JP2023073211A - Electrolyte and manufacturing method thereof - Google Patents

Electrolyte and manufacturing method thereof Download PDF

Info

Publication number
JP2023073211A
JP2023073211A JP2022169631A JP2022169631A JP2023073211A JP 2023073211 A JP2023073211 A JP 2023073211A JP 2022169631 A JP2022169631 A JP 2022169631A JP 2022169631 A JP2022169631 A JP 2022169631A JP 2023073211 A JP2023073211 A JP 2023073211A
Authority
JP
Japan
Prior art keywords
electrolyte
lithium
colloidal
colloidal electrolyte
colloid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2022169631A
Other languages
Japanese (ja)
Other versions
JP7429753B2 (en
Inventor
士淵 林
Shih-Yuan Lin
孝通 田
Hsiao Tung Tien
治宇 ▲温▼
Chih-Yu Wen
懋▲つん▼ 楊
Mao-Zun Yang
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
G Energy Technology Inc
Original Assignee
G Energy Technology Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by G Energy Technology Inc filed Critical G Energy Technology Inc
Publication of JP2023073211A publication Critical patent/JP2023073211A/en
Application granted granted Critical
Publication of JP7429753B2 publication Critical patent/JP7429753B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0565Polymeric materials, e.g. gel-type or solid-type
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/54Electrolytes
    • H01G11/56Solid electrolytes, e.g. gels; Additives therein
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0065Solid electrolytes
    • H01M2300/0082Organic polymers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Electrochemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • General Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Dispersion Chemistry (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Inorganic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Electrochromic Elements, Electrophoresis, Or Variable Reflection Or Absorption Elements (AREA)
  • Secondary Cells (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Conductive Materials (AREA)
  • Electric Double-Layer Capacitors Or The Like (AREA)

Abstract

SOLUTION: To provide an electrolyte that includes a polymeric material, a lithium salt, an organic solvent, a plasticizer, an ionic solution, and an auxiliary material, which are kneaded into a colloidal form, and in which the polymeric material is 20 to 45% by weight, the lithium salt is 2 to 10% by weight, the organic solvent is 10 to 20% by weight, the plasticizer is 10 to 20% by weight, the ionic solution is 1 to 4% by weight, the auxiliary material is 1 to 4% by weight, and a manufacturing method thereof.EFFECT: A colloidal electrolyte according to the present invention has low fluidity due to its high cohesive mechanical properties, and the ionic conductivity is also clearly improved over solid electrolytes, realizes properties such as high ionic conductivity, no need for spacers, and useful for adhesion to glass, plastic, and the like, and avoids liquid leakage due to high safety, and also has high adhesion, high light transmittance, and high conductivity.SELECTED DRAWING: Figure 1

Description

本発明は、電解質及びその製造方法、特にコロイド電解質、及び該コロイド電解質を混練方式で製造する製造方法に関する。 TECHNICAL FIELD The present invention relates to an electrolyte and a method for producing the same, particularly to a colloidal electrolyte and a method for producing the colloidal electrolyte by kneading.

現在の電解質の形態には、固体、液体やコロイドなどがある。液体電解質はイオン伝導率が高く、通電の効果が良いが、流動性を有するため、長時間使用されたり外力に押されたりすると、液漏れが生じやすく、電子部品が作動できなくなる。さらに、液体電解質には強酸や強アルカリなどの溶媒が含まれており、これらの溶媒が漏れると安全上のリスクを招く。固体電解質は、液体電解質の代わりに高分子や無機金属酸化物を用いることで、液体電解質の液漏れの問題を解決できるが、固体電解質と電極との間にインタフェース抵抗が存在するため、固体電解質のイオン伝導率が高くなく、電子部品の性能が望ましくない。コロイド電解質は固体電解質と液体電解質の間のものであり、双方の優位性を持ち、将来の電解質材料の主流となる。しかし、現在一般的なコロイド電解質には、濃度分布が不均一であり、光透過性が悪く、伝導率が低いなどの問題があり、このため、従来のコロイド電解質を改良する必要がある。 Current electrolyte forms include solids, liquids and colloids. Liquid electrolytes have high ionic conductivity and good current-carrying effects, but because they have fluidity, they tend to leak when used for long periods of time or are pushed by external forces, making electronic components inoperable. Furthermore, liquid electrolytes contain solvents such as strong acids and strong alkalis, and leakage of these solvents poses a safety risk. Solid electrolytes can solve the liquid leakage problem of liquid electrolytes by using polymers or inorganic metal oxides instead of liquid electrolytes. The ionic conductivity of is not high, and the performance of electronic components is undesirable. Colloidal electrolytes are between solid electrolytes and liquid electrolytes, having the advantages of both, and becoming the mainstream of electrolyte materials in the future. However, current common colloidal electrolytes have problems such as non-uniform concentration distribution, poor light transmission, and low conductivity.

本発明の1つの目的は、高粘着性、高透光率及び高伝導率の特性を同時に備える電解質を提供することである。 One object of the present invention is to provide an electrolyte that simultaneously possesses the properties of high viscosity, high light transmittance and high conductivity.

本発明の別の目的は、完成品が保存されやすく、生産力を高めるという特徴がある電解質の製造方法を提供する。 Another object of the present invention is to provide a method for producing an electrolyte that is characterized by easy storage of the finished product and increased productivity.

本発明のさらなる目的は、エレクトロクロミック技術、ポリマーリチウム電池、スーパーキャパシタンス及びスーパーバッテリーなど、電気化学エネルギー貯蔵や省エネ技術の分野に有用であるコロイド電解質、及び該コロイド電解質を混練方式で製造する製造方法を提供することである。 A further object of the present invention is a colloidal electrolyte that is useful in the field of electrochemical energy storage and energy saving technology, such as electrochromic technology, polymer lithium batteries, supercapacitances and superbatteries, and a method for producing the colloidal electrolyte by kneading. is to provide

上記及び他の目的を達成させるために、本発明の電解質は、高分子材料と、リチウム塩と、有機溶媒と、可塑剤と、イオン性溶液と、補助材料と、を含み、これらを混練してコロイド状にしたものであり、該高分子材料は約20~45重量%、該リチウム塩は約2~20重量%、該有機溶媒は約10~30重量%、該可塑剤は約10~30重量%、該イオン性溶液は約1~4重量%、該補助材料は約1~4重量%である。 To achieve the above and other objects, the electrolyte of the present invention comprises a polymeric material, a lithium salt, an organic solvent, a plasticizer, an ionic solution, and an auxiliary material, which are kneaded together. about 20-45% by weight of the polymeric material, about 2-20% by weight of the lithium salt, about 10-30% by weight of the organic solvent, and about 10-30% by weight of the plasticizer. 30% by weight, the ionic solution about 1-4% by weight, and the auxiliary material about 1-4% by weight.

上記及び他の目的を達成させるために、本発明の電解質の製造方法は、高分子材料を約50~70℃の反応温度で約15~30分間反応させ、脱水乾燥して乾燥高分子材料を得る乾燥ステップと、該乾燥高分子材料をリチウム塩、有機溶媒、可塑剤、イオン性溶液及び補助材料と均一に撹拌し、コロイド電解質を得る材料混合ステップと、該コロイド電解質を70~140℃の反応温度で約2~10分間反応させ、混練して該コロイド電解質を均一にする混練ステップと、を含む。 To achieve the above and other objects, the method for producing an electrolyte of the present invention comprises reacting a polymeric material at a reaction temperature of about 50-70° C. for about 15-30 minutes, dehydrating and drying to obtain a dry polymeric material. a material mixing step of obtaining a colloidal electrolyte by uniformly stirring the dry polymeric material with a lithium salt, an organic solvent, a plasticizer, an ionic solution and auxiliary materials; and a kneading step of reacting at a reaction temperature for about 2-10 minutes and kneading to homogenize the colloidal electrolyte.

