JP2023073702A - battery module - Google Patents

battery module Download PDF

Info

Publication number
JP2023073702A
JP2023073702A JP2021186321A JP2021186321A JP2023073702A JP 2023073702 A JP2023073702 A JP 2023073702A JP 2021186321 A JP2021186321 A JP 2021186321A JP 2021186321 A JP2021186321 A JP 2021186321A JP 2023073702 A JP2023073702 A JP 2023073702A
Authority
JP
Japan
Prior art keywords
stay
fastening
battery module
stacking direction
battery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2021186321A
Other languages
Japanese (ja)
Inventor
重光 圷
Shigemitsu Akutsu
真二 藤本
Shinji Fujimoto
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Honda Motor Co Ltd
Original Assignee
Honda Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Honda Motor Co Ltd filed Critical Honda Motor Co Ltd
Priority to JP2021186321A priority Critical patent/JP2023073702A/en
Priority to CN202211287102.7A priority patent/CN116137351A/en
Priority to US18/048,448 priority patent/US20230155240A1/en
Publication of JP2023073702A publication Critical patent/JP2023073702A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/058Construction or manufacture
    • H01M10/0585Construction or manufacture of accumulators having only flat construction elements, i.e. flat positive electrodes, flat negative electrodes and flat separators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/262Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders with fastening means, e.g. locks
    • H01M50/264Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders with fastening means, e.g. locks for cells or batteries, e.g. straps, tie rods or peripheral frames
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/04Construction or manufacture in general
    • H01M10/0468Compression means for stacks of electrodes and separators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/04Construction or manufacture in general
    • H01M10/0481Compression means other than compression means for stacks of electrodes and separators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/204Racks, modules or packs for multiple batteries or multiple cells
    • H01M50/207Racks, modules or packs for multiple batteries or multiple cells characterised by their shape
    • H01M50/209Racks, modules or packs for multiple batteries or multiple cells characterised by their shape adapted for prismatic or rectangular cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/204Racks, modules or packs for multiple batteries or multiple cells
    • H01M50/207Racks, modules or packs for multiple batteries or multiple cells characterised by their shape
    • H01M50/211Racks, modules or packs for multiple batteries or multiple cells characterised by their shape adapted for pouch cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/218Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders characterised by the material
    • H01M50/22Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders characterised by the material of the casings or racks
    • H01M50/222Inorganic material
    • H01M50/224Metals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/233Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders characterised by physical properties of casings or racks, e.g. dimensions
    • H01M50/242Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders characterised by physical properties of casings or racks, e.g. dimensions adapted for protecting batteries against vibrations, collision impact or swelling
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/249Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders specially adapted for aircraft or vehicles, e.g. cars or trains
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/258Modular batteries; Casings provided with means for assembling
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/262Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders with fastening means, e.g. locks
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/271Lids or covers for the racks or secondary casings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2220/00Batteries for particular applications
    • H01M2220/20Batteries in motive systems, e.g. vehicle, ship, plane
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

To provide a battery module that applies appropriate pressure to a laminate, absorbs the displacement of the pressurized load that accompanies charging and discharging of a stacked battery cells when using a lithium-ion battery, can fix a pressure plate at the end of the stacking direction of the lithium-ion battery stack to a case.SOLUTION: A battery module includes a cell laminate in which a plurality of battery cells are stacked, each having a power generation element and an outer body covering the power generation element, a fastening member that fastens the cell laminate, end plates arranged at both ends of the cell laminate in the stacking direction, a fastening nut that fastens the fastening member and the end plate on the outside of the cell laminate, a stay fastened by the fastening nut, and a case containing the cell laminate, and the cell laminate is fixed to the case by the stay.SELECTED DRAWING: Figure 1

Description

本発明は、バッテリモジュールに関する。 The present invention relates to battery modules.

電動車両などの動力源となるバッテリモジュールを適切に機能させるためには、積層される電池セルに積層方向の圧力を与えて加圧する必要がある。特に、電解質として固体電解質を用いた固体二次電池においては、液体電解質を用いた液体二次電池と比較して遥かに大きな圧力を加える必要がある。加圧方法として、電池セルの積層体の両側端面から積層体を初期加圧した状態で、積層体の両側端面及び側面にエンドプレート及びサイドプレートを接合する方法がある。 In order to properly function a battery module that serves as a power source for an electric vehicle or the like, it is necessary to pressurize the stacked battery cells by applying pressure in the stacking direction. In particular, in a solid secondary battery using a solid electrolyte as an electrolyte, it is necessary to apply much higher pressure than in a liquid secondary battery using a liquid electrolyte. As a pressurizing method, there is a method of joining end plates and side plates to both side end surfaces and side surfaces of the stack in a state where the stack is initially pressed from both side end surfaces of the stack of battery cells.

上記の加圧方法では、積層体に対して目標圧力よりも大きな初期加圧を行う必要がある。また、積層体の積層方向の弾性率にはバラつきがあるため、残留荷重が不均一になるという問題がある。更に、エンドプレートやサイドプレートの強度や剛性が必要となる結果、部材のスペースが増大し、バッテリモジュールにおける電池セルの占有率が低くなる問題もある。上記以外の加圧方法としては、積層体を一対の加圧プレートで挟み、連結ロッドによって一対の加圧プレートを加圧する技術が開示されている(例えば、特許文献1参照)。 In the pressurization method described above, it is necessary to apply initial pressurization to the laminate that is higher than the target pressure. In addition, there is a problem that the residual load becomes non-uniform because the elastic modulus of the laminated body varies in the lamination direction. Furthermore, as a result of the need for strength and rigidity of the end plates and side plates, there is also the problem that the space for the members increases and the occupancy rate of the battery cells in the battery module decreases. As a pressurizing method other than the above, a technique is disclosed in which a laminate is sandwiched between a pair of pressurizing plates and a connecting rod presses the pair of pressurizing plates (see, for example, Patent Document 1).

