JP2023073194A - Wafer mount table - Google Patents

Wafer mount table Download PDF

Info

Publication number
JP2023073194A
JP2023073194A JP2022108438A JP2022108438A JP2023073194A JP 2023073194 A JP2023073194 A JP 2023073194A JP 2022108438 A JP2022108438 A JP 2022108438A JP 2022108438 A JP2022108438 A JP 2022108438A JP 2023073194 A JP2023073194 A JP 2023073194A
Authority
JP
Japan
Prior art keywords
base material
mounting table
wafer mounting
female screw
hole
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2022108438A
Other languages
Japanese (ja)
Inventor
達也 久野
Tatsuya Kuno
靖也 井上
Seiya Inoue
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NGK Insulators Ltd
Original Assignee
NGK Insulators Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NGK Insulators Ltd filed Critical NGK Insulators Ltd
Priority to US17/816,006 priority Critical patent/US20230154781A1/en
Priority to TW111128889A priority patent/TWI816495B/en
Priority to KR1020220098526A priority patent/KR20230071049A/en
Priority to CN202210953556.7A priority patent/CN116130324A/en
Publication of JP2023073194A publication Critical patent/JP2023073194A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Chemical Vapour Deposition (AREA)
  • Drying Of Semiconductors (AREA)
  • Container, Conveyance, Adherence, Positioning, Of Wafer (AREA)

Abstract

To fasten a wafer mount table including a fragile cooling base material onto an installation board without a trouble.SOLUTION: A wafer mount table 10 includes an alumina base material 20, a cooling base material 30, and an extendable female screw member 38. The alumina base material 20 includes a wafer mount surface 22a on an upper surface thereof, and incorporates an electrode 26. The cooling base material 30 is bonded to a lower surface of the alumina base material 20 and has a coolant passage 32 formed internally. The female screw member 38 is housed in a housing hole 36 that opens at a lower surface of the cooling base material 30 in a state in which the axial rotation is restricted and in a state of being engaged with an engagement part of the housing hole 36. The female screw member 38 can be screwed with a male screw of a bolt 98 inserted from a lower surface side of the cooling base material 30.SELECTED DRAWING: Figure 1

Description

本発明は、ウエハ載置台に関する。 The present invention relates to a wafer mounting table.

従来、電極を内蔵するセラミック基材と、内部に冷媒流路が形成された冷却基材とを、接着材を介して接合したウエハ載置台が知られている。特許文献1には、こうしたウエハ載置台を設置板の上に載せてネジで固定する例が記載されている。具体的には、冷却基材の下面には雌ネジ穴が設けられ、設置板を上下方向に貫通するネジ挿通孔に下方から差し込まれたボルトの雄ネジが雌ネジ穴に螺合されている。 2. Description of the Related Art Conventionally, there has been known a wafer mounting table in which a ceramic base material containing electrodes and a cooling base material having coolant flow paths formed therein are bonded via an adhesive. Patent Literature 1 describes an example in which such a wafer mounting table is placed on a mounting plate and fixed with screws. Specifically, a female screw hole is provided on the lower surface of the cooling base material, and a male screw of a bolt inserted from below into a screw insertion hole vertically penetrating the installation plate is screwed into the female screw hole. .

特開2014-150104号公報JP 2014-150104 A

しかしながら、冷却基材の下面に雌ネジ穴を設けて設置板に挿通されたボルトの雄ネジを螺合する場合、冷却基材の材料が延性材料(例えばアルミニウム)だと支障は生じないが、脆性材料(例えば金属マトリックス複合材料)だと支障が生じる。具体的には、冷却基材の雌ネジ穴はボルトによって下方へ大きな力で局所的に引っ張られるため、延性のない材料だと割れるおそれがある。 However, when a female screw hole is provided in the lower surface of the cooling base material and a male thread of a bolt inserted through the installation plate is screwed, no problem occurs if the material of the cooling base material is a ductile material (for example, aluminum). Problems arise with brittle materials (eg metal matrix composites). Specifically, since the female screw hole of the cooling substrate is locally pulled downward with a large force by the bolt, there is a risk of cracking if the material is not ductile.

本発明はこのような課題を解決するためになされたものであり、脆性な冷却基材を備えたウエハ載置台を設置板に支障なく締結できるようにすることを主目的とする。 SUMMARY OF THE INVENTION The present invention has been made to solve such problems, and its main object is to enable a wafer mounting table provided with a fragile cooling base material to be fastened to a mounting plate without hindrance.

[1]本発明のウエハ載置台は、
上面にウエハ載置面を有し、電極を内蔵するアルミナ基材と、
前記アルミナ基材の下面に接合された脆性の冷却基材と、
前記冷却基材の下面に開口する収納穴内に軸回転を規制された状態で且つ前記収納穴の係合部に係合した状態で収納され、雄ネジ部又は雌ネジ部を有する延性の結合部材と、
を備えたものである。
[1] The wafer mounting table of the present invention is
an alumina base material having a wafer mounting surface on its upper surface and containing an electrode;
a brittle cooling substrate bonded to the lower surface of the alumina substrate;
A ductile coupling member having a male screw portion or a female screw portion, which is accommodated in a storage hole opening to the lower surface of the cooling base material in a state in which rotation of the shaft is restricted and in a state in which the engaging portion of the storage hole is engaged. and,
is provided.

このウエハ載置台では、雄ネジ部又は雌ネジ部を有する結合部材は、冷却基材の下面に開口する収納穴内に軸回転を規制された状態で且つ収納穴の係合部に係合した状態で収納されている。結合部材は軸回転が規制されているため、冷却基材の下面側に配置される雌ネジ部又は雄ネジ部を有する被結合部材に螺合することができる。また、結合部材は、収納穴の係合部に係合した状態で設置板に設けられた被結合部材によって設置板に向かって引っ張られたとしても、延性を有しているため割れにくい。したがって、脆性な冷却基材を備えたウエハ載置台を設置板に支障なく締結できる。 In this wafer mounting table, the coupling member having the male or female screw portion is engaged with the engaging portion of the housing hole in a state where the shaft rotation is restricted in the housing hole opened to the lower surface of the cooling base. is stored in Since the coupling member is restricted in its axial rotation, it can be screwed into a coupled member having a female screw portion or a male screw portion arranged on the lower surface side of the cooling base material. Further, even if the connecting member is pulled toward the mounting plate by the member to be connected provided on the mounting plate in a state of being engaged with the engaging portion of the housing hole, the connecting member has ductility and is therefore not easily broken. Therefore, the wafer mounting table having the brittle cooling base material can be fastened to the mounting plate without any trouble.

なお、本明細書では、上下、左右、前後などを用いて本発明を説明することがあるが、上下、左右、前後は、相対的な位置関係に過ぎない。そのため、ウエハ載置台の向きを変えた場合には上下が左右になったり左右が上下になったりすることがあるが、そうした場合も本発明の技術的範囲に含まれる。 In this specification, the present invention may be described using terms such as up and down, left and right, front and back, but up and down, left and right, and front and back are merely relative positional relationships. Therefore, when the orientation of the wafer table is changed, up and down may become left and right, or left and right may become up and down. Such cases are also included in the technical scope of the present invention.

[2]上述したウエハ載置台(前記[1]に記載のウエハ載置台)において、前記結合部材は、前記雌ネジ部を有し、前記冷却基材の下面側から差し込まれるボルトの雄ネジと螺合可能な部材であってもよい。 [2] In the wafer mounting table described above (the wafer mounting table described in [1] above), the connecting member has the female screw portion and is a male screw of a bolt inserted from the lower surface side of the cooling base. It may be a member that can be screwed together.

