MPa以下、より好ましくは60MPa以下、さらに好ましくは50MPa以下である。 The mechanical pressure in the main pressure SPS step is preferably 25 MPa or more, more preferably 30 MPa or more, still more preferably 35 MPa or more, and preferably 70 MPa or less, from the viewpoint of obtaining a sintered body with high density and resistance to cracking. , more preferably 60 MPa or less, still more preferably 50 MPa or less.

また、該本加圧SPS工程における加熱温度は、高密度かつ割れに強い焼結体が得られる観点から、好ましくは700℃以上、より好ましくは750℃以上、さらに好ましくは800℃以上、さらにより好ましくは850℃以上、特に好ましくは900℃以上であり、また好ましくは1100℃以下、より好ましくは1000℃以下、さらに好ましくは980℃以下、特に好ましくは960℃以下である。 In addition, the heating temperature in the main pressurized SPS step is preferably 700° C. or higher, more preferably 750° C. or higher, still more preferably 800° C. or higher, from the viewpoint of obtaining a sintered body with high density and resistance to cracking. It is preferably 850° C. or higher, particularly preferably 900° C. or higher, more preferably 1100° C. or lower, more preferably 1000° C. or lower, still more preferably 980° C. or lower, and particularly preferably 960° C. or lower.

上記加熱温度での加熱時間は、特に限定されず、昇温時間を十分に設けることで一定時間前記加熱温度以上で加熱することにしてもよいし、所定の加熱温度に達した状態を一定時間保持してもよい。加熱温度を一定時間保持する場合、その保持時間は、好ましくは10分以上、より好ましくは15分以上、さらに好ましくは20分以上であり、好ましくは240分以下、より好ましくは180分以下、さらに好ましくは120分以下である。 The heating time at the above heating temperature is not particularly limited, and it may be heated at the heating temperature or higher for a certain period of time by providing a sufficient heating time, or the state of reaching the predetermined heating temperature is maintained for a certain period of time. may be retained. When the heating temperature is held for a certain period of time, the holding time is preferably 10 minutes or more, more preferably 15 minutes or more, still more preferably 20 minutes or more, preferably 240 minutes or less, more preferably 180 minutes or less, and further It is preferably 120 minutes or less.

この処理を行うことにより、圧粉体を焼結させ、高密度な焼結体を得ることが可能となる。SPSを用いた焼結処理では、ホットプレスを用いた焼結処理に比べて、低い焼結温度で短時間のうちに均一に焼結を進行させることができ、これにより、焼結体の結晶粒の粒成長を抑制でき、また、焼結体を緻密化させることが可能となる。 By performing this treatment, it becomes possible to sinter the powder compact and obtain a high-density sintered compact. In the sintering treatment using SPS, compared to the sintering treatment using hot press, sintering can be uniformly progressed at a lower sintering temperature in a short time. Grain growth of grains can be suppressed, and the sintered body can be densified.

本加圧SPSを行う際の他の条件としては、以下が例示される。
雰囲気圧力(チャンバ内の圧力):10Pa以下
Other conditions for performing the pressurization SPS are exemplified below.
Atmospheric pressure (pressure in chamber): 10 Pa or less

上記に、低加圧SPS及び本加圧SPSについて一実施形態を例示したが、前記SPS焼結は、不活性雰囲気下、例えば、窒素、アルゴン、ヘリウム、水素等の不活性ガスからなる雰囲気下で行ってもよい。 An embodiment of the low-pressure SPS and the main-pressure SPS was exemplified above. You can go with

(酸化処理)
なお、低加圧SPSや本加圧SPSを実施すると、圧粉体からの炭素成分等の不純物の脱離等が生じる一方、酸化物焼結体の一部の酸素の脱離が生じ、最終的に得られるターゲット材10の絶縁性が若干低下する場合がある。そのため、必要に応じ、本加圧SPSを実施した後、酸素含有雰囲気下で酸化物焼結体に対して熱処理を行い高抵抗化させ、その絶縁性を回復させるようにしてもよい。また、該酸化処理によって、SPS焼結時に残った不純物をさらに低減することもできる。
(Oxidation treatment)
When low-pressure SPS or high-pressure SPS is performed, impurities such as carbon components are desorbed from the green compact, while oxygen is partially desorbed from the oxide sintered body. In some cases, the insulation properties of the target material 10 that is typically obtained are slightly deteriorated. Therefore, if necessary, after performing the main pressure SPS, the oxide sintered body may be heat-treated in an oxygen-containing atmosphere to increase the resistance and restore the insulation. In addition, the oxidation treatment can further reduce impurities remaining during SPS sintering.

該酸化処理は、大気及び酸素含有雰囲気等の酸化性雰囲気下で、500℃以上1100℃以下、好ましくは700℃以上1050℃以下、より好ましくは800℃以上1020℃以下、さらに好ましくは850℃以上1000℃以下の加熱温度で行われる。加熱時間は、1時間以上40時間以下、好ましくは2時間以上20時間以下、より好ましくは3時間以上10時間以下、さらに好ましくは4時間以上7時間以下である。 The oxidation treatment is carried out in an oxidizing atmosphere such as the air and an oxygen-containing atmosphere at 500° C. or higher and 1100° C. or lower, preferably 700° C. or higher and 1050° C. or lower, more preferably 800° C. or higher and 1020° C. or lower, further preferably 850° C. or higher. It is carried out at a heating temperature of 1000° C. or less. The heating time is 1 hour or more and 40 hours or less, preferably 2 hours or more and 20 hours or less, more preferably 3 hours or more and 10 hours or less, and still more preferably 4 hours or more and 7 hours or less.

なお、酸化処理は、必要に応じて省略することも可能である。酸化処理を省略した場合には、最終的に得られるターゲット材10は、例えば、25℃において6.0×1011Ω・cm未満の体積抵抗率を有することになる。また、酸化処理を実施した場合には、最終的に得られるターゲット材10は、例えば、25℃において6.0×1011Ω・cm以上の体積抵抗率を有することになる。 Note that the oxidation treatment can be omitted if necessary. If the oxidation treatment is omitted, the finally obtained target material 10 will have a volume resistivity of less than 6.0×10 11 Ω·cm at 25° C., for example. Moreover, when the oxidation treatment is performed, the finally obtained target material 10 has a volume resistivity of 6.0×10 11 Ω·cm or more at 25° C., for example.

(仕上げ加工・バッキングプレートへの接合)
その後、必要に応じて、焼結体を、例えば、面積が4500mm以上、厚さ3mm以上の寸法を有する円盤型に研削加工したり、表面を研磨して表面状態を調整することで、本態様におけるターゲット材10が得られる。ターゲット材10は、Cu等からなるバッキングプレートに、In、Sn及びそれら金属を含む合金等の接合材を介して接合され、スパッタリングターゲットとして用いられる。
(Finish processing, bonding to backing plate)
After that, if necessary, the sintered body is ground into a disk shape having dimensions of, for example, an area of 4500 mm 2 or more and a thickness of 3 mm or more, or the surface is polished to adjust the surface condition, thereby A target material 10 in the aspect is obtained. The target material 10 is bonded to a backing plate made of Cu or the like via a bonding material such as In, Sn, or an alloy containing these metals, and used as a sputtering target.

(3)効果
本態様によれば、以下に示す1つまたは複数の効果が得られる。
(3) Effect According to this aspect, one or more of the following effects can be obtained.

(a)本態様におけるターゲット材10は、低加圧SPSを実施してから本加圧SPSを実施するという新規手法を経ることで焼結されることから、上述の特徴1,2のうちの少なくともいずれかの特徴を備えることとなる。 (a) Since the target material 10 in this embodiment is sintered by a new method of performing low-pressure SPS and then performing full-pressure SPS, the above-mentioned characteristics 1 and 2 It will have at least one of the features.