本発明のいくつかの実施例では、該高分子材料は熱可塑性高分子材料又は熱硬化性高分子材料であり、ポリビニルブチラール(PVB)、酢酸ビニル共重合体(EVA)、エポキシ樹脂(EP)及びポリエチレン(PE)からなる群から選択される少なくとも1種の材料又は他の代替可能な材料である。 In some embodiments of the invention, the polymeric material is a thermoplastic polymeric material or a thermosetting polymeric material, polyvinyl butyral (PVB), vinyl acetate copolymer (EVA), epoxy resin (EP). and at least one material selected from the group consisting of polyethylene (PE) or other alternative materials.

本発明のいくつかの実施例では、該リチウム塩は、ヘキサフルオロリン酸リチウム(LiPF)、テトラフルオロホウ酸リチウム(LiBF)、過塩素酸リチウム(LiClO)、ヘキサフルオロヒ素酸リチウム(LiAsF)、トリフルオロメチルスルホン酸リチウム(LiCFSO)、ビス(シュウ酸)ホウ酸リチウム(LiBOB)、リチウムジフルオロ(オキサラト)ボレート(LiODFB)、ビス(トリフルオロメタンスルホニル)イミドリチウム(LiTFSI)、リチウムビス(フルオロスルホニル)イミド(LiFSI)、ジフルオロリン酸リチウム(LiPO)及びテトラフルオロシュウ酸リン酸リチウム(LiFOP)からなる群から選択される少なくとも1種の材料又は他の代替可能な材料である。 In some embodiments of the invention, the lithium salt is lithium hexafluorophosphate (LiPF 6 ), lithium tetrafluoroborate (LiBF 4 ), lithium perchlorate (LiClO 4 ), lithium hexafluoroarsenate ( LiAsF6 ), lithium trifluoromethylsulfonate ( LiCF3SO3 ), lithium bis(oxalate)borate ( LiBOB ), lithium difluoro(oxalato)borate (LiODFB), lithium bis(trifluoromethanesulfonyl)imide (LiTFSI) , at least one material selected from the group consisting of lithium bis(fluorosulfonyl ) imide (LiFSI), lithium difluorophosphate ( LiPO2F2 ) and lithium tetrafluorooxalate phosphate (LiFOP) or other alternatives material.

本発明のいくつかの実施例では、該有機溶媒はプロピレンカーボネート(PC)、エチレンカーボネート(EC)、酪酸プロピル(γ-BL)、N-メチル-ピロリジン(NMP)及びジメチルカーボネート(DMC)からなる群から選択される少なくとも1種の材料又は他の代替可能な材料である。 In some embodiments of the invention, the organic solvent consists of propylene carbonate (PC), ethylene carbonate (EC), propyl butyrate (γ-BL), N-methyl-pyrrolidine (NMP) and dimethyl carbonate (DMC). At least one material selected from the group or other alternative materials.

本発明のいくつかの実施例では、該可塑剤は、ジエチレングリコールブチルエーテル(Diethylene Glycol Monobutyl Ether)又はアジピン酸(Adipic acid)から選択される。 In some embodiments of the invention, the plasticizer is selected from Diethylene Glycol Monobutyl Ether or Adipic acid.

本発明のいくつかの実施例では、該イオン性溶液は、実質的には、主シクロプロピルから構成される。 In some embodiments of the invention, the ionic solution consists essentially of cyclopropyl.

本発明のいくつかの実施例では、該補助材料はトナー、UV吸収剤、光安定剤、温度安定剤及びシリコン粉末からなる群から選択される少なくとも1種の材料である。 In some embodiments of the present invention, the auxiliary material is at least one material selected from the group consisting of toners, UV absorbers, light stabilizers, temperature stabilizers and silicon powders.

本発明のいくつかの実施例では、該混練ステップで混練した該コロイド電解質を押し出し、高速カッターを利用して造粒しながら、急速な降温及び乾燥をし、顆粒状電解質を製造する押出造粒ステップをさらに含む。 In some embodiments of the present invention, the colloidal electrolyte kneaded in the kneading step is extruded and granulated using a high-speed cutter while being rapidly cooled and dried to produce granular electrolyte by extrusion granulation. Further including steps.

本発明のいくつかの実施例では、該押出造粒ステップでは、作動温度は約100~140℃であり、押出圧力は約0.2~1メガパスカル(MPa)であり、製造された該顆粒状電解質の顆粒のサイズが約1~30mmである。 In some embodiments of the present invention, in the extrusion granulation step, the operating temperature is about 100-140° C., the extrusion pressure is about 0.2-1 megapascals (MPa), and the granules produced are The size of the granules of the electrolyte is about 1-30 mm.

本発明のいくつかの実施例では、該混練ステップで混練した該コロイド電解質を80~150℃で加熱して溶融し、流動性コロイドとし、開口径サイズを調整可能なスリット状吐出口を先端に有する塗布ヘッドのキャビティに該流動性コロイドを前記キャビティの圧力により注入し、該流動性コロイドを該スリット状吐出口から均一に流出させ、離型膜上に塗布して粘着膜構造を形成し、次に、エアナイフにより急速に降温し、厚さを制御してコロイド電解質膜を形成する第1コロイド電解質膜形成ステップをさらに含む。 In some embodiments of the present invention, the colloidal electrolyte kneaded in the kneading step is melted by heating at 80 to 150° C. to form a fluid colloid, and a slit-shaped discharge port capable of adjusting the opening diameter size is provided at the tip. Injecting the fluid colloid into the cavity of the coating head with the pressure of the cavity, causing the fluid colloid to flow out uniformly from the slit-shaped discharge port, and coating it on the release film to form an adhesive film structure; Next, a first colloidal electrolyte membrane forming step is further included in which the temperature is rapidly lowered by an air knife and the thickness is controlled to form a colloidal electrolyte membrane.

本発明のいくつかの実施例では、該押出造粒ステップで製造された該顆粒状電解質を約70~140℃の反応温度で約2~10分間反応させ、混練して該顆粒状電解質を第2コロイド電解質とし、該第2コロイド電解質を約80~150℃で加熱して溶融し、流動性コロイドとし、開口径サイズを調整可能なスリット状吐出口を先端に有する塗布ヘッドのキャビティに該流動性コロイドを前記キャビティの圧力により注入し、該流動性コロイドを該スリット状吐出口から均一に流出させ、離型膜上に塗布して粘着膜構造を形成し、エアナイフにより急速に降温し、粘着膜の厚さを制御してコロイド電解質膜を形成する第2コロイド電解質膜形成ステップをさらに含む。 In some embodiments of the present invention, the granular electrolyte produced by the extrusion granulation step is reacted at a reaction temperature of about 70-140° C. for about 2-10 minutes and kneaded to form a second granular electrolyte. 2 colloidal electrolyte, the second colloidal electrolyte is heated at about 80 to 150° C. to melt to form a fluid colloid, and the fluidized colloid is introduced into the cavity of the coating head having a slit-shaped discharge port at the tip whose opening diameter size can be adjusted. The fluid colloid is injected by the pressure of the cavity, the fluid colloid is uniformly discharged from the slit-shaped discharge port, coated on the release film to form an adhesive film structure, and the temperature is rapidly lowered by an air knife to adhere. The method further includes forming a second colloidal electrolyte membrane by controlling the thickness of the membrane to form a colloidal electrolyte membrane.