[3]上述したウエハ載置台(前記[1]又は[2]に記載のウエハ載置台)において、前記冷却基材は、金属とセラミックとの複合材料又はアルミナ材料で形成されていてもよい。金属とセラミックとの複合材料やアルミナ材料は脆性材料であるため、本発明を適用する意義が高い。例えば、金属とセラミックとの複合材料を用いる場合には、アルミナと同等の熱膨張係数を有する複合材料を用いることが好ましい。 [3] In the wafer mounting table described above (the wafer mounting table described in [1] or [2] above), the cooling base may be made of a composite material of metal and ceramic or an alumina material. Since composite materials of metal and ceramics and alumina materials are brittle materials, the application of the present invention is highly significant. For example, when using a composite material of metal and ceramic, it is preferable to use a composite material having a thermal expansion coefficient equivalent to that of alumina.

[4]上述したウエハ載置台(前記[1]~[3]のいずれかに記載のウエハ載置台)において、前記係合部は、前記収納穴の内周面に設けられた段差部又は傾斜部であってもよく、前記結合部材は、前記係合部に係合して前記結合部材が前記収納穴から落下しないようにする被係合部を有していてもよい。こうすれば、係合部や被係合部を比較的簡単に作製することができる。例えば、係合部が段差部の場合、結合部材にはその段差部に引っかかる被係合部を設けてもよい。また、係合部が傾斜部の場合、結合部材にはその傾斜部に一致する傾斜面を被係合部として設けてもよい。 [4] In the wafer mounting table described above (the wafer mounting table according to any one of [1] to [3]), the engaging portion is a step portion or an inclined portion provided on the inner peripheral surface of the storage hole. The coupling member may have an engaged portion that engages with the engaging portion to prevent the coupling member from falling out of the housing hole. In this way, the engaging portion and the engaged portion can be produced relatively easily. For example, if the engaging portion is a stepped portion, the coupling member may be provided with an engaged portion that is caught by the stepped portion. Further, when the engaging portion is an inclined portion, the coupling member may be provided with an inclined surface corresponding to the inclined portion as the engaged portion.

[5]上述したウエハ載置台(前記[1]~[4]のいずれかに記載のウエハ載置台)において、前記結合部材は、軸回転しようとすると前記収納穴の壁に当たって軸回転を規制されるものとしてもよい。こうすれば、比較的簡単な構成で結合部材の軸回転を規制することができる。 [5] In the above-described wafer mounting table (the wafer mounting table according to any one of [1] to [4]), when the coupling member tries to rotate, it hits the wall of the housing hole and is restricted from rotating. It may be In this way, axial rotation of the coupling member can be restricted with a relatively simple configuration.

[6]上述したウエハ載置台(前記[1]~[5]のいずれかに記載のウエハ載置台)において、前記冷却基材は、内部に冷媒流路を有しており、前記収納穴は、前記冷却基材のうち前記冷媒流路の底面よりも低い領域に設けられていてもよい。こうすれば、収納穴は冷媒流路の邪魔にならないため、冷媒流路の設計の自由度を損なうことがない。 [6] In the wafer mounting table described above (the wafer mounting table according to any one of [1] to [5] above), the cooling base material has a coolant channel therein, and the storage hole is , and may be provided in a region of the cooling substrate that is lower than the bottom surface of the coolant channel. In this way, the accommodation hole does not interfere with the coolant flow path, so that the freedom of design of the coolant flow path is not compromised.

[7]上述したウエハ載置台(前記[1]~[6]のいずれかに記載のウエハ載置台)において、前記結合部材は、前記収納穴で前記冷却基材と接合されておらずフリーな状態で収納されていてもよい。こうすれば、結合部材を収納穴に入れるだけでよいため、手間がかからない。 [7] In the wafer mounting table described above (the wafer mounting table according to any one of [1] to [6]), the connecting member is not bonded to the cooling base material in the storage hole and is free. It may be stored in any condition. This saves time and effort because it is only necessary to insert the connecting member into the housing hole.

[8]上述したウエハ載置台(前記[1]~[7]のいずれかに記載のウエハ載置台)において、前記結合部材は、前記結合部材よりもヤング率の低い応力緩衝部材を介して前記係合部に係合していてもよい。こうすれば、結合部材が設置板に設けられた被結合部材によって設置板に向かって引っ張られたとしても、結合部材と係合部との間に応力緩衝部材が介在しているため、応力が分散しやすい。 [8] In the wafer mounting table described above (the wafer mounting table according to any one of [1] to [7] above), the bonding member includes a stress buffering member having a Young's modulus lower than that of the bonding member. It may be engaged with the engaging portion. With this configuration, even if the connecting member is pulled toward the mounting plate by the member to be connected provided on the mounting plate, the stress buffering member intervenes between the connecting member and the engaging portion, so that the stress is relieved. Easy to disperse.

[9]上述したウエハ載置台(前記[1]~[8]のいずれかに記載のウエハ載置台)において、前記結合部材と前記収納穴との隙間は、充填材で充填されていてもよい。こうすれば、結合部材と収納穴との隙間が空間になっている場合に比べて、熱伝導が良好になる。そのため、ウエハの均熱性が向上する。 [9] In the wafer mounting table described above (the wafer mounting table according to any one of [1] to [8]), a gap between the coupling member and the housing hole may be filled with a filler. . By doing so, the heat conduction is better than when the gap between the coupling member and the housing hole is a space. Therefore, the uniformity of the temperature of the wafer is improved.

[10]上述したウエハ載置台(前記[1]~[9]のいずれかに記載のウエハ載置台)において、前記収納穴は、前記結合部材を収納する第1収納部と、前記第1収納部から前記冷却基材の下面に至るように設けられた第2収納部と、を備えていてもよく、前記係合部は、前記第1収納部と前記第2収納部との繋ぎ目に設けられた段差面であってもよい。 [10] In the wafer mounting table described above (the wafer mounting table according to any one of [1] to [9]), the storage hole includes a first storage portion for storing the coupling member, and a second storage portion provided so as to reach the lower surface of the cooling base material, and the engaging portion is located at the joint between the first storage portion and the second storage portion. It may be a stepped surface provided.

[11]上述したウエハ載置台(前記[10]に記載のウエハ載置台)において、前記第1収納部は、前記冷却基材の上面に開口していてもよく、前記セラミック基材と前記冷却基材とを接合する接合層によって開口面が覆われていてもよい。こうすれば、第1収納部を冷却基材の内部に内蔵する場合に比べて、第1収納部を比較的容易に製造することができる。こうした構造では、収納穴を避けて冷媒流路(又は冷媒流路溝)を設ける必要があるため、ウエハのうち収納穴の直上付近は均熱性が低下しやすい。こうした均熱性の低下を抑えるには、結合部材と収納穴との隙間を充填材で充填するのが好ましい。こうすれば、収納穴周りの熱伝導が良好になるため、均熱性の低下を抑えることができる。 [11] In the wafer mounting table described above (the wafer mounting table described in [10] above), the first storage part may open to the upper surface of the cooling base, and the ceramic base and the cooling The opening surface may be covered with a bonding layer that bonds to the substrate. In this way, the first storage portion can be manufactured relatively easily compared to the case where the first storage portion is built inside the cooling base material. In such a structure, since it is necessary to provide a coolant channel (or coolant channel groove) avoiding the storage hole, the temperature uniformity tends to deteriorate in the vicinity of the wafer directly above the storage hole. In order to suppress such a decrease in heat uniformity, it is preferable to fill the gap between the connecting member and the housing hole with a filler. By doing so, the heat conduction around the housing hole is improved, so that the deterioration of the heat uniformity can be suppressed.