結果、本態様におけるターゲット材10は、機械的強度等に関する上述の特徴3~6のうちの少なくともいずれかの特徴をさらに備えることとなる。 As a result, the target material 10 in this aspect further has at least one of the features 3 to 6 described above regarding mechanical strength and the like.

なお、特徴3,4に示す特性を有するターゲット材10は、ターゲット材10を製造する際の研削等の機械加工中においても、また、ターゲット材10を用いたスパッタリング製膜中においても、割れ、欠け等が生じにくくなる。また、スパッタリング製膜中において、割れ、欠けに起因する異常放電が発生しにくくなることから、得られるスパッタリング膜(圧電薄膜)についての組成変化や特性低下を抑制できるようになる。 In addition, the target material 10 having the characteristics shown in features 3 and 4 is not cracked, Chipping or the like is less likely to occur. In addition, since abnormal discharge due to cracking and chipping is less likely to occur during sputtering film formation, it is possible to suppress changes in the composition and deterioration of the properties of the obtained sputtering film (piezoelectric thin film).

また、特徴5,6に示す特性を有するターゲット材10は、熱処理の前後にわたり、ビッカース硬度や相対密度が変化しにくいことから、ターゲット材10が高温になるスパッタリング製膜処理等において、安定して用いることができるようになる。 In addition, since the target material 10 having the characteristics shown in features 5 and 6 does not easily change in Vickers hardness and relative density before and after the heat treatment, the target material 10 can be stably used in a sputtering film forming process where the temperature of the target material 10 is high. can be used.

なお、低加圧SPSを実施せずに本加圧SPSを実施して焼結させる場合や、ホットプレス法を用いて焼結させる場合には、特徴1,2はいずれも発現せず、結果、特徴3~6に示す特徴はいずれも得られない。 In addition, when sintering is performed by performing main pressure SPS without performing low pressure SPS, or when sintering is performed using a hot press method, neither features 1 and 2 are expressed, resulting in , none of the features shown in features 3 to 6 are obtained.

(b)ターゲット材10の製造条件を上述の条件範囲内から適宜選択することにより、酸化処理を実施した場合(25℃における体積抵抗率が6.0×1011Ω・cm以上である場合)において、空隙率を、12.0%以下とするだけでなく、好ましくは10.0%以下、より好ましくは8.00%以下、さらに好ましくは6.00%以下、さらにより好ましくは4.00%以下、特に好ましくは2.00%以下、特により好ましくは1.00%以下、特にさらに好ましくは0.75%以下とすることができ、空隙の平均径を、0.60μm以下とするだけでなく、好ましくは0.50μm以下、より好ましくは0.40μm以下、さらに好ましくは0.30μm以下、さらにより好ましくは0.25μm以下とすることが可能となる。 (b) When the oxidation treatment is performed by appropriately selecting the manufacturing conditions of the target material 10 from the above condition range (when the volume resistivity at 25° C. is 6.0×10 11 Ω·cm or more) , the porosity is not only 12.0% or less, but preferably 10.0% or less, more preferably 8.00% or less, even more preferably 6.00% or less, and even more preferably 4.00% %, particularly preferably 2.00% or less, particularly more preferably 1.00% or less, and even more preferably 0.75% or less. Instead, it is preferably 0.50 μm or less, more preferably 0.40 μm or less, still more preferably 0.30 μm or less, and even more preferably 0.25 μm or less.

また、ターゲット材10の製造条件を上述の条件範囲内から適宜選択することにより、酸化処理を実施した場合(25℃における体積抵抗率が6.0×1011Ω・cm以上である場合)において、空隙の最大径を、1.0μm以下とするだけでなく、好ましくは0.80μm以下、より好ましくは0.62μm以下、さらに好ましくは0.60μm以下、さらにより好ましくは0.50μm以下、特に好ましくは0.40μm以下とすることが可能となる。 In addition, by appropriately selecting the manufacturing conditions of the target material 10 from the above-described condition range, when the oxidation treatment is performed (when the volume resistivity at 25 ° C. is 6.0 × 10 11 Ω cm or more) , the maximum diameter of the voids is not only 1.0 μm or less, but also preferably 0.80 μm or less, more preferably 0.62 μm or less, still more preferably 0.60 μm or less, even more preferably 0.50 μm or less, especially Preferably, it becomes possible to make it 0.40 μm or less.

これらの場合、ターゲット材10の機械的強度をさらに向上させることが可能となる。 In these cases, the mechanical strength of the target material 10 can be further improved.

具体的には、酸化処理を実施した場合(25℃における体積抵抗率が6.0×1011Ω・cm以上である場合)において、ビッカース硬度を、210以上とするだけでなく、好ましくは250以上、より好ましくは300以上、さらに好ましくは350以上、さらにより好ましくは400以上、特に好ましくは450以上、特により好ましくは500以上とすることが可能となる。また、抗折強度を、90MPa以上とするだけでなく、好ましくは100MPa以上、より好ましくは110MPa以上、さらに好ましくは120MPa以上、さらにより好ましくは130MPa以上とすることが可能となる。 Specifically, when the oxidation treatment is performed (when the volume resistivity at 25° C. is 6.0×10 11 Ω·cm or more), the Vickers hardness is not only 210 or more, but preferably 250. 300 or more, more preferably 350 or more, still more preferably 400 or more, particularly preferably 450 or more, and particularly preferably 500 or more. In addition, the bending strength can be not only 90 MPa or more, but also preferably 100 MPa or more, more preferably 110 MPa or more, still more preferably 120 MPa or more, and even more preferably 130 MPa or more.

また、これらの結果、ターゲット材10におけるビッカース硬度や相対密度の熱処理前後にわたる安定性をさらに向上させることが可能となる。 As a result, it is possible to further improve the stability of the Vickers hardness and relative density of the target material 10 before and after the heat treatment.

具体的には、酸化処理を実施した場合において、大気中、900℃、5時間の条件下で熱処理を行った後のビッカース硬度を、熱処理を行う前のビッカース硬度に対して、50%超の大きさとするだけでなく、好ましくは70%超、より好ましくは90%超、より好ましくは95%超、より好ましくは100%超の大きさとすることが可能となる。 Specifically, when the oxidation treatment is performed, the Vickers hardness after heat treatment at 900 ° C. for 5 hours in the atmosphere is more than 50% of the Vickers hardness before heat treatment. It is possible not only to scale, but also to scale preferably above 70%, more preferably above 90%, more preferably above 95%, more preferably above 100%.

また、大気中、900℃、5時間の条件下で熱処理を行った後の相対密度を、熱処理を行う前の相対密度に対して、95%超の大きさとするだけでなく、好ましくは97%超、より好ましくは99%超、より好ましくは100%超の大きさとすることが可能となる。 In addition, the relative density after heat treatment under the conditions of 900 ° C. for 5 hours in the air is not only greater than 95%, but preferably 97%, relative to the relative density before heat treatment. Greater than 99%, more preferably greater than 100%, can be achieved.

なお、空隙率の下限値については、特に制限はない。ただし、ターゲット材10の相対密度が95%を超えるような場合には、空隙率を、0.05%以上、好ましくは0.10%以上、より好ましくは0.15%以上、さらに好ましくは0.20%以上、さらにより好ましくは0.25%以上とすることにより、スパッタリング中の熱負荷によって発生する応力を緩和でき、特にスパッタリング時のターゲット材10の割れ、欠けを、より確実に抑制できるようになり、好ましい。 There is no particular limitation on the lower limit of the porosity. However, when the relative density of the target material 10 exceeds 95%, the porosity is 0.05% or more, preferably 0.10% or more, more preferably 0.15% or more, and further preferably 0. When the content is 0.20% or more, and more preferably 0.25% or more, the stress generated by the heat load during sputtering can be relaxed, and cracking and chipping of the target material 10 during sputtering can be suppressed more reliably. Like and preferred.