特開2008-293771号公報Japanese Patent Application Laid-Open No. 2008-293771

特許文献1に開示された技術は、複数の角型リチウムイオン電池を同一平面上に配置し、中心部連結ロッドと周辺部連結ロッドにより一対の加圧プレートを連結するものである。一対の加圧プレートは、周辺部連結ロッドの両端に取り付けられるネジ部材を締め付けることで、互いに近づくように加圧される。しかし、上記の技術では、リチウムイオン電池が充放電に伴い膨張又は収縮した際にセル積層方向の変位が発生するため、リチウムイオン電池の使用時において、リチウムイオン電池積層体の積層方向端部の加圧プレートを、ケースへ固定することが困難になる。 The technique disclosed in Patent Document 1 is to arrange a plurality of prismatic lithium-ion batteries on the same plane and connect a pair of pressure plates with a central connecting rod and a peripheral connecting rod. The pair of pressure plates are pressed toward each other by tightening screw members attached to both ends of the peripheral connecting rod. However, in the above technology, displacement occurs in the cell stacking direction when the lithium ion battery expands or contracts due to charging and discharging. It becomes difficult to fix the pressure plate to the case.

本発明は、上記に鑑みてなされたものであり、積層体を好適に加圧できると共に、リチウムイオン電池の使用時において、積層された電池セルの充放電に伴う加圧荷重の変位を吸収し、リチウムイオン電池積層体の積層方向端部の加圧プレートをケースへ固定することができるバッテリモジュールを提供することを目的とする。 The present invention has been devised in view of the above, and is capable of suitably pressurizing a laminate and absorbing the displacement of the pressurizing load that accompanies charging and discharging of the stacked battery cells during use of a lithium-ion battery. SUMMARY OF THE INVENTION An object of the present invention is to provide a battery module in which pressure plates at ends in the stacking direction of a lithium-ion battery stack can be fixed to a case.

(1) 本発明は、発電要素と、前記発電要素を被覆する外装体と、を有する複数の電池セルが積層されたセル積層体と、前記セル積層体を締結する締結部材と、前記セル積層体の積層方向の両端に配置されるエンドプレートと、前記締結部材と前記エンドプレートとを前記セル積層体の外側において締結する締結ナットと、前記締結ナットにより締結されるステーと、前記セル積層体を収容するケースと、を有し、前記セル積層体は、前記ステーによって前記ケースに固定される、バッテリモジュールに関する。 (1) The present invention provides a cell stack in which a plurality of battery cells are stacked, each having a power generation element and an exterior body covering the power generation element, a fastening member for fastening the cell stack, and the cell stack. end plates arranged at both ends in the stacking direction of the body; fastening nuts for fastening the fastening members and the end plates on the outside of the cell stack; stays fastened by the fastening nuts; and the cell stack. and the cell stack is fixed to the case by the stay.

(1)の発明によれば、セル積層体の膨張収縮に伴う変位を、ステーにより吸収することができるバッテリモジュールを提供できる。 According to the invention of (1), it is possible to provide a battery module that can absorb displacement due to expansion and contraction of the cell stack by means of the stay.

(2) 前記ステーの前記積層方向の剛性は、前記ステーの前記積層方向に対して直交する方向の剛性よりも低い、(1)に記載のバッテリモジュール。 (2) The battery module according to (1), wherein the rigidity of the stay in the stacking direction is lower than the rigidity of the stay in a direction perpendicular to the stacking direction.

(2)の発明によれば、セル積層体の膨張収縮に伴う変位を、ステーにより好ましく吸収することができる。 According to the invention of (2), displacement due to expansion and contraction of the cell stack can be preferably absorbed by the stay.

(3) 前記ステーは、前記積層方向から視て、下方に向けて広がる方向に傾斜する第1傾斜部を有する、(1)又は(2)に記載のバッテリモジュール。 (3) The battery module according to (1) or (2), wherein the stay has a first inclined portion inclined in a downward widening direction when viewed from the stacking direction.

(3)の発明によれば、セル積層体の膨張収縮に伴う変位を、ステーにより好ましく吸収することができる。 According to the invention of (3), displacement due to expansion and contraction of the cell stack can be preferably absorbed by the stay.

(4) 前記ステーは、前記締結ナットとの締結部から、前記セル積層体の前記積層方向外側に向けて下方に傾斜する第2傾斜部を有する、(1)~(3)のいずれかに記載のバッテリモジュール。 (4) Any one of (1) to (3), wherein the stay has a second inclined portion that slopes downward from the fastening portion with the fastening nut toward the outside in the stacking direction of the cell stack. Battery module as described.

(4)の発明によれば、セル積層体の膨張収縮に伴う変位を、ステーにより好ましく吸収することができる。 According to the invention of (4), displacement due to expansion and contraction of the cell stack can be preferably absorbed by the stay.

(5) 前記締結部材は、複数配置され、前記ステーは、前記締結部材の一部が挿通される孔部を複数有し、かつ一体に形成される、(1)~(4)のいずれかに記載のバッテリモジュール。 (5) Any one of (1) to (4), wherein a plurality of the fastening members are arranged, and the stay has a plurality of holes through which part of the fastening members are inserted, and is integrally formed. The battery module described in .

(5)の発明によれば、ステーの剛性をより精密に設計でき、バッテリモジュールの信頼性を向上できる。 According to the invention of (5), the rigidity of the stay can be designed more precisely, and the reliability of the battery module can be improved.

本発明の第1実施形態に係るバッテリモジュールを側面視で示す一部断面図である。1 is a partial cross-sectional view showing a battery module according to a first embodiment of the invention as viewed from the side; FIG. 図1のバッテリモジュールの構造を示す分解図である。FIG. 2 is an exploded view showing the structure of the battery module of FIG. 1; 図2の要部を拡大して示す図である。FIG. 3 is an enlarged view of a main part of FIG. 2; 本発明の第2実施形態に係るバッテリモジュールを上面視で示す一部断面図である。FIG. 6 is a partial cross-sectional view showing a battery module according to a second embodiment of the present invention as viewed from above; 図4のバッテリモジュールを側面視で示す一部断面図である。FIG. 5 is a partial cross-sectional view showing the battery module of FIG. 4 in a side view; 図4のバッテリモジュールを一方の積層方向側から視た図である。FIG. 5 is a diagram of the battery module of FIG. 4 viewed from one stacking direction side; 図4のバッテリモジュールのステーを一方の積層方向側から視た図である。FIG. 5 is a view of the stay of the battery module in FIG. 4 as viewed from one stacking direction side; 図7のバッテリモジュールのステーを側面から視た図である。FIG. 8 is a side view of a stay of the battery module of FIG. 7; 図7のバッテリモジュールのステーの全体構成を一方の積層方向側から視た図である。FIG. 8 is a view of the overall configuration of the stay of the battery module of FIG. 7 viewed from one stacking direction side; 図7のバッテリモジュールのステーの変形例を示す図である。FIG. 8 is a diagram showing a modification of the stay of the battery module of FIG. 7; 図10のステーを側面から視た図である。FIG. 11 is a side view of the stay of FIG. 10;