[12]上述したウエハ載置台(前記[10]又は[11]に記載のウエハ載置台)において、前記段差面と前記結合部材とが直接又は間接的に接触する環状領域の幅は、3mm以上が好ましい。こうした環状領域の幅が3mm以上であれば、結合部材が設置板に設けられた被結合部材によって設置板に向かって引っ張られたとしても、段差面と結合部材とが直接又は間接的に接触する環状領域が広いため、応力が分散しやすい。 [12] In the wafer mounting table described above (the wafer mounting table according to [10] or [11]), the width of the annular region where the step surface and the coupling member are in direct or indirect contact is 3 mm or more. is preferred. If the width of such an annular region is 3 mm or more, even if the coupling member is pulled toward the installation plate by a member to be coupled provided on the installation plate, the step surface and the coupling member are in direct or indirect contact. Since the annular area is wide, the stress is easily distributed.

チャンバ94に設置されたウエハ載置台10の縦断面図。FIG. 4 is a longitudinal sectional view of the wafer mounting table 10 installed in the chamber 94; ウエハ載置台10の平面図。FIG. 2 is a plan view of the wafer mounting table 10; 収納穴36及び雌ネジ部材38の周辺を示す拡大断面図。FIG. 3 is an enlarged cross-sectional view showing the surroundings of a housing hole 36 and a female screw member 38; 冷却基材30を収納穴36の天井面に沿って水平に切断したときの断面を上からみた断面図。FIG. 4 is a top cross-sectional view of a cross section of the cooling base material 30 cut horizontally along the ceiling surface of the housing hole 36; 冷媒供給路321と冷媒排出路322を示す拡大断面図。FIG. 3 is an enlarged cross-sectional view showing a coolant supply path 321 and a coolant discharge path 322; ウエハ載置台10の製造工程図。4A to 4C are manufacturing process diagrams of the wafer mounting table 10; 収納穴36及び雌ネジ部材38の別例を示す拡大断面図。FIG. 11 is an enlarged cross-sectional view showing another example of the housing hole 36 and the female screw member 38; 収納穴36及び雌ネジ部材38の別例を示す拡大断面図。FIG. 11 is an enlarged cross-sectional view showing another example of the housing hole 36 and the female screw member 38; 結合部材として雄ネジ部材80を採用した場合の拡大断面図。FIG. 4 is an enlarged cross-sectional view when a male screw member 80 is employed as a coupling member; チャンバ94に設置されたウエハ載置台510の縦断面図。FIG. 4 is a vertical cross-sectional view of a wafer mounting table 510 installed in the chamber 94; 収納穴536及び雌ネジ部材538の周辺を示す拡大断面図。FIG. 4 is an enlarged cross-sectional view showing the surroundings of a housing hole 536 and a female screw member 538; ウエハ載置台510の製造工程図。4A to 4C are manufacturing process diagrams of the wafer mounting table 510. FIG. 収納穴536及び雌ネジ部材538の寸法説明のための断面図。Sectional drawing for size description of the storage hole 536 and the internal thread member 538. FIG. 雌ネジ部材538として三角柱形状のナットを採用した場合の説明図。FIG. 10 is an explanatory view when a triangular prism-shaped nut is adopted as the female screw member 538; ウエハ載置台510の別例の縦断面図。FIG. 5 is a longitudinal sectional view of another example of the wafer table 510;

[第1実施形態]
本発明の好適な実施形態を、図面を参照しながら以下に説明する。図1はチャンバ94に設置されたウエハ載置台10の縦断面図(ウエハ載置台10の中心軸を含む面で切断したときの断面図)、図2はウエハ載置台10の平面図、図3は収納穴36及び雌ネジ部材38の周辺を示す拡大断面図、図4は冷却基材30を収納穴36の天井面に沿って水平に切断したときの断面を上からみた断面図である。
[First Embodiment]
Preferred embodiments of the invention are described below with reference to the drawings. FIG. 1 is a longitudinal sectional view of the wafer mounting table 10 installed in the chamber 94 (a sectional view taken along a plane including the central axis of the wafer mounting table 10), FIG. 2 is a plan view of the wafer mounting table 10, and FIG. 4 is an enlarged cross-sectional view showing the surroundings of the storage hole 36 and the female screw member 38, and FIG.

ウエハ載置台10は、ウエハWにプラズマを利用してCVDやエッチングなどを行うために用いられるものであり、半導体プロセス用のチャンバ94の内部に設けられた設置板96に固定されている。ウエハ載置台10は、アルミナ基材20と、冷却基材30と、金属接合層40とを備えている。 The wafer mounting table 10 is used to perform CVD, etching, etc. on the wafer W using plasma, and is fixed to a mounting plate 96 provided inside a chamber 94 for semiconductor processing. The wafer mounting table 10 includes an alumina substrate 20 , a cooling substrate 30 and a metal bonding layer 40 .

アルミナ基材20は、円形のウエハ載置面22aを有する中央部22の外周に、環状のフォーカスリング載置面24aを有する外周部24を備えている。以下、フォーカスリングは「FR」と略すことがある。ウエハ載置面22aには、ウエハWが載置され、FR載置面24aには、フォーカスリング78が載置される。FR載置面24aは、ウエハ載置面22aに対して一段低くなっている。 The alumina base material 20 has an outer peripheral portion 24 having an annular focus ring mounting surface 24a on the outer periphery of a central portion 22 having a circular wafer mounting surface 22a. Hereinafter, the focus ring may be abbreviated as "FR". A wafer W is mounted on the wafer mounting surface 22a, and a focus ring 78 is mounted on the FR mounting surface 24a. The FR mounting surface 24a is one step lower than the wafer mounting surface 22a.

アルミナ基材20の中央部22は、ウエハ載置面22aに近い側に、ウエハ吸着用電極26を内蔵している。ウエハ吸着用電極26は、例えばW、Mo、WC、MoCなどを含有する材料によって形成されている。ウエハ吸着用電極26は、円板状又はメッシュ状の単極型の静電吸着用電極である。アルミナ基材20のうちウエハ吸着用電極26よりも上側の層は誘電体層として機能する。ウエハ吸着用電極26には、ウエハ吸着用直流電源52が給電端子54を介して接続されている。給電端子54は、冷却基材30及び金属接合層40を上下方向に貫通する貫通穴に配置された絶縁管55を通過して、アルミナ基材20の下面からウエハ吸着用電極26に至るように設けられている。ウエハ吸着用直流電源52とウエハ吸着用電極26との間には、ローパスフィルタ(LPF)53が設けられている。 The central portion 22 of the alumina base material 20 incorporates a wafer chucking electrode 26 on the side closer to the wafer mounting surface 22a. The wafer chucking electrode 26 is made of a material containing W, Mo, WC, MoC, or the like, for example. The wafer chucking electrode 26 is a disc-shaped or mesh-shaped unipolar electrostatic chucking electrode. A layer of the alumina base material 20 above the wafer chucking electrode 26 functions as a dielectric layer. A wafer chucking DC power source 52 is connected to the wafer chucking electrode 26 via a power supply terminal 54 . The power supply terminal 54 passes through an insulating tube 55 arranged in a through-hole vertically penetrating the cooling base material 30 and the metal bonding layer 40, and extends from the lower surface of the alumina base material 20 to the wafer adsorption electrode 26. is provided. A low-pass filter (LPF) 53 is provided between the DC power supply 52 for wafer attraction and the electrode 26 for wafer attraction.