また、空隙の平均径の下限値についても、特に制限はない。ただし、ターゲット材10の相対密度が95%を超えるような場合には、空隙の平均径を、0.05μm以上、好ましくは0.10μm以上、より好ましくは0.15μm以上、さらに好ましくは0.20μm以上、さらにより好ましくは0.22μm以上とすることにより、スパッタリング中の熱負荷によって発生する応力を緩和でき、特にスパッタリング時のターゲット材10の割れ、欠けを、より確実に抑制できるようになり、好ましい。 Also, there is no particular limitation on the lower limit of the average diameter of the voids. However, when the relative density of the target material 10 exceeds 95%, the average diameter of the voids should be 0.05 μm or more, preferably 0.10 μm or more, more preferably 0.15 μm or more, further preferably 0.15 μm or more. When the thickness is 20 μm or more, and more preferably 0.22 μm or more, the stress generated by the heat load during sputtering can be relaxed, and cracking and chipping of the target material 10 during sputtering can be suppressed more reliably. ,preferable.

また、空隙の最大径の下限値についても、特に制限はない。ただし、ターゲット材10の相対密度が95%を超えるような場合には、空隙の最大径を、0.08μm以上、好ましくは0.12μm以上、より好ましくは0.18μm以上、さらに好ましくは0.20μm以上、さらにより好ましくは0.25μm以上、特に好ましくは0.30μm以上、特により好ましくは0.35μm以上とすることにより、スパッタリング中の熱負荷によって発生する応力を緩和でき、特にスパッタリング時のターゲット材10の割れ、欠けを、より確実に抑制できるようになり、好ましい。 Also, there is no particular limitation on the lower limit of the maximum diameter of the voids. However, when the relative density of the target material 10 exceeds 95%, the maximum diameter of the voids should be 0.08 μm or more, preferably 0.12 μm or more, more preferably 0.18 μm or more, further preferably 0.18 μm or more. By setting the thickness to 20 μm or more, more preferably 0.25 μm or more, particularly preferably 0.30 μm or more, and even more preferably 0.35 μm or more, the stress generated by the heat load during sputtering can be relaxed, particularly during sputtering. Cracking and chipping of the target material 10 can be suppressed more reliably, which is preferable.

<本開示の他の態様>
以上、本開示の種々の態様を具体的に説明した。但し、本開示は上述の態様に限定されるものではなく、その要旨を逸脱しない範囲で種々変更可能である。
<Other aspects of the present disclosure>
Various aspects of the present disclosure have been specifically described above. However, the present disclosure is not limited to the embodiments described above, and various modifications can be made without departing from the scope of the present disclosure.

以下、実施例及び比較例に基づいて本開示をより具体的に説明するが、本開示は以下の実施例に限定されるものではない。まず、実施例及び比較例にて作製したターゲット材を測定する際に用いた、装置、条件、方法等について説明する。 EXAMPLES The present disclosure will be described in more detail below based on examples and comparative examples, but the present disclosure is not limited to the following examples. First, the apparatus, conditions, methods, etc. used when measuring the target materials produced in Examples and Comparative Examples will be described.

<ターゲット材の結晶粒子径>
試料調製:研磨法により実施(評価に支障の出る大きな傷が無くなるまで、耐水研磨紙で研磨後、バフ研磨を実施した。)
装置:株式会社日立ハイテク製 超高分解能分析走査電子顕微鏡 SU-70
株式会社TSLソリューションズ製 EBSD検出器
解析ソフト:株式会社TSLソリューションズ製 OIM Analysis Ver8
測定倍率:3000倍
測定領域:30μm×50μm
ステップサイズ:0.06μm
粒界角:15°
KNNの結晶情報:X線回折法により、空間群、格子定数を求め、以下の表1に示す情報を使用した。
分析方法:ノイズ除去のため、クリーンアップ処理を行い、粒界角15°(結晶方位差15°以上の境界を結晶粒界とみなした)の条件で粒界マップを作成し、粒子径を解析した。ボイド等が存在する場合は、IQ(Image Quality)値に閾値を設けた。EBSDのNumber法、Area Fraction法を用いて各粒子の面積、粒子径(円相当径)を算出し、数平均粒子径及び面積平均粒子径を求めた。また、粒子径算出の際は、結晶性が悪く分析が出来ない部分や微結晶をノイズとして除去するため、0.20μm以上の粒子を計算対象とした。
<Crystal grain size of target material>
Sample preparation: Conducted by the polishing method (After polishing with water-resistant abrasive paper, buffing was performed until there were no large scratches that interfered with the evaluation.)
Apparatus: Ultra-high resolution analytical scanning electron microscope SU-70 manufactured by Hitachi High-Tech Co., Ltd.
EBSD detector manufactured by TSL Solutions Co., Ltd. Analysis software: OIM Analysis Ver8 manufactured by TSL Solutions Co., Ltd.
Measurement magnification: 3000 times Measurement area: 30 μm × 50 μm
Step size: 0.06 μm
Grain boundary angle: 15°
Crystal information of KNN: The space group and lattice constant were determined by the X-ray diffraction method, and the information shown in Table 1 below was used.
Analysis method: To remove noise, perform cleanup processing, create a grain boundary map under the condition of a grain boundary angle of 15° (a boundary with a crystal orientation difference of 15° or more is regarded as a grain boundary), and analyze the grain size. bottom. When voids or the like existed, a threshold was set for the IQ (Image Quality) value. The area and particle diameter (equivalent circle diameter) of each particle were calculated using the EBSD Number method and Area Fraction method, and the number average particle diameter and area average particle diameter were obtained. When calculating the particle size, particles of 0.20 μm or more were used as the object of calculation in order to remove the part where the crystallinity was poor and the analysis was impossible and the microcrystals as noise.

<ターゲット材の空隙率、空隙径>
試料調製:研磨法により実施(評価に支障の出る大きな傷が無くなるまで、耐水研磨紙で研磨後、バフ研磨を実施した。)
装置:株式会社日立ハイテク製 超高分解能電界放出型走査電子顕微鏡 SU-8000
測定倍率:5000倍
分析方法:上記装置、条件で取得したSEM像について、画像解析ソフト「Adobe photoshop(登録商標)」を用い、空隙部と母相との二値化を行い、測定面積に対する空隙部の面積割合を算出し、空隙率を算出した。また、画像演算ソフト「ScnImage」を用いて、各空隙の面積を算出し、形状を等価円と仮定して各空隙の直径(円相当径)も算出した。空隙の平均径は、算出した各空隙の面積の合計に対する累積面積が50%となる時の面積から円相当径を算出することで求めた。空隙の最大径は、算出した空隙径より最大値を抽出した。
<Porosity and pore diameter of target material>
Sample preparation: Conducted by the polishing method (After polishing with water-resistant abrasive paper, buffing was performed until there were no large scratches that interfered with the evaluation.)
Apparatus: Ultra-high resolution field emission scanning electron microscope SU-8000 manufactured by Hitachi High-Tech Co., Ltd.
Measurement magnification: 5000 times Analysis method: Using the image analysis software “Adobe Photoshop (registered trademark)” for the SEM image obtained with the above equipment and conditions, binarization of the void part and the matrix phase is performed, and the void to the measurement area is performed. The area ratio of the part was calculated, and the porosity was calculated. Further, the area of each void was calculated using the image operation software "ScnImage", and the diameter of each void (equivalent circle diameter) was calculated assuming that the shape was an equivalent circle. The average diameter of the voids was obtained by calculating the equivalent circle diameter from the area when the cumulative area was 50% of the calculated total area of the voids. As for the maximum diameter of the voids, the maximum value was extracted from the calculated void diameters.