(第1実施形態)
本発明の第1実施形態に係るバッテリモジュールについて、図1から図3を参照して説明する。以下に示す各図面において、同一部分及び対応部分には同一符号を付している。
(First embodiment)
A battery module according to a first embodiment of the present invention will be described with reference to FIGS. 1 to 3. FIG. In each drawing shown below, the same reference numerals are given to the same parts and corresponding parts.

[セル積層体]
第1実施形態に係るバッテリモジュール10は、図1に示すように、発電要素2と、発電要素2を被覆する外装体3と、を有する複数の電池セル1が積層されたセル積層体11a、11bを有する。発電要素2は、例えば、正極層と、固体電解質層と、負極層とが、この順に繰り返し積層された固体電池である。以下の説明において、発電要素2を固体電池として説明するが、発電要素2は、液体電解質を備える電解液系電池であってもよい。バッテリモジュール10は、上記以外に、締結部材4と、中央固定部材5と、エンドプレート6と、加圧プレート7と、ステー8と、締結ナットf1と、を有する。
[Cell laminate]
A battery module 10 according to the first embodiment, as shown in FIG. 11b. The power generation element 2 is, for example, a solid battery in which a positive electrode layer, a solid electrolyte layer, and a negative electrode layer are repeatedly laminated in this order. In the following description, the power generation element 2 will be described as a solid battery, but the power generation element 2 may be an electrolytic solution system battery including a liquid electrolyte. The battery module 10 has a fastening member 4, a central fixing member 5, an end plate 6, a pressure plate 7, a stay 8, and a fastening nut f1 in addition to the above.

発電要素2としての正極層、固体電解質層、及び負極層を構成する材料としては、固体電池を構成する材料として公知の材料を使用できる。 As materials for forming the positive electrode layer, the solid electrolyte layer, and the negative electrode layer as the power generation element 2, known materials for forming a solid battery can be used.

外装体3は、内部に発電要素2を収容する。外装体3は、特に制限されないが、ラミネートフィルムであることが好ましい。外装体3をラミネートフィルムで構成することで、外装体3の体積を低減することができ、バッテリモジュールのエネルギー密度を向上できる。ラミネートセルは、例えば、アルミニウム、ステンレス(SUS)等からなる金属層に対し、外側にポリオレフィン等の熱融着性樹脂層が積層された多層構造を有する。外装体3としては、金属缶を用いることもできる。 The exterior body 3 accommodates the power generation element 2 inside. Although the exterior body 3 is not particularly limited, it is preferably a laminate film. By configuring the outer package 3 with a laminate film, the volume of the outer package 3 can be reduced, and the energy density of the battery module can be improved. A laminate cell has a multi-layer structure in which, for example, a metal layer made of aluminum, stainless steel (SUS), or the like is laminated with a heat-sealable resin layer such as polyolefin on the outside. A metal can can also be used as the exterior body 3 .

複数の電池セル1は、発電要素2を構成する電極層の積層方向と同一の方向(図1に示す積層方向L1)に複数積層されてセル積層体11a、11bを構成する。セル積層体11a、11bは、積層方向L1の両端側からエンドプレート6によって挟圧されて保持される。 A plurality of battery cells 1 are stacked in the same direction (stacking direction L1 shown in FIG. 1) as the stacking direction of the electrode layers constituting the power generation element 2 to form cell stacks 11a and 11b. The cell stacks 11a and 11b are held by being pressed by end plates 6 from both end sides in the stacking direction L1.

複数の電池セル1には、図2に示すように、積層方向L1に沿った上下方向の断面の中央部において、発電要素2を構成する各電極層を貫通する方向に、それぞれ第1の貫通孔h1(以下、単に「貫通孔h1」と記載する場合がある)が設けられている。貫通孔h1は、外装体3ごと電池セル1を貫通する孔部である。貫通孔h1の形状は特に制限されないが、後述する締結部材4の断面形状と同様の円形の断面形状を有することが好ましい。貫通孔h1の形成方法としては、例えば、発電要素2を構成する各電極層及び固体電解質層毎に貫通孔を開けて積層体を形成し、上記積層体を外装体3に封入して、上記貫通孔に対応する箇所の外装体3同士をラミネートフィルムの溶着により接合し、上記貫通孔の内周側に、上記貫通孔よりも一回り小さい貫通孔を、パンチ打ち抜き等により外装体3に形成することにより形成できる。 As shown in FIG. 2 , in the plurality of battery cells 1, at the central portion of the cross section in the vertical direction along the stacking direction L1, first through holes are formed in the direction of penetrating each electrode layer constituting the power generation element 2. A hole h1 (hereinafter sometimes simply referred to as "through hole h1") is provided. The through hole h1 is a hole that penetrates the battery cell 1 together with the exterior body 3 . Although the shape of the through hole h1 is not particularly limited, it preferably has a circular cross-sectional shape similar to the cross-sectional shape of the fastening member 4, which will be described later. As a method for forming the through holes h1, for example, a through hole is formed in each of the electrode layers and the solid electrolyte layers constituting the power generation element 2 to form a laminate, the laminate is enclosed in the exterior body 3, and the above The exterior bodies 3 are joined together at locations corresponding to the through holes by welding the laminate film, and a through hole slightly smaller than the through hole is formed in the exterior body 3 on the inner peripheral side of the through hole by punching or the like. It can be formed by

貫通孔h1がそれぞれ連通するように、複数の電池セル1が配置され、貫通孔h1には、セル積層体11a、11bを締結する締結部材4が配置される。一対のエンドプレート6は、締結部材4によって互いの間隔を狭める方向に締め付けられる。これによって、セル積層体11a、11bを初期加圧(予圧)することなく加圧することができる。 A plurality of battery cells 1 are arranged so that the through holes h1 communicate with each other, and a fastening member 4 for fastening the cell stacks 11a and 11b is arranged in the through holes h1. The pair of end plates 6 are fastened by the fastening member 4 in a direction to narrow the distance between them. As a result, the cell laminates 11a and 11b can be pressurized without being initially pressurized (prepressurized).