本発明のいくつかの実施例では、該混練ステップで混練した該コロイド電解質体を押出温度約80~160℃、エアナイフ噴射口の風圧約95~1000キロパスカル(kPa)、押出圧力約0.5~1メガパスカル(MPa)で加熱して押し出し、厚さ約0.005~3mmのコロイド電解質膜を形成する、第3コロイド電解質膜形成ステップをさらに含む。 In some embodiments of the present invention, in the kneading step, the kneaded colloidal electrolyte body is extruded at an extrusion temperature of about 80-160° C., an air knife outlet air pressure of about 95-1000 kilopascals (kPa), and an extrusion pressure of about 0.5. Further comprising a third colloidal electrolyte membrane forming step of heating and extruding at ~1 megapascal (MPa) to form a colloidal electrolyte membrane having a thickness of about 0.005-3 mm.

本発明のいくつかの実施例では、該押出造粒ステップで製造された該顆粒状電解質を、押出延流法により約70~140℃で加熱して粘稠状コロイドとし、次に、該粘稠状コロイドを押出温度約80~160℃、エアナイフ噴射口の風圧約95~1000キロパスカル(kPa)、押出圧力約0.5~1メガパスカル(MPa)で加熱して押し出し、厚さ約0.005~3mmのコロイド電解質膜を形成する、第4コロイド電解質膜形成ステップをさらに含む。 In some embodiments of the present invention, the granular electrolyte produced in the extrusion granulation step is heated to a viscous colloid by an extrusion flow process at about 70-140°C, and then the viscous The thickened colloid is heated and extruded at an extrusion temperature of about 80 to 160° C., an air knife nozzle of about 95 to 1000 kilopascals (kPa), and an extrusion pressure of about 0.5 to 1 megapascals (MPa) to obtain a thickness of about 0. Further comprising a fourth colloidal electrolyte membrane forming step to form a colloidal electrolyte membrane of 0.005-3 mm.

本発明の有益な効果は以下の通りである。 Beneficial effects of the present invention are as follows.

本発明のコロイド電解質では、特定成分及び各成分間の特定の割合を採用し、混練により各成分を均一に分散させることによって、該コロイド電解質は、凝集機械的性質が高いため低流動性を有する。イオン伝導率も固体電解質よりも明らかに向上し、イオン伝導率が高い、スペーサを必要としない、ガラスやプラスチックなどの粘着に有用であるなどの特性を実現する。安全性が高いので液漏れを回避し、また、高粘着性、高透光率及び高伝導率を有する。 In the colloidal electrolyte of the present invention, by adopting specific components and specific proportions among the components and uniformly dispersing the components by kneading, the colloidal electrolyte has high agglomeration mechanical properties and low fluidity. . The ionic conductivity is also clearly higher than that of solid electrolytes, realizing characteristics such as high ionic conductivity, no need for spacers, and useful for adhesion to glass, plastic, and the like. It has high safety to avoid liquid leakage, and also has high adhesion, high light transmittance and high conductivity.

本発明の電解質は、エレクトロクロミックデバイスの電解質層に利用可能であり、また、粘着技術を利用して作製できる。また、従来のエネルギー貯蔵部品例えばスーパーキャパシタンス、リチウムポリマー電池、スーパーバッテリーの電解質は全てセパレータと組み合わせて電極から隔離されて、電極導通を回避することができる。これらを比較すると、本発明の電解質は粘着膜にした場合、2つの電極間にスペーサ及びイオン伝達や電子バリアのためのものとして使用できる。 The electrolyte of the present invention can be used in the electrolyte layer of an electrochromic device and can be made using adhesive techniques. In addition, the electrolytes of conventional energy storage components such as supercapacitance, lithium polymer batteries, and superbatteries can all be combined with separators to be isolated from the electrodes to avoid electrode conduction. By comparison, the electrolyte of the present invention, when made into an adhesive film, can be used as a spacer between two electrodes and for ion transport and electron barrier.

本発明の電解質の製造方法の一実施例のフローチャートである。1 is a flow chart of an embodiment of a method for producing an electrolyte according to the present invention; 本発明の電解質の製造方法の別の実施例フローチャートである。4 is a flow chart of another embodiment of the method for producing an electrolyte according to the present invention; 本発明の電解質の製造方法の別の実施例フローチャートである。4 is a flow chart of another embodiment of the method for producing an electrolyte according to the present invention; 本発明の電解質の製造方法の別の実施例フローチャートである。4 is a flow chart of another embodiment of the method for producing an electrolyte according to the present invention; 本発明の電解質の製造方法の別の実施例フローチャートである。4 is a flow chart of another embodiment of the method for producing an electrolyte according to the present invention; 本発明の電解質の製造方法の別の実施例フローチャートである。4 is a flow chart of another embodiment of the method for producing an electrolyte according to the present invention;

図1は本発明の電解質の製造方法の一実施例のフローチャートである。図1に示すように、本実施例の電解質は、高分子材料と、リチウム塩と、有機溶媒と、可塑剤と、イオン性溶液と、補助材料と、を含み、これらを混練してコロイド状にしたものである。該高分子材料は約20~45重量%、該リチウム塩は約2~20重量%、該有機溶媒は約10~30重量%、該可塑剤は約10~30重量%、該イオン性溶液は約1~4重量%、該補助材料は約1~4重量%である。 FIG. 1 is a flow chart of one embodiment of the method for producing an electrolyte according to the present invention. As shown in FIG. 1, the electrolyte of this embodiment contains a polymer material, a lithium salt, an organic solvent, a plasticizer, an ionic solution, and an auxiliary material. It is the one that was made. The polymeric material is about 20-45% by weight, the lithium salt is about 2-20% by weight, the organic solvent is about 10-30% by weight, the plasticizer is about 10-30% by weight, and the ionic solution is About 1-4% by weight, the auxiliary material about 1-4% by weight.

好ましくは、該高分子材料は、熱可塑性高分子材料又は熱硬化性高分子材料であり、ポリビニルブチラール(PVB)、酢酸ビニル共重合体(EVA)、エポキシ樹脂(EP)及びポリエチレン(PE)からなる群から選択される少なくとも1種の材料又は他の代替可能な材料である。本実施例では、該熱可塑性高分子材料はポリビニルブチラール(PVB)であり、主にイオン伝導経路を提供するものとして機能し、コロイド電解質の粘着度及びイオン伝導率を向上させるとともに、優れた電子絶縁性を有する。 Preferably, the polymeric material is a thermoplastic polymeric material or a thermosetting polymeric material and is made from polyvinyl butyral (PVB), vinyl acetate copolymer (EVA), epoxy resin (EP) and polyethylene (PE). at least one material selected from the group consisting of or other alternative materials. In this example, the thermoplastic polymeric material is polyvinyl butyral (PVB), which serves primarily as an ionic conduction path provider, improving the cohesion and ionic conductivity of the colloidal electrolyte, as well as providing excellent electronic It has insulating properties.

好ましくは、該リチウム塩は、ヘキサフルオロリン酸リチウム(LiPF)、テトラフルオロホウ酸リチウム(LiBF)、過塩素酸リチウム(LiClO)、ヘキサフルオロヒ素酸リチウム(LiAsF)、トリフルオロメチルスルホン酸リチウム(LiCFSO)、ビス(シュウ酸)ホウ酸リチウム(LiBOB)、リチウムジフルオロ(オキサラト)ボレート(LiODFB)、ビス(トリフルオロメタンスルホニル)イミドリチウム(LiTFSI)、リチウムビス(フルオロスルホニル)イミド(LiFSI)、ジフルオロリン酸リチウム(LiPO)及びテトラフルオロシュウ酸リン酸リチウム(LiFOP)からなる群から選択される少なくとも1種の材料又は他の代替可能な材料である。本実施例では、該リチウム塩は過塩素酸リチウム(LiClO4)であり、解離してイオンを生成することができ、該熱可塑性高分子間で移動することで好ましいイオン伝導機能を付与する。 Preferably, the lithium salt is lithium hexafluorophosphate ( LiPF6 ), lithium tetrafluoroborate ( LiBF4), lithium perchlorate (LiClO4 ) , lithium hexafluoroarsenate ( LiAsF6 ), trifluoromethyl lithium sulfonate (LiCF 3 SO 3 ), lithium bis(oxalate) borate (LiBOB), lithium difluoro(oxalato)borate (LiODFB), lithium bis(trifluoromethanesulfonyl)imide (LiTFSI), lithium bis(fluorosulfonyl) At least one material selected from the group consisting of imide (LiFSI), lithium difluorophosphate ( LiPO2F2 ) and lithium tetrafluorooxalate phosphate (LiFOP) or other alternative materials. In this example, the lithium salt is lithium perchlorate (LiClO4), which can be dissociated to form ions, which migrate between the thermoplastic polymers to provide a favorable ion-conducting function.