冷却基材30は、円板部材である。冷却基材30の材料としては、金属とセラミックとの複合材料などが好ましい。こうした複合材料としては、金属マトリックス複合材料(メタル・マトリックス・コンポジット(MMC)ともいう)やセラミックマトリックス複合材料(セラミック・マトリックス・コンポジット(CMC)ともいう)などが挙げられる。こうした複合材料は、脆性材料の一種である。冷却基材30は、内部に冷媒が循環可能な冷媒流路32を備えている。この冷媒流路32は、図示しない冷媒供給路及び冷媒排出路に接続されており、冷媒排出路から排出された冷媒は温度調整されたあと再び冷媒供給路に戻される。冷媒流路32を流れる冷媒は、液体が好ましく、電気絶縁性であることが好ましい。電気絶縁性の液体としては、例えばフッ素系不活性液体などが挙げられる。金属とセラミックとの複合材料としては、Si,SiC及びTiを含む材料やSiC多孔質体にAl及び/又はSiを含浸させた材料、Al23とTiCとの複合材料などが挙げられる。Si,SiC及びTiを含む材料をSiSiCTiといい、SiC多孔質体にAlを含浸させた材料をAlSiCといい、SiC多孔質体にSiを含浸させた材料をSiSiCという。冷却基材30に用いる複合材料としては熱膨張係数がアルミナに近いAlSiCやSiSiCTiなどが好ましい。冷却基材30は、RF電源62に給電端子64を介して接続されている。冷却基材30とRF電源62との間には、ハイパスフィルタ(HPF)63が配置されている。冷却基材30は、下面側にウエハ載置台10を設置板96にクランプするのに用いられるフランジ部34を有する。 The cooling base material 30 is a disk member. As a material for the cooling base material 30, a composite material of metal and ceramic is preferable. Such composites include metal matrix composites (also called metal matrix composites (MMC)) and ceramic matrix composites (also called ceramic matrix composites (CMC)). Such composite materials are a type of brittle material. The cooling base material 30 has coolant channels 32 in which coolant can circulate. The coolant channel 32 is connected to a coolant supply channel and a coolant discharge channel (not shown), and the coolant discharged from the coolant discharge channel is returned to the coolant supply channel after its temperature is adjusted. The coolant flowing through the coolant channel 32 is preferably liquid and preferably electrically insulating. Examples of electrically insulating liquids include fluorine-based inert liquids. Composite materials of metal and ceramic include materials containing Si, SiC and Ti, materials in which SiC porous bodies are impregnated with Al and/or Si, and composite materials of Al 2 O 3 and TiC. A material containing Si, SiC and Ti is referred to as SiSiCTi, a material obtained by impregnating a porous SiC body with Al is referred to as AlSiC, and a material obtained by impregnating a porous SiC body with Si is referred to as SiSiC. As the composite material used for the cooling base material 30, AlSiC, SiSiCTi, etc., having a coefficient of thermal expansion close to that of alumina are preferable. Cooling substrate 30 is connected to RF power supply 62 via power supply terminal 64 . A high pass filter (HPF) 63 is arranged between the cooling substrate 30 and the RF power supply 62 . The cooling base material 30 has a flange portion 34 on the lower surface side thereof, which is used for clamping the wafer mounting table 10 to the mounting plate 96 .

冷却基材30には、複数の収納穴36が設けられ、収納穴36には、雌ネジ部材38(結合部材)が収納されている。複数の収納穴36は、冷却基材30のうち冷媒流路32の底面32aよりも低い領域に設けられている。複数の収納穴36は、冷却基材30の同心円(例えばウエハWの直径の1/2とか1/3の円)に沿って等間隔に複数(例えば6個とか8個)設けられている。つまり、複数の収納穴36は、図2に示すように、ウエハ載置台10の中心に近い領域に設けられている。収納穴36は、図3に示すように、冷却基材30の下面に開口している。収納穴36は、第1収納部36aと、第2収納部36bと、段差部36cとを備える。第1収納部36aは、収納穴36の上部に設けられた直方体状の空間である。第2収納部36bは、収納穴36の下部に設けられた円柱状の空間である。段差部36cは、第1収納部36aと第2収納部36bとの繋ぎ目の部分である。収納穴36には、雌ネジ部材38が収納されている。雌ネジ部材38は、直方体状の頭部38aと、頭部38aの下面に設けられた円筒部38bとを有し、円筒部38bの内周面にネジが切られている。雌ネジ部材38の頭部38aは、収納穴36の第1収納部36aに収納されている。雌ネジ部材38は、頭部38aの下面が収納穴36の段差部36cに係合しているため、収納穴36から落下することはない。雌ネジ部材38の円筒部38bは、収納穴36の第2収納部36bに収納されている。雌ネジ部材38が軸回転しようとすると、図4に示すように、頭部38aが第1収納部36aの側壁に当たって軸回転が規制されるようになっている。雌ネジ部材38は、延性材料(例えばTi,Mo,Wなど)で形成されている。 A plurality of housing holes 36 are provided in the cooling base material 30, and female screw members 38 (coupling members) are housed in the housing holes 36. As shown in FIG. A plurality of storage holes 36 are provided in a region of the cooling substrate 30 that is lower than the bottom surface 32 a of the coolant channel 32 . A plurality of housing holes 36 (for example, 6 or 8) are provided at regular intervals along a concentric circle (for example, a circle of 1/2 or 1/3 the diameter of the wafer W) of the cooling substrate 30 . That is, the plurality of storage holes 36 are provided in an area near the center of the wafer mounting table 10, as shown in FIG. The storage holes 36 are opened in the lower surface of the cooling base material 30, as shown in FIG. The storage hole 36 includes a first storage portion 36a, a second storage portion 36b, and a stepped portion 36c. The first storage portion 36 a is a rectangular parallelepiped space provided above the storage hole 36 . The second storage portion 36 b is a cylindrical space provided below the storage hole 36 . The stepped portion 36c is a joint portion between the first storage portion 36a and the second storage portion 36b. A female screw member 38 is accommodated in the accommodation hole 36 . The female screw member 38 has a rectangular parallelepiped head portion 38a and a cylindrical portion 38b provided on the lower surface of the head portion 38a, and the inner peripheral surface of the cylindrical portion 38b is threaded. A head portion 38 a of the female screw member 38 is housed in a first housing portion 36 a of the housing hole 36 . Since the lower surface of the head portion 38 a of the female screw member 38 is engaged with the stepped portion 36 c of the housing hole 36 , the female screw member 38 does not fall out of the housing hole 36 . The cylindrical portion 38b of the female screw member 38 is housed in the second housing portion 36b of the housing hole 36. As shown in FIG. When the female screw member 38 tries to rotate about its axis, as shown in FIG. 4, the head portion 38a hits the side wall of the first housing portion 36a and its rotation is restricted. The female screw member 38 is made of a ductile material (eg Ti, Mo, W, etc.).

金属接合層40は、アルミナ基材20の下面と冷却基材30の上面とを接合する。金属接合層40は、例えば、はんだや金属ロウ材で形成された層であってもよい。金属接合層40は、例えばTCB(Thermal compression bonding)により形成される。TCBとは、接合対象の2つの部材の間に金属接合材を挟み込み、金属接合材の固相線温度以下の温度に加熱した状態で2つの部材を加圧接合する公知の方法をいう。 The metal bonding layer 40 bonds the lower surface of the alumina base 20 and the upper surface of the cooling base 30 . The metal bonding layer 40 may be, for example, a layer made of solder or brazing metal. The metal bonding layer 40 is formed by TCB (Thermal Compression Bonding), for example. TCB is a known method in which a metal bonding material is sandwiched between two members to be bonded, and the two members are pressure-bonded while being heated to a temperature below the solidus temperature of the metal bonding material.

アルミナ基材20の外周部24の側面、金属接合層40の外周及び冷却基材30の側面は、絶縁膜42で被覆されている。絶縁膜42としては、例えばアルミナやイットリアなどの溶射膜が挙げられる。 The side surface of the outer peripheral portion 24 of the alumina base material 20 , the outer periphery of the metal bonding layer 40 and the side surface of the cooling base material 30 are covered with an insulating film 42 . As the insulating film 42, for example, a sprayed film such as alumina or yttria can be used.