[締結部材]
締結部材4は、本体をなす軸部と、軸部の両端に形成された雄ネジ部41と、上記軸部の一部をなし、軸方向における中央部に形成される拡径部42と、雄ネジ部41と軸部との間に配置される回り止め部43と、を有する。拡径部42は、後述する中央固定部材5の第2の貫通孔h2内に配置される。締結部材4は、軸部がセル積層体11a、11bの貫通孔h1に挿通されると共に、雄ネジ部41はセル積層体11a、11bの両端部において、エンドプレート6、加圧プレート7、ステー8にそれぞれ設けられた孔部h3、h4、h5から延出し、締結ナットf1と螺着される。締結部材4の断面形状は、断面応力を均一にするという観点から、円形であることが好ましい。
[Fastening member]
The fastening member 4 includes a shaft portion forming a main body, male screw portions 41 formed at both ends of the shaft portion, an enlarged diameter portion 42 forming a part of the shaft portion and formed in the central portion in the axial direction, It has a detent portion 43 arranged between the male screw portion 41 and the shaft portion. The expanded diameter portion 42 is arranged in a second through hole h2 of the central fixing member 5, which will be described later. The fastening members 4 have their shafts inserted through the through holes h1 of the cell stacks 11a and 11b, and the male screw portions 41 are connected to the end plates 6, pressure plates 7 and stays at both ends of the cell stacks 11a and 11b. 8 are extended from holes h3, h4, and h5 respectively provided in 8, and are screwed to the fastening nut f1. The cross-sectional shape of the fastening member 4 is preferably circular from the viewpoint of making the cross-sectional stress uniform.

締結部材4をセル積層体11a、11bの積層面における中央部に設けられた貫通孔h1に挿通させ、一対のエンドプレート6及び締結ナットf1を用いてセル積層体11a、11bを加圧することで、セル積層体11a、11bに加えられる面圧を均一化することができる。また、セル積層体を固定する外枠が不要となり、バッテリモジュール10における発電要素2の体積比を向上できるため、バッテリモジュール10のエネルギー密度を向上できる。なお、本発明において、締結部材4は、セル積層体の積層面における中央部に設けられた貫通孔h1に挿通されるものには限定されない。締結部材4は、セル積層体の積層面における中央部以外の箇所に配置されるものであってもよい。 By inserting the fastening member 4 into the through hole h1 provided in the central portion of the stacking surfaces of the cell stacks 11a and 11b and pressurizing the cell stacks 11a and 11b using a pair of end plates 6 and fastening nuts f1, , the surface pressure applied to the cell laminates 11a and 11b can be made uniform. In addition, an outer frame for fixing the cell stack is not required, and the volume ratio of the power generation elements 2 in the battery module 10 can be improved, so the energy density of the battery module 10 can be improved. In the present invention, the fastening member 4 is not limited to one that is inserted through the through hole h1 provided in the central portion of the stacking surface of the cell stack. The fastening member 4 may be arranged at a location other than the central portion on the stacking surface of the cell stack.

回り止め部43は、図1に示すように、締結ナットf1の近傍である、エンドプレート6に形成された孔部h3の内部に配置される。回り止め部43は、例えば、断面視で多角形状又は鋸歯形状を有する部材である。回り止め部43は締結部材4と一体として形成されていてもよく、締結部材4とは別部材で構成され、締結部材4に固着されたものであってもよい。 As shown in FIG. 1, the anti-rotation portion 43 is arranged inside the hole h3 formed in the end plate 6 near the fastening nut f1. The anti-rotation portion 43 is, for example, a member having a polygonal shape or a sawtooth shape when viewed in cross section. The anti-rotation portion 43 may be formed integrally with the fastening member 4 , or may be configured as a separate member from the fastening member 4 and fixed to the fastening member 4 .

回り止め部43は、例えばエンドプレート6に形成された、回り止め部43の断面形状に対応する内面形状を有する孔部h3に篏合することで、締結部材4の軸方向へのねじれ応力を受け止める機能を有する。これにより、雄ネジ部41を締結ナットf1と螺着する際のねじれ応力は、締結部材4の雄ネジ部41及び回り止め部43にのみ伝達され、回り止め部43からセル積層体11a、11bの内部側には伝達されない。従って、バッテリモジュール10の使用中における締結ナットf1の緩みを長期間にわたって防止することができる。また、締結ナットf1の締め付けにより、より大きな軸力を締結部材4に対して加えることができる。上記に加えて、締結ナットf1の締め付け度合いによってセル積層体11a、11bに加えられる面圧を精密に調整することが可能になる。 The anti-rotation portion 43 is fitted into a hole h3 having an inner surface shape corresponding to the cross-sectional shape of the anti-rotation portion 43, which is formed in the end plate 6, for example, so that the torsional stress in the axial direction of the fastening member 4 is reduced. It has the function of receiving. As a result, the torsional stress generated when the male threaded portion 41 is screwed to the fastening nut f1 is transmitted only to the male threaded portion 41 of the fastening member 4 and the anti-rotation portion 43. is not transmitted to the internal side of the Therefore, loosening of the fastening nut f1 during use of the battery module 10 can be prevented for a long period of time. Further, by tightening the fastening nut f1, a larger axial force can be applied to the fastening member 4. As shown in FIG. In addition to the above, it is possible to precisely adjust the surface pressure applied to the cell stacks 11a and 11b by adjusting the tightening degree of the fastening nut f1.