好ましくは、該有機溶媒はプロピレンカーボネート(PC)、エチレンカーボネート(EC)、酪酸プロピル(γ-BL)、N-メチル-ピロリジン(NMP)及びジメチルカーボネート(DMC)からなる群から選択される少なくとも1種の材料又は他の代替可能な材料である。該有機溶媒はリチウムイオンを伝達する場所を提供し、イオンが該リチウム塩から解離することを補助する。該有機溶媒は好ましくは高沸点の特性を有する。 Preferably, the organic solvent is at least one selected from the group consisting of propylene carbonate (PC), ethylene carbonate (EC), propyl butyrate (γ-BL), N-methyl-pyrrolidine (NMP) and dimethyl carbonate (DMC). Seed material or other alternative materials. The organic solvent provides a transport site for lithium ions and assists the ions to dissociate from the lithium salt. The organic solvent preferably has a high boiling point characteristic.

好ましくは、該可塑剤はジエチレングリコールブチルエーテル(Diethylene Glycol Monobutyl Ether)又はアジピン酸(Adipic acid)から選ばれる。本実施例では、該可塑剤はジエチレングリコールブチルエーテルである。該可塑剤の添加により電解質の透光性が向上し、電解質の適用性が向上し、特にエレクトロクロミックデバイス(Electrochromic device/ECD)への適用が可能になる。 Preferably, the plasticizer is selected from Diethylene Glycol Monobutyl Ether or Adipic acid. In this example, the plasticizer is diethylene glycol butyl ether. The addition of the plasticizer improves the translucency of the electrolyte, improves the applicability of the electrolyte, and makes it particularly applicable to electrochromic devices (ECDs).

好ましくは、該イオン性溶液は実質的には主シクロプロピルから構成される。本実施例では、該イオン性溶液は主シクロプロピルに塩素酸根を持つ〔(Pmim)(ClO)〕ものである。該イオン性溶液は、リチウムイオン以外の伝導イオンを提供し、電解質のイオン濃度を高め、また、リチウムイオンの環境安定性を高める。 Preferably, the ionic solution consists essentially of cyclopropyl. In this example, the ionic solution is [(Pmim)(ClO 4 )] having a chlorate radical on the main cyclopropyl. The ionic solution provides conductive ions other than lithium ions, increases the ionic concentration of the electrolyte, and increases the environmental stability of lithium ions.

好ましくは、該補助材料はトナー、UV吸収剤、光安定剤、温度安定剤及びシリコン粉末からなる群から選択される少なくとも1種の材料である。該トナーは任意の色の色材であってもよく、フィルタリングや深さの調整用として有用である。該UV吸収剤は二酸化チタン、2-(2'-ヒドロキシ-5'-tert-オクチルフェニル)ベンゾトリアゾール、2-(2'-ヒドロキシ-5'-tert-オクチルフェニル)ベンゾトリアゾールとトリアゾールとの混合物から構成され、接着材の寿命を延ばし、耐候性を向上させることができる。該光安定剤はペンタエリトリトールテトラキス[3-(3,5-ジ-tert-ブチル-4-ヒドロキシフェニル)プロピオナートを主材料として構成され、UV光を吸収した高分子の酸化分解による変質を回避できる。該温度安定剤はエチレングリコール(EG)を主材料として構成され、接着材の耐低温凍結性や耐高温揮発性を向上させる。シリコン粉末は10~10ナノサイズの任意の形状の粒子であってもよく、接着材の機械的特性や電気絶縁特性を向上させる。 Preferably, said auxiliary material is at least one material selected from the group consisting of toners, UV absorbers, light stabilizers, temperature stabilizers and silicon powders. The toner can be any color pigment and is useful for filtering and depth control. The UV absorbers are titanium dioxide, 2-(2'-hydroxy-5'-tert-octylphenyl)benzotriazole, mixtures of 2-(2'-hydroxy-5'-tert-octylphenyl)benzotriazole and triazoles. It can extend the life of the adhesive and improve the weather resistance. The light stabilizer is composed mainly of pentaerythritol tetrakis[3-(3,5-di-tert-butyl-4-hydroxyphenyl)propionate, and can avoid deterioration due to oxidative decomposition of the polymer that has absorbed UV light. . The temperature stabilizer is composed mainly of ethylene glycol (EG) and improves the low-temperature freezing resistance and high-temperature volatility resistance of the adhesive. The silicon powder can be arbitrarily shaped particles of 10 5 to 10 nano size to improve the mechanical and electrical insulating properties of the adhesive.

該熱可塑性高分子、該リチウム塩及び該有機溶媒を混合した後、該熱可塑性高分子は該有機溶媒で膨潤させて高分子網目を形成する。該熱可塑性高分子の主鎖又は側鎖上の高陰電性原子(例えば酸素)又はヒドロキシ基(即ちOH-)は不対電子(unpaired electron)を有する。このため、該リチウム塩から解離されたリチウムイオン(Li+)は該熱可塑性高分子と一時的な配位結合を形成し、該高分子網目内を伝達しやすくなる。該有機溶媒の存在はリチウムイオンの別の伝導方式を提供し、リチウムイオンが該有機溶媒を介して上記コロイド状高分子電解質内を移動できるようにする。 After mixing the thermoplastic polymer, the lithium salt and the organic solvent, the thermoplastic polymer is swollen with the organic solvent to form a polymer network. Highly negatively charged atoms (eg, oxygen) or hydroxy groups (ie, OH—) on the backbone or side chains of the thermoplastic polymer have unpaired electrons. Therefore, lithium ions (Li+) dissociated from the lithium salt form temporary coordinate bonds with the thermoplastic polymer, and are easily transferred through the polymer network. The presence of the organic solvent provides another mode of conduction for lithium ions, allowing lithium ions to move through the colloidal polymer electrolyte via the organic solvent.

本実施例の電解質の製造方法は、高分子材料を約50~70℃の反応温度で約15~30分間反応させ、脱水乾燥して乾燥高分子材料を得る乾燥ステップS0と、該乾燥高分子材料をリチウム塩、有機溶媒、可塑剤、イオン性溶液及び補助材料と均一に撹拌し、コロイド電解質を得る材料混合ステップS1と、該コロイド電解質を約70~140℃の反応温度で約2~10分間反応させ、混練して該コロイド電解質を均一にする混練ステップS2と、を含む。本実施例では、該材料混合ステップS1では、撹拌器により撹拌し、該混練ステップS2では、混練機を利用して該コロイド電解質を機械力及び化学作用により均一に混合する。 The method for producing the electrolyte of this embodiment includes a drying step S0 in which a polymer material is reacted at a reaction temperature of about 50 to 70° C. for about 15 to 30 minutes, dehydrated and dried to obtain a dry polymer material; A material mixing step S1 in which the material is uniformly stirred with a lithium salt, an organic solvent, a plasticizer, an ionic solution and an auxiliary material to obtain a colloidal electrolyte; a kneading step S2 of reacting for a minute and kneading to homogenize the colloidal electrolyte. In this embodiment, in the material mixing step S1, the material is stirred by a stirrer, and in the kneading step S2, the colloidal electrolyte is uniformly mixed by mechanical force and chemical action using the kneader.