<ビッカース硬度>
実施例及び比較例のターゲット材のビッカース硬度は、以下の装置、条件、方法を用いて測定した。
装置:株式会社ミツトヨ製 マイクロビッカース硬さ試験機 HM-114
雰囲気:大気中
温度:室温(25℃)
試験力:1.0kgf
荷重印加速度:10μm/s
保持時間:15sec
測定点数:5point
試験方法:本試験はJIS R 1610に準拠し、ビッカース圧子(向かいあった二つの面のなす角度が136度である底面が正方形の四角すい圧子)を用いて、試験面にくぼみをつけたときの試験力と、くぼみの対角線長さから求めたくぼみ表面積とからビッカース硬さを求めて、5点の測定結果から平均を求めた。
<Vickers hardness>
The Vickers hardness of the target materials of Examples and Comparative Examples was measured using the following equipment, conditions and methods.
Equipment: Mitutoyo Micro Vickers Hardness Tester HM-114
Atmosphere: Air Temperature: Room temperature (25°C)
Test force: 1.0 kgf
Load application speed: 10 μm/s
Holding time: 15 sec
Number of measurement points: 5 points
Test method: This test complies with JIS R 1610, using a Vickers indenter (a quadrangular pyramid indenter with a square bottom in which the angle formed by two opposing surfaces is 136 degrees), when an indentation is made on the test surface. Vickers hardness was obtained from the test force of , and the surface area of the depression obtained from the diagonal length of the depression, and the average was obtained from the five measurement results.

<抗折強度>
実施例及び比較例のターゲット材の抗折強度は、以下の装置、条件、方法を用いて測定した。
装置:インストロン社製 万能試験機 5582型(ロードセル500N)
雰囲気:大気中
温度:室温(25℃)
試験速度:0.5mm/min
支点間距離:L=30mm
ジグ材質:SiC
試験方法:JIS R 1601に準拠し、3点曲げ試験により評価した。試験片(サイズ:3mm×4mm×40mm)を、一定距離(30mm)に配置された2支点上に置き、支点間の中央の1点に荷重を加えて折れたときの最大荷重より、曲げ強さを求めた。
<Bending strength>
The bending strength of the target materials of Examples and Comparative Examples was measured using the following apparatus, conditions, and methods.
Apparatus: Universal testing machine 5582 type (load cell 500N) manufactured by Instron
Atmosphere: Air Temperature: Room temperature (25°C)
Test speed: 0.5mm/min
Distance between fulcrums: L = 30mm
Jig material: SiC
Test method: Based on JIS R 1601, evaluated by a three-point bending test. A test piece (size: 3 mm x 4 mm x 40 mm) is placed on two fulcrums placed at a certain distance (30 mm), and a load is applied to one point in the center between the fulcrums to break. I asked for it.

<相対密度>
実施例及び比較例のターゲット材の相対密度については、以下の装置、方法を用いて測定した。
装置:アルファミラージュ製 電子比重計 MDS300
試験方法:所定のサイズに切り出したターゲット材について、上記装置を用い、アルキメデス法にて、密度を測定した。求めた密度を、KNNの理論密度(4.52g/cm)で割ることにより、相対密度(%)(=実測密度/理論密度×100)を求めた。
<Relative Density>
The relative densities of the target materials of Examples and Comparative Examples were measured using the following apparatus and method.
Equipment: Alpha Mirage electronic hydrometer MDS300
Test method: A target material cut into a predetermined size was measured for density by the Archimedes method using the apparatus described above. Relative density (%) (=actual density/theoretical density×100) was obtained by dividing the obtained density by the theoretical density of KNN (4.52 g/cm 3 ).

<絶縁性評価>
実施例及び比較例のターゲット材の絶縁性は、以下の装置、試験、方法を用いて体積抵抗率を測定することにより評価した。
装置:ミタニマイクロニクス株式会社製 スクリーン印刷機 MODEL MEC=2400E型
株式会社西山製作所製 抵抗率測定装置
株式会社エーディーシー製 デジタル超高抵抗/微少電流計 型式5450
試験方法:直流三端子法
測定温度:室温(25℃)
測定雰囲気:アルゴン雰囲気(純度99.9999%Ar使用、流量300cc/min)
測定方法:スクリーン印刷機、田中貴金属工業株式会社製の白金ペーストを用い、所定のサイズに切り出したターゲット材サンプルの上面に主電極及びガード電極、ターゲット材サンプルの下面に対極を形成した。各電極は、サンプルに印刷した白金ペーストを、150℃で12時間乾燥させた後、雰囲気管状炉を用いた焼き付け処理(Ar雰囲気、1000℃)することで形成できる。電極を付けたサンプルを室温(25℃)の環境で15分保持した後、直流電圧100Vを印加し、1分間充電後の電流を測定し、サンプルの体積抵抗を求め、サンプルの厚みと電極面積から体積抵抗率を算出した。
<Insulation evaluation>
The insulating properties of the target materials of Examples and Comparative Examples were evaluated by measuring the volume resistivity using the following apparatus, test, and method.
Apparatus: Mitani Micronics Co., Ltd. screen printing machine MODEL MEC = 2400E type Nishiyama Seisakusho Co., Ltd. resistivity measuring device ADC Co., Ltd. digital ultra-high resistance/micro current meter model 5450
Test method: DC three-terminal method Measurement temperature: Room temperature (25°C)
Measurement atmosphere: argon atmosphere (using 99.9999% pure Ar, flow rate 300 cc/min)
Measurement method: Using a screen printer and platinum paste manufactured by Tanaka Kikinzoku Kogyo Co., Ltd., a main electrode and a guard electrode were formed on the upper surface of a target material sample cut into a predetermined size, and a counter electrode was formed on the lower surface of the target material sample. Each electrode can be formed by drying a platinum paste printed on a sample at 150° C. for 12 hours, followed by baking treatment (Ar atmosphere, 1000° C.) using an atmospheric tubular furnace. After holding the sample with the electrodes in a room temperature (25°C) environment for 15 minutes, apply a DC voltage of 100 V, measure the current after charging for 1 minute, determine the volume resistance of the sample, and determine the thickness and electrode area of the sample. The volume resistivity was calculated from

<KNN原料粉のBET比表面積>
製造例で得たKNN原料粉のBET比表面積は、比表面積測定装置(モノソーブ、Quantachrome Instruments社製)を用いて、窒素吸着によるBET一点法にて測定した。
<BET specific surface area of KNN raw material powder>
The BET specific surface area of the KNN raw material powder obtained in Production Example was measured by the BET one-point method by nitrogen adsorption using a specific surface area measuring device (Monosorb, manufactured by Quantachrome Instruments).