図2に示す締結部材4の軸部44の軸方向の断面における直径は、セル積層体11a、11bに加えられる面圧に応じて設計することができる。上記直径を小さくすることにより、軸部44に加わる単位面積当たりの応力が増加するため、エンドプレート6間距離を圧縮する方向に保持する弾性率を低下させることが可能となり、セル積層体11a、11bに加えられる面圧の変化幅を小さくすることができる。 The diameter of the axial section of the shaft portion 44 of the fastening member 4 shown in FIG. 2 can be designed according to the surface pressure applied to the cell stacks 11a and 11b. By reducing the diameter, the stress per unit area applied to the shaft portion 44 increases, so it becomes possible to reduce the elastic modulus that maintains the distance between the end plates 6 in the direction of compression. It is possible to reduce the variation width of the surface pressure applied to 11b.

[中央固定部材]
中央固定部材5は、複数の電池セル1の間に配置される部材であり、図1に示すように、バッテリモジュール10における積層方向L1の中央に配置される部材である。中央固定部材5により、セル積層体11a、11bに加えられる面圧は、積層方向L1において均一化される。中央固定部材5は、積層方向L1に圧縮される力しか受けることが無いため、例えばアルミニウム等の軽量の金属により構成することができる。
[Central fixing member]
The central fixing member 5 is a member arranged between the plurality of battery cells 1 and, as shown in FIG. 1, is a member arranged in the center of the battery module 10 in the stacking direction L1. The surface pressure applied to the cell stacks 11a and 11b is made uniform in the stacking direction L1 by the central fixing member 5. As shown in FIG. Since the central fixing member 5 receives only a compressive force in the stacking direction L1, it can be made of a lightweight metal such as aluminum.

中央固定部材5は、締結部材4の拡径部42が配置される、第2の貫通孔h2(以下、単に「貫通孔h2」と記載する場合がある)が設けられている。図2に示すように、貫通孔h2が貫通孔h1と連通するように中央固定部材5が配置される。貫通孔h2は、拡径部42とインロー固定等により軸方向に対して垂直な面で固定可能であってもよい。これにより、中央固定部材5と締結部材4とを位置決めして固定することが可能となり、中央固定部材5をバッテリモジュール10における積層方向L1の中央に容易に配置することができる。 The central fixed member 5 is provided with a second through hole h2 (hereinafter sometimes simply referred to as “through hole h2”) in which the enlarged diameter portion 42 of the fastening member 4 is arranged. As shown in FIG. 2, the central fixing member 5 is arranged so that the through hole h2 communicates with the through hole h1. The through hole h2 may be fixed on a plane perpendicular to the axial direction by means of spigot fixing or the like to the expanded diameter portion 42 . Thereby, the central fixing member 5 and the fastening member 4 can be positioned and fixed, and the central fixing member 5 can be easily arranged in the center of the battery module 10 in the stacking direction L1.

[エンドプレート]
エンドプレート6は、セル積層体11a、11bの積層方向L1の両端に配置される一対の部材である。エンドプレート6には、図2に示すように、締結部材4を挿通可能な孔部h3が形成される。孔部h3に締結部材4が挿通され、締結ナットf1により締結されることで、エンドプレート6はセル積層体11a、11bを挟圧して保持する。
[end plate]
The end plates 6 are a pair of members arranged at both ends in the stacking direction L1 of the cell stacks 11a and 11b. As shown in FIG. 2, the end plate 6 is formed with a hole h3 through which the fastening member 4 can be inserted. The fastening member 4 is inserted through the hole h3 and fastened with the fastening nut f1, so that the end plate 6 holds the cell stacks 11a and 11b under pressure.

エンドプレート6は、図3に示すように、傾斜部61と、荷重点62と、を有する。荷重点62は、傾斜部61と連続する面であり、積層方向L1に対して略垂直な面である。エンドプレート6は、複数の荷重点62において、加圧プレート7と当接している。これにより、エンドプレート6からセル積層体11a、11bに加えられる面圧は、積層面に対して均一化される。 The end plate 6 has an inclined portion 61 and a load point 62, as shown in FIG. The load point 62 is a surface continuous with the inclined portion 61 and substantially perpendicular to the stacking direction L1. The end plate 6 abuts the pressure plate 7 at a plurality of load points 62 . As a result, the surface pressure applied from the end plate 6 to the cell stacks 11a and 11b is made uniform with respect to the stacking surfaces.

[加圧プレート]
加圧プレート7は、エンドプレート6と共に締結ナットf1により締結される一対の部材である。加圧プレート7は、セル積層体11a、11bの積層方向L1の両端における、エンドプレート6の積層方向L1の外側に配置される。加圧プレート7は、弾性変形可能な部材であり、例えば金属製の板バネ状の部材である。加圧プレート7には、図2に示すように、締結部材4を挿通可能な孔部h4が形成される。孔部h4に締結部材4が挿通され、締結ナットf1により締結されることで、加圧プレート7を介して、締結ナットf1の締め付けによる軸力がエンドプレート6に伝達される。
[Pressure plate]
The pressure plate 7 is a pair of members that are fastened together with the end plate 6 by fastening nuts f1. The pressure plates 7 are arranged outside the end plates 6 in the stacking direction L1 at both ends of the cell stacks 11a and 11b in the stacking direction L1. The pressure plate 7 is an elastically deformable member, such as a leaf spring-like member made of metal. As shown in FIG. 2, the pressure plate 7 is formed with a hole h4 through which the fastening member 4 can be inserted. The fastening member 4 is inserted through the hole h4 and fastened with the fastening nut f1, whereby the axial force generated by tightening the fastening nut f1 is transmitted to the end plate 6 via the pressure plate 7.

加圧プレート7は、図3に示すように、傾斜部71と、荷重点72と、を有する。傾斜部71は、傾斜部61に沿って傾斜する面である。荷重点72は、傾斜部71と連続する面であり、積層方向L1に対して略垂直な面である。 The pressure plate 7 has an inclined portion 71 and a load point 72, as shown in FIG. The inclined portion 71 is a surface inclined along the inclined portion 61 . The load point 72 is a surface continuous with the inclined portion 71 and substantially perpendicular to the stacking direction L1.