図2は本発明の電解質の製造方法の別の実施例のフローチャートである。図2に示すように、好ましくは、本実施例の方法は、該混練ステップS2で混練した該コロイド電解質を押し出し、高速カッターを利用して造粒しながら、急速な降温及び乾燥をし、顆粒状電解質を製造する押出造粒ステップS3をさらに含む。本実施例では、該コロイド電解質はスクリューにより押し出された後、造粒機を利用して高速カッターにより急速な降温及び乾燥をし、顆粒状電解質となり、このようにして、完成品の保存が容易になり、後続のプロセスへの利用に有利である。降温及び乾燥に関しては、例えば水又は有機溶媒で降温してから、風乾方式で乾燥してもよい。 FIG. 2 is a flow chart of another embodiment of the electrolyte manufacturing method of the present invention. As shown in FIG. 2, preferably, the method of the present embodiment extrudes the colloidal electrolyte kneaded in the kneading step S2, granulates using a high-speed cutter, rapidly cools and dries, and granulates. It further includes an extrusion granulation step S3 to produce a shaped electrolyte. In this embodiment, the colloidal electrolyte is extruded by a screw, and then rapidly cooled and dried by a high-speed cutter using a granulator to form a granular electrolyte, thus facilitating the preservation of the finished product. , which is advantageous for use in subsequent processes. As for the cooling and drying, for example, the temperature may be lowered with water or an organic solvent, and then dried by an air-drying method.

好ましくは、該押出造粒ステップS3は、作動温度約100~140℃、押出圧力約0.2~1メガパスカル(MPa)であり、製造された該顆粒状コロイド電解質の顆粒サイズは約1~30mmである。本実施例では、電解質顆粒のサイズは4mmであり、作動温度は105℃であり、押出圧力は0.8メガパスカル(MPa)である。 Preferably, the extrusion granulation step S3 is at an operating temperature of about 100-140° C., an extrusion pressure of about 0.2-1 megapascals (MPa), and the granular colloidal electrolyte produced has a granule size of about 1-1. 30 mm. In this example, the electrolyte granule size is 4 mm, the working temperature is 105° C., and the extrusion pressure is 0.8 megapascals (MPa).

図3は本発明の電解質の製造方法の別の実施例のフローチャートである。図3に示すように、好ましくは、後続のプロセスでの取り扱い性から、本実施例の電解質の製造方法は、該混練ステップS2で混練した該コロイド電解質を約80~150℃で加熱して溶融し、流動性コロイドとし、開口径サイズを調整可能なスリット状吐出口を先端に有する塗布ヘッドのキャビティに該流動性コロイドを上記キャビティの圧力により注入し、該流動性コロイドを該スリット状吐出口から均一に流出させ、離型膜上に塗布して粘着膜構造を形成し、エアナイフにより急速に降温し、厚さを制御してコロイド電解質膜を形成する第1コロイド電解質膜形成ステップS41をさらに含む。本実施例では、加熱溶融温度を95℃とし、開口径サイズを調整可能なスリット状吐出口を先端に有する塗布ヘッドのキャビティに該流動性コロイドを上記キャビティの圧力により注入し、該流動性コロイドを塗布ヘッドのスリット状吐出口から均一に流出させ、該流動性コロイドを離型膜上に塗布するにつれて粘着膜構造を構成し、粘着膜をエアナイフにより急速に降温し、粘着膜の厚さを制御して、コロイド電解質膜を形成する。 FIG. 3 is a flow chart of another embodiment of the electrolyte manufacturing method of the present invention. As shown in FIG. 3, preferably, from the viewpoint of handleability in subsequent processes, the method for producing an electrolyte of the present embodiment heats the colloidal electrolyte kneaded in the kneading step S2 at about 80 to 150° C. to melt it. Then, the fluid colloid is injected into a cavity of a coating head having a slit-shaped ejection port whose opening diameter can be adjusted at the tip by the pressure of the cavity, and the fluid colloid is injected into the slit-shaped ejection port. uniform outflow from the mold release film to form an adhesive film structure, the temperature is rapidly lowered by an air knife, and the thickness is controlled to form a first colloidal electrolyte film forming step S41. include. In this example, the fluid colloid was injected into a cavity of a coating head having a slit-shaped discharge port at the tip whose opening diameter size was adjustable, with a heating and melting temperature of 95° C., by the pressure of the cavity. is uniformly discharged from the slit-shaped discharge port of the coating head, the adhesive film structure is formed as the fluid colloid is applied on the release film, the temperature of the adhesive film is rapidly lowered by an air knife, and the thickness of the adhesive film is reduced. controlled to form a colloidal electrolyte membrane.

図4は本発明の電解質の製造方法の別の実施例のフローチャート。図4に示すように、好ましくは、後続のプロセスでの取り扱い性から、本実施例の電解質の製造方法は、該押出造粒ステップS3で製造された該顆粒状電解質置を約70~140℃の反応温度で約2~10分間反応させ、混練して該顆粒状電解質を第2コロイド電解質とし、該第2コロイド電解質を約80~150℃で加熱して溶融し、流動性コロイドとし、開口径サイズを調整可能なスリット状吐出口を先端に有する塗布ヘッドのキャビティに該流動性コロイドを上記キャビティの圧力により注入し、該流動性コロイドを該スリット状吐出口から均一に流出させ、離型膜上に塗布して粘着膜構造を形成し、エアナイフにより急速に降温し、粘着膜の厚さを制御して、コロイド電解質膜を形成する第2コロイド電解質膜形成ステップS42をさらに含む。本実施例では、反応温度を90℃、反応時間を5分間とし、また、混練機を利用して、該顆粒状電解質をコロイド電解質にし、次に、該コロイド電解質を95℃で加熱して溶融し、流動性コロイドとし、塗布ヘッドのキャビティに該流動性コロイドを上記キャビティの圧力により注入する。塗布ヘッドの先端は開口径サイズを調整可能なスリット状吐出口であり、該流動性コロイドは塗布ヘッドのスリット状吐出口から流出し、離型膜上に塗布されるにつれて粘着膜構造を形成する。ここで、離型膜は紙膜、布膜又はプラスチック膜である。粘着膜をエアナイフにより急速に降温し、粘着膜の厚さを制御して、コロイド電解質膜を形成し、最後に、離型膜を被覆し、粘着膜巻き取り装置によりコロイド電解質膜を得る。 FIG. 4 is a flow chart of another embodiment of the electrolyte manufacturing method of the present invention. As shown in FIG. 4, preferably, from the viewpoint of handleability in subsequent processes, the method for producing an electrolyte of the present embodiment is to heat the granular electrolyte produced in the extrusion granulation step S3 to about 70 to 140°C. for about 2 to 10 minutes at a reaction temperature of , kneading to obtain the granular electrolyte as a second colloidal electrolyte, heating the second colloidal electrolyte to about 80 to 150° C. to melt it to form a fluid colloid, and The fluid colloid is injected by the pressure of the cavity into the cavity of the coating head having at the tip thereof a slit-shaped ejection port whose aperture size can be adjusted, and the fluid colloid is uniformly discharged from the slit-shaped ejection port, and the mold is released. It further includes a second colloidal electrolyte membrane forming step S42 of coating on the membrane to form an adhesive membrane structure, rapidly cooling with an air knife to control the thickness of the adhesive membrane, and forming a colloidal electrolyte membrane. In this example, the reaction temperature was 90° C., the reaction time was 5 minutes, and a kneader was used to convert the granular electrolyte into a colloidal electrolyte, and then the colloidal electrolyte was heated at 95° C. to melt. Then, the liquid colloid is formed into a fluid colloid, and the fluid colloid is injected into the cavity of the coating head by the pressure of the cavity. The tip of the coating head has a slit-shaped discharge port whose opening size can be adjusted, and the fluid colloid flows out from the slit-shaped discharge port of the coating head and forms an adhesive film structure as it is coated on the release film. . Here, the release film is a paper film, a cloth film or a plastic film. The temperature of the adhesive film is rapidly lowered by an air knife to control the thickness of the adhesive film to form a colloidal electrolyte membrane. Finally, a release film is coated on the adhesive membrane, and a colloidal electrolyte membrane is obtained by an adhesive membrane winding device.