[KNN原料粉1の製造]
<製造例1>
出発原料粉としてKCO粉、NaCO粉、Nb粉を用意し、特開2018-197181号公報に記載の方法により、原子換算で、ナトリウム32.5モル%、カリウム17.5モル%、ニオブ50.0モル%、ニオブに対するアルカリ金属の比((Na+K)/Nb)が1.00、ナトリウム及びカリウムに対するカリウムの比(K/(Na+K))が0.35となるように、原料粉の混合、650℃での7時間焼成、粉砕を行うことで、K,Na,Nbが固溶してなるKNN原料粉1を得た。得られたKNN原料粉1の組成は、酸溶解後、高周波誘導結合プラズマ発光分光分析装置により測定し、ほぼ仕込み比通りであることを確認し、X線回折分析により、K、Na、Nbの固溶体であることを確認した。また、KNN原料粉1のBET比表面積は、6.9m/gであった。
[Production of KNN raw material powder 1]
<Production Example 1>
K 2 CO 3 powder, Na 2 CO 3 powder, and Nb 2 O 5 powder were prepared as starting raw material powders, and 32.5 mol% of sodium and potassium in terms of atoms were prepared by the method described in JP-A-2018-197181. 17.5 mol%, niobium 50.0 mol%, the ratio of alkali metals to niobium ((Na+K)/Nb) is 1.00, and the ratio of potassium to sodium and potassium (K/(Na+K)) is 0.35. The KNN raw material powder 1 in which K, Na, and Nb are solid-dissolved was obtained by mixing the raw material powder, firing at 650° C. for 7 hours, and pulverizing. After acid dissolution, the composition of the obtained KNN raw material powder 1 was measured by a high-frequency inductively coupled plasma emission spectrometer to confirm that it was almost the same as the preparation ratio. A solid solution was confirmed. Also, the BET specific surface area of the KNN raw material powder 1 was 6.9 m 2 /g.

[KNN原料粉2の製造]
<製造例2>
製造例1で得られたKNN原料粉1を、電気炉を用いて750℃で5時間、続いて1000℃で5時間焼成し、KNN原料粉2を得た。得られたKNN原料粉2のBET比表面積は、3.3m/gであった。
[Production of KNN raw material powder 2]
<Production Example 2>
KNN raw material powder 1 obtained in Production Example 1 was fired in an electric furnace at 750° C. for 5 hours and then at 1000° C. for 5 hours to obtain KNN raw material powder 2 . The BET specific surface area of the obtained KNN raw material powder 2 was 3.3 m 2 /g.

[KNN原料粉3の製造]
<製造例3>
製造例1で得られたKNN原料粉1を、電気炉を用いて750℃で5時間、続いて900℃で5時間焼成し、KNN原料粉3を得た。得られたKNN原料粉3のBET比表面積は、3.6m/gであった。
[Production of KNN raw material powder 3]
<Production Example 3>
KNN raw material powder 1 obtained in Production Example 1 was fired in an electric furnace at 750° C. for 5 hours and then at 900° C. for 5 hours to obtain KNN raw material powder 3 . The BET specific surface area of the obtained KNN raw material powder 3 was 3.6 m 2 /g.

[KNN原料粉4の製造]
<製造例4>
出発原料粉としてKCO粉、NaCO粉、Nb粉を用意し、[K/(K+Na)]の値が0.35、[(Na+K)/Nb]の値が1.00となるように混合するとともに、Mn及びCuを所定濃度で含むように、MnO粉末及びCuO粉末を混合し、650℃での7時間焼成、その後粉砕を行うことで、K,Na,Nbが固溶してなるKNN原料粉4を得た。得られたKNN原料粉4の組成は、酸溶解後、高周波誘導結合プラズマ発光分光分析装置により測定し、ほぼ仕込み比通りであることを確認し、X線回折分析により、K、Na、Nbの固溶体であることを確認した。また、KNN原料粉4のBET比表面積は、6.9m/gであった。
[Production of KNN raw material powder 4]
<Production Example 4>
K 2 CO 3 powder, Na 2 CO 3 powder, and Nb 2 O 5 powder were prepared as starting raw material powders, and the value of [K/(K+Na)] was 0.35, and the value of [(Na+K)/Nb] was 1. .00, MnO powder and CuO powder are mixed so as to contain Mn and Cu at a predetermined concentration, baked at 650 ° C. for 7 hours, and then pulverized to obtain K, Na, Nb A KNN raw material powder 4 in which is solid-dissolved was obtained. The composition of the obtained KNN raw material powder 4 was measured by a high-frequency inductively coupled plasma emission spectrometer after acid dissolution, confirmed that it was almost the same as the preparation ratio, and by X-ray diffraction analysis, K, Na, Nb A solid solution was confirmed. Further, the BET specific surface area of the KNN raw material powder 4 was 6.9 m 2 /g.

〔実施例1〕
製造例2で得たKNN原料粉2を200℃に加熱して乾燥させた後、φ170mm×φ101.6mm×t100mmのグラファイト製のダイス、及びφ101.6mm×t65mmのグラファイト製のパンチを備えるパルス通電加圧焼結装置SPS9.40MK-VII(SPSシンテックス株式会社製)にセットした。真空雰囲気下(雰囲気圧力は10Pa未満)にて、10MPaで加圧した状態で、放電プラズマによる加熱を開始し、25℃から900℃まで50℃/分の速度で昇温した。その間、ガス成分の脱離が生じ、雰囲気圧力の上昇が生じるのを確認した。徐々に30MPaまで昇圧した後、10℃/分で1020℃まで昇温し、1020℃で75分間保持した。その後、通電及び加圧を停止し、冷却することで、直径が約101mm、厚さ5mmの円盤型のターゲット材(KNN焼結体、絶縁性の低いターゲット材)を得た。
[Example 1]
After the KNN raw material powder 2 obtained in Production Example 2 was heated to 200 ° C. and dried, a graphite die of φ 170 mm × φ 101.6 mm × t 100 mm and a graphite punch of φ 101.6 mm × t 65 mm pulse electrification. It was set in a pressure sintering device SPS9.40MK-VII (manufactured by SPS Syntex Co., Ltd.). In a vacuum atmosphere (atmospheric pressure is less than 10 Pa), heating by discharge plasma was started under pressure of 10 MPa, and the temperature was raised from 25° C. to 900° C. at a rate of 50° C./min. During this time, it was confirmed that the gas components desorbed and the atmospheric pressure increased. After gradually increasing the pressure to 30 MPa, the temperature was raised to 1020° C. at 10° C./min and held at 1020° C. for 75 minutes. Thereafter, the energization and pressurization were stopped, and cooling was performed to obtain a disk-shaped target material (a KNN sintered body, a low-insulating target material) having a diameter of about 101 mm and a thickness of 5 mm.

また、得られたターゲット材を、大気下、900℃で5時間の酸化処理した後、表面を研削して仕上げることで、直径100mm、厚さ5mmのKNNターゲット材(絶縁性の高いターゲット材)を得た。 In addition, the obtained target material was subjected to oxidation treatment at 900 ° C. for 5 hours in the atmosphere, and then the surface was ground and finished to obtain a KNN target material (highly insulating target material) with a diameter of 100 mm and a thickness of 5 mm. got

得られたターゲット材の数平均粒子径は0.60μmであり、面積平均粒子径は1.05μmであった。 The obtained target material had a number average particle size of 0.60 μm and an area average particle size of 1.05 μm.

得られたターゲット材の組成は、マイクロウェーブ分解を行った後、高周波誘導結合プラズマ発光分光分析装置により測定し、[K/(K+Na)]の値が0.35、[(Na+K)/Nb]の値が1.0であることを確認した。 The composition of the obtained target material was measured by a high-frequency inductively coupled plasma atomic emission spectrometer after performing microwave decomposition, and the value of [K/(K+Na)] was 0.35 and [(Na+K)/Nb]. was confirmed to be 1.0.