[ステー]
ステー8は、エンドプレート6及び加圧プレート7と共に締結ナットf1により締結される一対の部材である。ステー8は、セル積層体11a、11bを固定するための部材である。ステー8は、セル積層体11a、11bの積層方向L1の両端における、加圧プレート7の積層方向L1の外側に配置される。ステー8には、図2に示すように、締結部材4を挿通可能な孔部h5が形成される。孔部h5に締結部材4が挿通され、締結ナットf1により締結される。締結部材4を利用してステー8を固定することで、ステー8の設置スペースや部品点数を低減することができる。ステー8の構成の詳細については、以下の第2実施形態において説明する。
[Stay]
The stay 8 is a pair of members that are fastened together with the end plate 6 and the pressure plate 7 by fastening nuts f1. The stay 8 is a member for fixing the cell laminates 11a and 11b. The stays 8 are arranged outside the pressure plate 7 in the stacking direction L1 at both ends of the cell stacks 11a and 11b in the stacking direction L1. As shown in FIG. 2, the stay 8 is formed with a hole h5 through which the fastening member 4 can be inserted. The fastening member 4 is inserted through the hole h5 and fastened with the fastening nut f1. By fixing the stay 8 using the fastening member 4, the installation space for the stay 8 and the number of parts can be reduced. Details of the configuration of the stay 8 will be described in a second embodiment below.

(第2実施形態)
次に、本発明の第2実施形態について、図4~図9を参照して説明する。以下の説明において、上記第1実施形態と同様の構成については、図面に同一の符号を付して説明を省略する場合がある。
(Second embodiment)
Next, a second embodiment of the invention will be described with reference to FIGS. 4 to 9. FIG. In the following description, the same reference numerals may be given to the drawings for the same configuration as in the first embodiment, and the description thereof may be omitted.

図4は、第2実施形態に係るバッテリモジュール100の上面図である。バッテリモジュール100は、バッテリモジュール10を組み合わせ、より大型のバッテリモジュールとしたものである。図4及び図5に示すように、複数の電池セル1aにおいて、積層方向L1に沿った上下方向の断面の中央部には、複数の孔部が形成され、それぞれ複数の締結部材4(本実施形態においては、3本)が挿通配置されている。締結部材4の配置される数は、上記に限定されず、例えば、2本や4本であってもよい。バッテリモジュール100は、図5及び図6に示すように、電池セル1aの積層体を収容するケース9を備える。 FIG. 4 is a top view of the battery module 100 according to the second embodiment. The battery module 100 is obtained by combining the battery modules 10 into a larger battery module. As shown in FIGS. 4 and 5, in the plurality of battery cells 1a, a plurality of holes are formed in the central portion of the cross section in the vertical direction along the stacking direction L1, and a plurality of fastening members 4 (in this embodiment) are formed. In the form, three) are inserted and arranged. The number of fastening members 4 to be arranged is not limited to the above, and may be, for example, two or four. As shown in FIGS. 5 and 6, the battery module 100 includes a case 9 that houses a stack of battery cells 1a.

本実施形態に係る中央固定部材5aは、締結部材4が挿通される複数の貫通孔h2を有している。また、中央固定部材5aは、ケース9との連結部51を有している。連結部51に対し、締結ボルトf2が螺入されて中央固定部材5aとケース9とが連結される。これによって、電池セル1aの積層体の剛性をより高めることができる。 The central fixing member 5a according to this embodiment has a plurality of through holes h2 through which the fastening members 4 are inserted. Further, the central fixing member 5a has a connection portion 51 with the case 9. As shown in FIG. A fastening bolt f<b>2 is screwed into the connecting portion 51 to connect the central fixing member 5 a and the case 9 . Thereby, the rigidity of the stack of battery cells 1a can be further increased.

本実施形態に係る加圧プレート7は、図6に示すように、積層方向L1に対して直交する方向である、方向L2において、3つ配置されている。また、加圧プレート7がエンドプレート6と当接する荷重点72a、72b、72c、及び72dは、本実施形態において、締結ナットf1を基準として対称となる位置に4つ配置されている。 As shown in FIG. 6, three pressure plates 7 according to this embodiment are arranged in a direction L2, which is a direction perpendicular to the stacking direction L1. In this embodiment, four load points 72a, 72b, 72c, and 72d at which the pressure plate 7 contacts the end plate 6 are arranged at symmetrical positions with respect to the fastening nut f1.

[ステー]
本実施形態に係るステー8aは、図6及び図7に示すように、積層方向L1に直交する方向L2の両端及び/又は締結部材4間に、ケース9との連結部83を有する。連結部83に対し、締結ボルトf3が螺入されてステー8aとケース9とが連結される。これによって、電池セル1aの積層体の剛性をより高めることができる。また、ステー8aは、弾性変形可能な部材により構成され、積層方向L1における剛性が、積層方向L1に直交する方向の剛性よりも低く設定される。これによって、ステー8aは、電池セル1aの積層体の膨張収縮に伴う変位を吸収することができる。従って、バッテリモジュール10の使用時に電池セル1aが膨張収縮するにも拘らず、ステー8aを介して加圧プレート7をケース9に固定することができる。
[Stay]
As shown in FIGS. 6 and 7, the stay 8a according to this embodiment has connecting portions 83 with the case 9 at both ends in a direction L2 orthogonal to the stacking direction L1 and/or between the fastening members 4. As shown in FIGS. A fastening bolt f<b>3 is screwed into the connecting portion 83 to connect the stay 8 a and the case 9 . Thereby, the rigidity of the stack of battery cells 1a can be further increased. Further, the stay 8a is made of an elastically deformable member, and the rigidity in the stacking direction L1 is set lower than the rigidity in the direction perpendicular to the stacking direction L1. Thereby, the stay 8a can absorb the displacement caused by the expansion and contraction of the stack of the battery cells 1a. Therefore, even though the battery cells 1a expand and contract when the battery module 10 is used, the pressure plate 7 can be fixed to the case 9 via the stays 8a.