こうしたウエハ載置台10は、チャンバ94の内部に設けられた設置板96の上にシールリング76を介して取り付けられる。シールリング76は、金属製又は樹脂製であり、外径が冷却基材30の外径よりもやや小さい。ウエハ載置台10の外周領域は、クランプ部材70を用いて設置板96に取り付けられる。クランプ部材70は、断面が略逆L字状の環状部材であり、内周段差面70aを有する。ウエハ載置台10の冷却基材30のフランジ部34に、クランプ部材70の内周段差面70aを載置した状態で、クランプ部材70の上面からボルト72が差し込まれて設置板96の上面に設けられたネジ穴に螺合されている。ボルト72は、クランプ部材70の円周方向に沿って等間隔に設けられた複数箇所(例えば8箇所とか12箇所)に取り付けられる。クランプ部材70やボルト72は、絶縁材料で作製されていてもよいし、導電材料(金属など)で作製されていてもよい。また、ウエハ載置台10の中央領域は、ボルト98(被結合部材)を用いて設置板96に取り付けられる。図3に示すように、ボルト98の足部には、雄ネジ98aが設けられている。ボルト98は、設置板96のうち収納穴36に対向する位置に設けられた貫通穴97に設置板96の下面から挿通され、雄ネジ98aが収納穴36内の雌ネジ部材38に螺合される。貫通穴97は、上部が小径、下部が大径となっており、上部と下部との間に段差部97aを有する。ボルト98の頭部は、貫通穴97の段差部97aに引っ掛かる。雌ネジ部材38は収納穴36の第1収納部36a内に軸回転を規制された状態で収納されているため、ボルト98を雌ネジ部材38に螺合することができる。ボルト98を雌ネジ部材38に螺合すると、雌ネジ部材38は頭部38aが収納穴36の段差部36cに係合した状態で設置板96に向かって引っ張られた状態になる。 Such a wafer mounting table 10 is mounted via a seal ring 76 on a mounting plate 96 provided inside the chamber 94 . The seal ring 76 is made of metal or resin, and has an outer diameter slightly smaller than the outer diameter of the cooling base material 30 . The outer peripheral area of the wafer mounting table 10 is attached to the installation plate 96 using the clamp members 70 . The clamp member 70 is an annular member having a substantially inverted L-shaped cross section, and has an inner peripheral stepped surface 70a. With the inner peripheral stepped surface 70a of the clamp member 70 placed on the flange portion 34 of the cooling substrate 30 of the wafer mounting table 10, a bolt 72 is inserted from the upper surface of the clamp member 70 and provided on the upper surface of the installation plate 96. is screwed into a threaded hole. The bolts 72 are attached at a plurality of locations (for example, 8 or 12 locations) provided at equal intervals along the circumferential direction of the clamp member 70 . The clamp member 70 and the bolt 72 may be made of an insulating material, or may be made of a conductive material (such as metal). Also, the central region of the wafer mounting table 10 is attached to the installation plate 96 using bolts 98 (bonded members). As shown in FIG. 3, the leg portion of the bolt 98 is provided with a male thread 98a. The bolt 98 is inserted from the lower surface of the installation plate 96 through a through hole 97 provided in the installation plate 96 at a position facing the storage hole 36 , and the male screw 98 a is screwed into the female screw member 38 in the storage hole 36 . be. The through hole 97 has a small diameter at the top and a large diameter at the bottom, and has a stepped portion 97a between the top and bottom. The head of the bolt 98 is hooked on the stepped portion 97 a of the through hole 97 . Since the female screw member 38 is housed in the first housing portion 36 a of the housing hole 36 with its axial rotation restricted, the bolt 98 can be screwed into the female screw member 38 . When the bolt 98 is screwed into the female screw member 38 , the female screw member 38 is pulled toward the mounting plate 96 with the head portion 38 a engaged with the stepped portion 36 c of the housing hole 36 .

ウエハ載置台10の使用時にはアルミナ基材20のウエハ載置面22a側が真空、冷却基材30の下面側が大気になるため、ウエハ載置台10が上に向かって凸になりやすい。また、ハイパワープラズマでウエハWを処理する場合、アルミナ基材20のウエハ載置面22a側が高温、下面側が冷却されて低温になるため、ウエハ載置面22a側の方が延びやすく、ウエハ載置台10が上に向かって凸になりやすい。しかしながら、本実施形態では、ウエハ載置台10の中央領域がボルト98によって固定されているため、ウエハ載置台10が上に向かって凸になるのを防止することができる。また、冷却基材30の下面の中央領域と設置板96の上面との間に図示しないシールリングが配置されていたとしても、ウエハ載置台10の中央領域がボルト98によって固定されているため、そのシールリングはしっかりと押し潰された状態で維持される。 When the wafer mounting table 10 is used, the wafer mounting surface 22a side of the alumina substrate 20 is in a vacuum state, and the lower surface side of the cooling substrate 30 is in the air. Further, when the wafer W is processed with high-power plasma, the temperature on the wafer mounting surface 22a side of the alumina base material 20 is high, and the temperature on the lower surface side of the alumina base material 20 is low due to cooling. The table 10 tends to be convex upward. However, in this embodiment, since the central region of the wafer mounting table 10 is fixed by the bolts 98, it is possible to prevent the wafer mounting table 10 from protruding upward. Further, even if a seal ring (not shown) is arranged between the central region of the lower surface of the cooling base material 30 and the upper surface of the mounting plate 96, the central region of the wafer mounting table 10 is fixed by the bolts 98. The seal ring remains firmly crushed.

例えば、図5に示すように、冷媒供給路321は、設置板96を貫通する第1供給路32pと、設置板96と冷却基材30との間に配置された冷媒供給用シールリング32qの内部と、冷却基材30の下面から冷媒流路32に至る第2供給路32rとで構成されているとする。冷媒排出路322は、冷媒流路32から冷却基材30の下面に至る第1排出路32sと、冷却基材30と設置板96との間に配置された冷媒排出用シールリング32tの内部と、設置板96を貫通して設置板96の下面に至る第2排出路32uとで構成されているとする。この場合、収納穴36内の雌ネジ部材38とボルト98とが螺合されることによりウエハ載置台10の中央領域が固定されるため、これらのシールリング32q,32tはしっかりと押し潰された状態で維持される。そのため、シールリング32q,32tはシール性を十分に確保することができる。 For example, as shown in FIG. 5, the coolant supply path 321 consists of a first supply path 32p passing through the installation plate 96 and a coolant supply seal ring 32q disposed between the installation plate 96 and the cooling substrate 30. and a second supply path 32r extending from the lower surface of the cooling base material 30 to the coolant flow path 32. As shown in FIG. The coolant discharge path 322 consists of a first discharge path 32s extending from the coolant flow path 32 to the lower surface of the cooling base material 30, and the inside of a coolant discharge seal ring 32t disposed between the cooling base material 30 and the installation plate 96. , and a second discharge passage 32u that passes through the installation plate 96 and reaches the lower surface of the installation plate 96. As shown in FIG. In this case, the female screw member 38 in the housing hole 36 and the bolt 98 are screwed together to fix the central region of the wafer mounting table 10, so that these seal rings 32q and 32t are firmly crushed. maintained in condition. Therefore, the seal rings 32q, 32t can sufficiently ensure sealing performance.

次に、ウエハ載置台10の製造例を図6を用いて説明する。図6はウエハ載置台10の製造工程図である。まず、アルミナ基材20の元となる円板状のアルミナ焼結体120を、アルミナ粉末の成形体をホットプレス焼成することにより作製する(図6A)。アルミナ焼結体120は、ウエハ吸着用電極26を内蔵している。次に、アルミナ焼結体120の下面からウエハ吸着用電極26まで穴27をあけ(図6B)、その穴27に給電端子54を挿入して給電端子54とウエハ吸着用電極26とを接合する(図6C)。 Next, an example of manufacturing the wafer mounting table 10 will be described with reference to FIG. 6A and 6B are manufacturing process diagrams of the wafer mounting table 10. FIG. First, a disc-shaped alumina sintered body 120, which is the source of the alumina base material 20, is produced by hot-press firing a molded body of alumina powder (FIG. 6A). The alumina sintered body 120 incorporates the wafer adsorption electrode 26 . Next, a hole 27 is formed from the lower surface of the alumina sintered body 120 to the wafer adsorption electrode 26 (FIG. 6B), and the power supply terminal 54 is inserted into the hole 27 to join the power supply terminal 54 and the wafer adsorption electrode 26 together. (Fig. 6C).