<低加圧SPSの条件>
機械的圧力:10MPa
加熱温度:~900℃
雰囲気圧力(チャンバ内の圧力):10Pa未満(上昇時、30Pa)
<Conditions for low pressure SPS>
Mechanical pressure: 10MPa
Heating temperature: ~900°C
Atmospheric pressure (pressure in the chamber): less than 10 Pa (30 Pa when rising)

<本加圧SPSにおける条件>
機械的圧力:30MPa(900℃にて加圧開始)
加熱温度:1020℃(900℃から10℃/分で昇温、1020℃到達後、75分保持)
雰囲気圧力(チャンバ内の圧力):10Pa未満
<Conditions in this pressurized SPS>
Mechanical pressure: 30 MPa (pressurization started at 900 ° C.)
Heating temperature: 1020° C. (increase temperature from 900° C. at 10° C./min, hold for 75 minutes after reaching 1020° C.)
Atmospheric pressure (pressure in chamber): less than 10 Pa

〔実施例2〕
製造例3で得たKNN原料粉3を用い、本加圧SPSを以下に示す条件で実施した以外は、実施例1と同様の方法で直径100mm、厚さ5mmのKNNターゲット材を得た。
[Example 2]
A KNN target material having a diameter of 100 mm and a thickness of 5 mm was obtained in the same manner as in Example 1 except that the KNN raw material powder 3 obtained in Production Example 3 was used and the main pressure SPS was performed under the conditions shown below.

得られたターゲット材の数平均粒子径は0.49μmであり、面積平均粒子径は0.71μmであった。 The obtained target material had a number average particle size of 0.49 μm and an area average particle size of 0.71 μm.

<本加圧SPSにおける条件>
機械的圧力:40MPa(900℃にて加圧開始)
加熱温度:900~1010℃(900℃から2.5℃/分で1010℃まで昇温、保持時間は無し)
雰囲気圧力(チャンバ内の圧力):10Pa未満
<Conditions in this pressurized SPS>
Mechanical pressure: 40 MPa (pressurization started at 900 ° C.)
Heating temperature: 900 to 1010°C (heating from 900°C to 1010°C at 2.5°C/min, no holding time)
Atmospheric pressure (pressure in chamber): less than 10 Pa

〔比較例1〕
製造例4で得たKNN原料粉4を用い、低加圧SPS及び本加圧SPSを以下に示す条件で実施した以外は、実施例1と同様の方法で直径100mm、厚さ5mmのKNNターゲット材を得た。
[Comparative Example 1]
A KNN target with a diameter of 100 mm and a thickness of 5 mm was prepared in the same manner as in Example 1 except that the KNN raw material powder 4 obtained in Production Example 4 was used and the low pressure SPS and the main pressure SPS were performed under the conditions shown below. got the wood.

<低加圧SPSの条件>
機械的圧力:10MPa
加熱温度:400℃(25℃から13℃/分で400℃まで昇温後、60分間保持)
雰囲気圧力(チャンバ内の圧力):10Pa未満(上昇時、20Pa)
<Conditions for low pressure SPS>
Mechanical pressure: 10MPa
Heating temperature: 400 ° C. (After heating from 25 ° C. to 400 ° C. at 13 ° C./min, hold for 60 minutes)
Atmospheric pressure (pressure in the chamber): less than 10 Pa (20 Pa when rising)

<本加圧SPSにおける条件>
機械的圧力:40MPa(400℃にて加圧開始)
加熱温度:~910℃(400℃から4℃/分で800℃まで昇温後、1.2℃/分で910℃まで昇温後に10分間保持)
雰囲気圧力(チャンバ内の圧力):10Pa未満
<Conditions in this pressurized SPS>
Mechanical pressure: 40 MPa (pressurization started at 400 ° C.)
Heating temperature: ~910°C (After heating from 400°C to 800°C at 4°C/min, heating to 910°C at 1.2°C/min and holding for 10 minutes)
Atmospheric pressure (pressure in chamber): less than 10 Pa

〔比較例2〕
製造例1で得たKNN原料粉1を用い、低加圧SPSを実施せず、本加圧SPSを以下に示す条件で実施した以外は、実施例1と同様の方法で直径100mm、厚さ5mmのKNNターゲット材を得た。
[Comparative Example 2]
A diameter of 100 mm and a thickness of A 5 mm KNN target material was obtained.

<低加圧SPSの条件>
実施なし
<Conditions for low pressure SPS>
No implementation

<本加圧SPSにおける条件>
機械的圧力:40MPa(25℃にて加圧開始)
加熱温度:800℃(25℃から50℃/分で800℃まで昇温後、160分間保持)
雰囲気圧力(チャンバ内の圧力):10Pa未満(上昇時、30Pa)
<Conditions in this pressurized SPS>
Mechanical pressure: 40 MPa (pressurization started at 25 ° C.)
Heating temperature: 800 ° C. (After heating from 25 ° C. to 800 ° C. at 50 ° C./min, hold for 160 minutes)
Atmospheric pressure (pressure in the chamber): less than 10 Pa (30 Pa when rising)

<空隙に関する評価>
実施例1、2及び比較例1、2で作製したターゲット材のスパッタ面をSEMにより観察し、スパッタ面内に存在する空隙の合計面積の比率である空隙率(%)、スパッタ面に存在する空隙の平均径(μm)、および、最大径(μm)をそれぞれ測定した。
<Evaluation regarding voids>
The sputtering surfaces of the target materials produced in Examples 1 and 2 and Comparative Examples 1 and 2 were observed by SEM, and the porosity (%), which is the ratio of the total area of the voids present in the sputtering surface, The average diameter (μm) and maximum diameter (μm) of the voids were measured.

また、実施例1、2及び比較例1、2のビッカース硬度、相対密度、抗折強度をそれぞれ測定した。 In addition, the Vickers hardness, relative density, and bending strength of Examples 1 and 2 and Comparative Examples 1 and 2 were measured.

ビッカース硬度、相対密度については、それぞれ、酸化処理前の状態(25℃における体積抵抗率が6.0×1011Ω・cm未満である状態)、及び酸化処理後の状態(25℃における体積抵抗率が6.0×1011Ω・cm以上である状態)の2つのタイミングで測定した。なお、実施例、比較例で得られたターゲット材は、いずれも、酸化処理前の25℃における体積抵抗率が6.0×1011Ω・cm未満であり、酸化処理後の25℃における体積抵抗率が6.0×1011Ω・cm以上であった。抗折強度については、酸化処理後のタイミングで測定した。なお、抗折強度は、酸化処理を行うことによっては変化しないか、あるいは、焼結体中から不純物としての炭素が抜けることにより若干低下するため、酸化処理前における抗折強度は、酸化処理後の抗折強度以上となる。 Regarding Vickers hardness and relative density, respectively, the state before oxidation treatment (the volume resistivity at 25 ° C. is less than 6.0 × 10 11 Ω cm) and the state after oxidation treatment (volume resistance at 25 ° C. The measurement was performed at two timings when the ratio is 6.0×10 11 Ω·cm or more). The target materials obtained in Examples and Comparative Examples each had a volume resistivity of less than 6.0×10 11 Ω·cm at 25° C. before oxidation, and a volume resistivity at 25° C. after oxidation. The resistivity was 6.0×10 11 Ω·cm or more. The bending strength was measured after the oxidation treatment. It should be noted that the bending strength does not change due to the oxidation treatment, or slightly decreases due to the removal of carbon as an impurity from the sintered body, so the bending strength before the oxidation treatment is It is more than the bending strength of

これらの測定結果を表1に示す。 These measurement results are shown in Table 1.

Figure 2023075689000002
Figure 2023075689000002

実施例1及び2では、いずれも、空隙率が12.0%以下であり、かつ空隙の平均径が0.60μm以下であり、さらに空隙の最大径が1.0μm以下であることが確認できた。 In Examples 1 and 2, it can be confirmed that the porosity is 12.0% or less, the average diameter of the pores is 0.60 μm or less, and the maximum diameter of the pores is 1.0 μm or less. rice field.