図7は、図6と同じ視点で、積層方向L1からバッテリモジュール100の積層端部側に配置されるステー8aの一部を視た図である。ステー8aは、図7に示すように、積層方向L1から視て、下方に向けて広がる方向に傾斜する第1傾斜部81を有する。また、図8に示すように、ステー8aは、締結ナットf1との締結部である孔部h5から、積層方向L1外側に向けて下方に傾斜する第2傾斜部82を有する。上記構成により、ステー8aは積層方向L1において撓み変形することで、電池セル1aの積層体の膨張収縮に伴う変位を吸収することができる。一方で、電池セル1aの積層面に対する剛性は高く、電池セル1aの積層体を好ましく固定できる。 FIG. 7 is a view of part of the stay 8a arranged on the stack end side of the battery module 100 from the stacking direction L1 from the same viewpoint as FIG. As shown in FIG. 7, the stay 8a has a first inclined portion 81 inclined in a downward widening direction when viewed from the stacking direction L1. Further, as shown in FIG. 8, the stay 8a has a second inclined portion 82 inclined downward in the stacking direction L1 from the hole h5, which is a fastening portion with the fastening nut f1. With the above configuration, the stay 8a is flexurally deformed in the stacking direction L1, thereby absorbing displacement accompanying expansion and contraction of the stack of the battery cells 1a. On the other hand, the rigidity with respect to the stacking surface of the battery cells 1a is high, and the stack of the battery cells 1a can be preferably fixed.

図9は、図6と同じ視点で、バッテリモジュール100に用いられるステー8aの全体を視た図である。ステー8aは、締結部材4及び孔部h5の数に応じて個別に設けられるのではなく、図9に示すように、締結部材4及び孔部h5の数に依らず、一体成型されたステー8aであることが好ましい。ステー8aを一体成型することで、各孔部h5の間に設けられるケース9との連結部83aを単一のものにすることができる。従って、個別にステー8aを設けて、連結部83a同士を重ね合わせて締結ボルトf3で共締めする場合と比較して、連結部83aに段差が発生しない。従って各セル積層体の膨張収縮に伴う変位を吸収するためのステー8aの剛性をより精密に設計できるので、バッテリモジュール100の信頼性を向上できる。また、バッテリモジュール100の部品点数を削減でき、組立作業性を向上できる。更に、複数の孔部h5に締結部材4を挿通し、締結ナットf1により締結することで、上記締結部材4の回り止め部43と同様の効果が得られるため、回り止め部43を設けずに締結部材4を構成できる。 FIG. 9 is an overall view of the stay 8a used in the battery module 100 from the same viewpoint as in FIG. The stay 8a is not provided individually according to the numbers of the fastening members 4 and the holes h5, but as shown in FIG. is preferred. By integrally molding the stay 8a, the connection portion 83a with the case 9 provided between the holes h5 can be made into a single piece. Therefore, compared to the case where the stays 8a are individually provided and the connecting portions 83a are overlapped with each other and tightened together with the fastening bolts f3, no step occurs in the connecting portions 83a. Therefore, the rigidity of the stay 8a for absorbing the displacement caused by the expansion and contraction of each cell stack can be designed more precisely, so that the reliability of the battery module 100 can be improved. Also, the number of parts of the battery module 100 can be reduced, and the assembling workability can be improved. Further, by inserting the fastening member 4 through the plurality of holes h5 and fastening with the fastening nut f1, the same effect as the rotation prevention portion 43 of the fastening member 4 can be obtained. The fastening member 4 can be constructed.

(第3実施形態)
図10は、第3実施形態に係るステー8bの一部を、図7と同じ視点で視た図である。ステー8bは、ステー8aが適用されるバッテリモジュール100と同様のバッテリモジュールに対して適用できる。
(Third embodiment)
FIG. 10 is a view of part of the stay 8b according to the third embodiment viewed from the same viewpoint as in FIG. The stay 8b can be applied to battery modules similar to the battery module 100 to which the stay 8a is applied.

ステー8bは、ステー8aと同様に、積層方向L1に直交する方向L2の両端及び/又は締結部材4間に、ケース9との連結部83を有する。連結部83に対し、締結ボルトf3が螺入されてステー8bとケース9とが連結される。また、図10に示すように、第1傾斜部81aを有する。図11は、図8と同様に、ステー8bを積層方向L1に沿った方向から視た図である。ステー8bは、ステー8aと同様に第2傾斜部82を有する。 Like the stay 8a, the stay 8b has connecting portions 83 with the case 9 at both ends in the direction L2 orthogonal to the stacking direction L1 and/or between the fastening members 4. As shown in FIG. A fastening bolt f<b>3 is screwed into the connecting portion 83 to connect the stay 8 b and the case 9 . Moreover, as shown in FIG. 10, it has the 1st inclination part 81a. FIG. 11 is a view of the stay 8b viewed from the stacking direction L1, as in FIG. The stay 8b has a second inclined portion 82 like the stay 8a.

ステー8bは、図10に示すように、孔部h6を有する。ステー8bに孔部h6を設けることで、ステー8bの積層方向L1における剛性を設計しやすい。孔部h6の大きさを調整することで、ステー8bの積層方向L1における剛性を調整することができるためである。上記に加えて、ステー8bが孔部h6を有することで、積層方向L1における撓み許容量を大きくすることができる。このため、電池セル1aの積層体の膨張収縮に伴う変位をより好ましく吸収することができる。図10において孔部h6の形状は略方形状の開口を有するものであるが、孔部h6の形状は特に限定されない。 The stay 8b has a hole h6 as shown in FIG. By providing the hole h6 in the stay 8b, it is easy to design the rigidity of the stay 8b in the stacking direction L1. This is because the rigidity of the stay 8b in the stacking direction L1 can be adjusted by adjusting the size of the hole h6. In addition to the above, since the stay 8b has the hole h6, it is possible to increase the allowable amount of deflection in the stacking direction L1. Therefore, it is possible to more preferably absorb the displacement caused by the expansion and contraction of the stack of battery cells 1a. Although the shape of the hole h6 in FIG. 10 has a substantially rectangular opening, the shape of the hole h6 is not particularly limited.

以上、本発明の好ましい実施形態について説明したが、本発明は上記実施形態に限定されず、適宜変更が可能である。 Although the preferred embodiments of the present invention have been described above, the present invention is not limited to the above embodiments and can be modified as appropriate.

上記実施形態において、回り止め部43は、例えばエンドプレート6に形成された、回り止め部43の断面形状に対応する内面形状を有する孔部h3に篏合するものとして説明した。上記に限定されない。回り止め部43は、雄ネジ部41の端部に設けられ、雄ネジ部41の端部を固定するものであってもよい。 In the above embodiment, the anti-rotation portion 43 has been described as fitting into the hole h3 formed in the end plate 6 and having an inner surface shape corresponding to the cross-sectional shape of the anti-rotation portion 43 . Not limited to the above. The anti-rotation portion 43 may be provided at the end of the male threaded portion 41 to fix the end of the male threaded portion 41 .