図5は本発明の電解質の製造方法の別の実施例のフローチャートである。図5に示すように、好ましくは、後続のプロセスでの取り扱い性から、本実施例の電解質の製造方法は、該混練ステップS2で混練した該コロイド電解質体を押出温度約80~160℃、エアナイフ噴射口の風圧約95~1000キロパスカル(kPa)、押出圧力約0.5~1メガパスカル(MPa)で加熱して押出し、厚さ約0.005~3mmのコロイド電解質膜を形成する、第3コロイド電解質膜形成ステップS43をさらに含む。本実施例では、押出温度は120℃であり、エアナイフ噴射口の吹き角度は90°~105°であり、押出噴射口のキャップは1mmであり、押出圧力は0.6メガパスカル(MPa)であり、最後には、厚さ0.6mmのコロイド電解質膜が形成される。 FIG. 5 is a flow chart of another embodiment of the electrolyte manufacturing method of the present invention. As shown in FIG. 5, preferably, from the viewpoint of handleability in subsequent processes, the method for producing an electrolyte of the present embodiment is carried out by extruding the colloidal electrolyte body kneaded in the kneading step S2 at an extrusion temperature of about 80 to 160° C. and extruding with an air knife. Heat and extrude with a wind pressure of about 95 to 1000 kilopascals (kPa) at the injection port and an extrusion pressure of about 0.5 to 1 megapascals (MPa) to form a colloidal electrolyte membrane with a thickness of about 0.005 to 3 mm. 3. Further includes a colloidal electrolyte membrane forming step S43. In this example, the extrusion temperature is 120° C., the blowing angle of the air knife nozzle is 90° to 105°, the cap of the extrusion nozzle is 1 mm, and the extrusion pressure is 0.6 megapascals (MPa). , and finally a colloidal electrolyte membrane with a thickness of 0.6 mm is formed.

図6は本発明の電解質の製造方法の別の実施例のフローチャートである。図6に示すように、好ましくは、後続のプロセスでの取り扱い性から、本実施例の電解質の製造方法は、該押出造粒ステップS3で製造された該顆粒状電解質を、押出延流法により約70~140℃で加熱して粘稠状コロイドとし、次に、該粘稠状コロイドを押出温度約80~160℃、エアナイフ噴射口の風圧約95~1000キロパスカル(kPa)、押出圧力約0.5~1メガパスカル(MPa)で加熱して押出し、厚さ約0.005~3mmのコロイド電解質膜を形成する、第4コロイド電解質膜形成ステップS44をさらに含む。本実施例では、該顆粒状電解質を100℃で加熱して粘稠状コロイドとし、押出温度は120℃であり、エアナイフ噴射口の風圧は約100キロパスカル(kPa)であり、風は押出噴射口の幅全体にわたって存在し、エアナイフ噴射口の吹き角度は90°~105°であり、押出噴射口のキャップは約1mmであり、押出圧力は0.6メガパスカル(MPa)であり、最後に、厚さ0.6mmのコロイド電解質膜が形成される。 FIG. 6 is a flowchart of another embodiment of the electrolyte manufacturing method of the present invention. As shown in FIG. 6, preferably, from the viewpoint of handleability in subsequent processes, the method for producing an electrolyte of the present embodiment is performed by extruding the granular electrolyte produced in the extrusion granulation step S3 by an extrusion flow method. It is heated at about 70 to 140° C. to form a viscous colloid, and then the viscous colloid is extruded at an extrusion temperature of about 80 to 160° C., a wind pressure of an air knife nozzle of about 95 to 1000 kilopascals (kPa), and an extrusion pressure of about Further includes a fourth colloidal electrolyte membrane forming step S44 of heating and extruding at 0.5-1 megapascal (MPa) to form a colloidal electrolyte membrane with a thickness of about 0.005-3 mm. In this example, the granular electrolyte is heated at 100° C. to form a viscous colloid, the extrusion temperature is 120° C., the wind pressure at the air knife injection port is about 100 kilopascals (kPa), and the wind is the extrusion injection. present across the width of the mouth, the blow angle of the air knife jet is 90° to 105°, the cap of the extrusion jet is about 1 mm, the extrusion pressure is 0.6 megapascals (MPa), and finally , a colloidal electrolyte membrane with a thickness of 0.6 mm is formed.

本発明のコロイド電解質では、特定成分及び各成分間の特定の割合を採用し、混練により各成分を均一に分散させることによって、該コロイド電解質は、凝集機械的性質が高いため低流動性を有する。イオン伝導率も固体電解質よりも明らかに向上し、イオン伝導率が高い、スペーサを必要としない、ガラスやプラスチックなどの粘着に有用であるなどの特性を実現する。安全性が高いので液漏れを回避し、また、高粘着性、高透光率及び高伝導率を有する。 In the colloidal electrolyte of the present invention, by adopting specific components and specific proportions among the components and uniformly dispersing the components by kneading, the colloidal electrolyte has high agglomeration mechanical properties and low fluidity. . The ionic conductivity is also clearly higher than that of solid electrolytes, realizing characteristics such as high ionic conductivity, no need for spacers, and useful for adhesion to glass, plastic, and the like. It has high safety to avoid liquid leakage, and also has high adhesion, high light transmittance and high conductivity.

本発明の電解質は、エレクトロクロミックデバイスの電解質層に利用可能であり、また、粘着技術を利用して作製できる。また、従来のエネルギー貯蔵部品例えばスーパーキャパシタンス、リチウムポリマー電池、スーパーバッテリーの電解質は全てセパレータと組み合わせて電極から隔離されて、電極導通を回避することができる。これらを比較すると、本発明の電解質は粘着膜にした場合、2つの電極間にスペーサ及びイオン伝達や電子バリアのためのものとして使用できる。 The electrolyte of the present invention can be used in the electrolyte layer of an electrochromic device and can be made using adhesive techniques. In addition, the electrolytes of conventional energy storage components such as supercapacitance, lithium polymer batteries, and superbatteries can all be combined with separators to be isolated from the electrodes to avoid electrode conduction. By comparison, the electrolyte of the present invention, when made into an adhesive film, can be used as a spacer between two electrodes and for ion transport and electron barrier.