そして、実施例1及び2では、いずれも、ビッカース硬度が、酸化処理前の状態において460以上であり、酸化処理後の状態において250以上であることが確認できた。また、実施例1及び2では、いずれも、抗折強度が、酸化処理後の状態において90MPa以上であることが確認できた。これにより、実施例1及び2では、いずれも、抗折強度が、酸化処理前の状態においても90MPa以上であることが推認できた。実施例1及び2では、これらの機械的強度特性を備えることから、研削の際にも、また、その後のスパッタリング製膜処理の際にも、割れ、欠けが発生しなかったことが確認できた。 In Examples 1 and 2, it was confirmed that the Vickers hardness was 460 or more before the oxidation treatment and 250 or more after the oxidation treatment. Moreover, in Examples 1 and 2, it was confirmed that the bending strength was 90 MPa or more in the state after the oxidation treatment. From this, it could be inferred that both Examples 1 and 2 had a bending strength of 90 MPa or more even before the oxidation treatment. In Examples 1 and 2, since these mechanical strength characteristics are provided, it was confirmed that cracks and chips did not occur during grinding and during the subsequent sputtering film forming process. .

また、実施例1及び2について、酸化処理前後のビッカース硬度を比較したところ、これらの値に大きな変化はなく、熱処理(酸化処理)を行った後のビッカース硬度が、熱処理を行う前のビッカース硬度に対して、50%を超える大きさに維持されていることが確認できた。 In addition, when the Vickers hardness before and after the oxidation treatment was compared for Examples 1 and 2, there was no significant change in these values, and the Vickers hardness after the heat treatment (oxidation treatment) was the Vickers hardness before the heat treatment. , it was confirmed that the size was maintained in excess of 50%.

また、実施例1及び2について、酸化処理前後の相対密度を比較したところ、これらの値も大きな変化はなく、熱処理(酸化処理)を行った後の相対密度が、熱処理を行う前の相対密度に対して、95%を超える大きさに維持されていることが確認できた。 In addition, when the relative densities before and after the oxidation treatment were compared for Examples 1 and 2, there was no significant change in these values, and the relative density after the heat treatment (oxidation treatment) was the relative density before the heat treatment. , it was confirmed that the size was maintained in excess of 95%.

これに対し、比較例1及び2では、空隙率が12.0%超であるか、空隙の平隙径が0.60μm超であり、さらには空隙の最大径についても実施例1及び2のそれらよりも大きいことが確認できた。 On the other hand, in Comparative Examples 1 and 2, the porosity is more than 12.0%, or the flat gap diameter of the gap is more than 0.60 μm, and the maximum diameter of the gap is also the same as that of Examples 1 and 2. I was able to confirm that it was bigger than them.

そして、比較例1及び2では、ビッカース硬度が、酸化処理前の状態において460未満であり、酸化処理後の状態において250未満であることが確認できた。また、比較例1及び2では、抗折強度が、酸化処理後の状態において90MPa未満であることが確認できた。これにより、比較例1及び2では、抗折強度が、酸化処理前の状態においても90MPa未満であること推察できた。比較例2及び3では、研削の際にも、また、その後のスパッタリング製膜処理の際にも、割れ、欠けが発生したことが確認できた。 In Comparative Examples 1 and 2, it was confirmed that the Vickers hardness was less than 460 before the oxidation treatment and less than 250 after the oxidation treatment. Moreover, in Comparative Examples 1 and 2, it was confirmed that the bending strength was less than 90 MPa after the oxidation treatment. From this, in Comparative Examples 1 and 2, it was inferred that the bending strength was less than 90 MPa even before the oxidation treatment. In Comparative Examples 2 and 3, it was confirmed that cracks and chips occurred both during grinding and during the subsequent sputtering film forming process.

また、比較例1及び2について、酸化処理前後のビッカース硬度を比較したところ、これらの値は大きく変化しており、熱処理(酸化処理)を行った後のビッカース硬度が、熱処理を行う前のビッカース硬度に対して、50%以下の大きさにまで減少していることが確認できた。 In addition, when the Vickers hardness before and after the oxidation treatment was compared for Comparative Examples 1 and 2, these values changed greatly, and the Vickers hardness after the heat treatment (oxidation treatment) was the same as the Vickers hardness before the heat treatment. It was confirmed that the hardness was reduced to 50% or less of the hardness.

また、比較例1及び2について、酸化処理前後の相対密度を比較したところ、これらの値も比較的大きく変化しており、熱処理(酸化処理)を行った後の相対密度が、熱処理を行う前の相対密度に対して、95%以下の大きさにまで減少していることが確認できた。 In addition, when the relative densities before and after the oxidation treatment were compared for Comparative Examples 1 and 2, these values also changed relatively greatly, and the relative density after the heat treatment (oxidation treatment) was the same as before the heat treatment. It has been confirmed that the relative density of 1 is reduced to 95% or less.

<本開示の好ましい態様>
以下、本開示の好ましい態様について付記する。
<Preferred Embodiment of the Present Disclosure>
Preferred aspects of the present disclosure will be added below.

(付記1)
本開示の一態様によれば、
カリウム、ナトリウム、ニオブ、及び酸素を含む酸化物の焼結体からなるスパッタリングターゲット材であって、
スパッタ面の単位面積あたりに占める空隙の合計面積の比率が12.0%以下であり、
前記スパッタ面に存在する空隙の平均径が0.60μm以下である
スパッタリングターゲット材が提供される。
(Appendix 1)
According to one aspect of the present disclosure,
A sputtering target material made of a sintered body of an oxide containing potassium, sodium, niobium, and oxygen,
The ratio of the total area of voids per unit area of the sputtering surface is 12.0% or less,
A sputtering target material is provided in which the average diameter of voids present on the sputtering surface is 0.60 μm or less.

(付記2)
好ましくは、
前記スパッタ面に存在する空隙の最大径が1.0μm以下である。
(Appendix 2)
Preferably,
The maximum diameter of voids existing on the sputtering surface is 1.0 μm or less.

(付記3)
本開示の他の態様によれば、
カリウム、ナトリウム、ニオブ、及び酸素を含む酸化物の焼結体からなるスパッタリングターゲット材であって、
25℃における体積抵抗率が6.0×1011Ω・cm未満であり、
ビッカース硬度が460以上であり、抗折強度が90MPa以上である
スパッタリングターゲット材が提供される。
(Appendix 3)
According to another aspect of the present disclosure,
A sputtering target material made of a sintered body of an oxide containing potassium, sodium, niobium, and oxygen,
A volume resistivity at 25° C. of less than 6.0×10 11 Ω·cm,
A sputtering target material having a Vickers hardness of 460 or more and a bending strength of 90 MPa or more is provided.

(付記4)
本開示のさらに他の態様によれば、
カリウム、ナトリウム、ニオブ、及び酸素を含む酸化物の焼結体からなるスパッタリングターゲット材であって、
25℃における体積抵抗率が6.0×1011Ω・cm以上であり、
ビッカース硬度が250以上であり、抗折強度が90MPa以上である
スパッタリングターゲット材が提供される。
(Appendix 4)
According to yet another aspect of the present disclosure,
A sputtering target material made of a sintered body of an oxide containing potassium, sodium, niobium, and oxygen,
A volume resistivity at 25° C. of 6.0×10 11 Ω·cm or more,
A sputtering target material having a Vickers hardness of 250 or more and a bending strength of 90 MPa or more is provided.