これと並行して、3つのMMC円板部材131,133,135を作製する(図6D)。そして、上側のMMC円板部材131の下面に最終的に冷媒流路32となる溝132を形成すると共に、下側のMMC円板部材135に最終的に収納穴36となる段差穴136を形成し、更に、3つのMMC円板部材131,133,135に上下方向に貫通する貫通穴を形成する(図6E)。これらの貫通穴は最終的に給電端子54を挿通する穴になる。アルミナ焼結体120がアルミナ製の場合、MMC円板部材131,133,135はSiSiCTi製かAlSiC製であることが好ましい。アルミナの熱膨張係数とSiSiCTiやAlSiCの熱膨張係数とは、概ね同じだからである。 In parallel, three MMC disk members 131, 133, 135 are fabricated (FIG. 6D). A groove 132 is formed on the lower surface of the upper MMC disk member 131, and a stepped hole 136 is formed on the lower MMC disk member 135, which will eventually become the storage hole 36. Furthermore, through holes are formed in the three MMC disk members 131, 133, and 135 so as to extend vertically (FIG. 6E). These through holes eventually become holes through which the power supply terminals 54 are inserted. When the alumina sintered body 120 is made of alumina, the MMC disk members 131, 133, 135 are preferably made of SiSiCTi or AlSiC. This is because the thermal expansion coefficient of alumina is approximately the same as that of SiSiCTi and AlSiC.

SiSiCTi製の円板部材は、例えば以下のように作製することができる。まず、炭化珪素と金属Siと金属Tiとを混合して粉体混合物を作製する。次に、得られた粉体混合物を一軸加圧成形により円板状の成形体を作製し、その成形体を不活性雰囲気下でホットプレス焼結させることにより、SiSiCTi製の円板部材を得る。 A disk member made of SiSiCTi can be produced, for example, as follows. First, silicon carbide, metal Si, and metal Ti are mixed to prepare a powder mixture. Next, the obtained powder mixture is uniaxially pressed to form a disk-shaped molded body, and the molded body is hot-press sintered in an inert atmosphere to obtain a disk member made of SiSiCTi. .

次に、下側のMMC円板部材135の段差穴136に雌ネジ部材38を収納する。そして、上側のMMC円板部材131の下面と真ん中のMMC円板部材133の上面との間に金属接合材を配置すると共に、真ん中のMMC円板部材133の下面と下側のMMC円板部材135の上面との間に金属接合材を配置し、更に上側のMMC円板部材131の上面に金属接合材を配置する。各金属接合材には、給電端子54を挿通する位置に貫通穴を設けておく。次に、アルミナ焼結体120の給電端子54をMMC円板部材131,133,135の貫通穴に挿入し、アルミナ焼結体120を上側のMMC円板部材131の上面に配置された金属接合材の上に載せる。これにより、下から順に、MMC円板部材135、金属接合材、MMC円板部材133、金属接合材、MMC円板部材131、金属接合材及びアルミナ焼結体120が積層した積層体を得る。この積層体を加熱しながら加圧することにより(TCB)、接合体110を得る(図6F)。接合体110は、冷却基材30の元となるMMCブロック130の上面に、金属接合層40を介してアルミナ焼結体120が接合されたものである。MMCブロック130は、上側のMMC円板部材131と真ん中のMMC円板部材133とが金属接合層を介して接合されると共に、真ん中のMMC円板部材133と下側のMMC円板部材135とが金属接合層を介して接合されたものである。MMCブロック130は、内部に冷媒流路32と収納穴36を有している。また、収納穴36には雌ネジ部材38が収納されている。 Next, the female screw member 38 is accommodated in the stepped hole 136 of the MMC disk member 135 on the lower side. Then, a metal bonding material is placed between the lower surface of the upper MMC disk member 131 and the upper surface of the middle MMC disk member 133, and the lower surface of the middle MMC disk member 133 and the lower MMC disk member are arranged. 135 and the upper surface of the MMC disk member 131, and further arranges the metal bonding material on the upper surface of the MMC disk member 131 on the upper side. Each metal bonding material is provided with a through hole at a position through which the power supply terminal 54 is inserted. Next, the power supply terminal 54 of the alumina sintered body 120 is inserted into the through holes of the MMC disc members 131, 133, and 135, and the alumina sintered body 120 is arranged on the upper surface of the MMC disc member 131 on the upper side. Place it on the material. As a result, a laminate is obtained in which the MMC disk member 135, the metal bonding material, the MMC disk member 133, the metal bonding material, the MMC disk member 131, the metal bonding material, and the alumina sintered body 120 are laminated in order from the bottom. By applying pressure while heating this laminate (TCB), a joined body 110 is obtained (FIG. 6F). The joined body 110 is formed by joining an alumina sintered body 120 to the upper surface of an MMC block 130 that is the base of the cooling base material 30 via a metal joining layer 40 . In the MMC block 130, an upper MMC disk member 131 and a middle MMC disk member 133 are joined via a metal bonding layer, and the middle MMC disk member 133 and the lower MMC disk member 135 are joined together. are bonded via a metal bonding layer. The MMC block 130 has a coolant channel 32 and a storage hole 36 inside. A female screw member 38 is accommodated in the accommodation hole 36 .

TCBは、例えば以下のように行われる。すなわち、金属接合材の固相線温度以下(例えば、固相線温度から20℃引いた温度以上固相線温度以下)の温度で積層体を加圧して接合し、その後室温に戻す。これにより、金属接合材は金属接合層になる。このときの金属接合材としては、Al-Mg系接合材やAl-Si-Mg系接合材を使用することができる。例えば、Al-Si-Mg系接合材を用いてTCBを行う場合、真空雰囲気下で加熱した状態で積層体を加圧する。金属接合材は、厚みが100μm前後のものを用いるのが好ましい。 TCB is performed, for example, as follows. That is, the laminate is pressurized and bonded at a temperature below the solidus temperature of the metal bonding material (for example, the temperature obtained by subtracting 20° C. from the solidus temperature and below the solidus temperature), and then returned to room temperature. As a result, the metal bonding material becomes a metal bonding layer. As the metal bonding material at this time, an Al--Mg system bonding material or an Al--Si--Mg system bonding material can be used. For example, when TCB is performed using an Al-Si-Mg-based bonding material, the laminated body is pressed while being heated in a vacuum atmosphere. It is preferable to use a metal bonding material having a thickness of about 100 μm.

続いて、アルミナ焼結体120の外周を切削して段差を形成することにより、中央部22と外周部24とを備えたアルミナ基材20とする。また、MMCブロック130の外周を切削して段差を形成することにおり、フランジ部34を備えた冷却基材30とする。また、MMCブロック130及び金属接合層40に設けられた給電端子54の挿入穴に、絶縁管55を配置する。更に、アルミナ基材20の外周部24の側面、金属接合層40の周囲及び冷却基材30の側面を、アルミナ粉末を用いて溶射することにより絶縁膜42を形成する(図6G)。これにより、ウエハ載置台10を得る。 Subsequently, the alumina base material 20 having the central portion 22 and the outer peripheral portion 24 is formed by cutting the outer periphery of the alumina sintered body 120 to form a step. Further, by cutting the outer periphery of the MMC block 130 to form a step, the cooling base 30 having the flange portion 34 is provided. Also, the insulating tube 55 is arranged in the insertion hole of the power supply terminal 54 provided in the MMC block 130 and the metal bonding layer 40 . Further, the insulating film 42 is formed by thermally spraying the side surface of the outer peripheral portion 24 of the alumina base material 20, the periphery of the metal bonding layer 40, and the side surface of the cooling base material 30 using alumina powder (FIG. 6G). Thus, the wafer mounting table 10 is obtained.