S0 乾燥ステップ
S1 材料混合ステップ
S2 混練ステップ
S3 押出造粒ステップ
S41 第1コロイド電解質膜形成ステップ
S42 第2コロイド電解質膜形成ステップ
S43 第3コロイド電解質膜形成ステップ
S44 第4コロイド電解質膜形成ステップ
S0 drying step S1 material mixing step S2 kneading step S3 extrusion granulation step S41 first colloidal electrolyte membrane forming step S42 second colloidal electrolyte membrane forming step S43 third colloidal electrolyte membrane forming step S44 fourth colloidal electrolyte membrane forming step

Claims (14)

高分子材料と、リチウム塩と、有機溶媒と、可塑剤と、イオン性溶液と、補助材料と、を含み、これらを混練してコロイド状にしたものであり、該高分子材料は20重量%以上45重量%以下、該リチウム塩は2重量%以上20重量%以下、該有機溶媒は10重量%以上30重量%以下、該可塑剤は10重量%以上30重量%以下、該イオン性溶液は1重量%以上2重量%以下、該補助材料は1重量%以上2重量%以下であることを特徴とする電解質。 A polymeric material, a lithium salt, an organic solvent, a plasticizer, an ionic solution, and an auxiliary material, which are kneaded into a colloidal form, and the polymeric material is 20% by weight. 45 wt% or less, the lithium salt is 2 wt% or more and 20 wt% or less, the organic solvent is 10 wt% or more and 30 wt% or less, the plasticizer is 10 wt% or more and 30 wt% or less, the ionic solution is 1 wt % or more and 2 wt % or less, and the auxiliary material is 1 wt % or more and 2 wt % or less. 該高分子材料は、熱可塑性高分子材料又は熱硬化性高分子材料であり、ポリビニルブチラール、酢酸ビニル共重合体、エポキシ樹脂及びポリエチレンからなる群から選択される少なくとも1種の材料であることを特徴とする請求項1に記載の電解質。 The polymer material is a thermoplastic polymer material or a thermosetting polymer material, and is at least one material selected from the group consisting of polyvinyl butyral, vinyl acetate copolymer, epoxy resin and polyethylene. The electrolyte of claim 1, characterized in that: 該リチウム塩は、ヘキサフルオロリン酸リチウム、テトラフルオロホウ酸リチウム、過塩素酸リチウム、ヘキサフルオロヒ素酸リチウム、トリフルオロメチルスルホン酸リチウム、ビス(シュウ酸)ホウ酸リチウム、リチウムジフルオロ(オキサラト)ボレート、ビス(トリフルオロメタンスルホニル)イミドリチウム、リチウムビス(フルオロスルホニル)イミド、ジフルオロリン酸リチウム及びテトラフルオロシュウ酸リン酸リチウムからなる群から選択される少なくとも1種の材料であることを特徴とする請求項1に記載の電解質。 The lithium salt includes lithium hexafluorophosphate, lithium tetrafluoroborate, lithium perchlorate, lithium hexafluoroarsenate, lithium trifluoromethylsulfonate, lithium bis(oxalate)borate, lithium difluoro(oxalato)borate. , lithium bis(trifluoromethanesulfonyl)imide, lithium bis(fluorosulfonyl)imide, lithium difluorophosphate and lithium tetrafluorooxalate phosphate. Item 1. The electrolyte according to item 1. 該有機溶媒はプロピレンカーボネート、エチレンカーボネート、酪酸プロピル、N-メチル-ピロリジン及びジメチルカーボネートからなる群から選択される少なくとも1種の材料であることを特徴とする請求項1に記載の電解質。 2. The electrolyte according to claim 1, wherein said organic solvent is at least one material selected from the group consisting of propylene carbonate, ethylene carbonate, propyl butyrate, N-methyl-pyrrolidine and dimethyl carbonate. 該可塑剤はジエチレングリコールブチルエーテル又はアジピン酸から選択されることを特徴とする請求項1に記載の電解質。 2. The electrolyte of claim 1, wherein said plasticizer is selected from diethylene glycol butyl ether or adipic acid. 該イオン性溶液は主シクロプロピルから構成されることを特徴とする請求項1に記載の電解質。 2. The electrolyte of claim 1, wherein said ionic solution consists predominantly of cyclopropyl. 該補助材料はトナー、UV吸収剤、光安定剤、温度安定剤及びシリコン粉末からなる群から選択される少なくとも1種の材料であることを特徴とする請求項1に記載の電解質。 2. The electrolyte of claim 1, wherein said auxiliary material is at least one material selected from the group consisting of toners, UV absorbers, light stabilizers, temperature stabilizers and silicon powders. 高分子材料を50~70℃の反応温度で15~30分間反応させ、脱水乾燥して乾燥高分子材料を得る乾燥ステップと、
該乾燥高分子材料をリチウム塩、有機溶媒、可塑剤、イオン性溶液及び補助材料と均一に撹拌し、コロイド電解質を得る材料混合ステップと、
該コロイド電解質を70~140℃の反応温度で2~10分間反応させ、混練して該コロイド電解質を均一にする混練ステップと、を含むことを特徴とする請求項1に記載の電解質の製造方法。
a drying step of reacting the polymer material at a reaction temperature of 50-70° C. for 15-30 minutes, followed by dehydration and drying to obtain a dry polymer material;
a material mixing step of uniformly stirring the dry polymeric material with lithium salt, organic solvent, plasticizer, ionic solution and auxiliary materials to obtain a colloidal electrolyte;
and a kneading step of reacting the colloidal electrolyte at a reaction temperature of 70 to 140° C. for 2 to 10 minutes and kneading to homogenize the colloidal electrolyte. .
該混練ステップで混練した該コロイド電解質を押し出し、高速カッターを利用して造粒しながら、急速な降温及び乾燥をし、顆粒状電解質を製造する押出造粒ステップをさらに含むことを特徴とする請求項8に記載の電解質の製造方法。 The method further comprises an extrusion granulation step of extruding the colloidal electrolyte kneaded in the kneading step, granulating the colloidal electrolyte using a high-speed cutter, and rapidly cooling and drying the colloidal electrolyte to produce a granular electrolyte. Item 9. A method for producing the electrolyte according to item 8. 該押出造粒ステップでは、作動温度は100~140℃であり、押出圧力は0.2~1MPaであり、製造された該顆粒状電解質の顆粒のサイズが1~30mmであることを特徴とする請求項9に記載の電解質の製造方法。 In the extrusion granulation step, the working temperature is 100-140° C., the extrusion pressure is 0.2-1 MPa, and the size of the produced granular electrolyte granules is 1-30 mm. A method for producing the electrolyte according to claim 9 . 該混練ステップで混練した該コロイド電解質を80~150℃で加熱して溶融し、流動性コロイドとし、開口径サイズを調整可能なスリット状吐出口を先端に有する、塗布ヘッドのキャビティに該流動性コロイドを前記キャビティの圧力により注入し、該流動性コロイドを該スリット状吐出口から均一に流出させ、離型膜上に塗布して粘着膜構造を形成し、次に、エアナイフにより急速に降温し、厚さを制御してコロイド電解質膜を形成する、第1コロイド電解質膜形成ステップをさらに含むことを特徴とする請求項8に記載の電解質の製造方法。 The colloidal electrolyte kneaded in the kneading step is melted by heating at 80 to 150° C. to form a fluid colloid. The colloid is injected by the pressure of the cavity, the fluid colloid is uniformly discharged from the slit-shaped outlet, coated on the release film to form an adhesive film structure, and then rapidly cooled by an air knife. 9. The method of claim 8, further comprising forming a first colloidal electrolyte membrane by controlling the thickness of the colloidal electrolyte membrane. 該押出造粒ステップで製造された該顆粒状電解質を70~140℃の反応温度で2~10分間反応させ、混練して該顆粒状電解質を第2コロイド電解質とし、該第2コロイド電解質を80~150℃で加熱して溶融し、流動性コロイドとし、開口径サイズを調整可能なスリット状吐出口を先端に有する塗布ヘッドのキャビティに該流動性コロイドを前記キャビティの圧力により注入し、該流動性コロイドを該スリット状吐出口から均一に流出させ、離型膜上に塗布して粘着膜構造を形成し、次に、エアナイフにより急速に降温し、粘着膜の厚さを制御して、コロイド電解質膜を形成する、第2コロイド電解質膜形成ステップをさらに含むことを特徴とする請求項9に記載の電解質の製造方法。 The granular electrolyte produced by the extrusion granulation step is reacted at a reaction temperature of 70-140° C. for 2-10 minutes and kneaded to obtain the granular electrolyte as a second colloidal electrolyte, and the second colloidal electrolyte is 80%. It is melted by heating at ~150°C to form a fluid colloid, and the fluid colloid is injected by the pressure of the cavity into a cavity of a coating head having a slit-shaped discharge port at the tip whose opening diameter size can be adjusted, and the fluidized. The adhesive colloid is uniformly discharged from the slit-shaped discharge port, coated on the release film to form an adhesive film structure, then rapidly cooled by an air knife to control the thickness of the adhesive film, and the colloid 10. The method of claim 9, further comprising forming a second colloidal electrolyte membrane to form an electrolyte membrane. 該混練ステップで混練した該コロイド電解質を押出温度80~160℃、エアナイフ噴射口の風圧95~1000 kPa、押出圧力約0.5~1MPaで加熱して押し出し、厚さ0.005~3mmのコロイド電解質膜を形成する、第3コロイド電解質膜形成ステップをさらに含むことを特徴とする請求項8に記載の電解質の製造方法。 The colloidal electrolyte kneaded in the kneading step is heated and extruded at an extrusion temperature of 80 to 160° C., a wind pressure of an air knife injection port of 95 to 1000 kPa, and an extrusion pressure of about 0.5 to 1 MPa to obtain a colloid having a thickness of 0.005 to 3 mm. 9. The method for producing an electrolyte according to claim 8, further comprising a third colloidal electrolyte membrane forming step of forming an electrolyte membrane. 該押出造粒ステップで製造された該顆粒状電解質を、押出延流法により70~140℃で加熱して粘稠状コロイドとし、次に、該粘稠状コロイドを押出温度80~160℃、エアナイフ噴射口の風圧95~1000kPa、押出圧力0.5~1 MPaで加熱して押し出し、厚さ0.005~3mmのコロイド電解質膜を形成する第4コロイド電解質膜形成ステップをさらに含むことを特徴とする請求項9に記載の電解質の製造方法。 The granular electrolyte produced in the extrusion granulation step is heated at 70-140°C by extrusion flow method to form a viscous colloid, and then the viscous colloid is extruded at an extrusion temperature of 80-160°C. It further includes a fourth colloidal electrolyte membrane forming step of heating and extruding at an air knife injection port wind pressure of 95 to 1000 kPa and an extrusion pressure of 0.5 to 1 MPa to form a colloidal electrolyte membrane with a thickness of 0.005 to 3 mm. The method for producing an electrolyte according to claim 9.
JP2022169631A 2021-11-15 2022-10-24 Electrolyte and its manufacturing method Active JP7429753B2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
TW110142346 2021-11-15
TW110142346A TWI795074B (en) 2021-11-15 2021-11-15 The electrolyte and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2023073211A true JP2023073211A (en) 2023-05-25
JP7429753B2 JP7429753B2 (en) 2024-02-08