(付記5)
好ましくは、
大気中、900℃、5時間の条件下で熱処理を行った後のビッカース硬度が、前記熱処理を行う前のビッカース硬度に対して、50%を超える大きさに維持される。
(Appendix 5)
Preferably,
The Vickers hardness after heat treatment at 900° C. for 5 hours in air is maintained at a level exceeding 50% of the Vickers hardness before heat treatment.

(付記6)
好ましくは、
大気中、900℃、5時間の条件下で熱処理を行った後の相対密度が、前記熱処理を行う前の相対密度に対して、95%を超える大きさに維持される。
(Appendix 6)
Preferably,
The relative density after heat treatment at 900° C. for 5 hours in air is maintained at a level exceeding 95% of the relative density before the heat treatment.

(付記7)
好ましくは、
ドーパントとして、Li、Mg、Ca、Sr、Ba、Bi、Sb、V、In、Ta、Mo、W、Cr、Ti、Zr、Hf、Sc、Y、La、Ce、Pr、Nd、Sm、Eu、Gd、Tb、Dy、Ho、Er、Tm、Yb、Lu、Cu、Zn、Ag、Mn、Fe、Co、Ni、Al、Si、Ge、Sn、Gaからなる群より選択される少なくとも一種の元素を含む。
(Appendix 7)
Preferably,
As dopants, Li, Mg, Ca, Sr, Ba, Bi, Sb, V, In, Ta, Mo, W, Cr, Ti, Zr, Hf, Sc, Y, La, Ce, Pr, Nd, Sm, Eu , Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu, Cu, Zn, Ag, Mn, Fe, Co, Ni, Al, Si, Ge, Sn, at least one selected from the group consisting of Ga Contains elements.

(付記8)
好ましくは、
主面が4500mm以上の面積を有する。
(Appendix 8)
Preferably,
The main surface has an area of 4500 mm 2 or more.

(付記9)
本開示のさらに他の態様によれば、
付記1~8のいずれか1項に記載のスパッタリングターゲット材と、
前記スパッタリングターゲット材に接合されているバッキングプレートと、
を備えるスパッタリングターゲットが提供される。
(Appendix 9)
According to yet another aspect of the present disclosure,
The sputtering target material according to any one of Appendices 1 to 8,
a backing plate bonded to the sputtering target material;
A sputtering target is provided comprising:

10 ターゲット材
10s スパッタ面
10 target material 10s sputtering surface

Claims (5)

カリウム、ナトリウム、ニオブ、及び酸素を含む酸化物の焼結体からなるスパッタリングターゲット材であって、
スパッタ面の単位面積あたりに占める空隙の合計面積の比率が12.0%以下であり、
前記スパッタ面に存在する空隙の平均径が0.60μm以下である
スパッタリングターゲット材。
A sputtering target material made of a sintered body of an oxide containing potassium, sodium, niobium, and oxygen,
The ratio of the total area of voids per unit area of the sputtering surface is 12.0% or less,
A sputtering target material, wherein an average diameter of voids present on the sputtering surface is 0.60 μm or less.
前記スパッタ面に存在する空隙の最大径が1.0μm以下である
請求項1に記載のスパッタリングターゲット材。
The sputtering target material according to claim 1, wherein the maximum diameter of voids present on the sputtering surface is 1.0 µm or less.
ドーパントとして、Li、Mg、Ca、Sr、Ba、Bi、Sb、V、In、Ta、Mo、W、Cr、Ti、Zr、Hf、Sc、Y、La、Ce、Pr、Nd、Sm、Eu、Gd、Tb、Dy、Ho、Er、Tm、Yb、Lu、Cu、Zn、Ag、Mn、Fe、Co、Ni、Al、Si、Ge、Sn、Gaからなる群より選択される少なくとも一種の元素を含む
請求項1または2に記載のスパッタリングターゲット材。
As dopants, Li, Mg, Ca, Sr, Ba, Bi, Sb, V, In, Ta, Mo, W, Cr, Ti, Zr, Hf, Sc, Y, La, Ce, Pr, Nd, Sm, Eu , Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu, Cu, Zn, Ag, Mn, Fe, Co, Ni, Al, Si, Ge, Sn, at least one selected from the group consisting of Ga The sputtering target material according to claim 1 or 2, comprising an element.
主面が4500mm以上の面積を有する
請求項1~3のいずれか1項に記載のスパッタリングターゲット材。
The sputtering target material according to any one of claims 1 to 3, wherein the main surface has an area of 4500 mm 2 or more.
請求項1~4のいずれか1項に記載のスパッタリングターゲット材と、
前記スパッタリングターゲット材に接合されているバッキングプレートと、
を備えるスパッタリングターゲット。
A sputtering target material according to any one of claims 1 to 4,
a backing plate bonded to the sputtering target material;
A sputtering target comprising:
JP2021188745A 2021-11-19 2021-11-19 Sputtering target material and sputtering target Pending JP2023075689A (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2021188745A JP2023075689A (en) 2021-11-19 2021-11-19 Sputtering target material and sputtering target
PCT/JP2022/041920 WO2023090249A1 (en) 2021-11-19 2022-11-10 Sputtering target material and sputtering target
TW111143355A TW202330967A (en) 2021-11-19 2022-11-14 Sputtering target material and sputtering target

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2021188745A JP2023075689A (en) 2021-11-19 2021-11-19 Sputtering target material and sputtering target

Publications (1)

Publication Number Publication Date
JP2023075689A true JP2023075689A (en) 2023-05-31

Family

ID=86542426

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2021188745A Pending JP2023075689A (en) 2021-11-19 2021-11-19 Sputtering target material and sputtering target

Country Status (1)

Country Link
JP (1) JP2023075689A (en)

Similar Documents

Publication Publication Date Title
JP5979992B2 (en) Piezoelectric material
KR101400598B1 (en) Corrosion-resistant member for a semiconductor manufacturing device, and manufacturing method therefor
JP6166207B2 (en) Oxide sintered body and sputtering target
KR20130018247A (en) Lanthanum hexaboride sintered body, target and lanthanum hexaboride film each comprising same, and process for production of the sintered body
JP2023075924A (en) Sputtering target material and sputtering target
EP4328987A1 (en) Piezoelectric laminate, production method for piezoelectric laminate, sputtering target material, and production method for sputtering target material
EP3613718A1 (en) Sintered body, board, circuit board, and method for manufacturing sintered body
WO2020189480A1 (en) Tungsten oxide sputtering target
JP2017179415A (en) Piezoelectric ceramic sputtering target, non-lead piezoelectric thin film and piezoelectric thin film element using the same
WO2023090249A1 (en) Sputtering target material and sputtering target
JP2023075689A (en) Sputtering target material and sputtering target
JP2023075687A (en) Sputtering target material and sputtering target
JP2023075688A (en) Sputtering target material and sputtering target
JP2023075686A (en) Sputtering target material and sputtering target
JP2015222780A (en) Piezoelectric ceramic, method for manufacturing the same, and piezoelectric material device
JP2021054686A (en) Dielectric composition and electronic component
WO2024048225A1 (en) Sputtering target material and method for producing sputtering target material
JP2015125896A (en) Alumina sintered compact and electrostatic deflector including the same
JP6158129B2 (en) Oxide sintered body and sputtering target
JP6728094B2 (en) Ferromagnetic material sputtering target
JP2023022339A (en) Oxide sintered body and manufacturing method of oxide sintered body
WO2023026720A1 (en) Piezoelectric laminate, production method for piezoelectric laminate, sputtering target material, and production method for sputtering target material
WO2020189428A1 (en) Tungsten oxide sputtering target
JP6996019B1 (en) Sputtering target material and manufacturing method of sputtering target material
JP2020153015A (en) Tungsten oxide sputtering target