上記実施形態において、ステー8、8aは、締結部材4を挿通可能な孔部h5が形成され、締結ナットf1により締結されるものとして説明した。上記に限定されない。本発明におけるステーは、加圧プレートと1箇所又は複数箇所で連結されるものであってもよい。 In the above-described embodiment, the stays 8 and 8a are described as having a hole h5 through which the fastening member 4 can be inserted and fastened with the fastening nut f1. Not limited to the above. The stay in the present invention may be connected to the pressure plate at one or more points.

10、100 バッテリモジュール
1、1a 電池セル
11a,11b セル積層体
2 発電要素
3 外装体
4 締結部材
43 回り止め部
5、5a 中央固定部材
51 連結部
6 エンドプレート
8 ステー
81 第1傾斜部
82 第2傾斜部
9 ケース
f1 締結ナット
h1 第1の貫通孔
h2 第2の貫通孔
h5 孔部
L1 積層方向
REFERENCE SIGNS LIST 10, 100 battery module 1, 1a battery cell 11a, 11b cell stack 2 power generating element 3 exterior body 4 fastening member 43 anti-rotation portion 5, 5a central fixing member 51 connecting portion 6 end plate 8 stay 81 first inclined portion 82 second 2 inclined portion 9 case f1 fastening nut h1 first through hole h2 second through hole h5 hole portion L1 stacking direction

Claims (5)

発電要素と、前記発電要素を被覆する外装体と、を有する複数の電池セルが積層されたセル積層体と、
前記セル積層体を締結する締結部材と、
前記セル積層体の積層方向の両端に配置されるエンドプレートと、
前記締結部材と前記エンドプレートとを前記セル積層体の外側において締結する締結ナットと、
前記締結ナットにより締結されるステーと、
前記セル積層体を収容するケースと、を有し、
前記セル積層体は、前記ステーによって前記ケースに固定される、バッテリモジュール。
a cell stack in which a plurality of battery cells are stacked, each having a power generation element and an outer body covering the power generation element;
a fastening member that fastens the cell stack;
end plates disposed at both ends of the cell stack in the stacking direction;
a fastening nut for fastening the fastening member and the end plate on the outside of the cell stack;
a stay fastened by the fastening nut;
a case that accommodates the cell stack,
The battery module, wherein the cell stack is fixed to the case by the stay.
前記ステーの前記積層方向の剛性は、前記ステーの前記積層方向に対して直交する方向の剛性よりも低い、請求項1に記載のバッテリモジュール。 2. The battery module according to claim 1, wherein rigidity of said stay in said stacking direction is lower than rigidity of said stay in a direction orthogonal to said stacking direction. 前記ステーは、前記積層方向から視て、下方に向けて広がる方向に傾斜する第1傾斜部を有する、請求項1又は2に記載のバッテリモジュール。 3. The battery module according to claim 1, wherein said stay has a first inclined portion inclined in a downward widening direction when viewed from said stacking direction. 前記ステーは、前記締結ナットとの締結部から、前記セル積層体の前記積層方向外側に向けて下方に傾斜する第2傾斜部を有する、請求項1~3のいずれかに記載のバッテリモジュール。 The battery module according to any one of claims 1 to 3, wherein the stay has a second sloped portion that slopes downward toward the outside in the stacking direction of the cell stack from a fastening portion with the fastening nut. 前記締結部材は、複数配置され、
前記ステーは、前記締結部材の一部が挿通される孔部を複数有し、かつ一体に形成される、請求項1~4のいずれかに記載のバッテリモジュール。
A plurality of the fastening members are arranged,
5. The battery module according to claim 1, wherein said stay has a plurality of holes through which a part of said fastening member is inserted, and is integrally formed.
JP2021186321A 2021-11-16 2021-11-16 battery module Pending JP2023073702A (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2021186321A JP2023073702A (en) 2021-11-16 2021-11-16 battery module
CN202211287102.7A CN116137351A (en) 2021-11-16 2022-10-20 Storage battery module
US18/048,448 US20230155240A1 (en) 2021-11-16 2022-10-21 Battery module

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2021186321A JP2023073702A (en) 2021-11-16 2021-11-16 battery module

Publications (1)

Publication Number Publication Date
JP2023073702A true JP2023073702A (en) 2023-05-26

Family

ID=86323005

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2021186321A Pending JP2023073702A (en) 2021-11-16 2021-11-16 battery module

Country Status (3)

Country Link
US (1) US20230155240A1 (en)
JP (1) JP2023073702A (en)
CN (1) CN116137351A (en)

Also Published As

Publication number Publication date
CN116137351A (en) 2023-05-19
US20230155240A1 (en) 2023-05-18

Similar Documents

Publication Publication Date Title
CA2651063C (en) Fuel cell having matching cell laminate reactive force center, pressure device elastic force center and load input center
US7914922B2 (en) Battery pack of assembled battery and fixing method of assembled battery
JP3897029B2 (en) Battery frame and battery pack
US9034506B2 (en) Battery with voltage-generating cells and an I-shaped or H-shaped intermediate element arranged therebetween
US20120308864A1 (en) Cell block with lateral supporting of the cells
CN110998906B (en) Battery module and vehicle equipped with same
JP5217230B2 (en) Fuel cell stack and fuel cell vehicle
US20090017367A1 (en) Power module
JP2013506968A (en) Battery assembly
JP5421836B2 (en) Power supply
WO2014174944A1 (en) Insulating structure, fuel cell and fuel cell stack
JP4239780B2 (en) Battery pack and manufacturing method thereof
CN112874285A (en) Battery pack and electric vehicle
JP3963165B2 (en) Assembled battery
JP2023073702A (en) battery module
JPH0562702A (en) Fuel cell
JP2023053721A (en) battery module
JP2020177935A (en) Battery pack
JP2019129031A (en) Power storage module
JP2023053604A (en) battery module
EP4145592A1 (en) Power storage device
JP2006179402A (en) Fuel cell
JP2020177747A (en) Battery module
JPH10134834A (en) Fuel cell
JP2018160335A (en) Battery module

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20231128