Family

ID=86310638

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2022169631A Active JP7429753B2 (en) 2021-11-15 2022-10-24 Electrolyte and its manufacturing method

Country Status (3)

Country Link
JP (1) JP7429753B2 (en)
CN (1) CN116130754A (en)
TW (1) TWI795074B (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010113939A (en) * 2008-11-06 2010-05-20 Nissan Motor Co Ltd Bipolar secondary battery and method of manufacturing the same
JP2011070997A (en) * 2009-09-28 2011-04-07 Konica Minolta Holdings Inc Electrolyte composition, and secondary battery
JP2012186055A (en) * 2011-03-07 2012-09-27 Nissan Chem Ind Ltd Gel electrolyte
JP2019053104A (en) * 2017-09-13 2019-04-04 国立大学法人 名古屋工業大学 Transmissive electrochromic element, reflective electrochromic element, method for manufacturing transmissive electrochromic element and method for manufacturing reflective electrochromic element

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI488195B (en) * 2014-06-06 2015-06-11 Ying Chung Chen The polymeric gel electrolyte and manufacturing method thereof
CN109546211A (en) * 2018-11-19 2019-03-29 河南电池研究院有限公司 A kind of composition polymer solid electrolyte membrane and preparation method thereof
TW202036962A (en) * 2018-11-23 2020-10-01 日商Attaccato合同公司 Electrode for non-aqueous electrolyte battery, and non-aqueous electrolyte battery
US20240145765A1 (en) * 2019-10-15 2024-05-02 Attaccato Limited Liability Company Electrode for non-aqueous electrolyte power storage device, non-aqueous electrolyte power storage device, and method for producing same

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010113939A (en) * 2008-11-06 2010-05-20 Nissan Motor Co Ltd Bipolar secondary battery and method of manufacturing the same
JP2011070997A (en) * 2009-09-28 2011-04-07 Konica Minolta Holdings Inc Electrolyte composition, and secondary battery
JP2012186055A (en) * 2011-03-07 2012-09-27 Nissan Chem Ind Ltd Gel electrolyte
JP2019053104A (en) * 2017-09-13 2019-04-04 国立大学法人 名古屋工業大学 Transmissive electrochromic element, reflective electrochromic element, method for manufacturing transmissive electrochromic element and method for manufacturing reflective electrochromic element

Also Published As

Publication number Publication date
TW202322446A (en) 2023-06-01
JP7429753B2 (en) 2024-02-08
CN116130754A (en) 2023-05-16
TWI795074B (en) 2023-03-01

Similar Documents

Publication Publication Date Title
Zhou et al. Polymer electrolytes for lithium-based batteries: advances and prospects
US8241541B2 (en) Cathode material for polymer batteries and method of preparing same
Song et al. Review of gel-type polymer electrolytes for lithium-ion batteries
CN111540948A (en) Composite solid polymer electrolyte membrane and preparation method and application thereof
CN104078633B (en) A kind of barrier film, its preparation method and a kind of lithium ion battery
CN104425788B (en) Lithium-ion battery diaphragm, preparation method of lithium-ion battery diaphragm, as well as lithium-ion battery comprising diaphragm
CN102668174B (en) Stacked film and rechargeable nonaqueous electrolytic battery
CN103985900A (en) Modified polymer electrolyte, preparing method of modified polymer electrolyte and application of modified polymer electrolyte to lithium battery
CN103000956B (en) A kind of manufacture method of the lithium ion battery containing gel electrolyte
CN104157810A (en) Diaphragm, preparation method of diaphragm and lithium ion battery
CN106816627A (en) Composite plastic crystal polymer electrolyte material and preparation method thereof
CN100409482C (en) Electrolyte composition, lithium battery using the same, and method of manufacturing the lithium battery
TWI628827B (en) Gel electrolyte and applications thereof
CN106450261B (en) A kind of the homogenate coating method and its preparation method of lithium ion battery of cathode lithium titanate
JP7152429B2 (en) Solid polymer electrolyte for batteries
CN110034329A (en) Garnet is coordinated the preparation method for being cross-linked in situ fluoropolymer gel electrolyte membrane of lewis base induction
CN114512723A (en) Lithium ion secondary battery
JP2000348710A (en) Electrode for nonaqueous secondary battery and its manufacture
JP7429753B2 (en) Electrolyte and its manufacturing method
US20010021473A1 (en) Production of moldings for lithium ion batteries
KR20030017945A (en) Polymeric gel electrolyte and lithium battery employing the same
CN110620265A (en) Method for preparing polymer solid lithium battery piece through roll-to-roll hot bonding
CN101546849A (en) Polymer lithium ion battery and four-step synthesis and manufacturing technology thereof
CN102779973B (en) Preparation method of positive pole piece of lithium-ferrous disulfide cell
CN102790219A (en) Positive pole slurry for manufacturing positive pole plate of lithium ion battery and manufacturing method thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20221025

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230913

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20230913

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20231212

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20231212

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20240115

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20240129

R150 Certificate of patent or registration of utility model

Ref document number: 7429753

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150