なお、図1の冷却基材30は、一体品として記載したが、図6Gに示すように3つの部材が金属接合層で接合された構造であってもよいし、2つ又は4つ以上の部材が金属接合層で接合された構造であってもよい。 Although the cooling base material 30 in FIG. 1 is described as a single piece, it may have a structure in which three members are joined with a metal bonding layer as shown in FIG. A structure in which members are bonded by a metal bonding layer may be used.

次に、ウエハ載置台10の使用例について図1を用いて説明する。チャンバ94の設置板96には、上述したようにウエハ載置台10の外周領域がクランプ部材70によって固定されると共に、ウエハ載置台10の中央領域がボルト98によって固定されている。チャンバ94の天井面には、プロセスガスを多数のガス噴射孔からチャンバ94の内部へ放出するシャワーヘッド95が配置されている。設置板96は、例えばアルミナなどの絶縁材料で形成されている。 Next, a usage example of the wafer mounting table 10 will be described with reference to FIG. On the installation plate 96 of the chamber 94, the outer peripheral region of the wafer mounting table 10 is fixed by the clamp members 70 and the central region of the wafer mounting table 10 is fixed by the bolts 98, as described above. A shower head 95 is arranged on the ceiling surface of the chamber 94 to discharge the process gas into the chamber 94 from a large number of gas injection holes. The installation plate 96 is made of an insulating material such as alumina.

ウエハ載置台10のFR載置面24aには、フォーカスリング78が載置され、ウエハ載置面22aには、円盤状のウエハWが載置される。フォーカスリング78は、ウエハWと干渉しないように上端部の内周に沿って段差を備えている。この状態で、ウエハ吸着用電極26にウエハ吸着用直流電源52の直流電圧を印加してウエハWをウエハ載置面22aに吸着させる。そして、チャンバ94の内部を所定の真空雰囲気(又は減圧雰囲気)になるように設定し、シャワーヘッド95からプロセスガスを供給しながら、冷却基材30にRF電源62からのRF電圧を印加する。すると、ウエハWとシャワーヘッド95との間でプラズマが発生する。そして、そのプラズマを利用してウエハWにCVD成膜を施したりエッチングを施したりする。なお、ウエハWがプラズマ処理されるのに伴ってフォーカスリング78も消耗するが、フォーカスリング78はウエハWに比べて厚いため、フォーカスリング78の交換は複数枚のウエハWを処理したあとに行われる。 A focus ring 78 is mounted on the FR mounting surface 24a of the wafer mounting table 10, and a disk-shaped wafer W is mounted on the wafer mounting surface 22a. The focus ring 78 has a step along the inner circumference of the upper end so as not to interfere with the wafer W. As shown in FIG. In this state, the DC voltage of the wafer chucking DC power supply 52 is applied to the wafer chucking electrode 26 to chuck the wafer W onto the wafer mounting surface 22a. Then, the inside of the chamber 94 is set to a predetermined vacuum atmosphere (or reduced pressure atmosphere), and the RF voltage from the RF power supply 62 is applied to the cooling substrate 30 while supplying the process gas from the shower head 95 . Plasma is then generated between the wafer W and the shower head 95 . Using the plasma, the wafer W is subjected to CVD film formation or etching. The focus ring 78 is also worn out as the wafer W is processed with plasma. However, since the focus ring 78 is thicker than the wafer W, the replacement of the focus ring 78 is performed after a plurality of wafers W are processed. will be

ハイパワープラズマでウエハWを処理する場合には、ウエハWを効率的に冷却する必要がある。ウエハ載置台10では、アルミナ基材20と冷却基材30との接合層として、熱伝導率の低い樹脂層ではなく、熱伝導率の高い金属接合層40を用いている。そのため、ウエハWから熱を引く能力(抜熱能力)が高い。また、アルミナ基材20と冷却基材30との熱膨張差は小さいため、金属接合層40の応力緩和性が低くても、支障が生じにくい。 When processing the wafer W with high-power plasma, it is necessary to cool the wafer W efficiently. In the wafer mounting table 10 , the metal bonding layer 40 with high thermal conductivity is used as the bonding layer between the alumina base material 20 and the cooling base material 30 instead of the resin layer with low thermal conductivity. Therefore, the ability to remove heat from the wafer W (heat removal ability) is high. In addition, since the difference in thermal expansion between the alumina base material 20 and the cooling base material 30 is small, even if the stress relaxation property of the metal bonding layer 40 is low, troubles are unlikely to occur.

以上説明したウエハ載置台10では、雌ネジ部材38は、冷却基材30の下面に開口する収納穴36内に軸回転を規制された状態で且つ収納穴36から落下しないように収納穴36の段差部36c(係合部)に係合した状態で収納されている。雌ネジ部材38は軸回転が規制されているため、冷却基材30の下面側から差し込まれるボルト98の雄ネジ98aを雌ネジ部材38に螺合することができる。また、雌ネジ部材38は、収納穴36の段差部36cに係合した状態で設置板96に挿通されたボルト98によって設置板96に向かって引っ張られたとしても、延性を有しているため割れにくい。したがって、脆性な冷却基材30を備えたウエハ載置台10を設置板96に支障なく締結することができる。 In the wafer mounting table 10 described above, the female threaded member 38 is placed in the storage hole 36 opening in the lower surface of the cooling substrate 30 so as to prevent it from falling out of the storage hole 36 in a state where its axial rotation is restricted. It is housed in a state of being engaged with the stepped portion 36c (engagement portion). Since the axial rotation of the female screw member 38 is restricted, the male screw 98 a of the bolt 98 inserted from the lower surface side of the cooling base material 30 can be screwed into the female screw member 38 . Further, even if the female screw member 38 is pulled toward the installation plate 96 by the bolt 98 inserted through the installation plate 96 in a state of being engaged with the stepped portion 36c of the housing hole 36, the female screw member 38 has ductility. Hard to break. Therefore, the wafer mounting table 10 having the brittle cooling base material 30 can be fastened to the mounting plate 96 without any trouble.

また、冷却基材30は、MMCで形成されている。MMCは脆性材料であるため、本発明を適用する意義が高い。 Also, the cooling base material 30 is made of MMC. Since MMC is a brittle material, it is highly significant to apply the present invention.

更に、収納穴36は係合部として段差部36cを備え、雌ネジ部材38は被係合部として頭部38aを備えている。そのため、係合部や被係合部を比較的簡単に作製することができる。 Further, the housing hole 36 has a stepped portion 36c as an engaging portion, and the female screw member 38 has a head portion 38a as an engaged portion. Therefore, the engaging portion and the engaged portion can be produced relatively easily.

更にまた、雌ネジ部材38は、軸回転しようとすると収納穴36の第1収納部36aの側壁に当たって軸回転を規制される。そのため、比較的簡単な構成で雌ネジ部材38の軸回転を規制することができる。 Furthermore, when the female screw member 38 attempts to rotate about its axis, it abuts against the side wall of the first storage portion 36a of the storage hole 36 and is restricted from rotating about its axis. Therefore, axial rotation of the female screw member 38 can be restricted with a relatively simple configuration.

そして、収納穴36は、冷却基材30のうち冷媒流路32の底面32aよりも低い領域に設けられている。そのため、収納穴36は冷媒流路32の邪魔にならない。したがって、冷媒流路32の設計の自由度を損なうことがない。 The storage hole 36 is provided in a region of the cooling substrate 30 that is lower than the bottom surface 32 a of the coolant channel 32 . Therefore, the accommodation hole 36 does not interfere with the coolant flow path 32 . Therefore, the degree of freedom in designing the coolant channel 32 is not impaired.

そしてまた、雌ネジ部材38は、収納穴36で冷却基材30と接合されておらずフリーな状態で収納されている。ウエハ載置台10を製造する際、雌ネジ部材38を収納穴36に入れるだけでよいため、手間がかからない。 Moreover, the female screw member 38 is housed in a free state without being joined to the cooling base material 30 in the housing hole 36 . When the wafer mounting table 10 is manufactured, it is only necessary to put the female screw member 38 into the housing hole 36, which saves time and effort.

なお、本発明は上述した実施形態に何ら限定されることはなく、本発明の技術的範囲に属する限り種々の態様で実施し得ることはいうまでもない。 It goes without saying that the present invention is not limited to the above-described embodiments, and can be implemented in various forms as long as they fall within the technical scope of the present invention.

上述した第1実施形態では、収納穴36を冷却基材30のうち冷媒流路32の底面32aよりも低い領域に設けたが、これに限定されない。例えば、図7に示すように、収納穴36の天井面36dが冷媒流路32の底面32aよりも高くなるように設けてもよい。図7では、上述した第1実施形態と同じ構成要素については同じ符号を付した。図7では、収納穴36の第1収納部36aは上述した第1実施形態と同じ大きさであるが、第2収納部36bの上下方向の長さは上述した第1実施形態よりも長い。また、雌ネジ部材38の頭部38aは上述した第1実施形態と同じ大きさであるが、円筒部38bの上下方向の長さは上述した第1実施形態よりも長い。このようにしても、上述した第1実施形態と概ね同様の効果が得られる。但し、冷媒流路32の設計の自由度は上述した第1実施形態に比べて制限される。 In the above-described first embodiment, the storage holes 36 are provided in the regions of the cooling base material 30 lower than the bottom surfaces 32a of the coolant channels 32, but the present invention is not limited to this. For example, as shown in FIG. 7, the ceiling surface 36d of the housing hole 36 may be provided so as to be higher than the bottom surface 32a of the coolant channel 32. As shown in FIG. In FIG. 7, the same symbols are attached to the same components as in the first embodiment described above. In FIG. 7, the first storage portion 36a of the storage hole 36 has the same size as in the first embodiment described above, but the vertical length of the second storage portion 36b is longer than in the first embodiment described above. Moreover, although the head portion 38a of the female screw member 38 has the same size as that of the above-described first embodiment, the vertical length of the cylindrical portion 38b is longer than that of the above-described first embodiment. Even in this way, substantially the same effects as those of the above-described first embodiment can be obtained. However, the degree of freedom in designing the coolant flow path 32 is restricted compared to the above-described first embodiment.

上述した第1実施形態では、収納穴36の内周面に段差部36cを設けたが、これに限定されない。例えば、図8に示すように、雌ネジ部材38の頭部38aのうち互いに向かい合う側面を傾斜面38cとし、収納穴36の内周面にその傾斜面38cと一致する傾斜部36eを設けてもよい。この場合、雌ネジ部材38の傾斜面38cは収納穴36の傾斜部36eに係合するため、雌ネジ部材38が収納穴36から落下することはない。また、ボルト98を雌ネジ部材38に螺合すると、雌ネジ部材38は傾斜面38cが収納穴36の傾斜部36eに係合した状態で設置板96に向かって引っ張られた状態になる。 In the first embodiment described above, the stepped portion 36c is provided on the inner peripheral surface of the housing hole 36, but the present invention is not limited to this. For example, as shown in FIG. 8, the side faces of the head portion 38a of the female screw member 38 facing each other may be inclined surfaces 38c, and the inner peripheral surface of the housing hole 36 may be provided with an inclined portion 36e that coincides with the inclined surfaces 38c. good. In this case, since the inclined surface 38c of the female screw member 38 engages with the inclined portion 36e of the housing hole 36, the female screw member 38 does not fall out of the housing hole 36. When the bolt 98 is screwed into the female threaded member 38 , the female threaded member 38 is pulled toward the mounting plate 96 while the inclined surface 38 c is engaged with the inclined portion 36 e of the housing hole 36 .

上述した第1実施形態では、雌ネジ部材38の頭部38aの形状を平面視で長方形としたが、特にこれに限定されない。例えば、頭部38aの形状を平面視で三角形や五角形などの多角形としてもよいし、プラス(+)形状としてもよいし、楕円形としてもよい。収納穴36の第1収納部36aの形状は、雌ネジ部材38が軸回転しようしたときに頭部38aが側壁に当たる形状とすればよい。この点は、後述する第2実施形態の雌ネジ部材538も同様である。 In the above-described first embodiment, the shape of the head portion 38a of the female screw member 38 is rectangular in plan view, but the shape is not particularly limited to this. For example, the head 38a may have a polygonal shape such as a triangle or a pentagon, a plus (+) shape, or an elliptical shape in plan view. The shape of the first storage portion 36a of the storage hole 36 may be such that the head portion 38a contacts the side wall when the female screw member 38 is about to rotate. This point also applies to a female screw member 538 of a second embodiment, which will be described later.

上述した第1実施形態では、結合部材として雌ネジ部材38を採用し、被結合部材としてボルト98を採用したが、図9に示すように、結合部材として雄ネジ部材80を採用し、被結合部材としてナット82を採用してもよい。図9では、上述した第1実施形態と同じ構成要素については同じ符号を付した。雄ネジ部材80は、延性材料で形成されている。雄ネジ部材80は、頭部38aと同形状の頭部80aと、頭部80aの裏面中央に設けられた足部80bと、足部80bの先端に設けられた雄ネジ部80cとを有する。頭部80aは、収納穴36の第1収納穴36aに収納されている。足部80bは、第2収納穴36b及び設置板96の貫通穴97に挿通されている。雄ネジ部80cは、ナット82に螺合されている。ナット82は、貫通穴97の段差部97aに引っ掛かるようになっている。雄ネジ部材80は、頭部80aの下面が収納穴36の段差部36cに係合しているため、収納穴36から落下することはない。雄ネジ部材80が軸回転しようとすると、頭部80aが第1収納部36aの側壁に当たって軸回転が規制される。そのため、雄ネジ部材80の雄ネジ部80cにナット82を螺合することができる。ナット82を雄ネジ部材80の雄ネジ部80cに螺合すると、雄ネジ部材80は頭部80aが収納穴36の段差部36cに係合した状態で設置板96に向かって引っ張られた状態になる。図9の構成を採用した場合も、上述した第1実施形態と同様の効果が得られる。後述する第2実施形態でも、結合部材として雌ネジ部材538の代わりに雄ネジ部材を採用し、被結合部材としてボルト98の代わりにナットを採用してもよい。 In the first embodiment described above, the female threaded member 38 is employed as the coupling member and the bolt 98 is employed as the member to be coupled. However, as shown in FIG. A nut 82 may be employed as the member. In FIG. 9, the same symbols are attached to the same components as in the first embodiment described above. The male threaded member 80 is made of a ductile material. The male screw member 80 has a head portion 80a having the same shape as the head portion 38a, a foot portion 80b provided at the center of the back surface of the head portion 80a, and a male screw portion 80c provided at the tip of the foot portion 80b. The head 80a is housed in the first housing hole 36a of the housing hole 36. As shown in FIG. The leg portion 80b is inserted through the second housing hole 36b and the through hole 97 of the installation plate 96 . The male screw portion 80 c is screwed onto the nut 82 . The nut 82 is hooked on the stepped portion 97 a of the through hole 97 . Since the lower surface of the head portion 80 a of the male screw member 80 is engaged with the stepped portion 36 c of the housing hole 36 , the male screw member 80 does not fall out of the housing hole 36 . When the male threaded member 80 tries to rotate about its axis, the head 80a hits the side wall of the first housing portion 36a and its rotation is restricted. Therefore, the nut 82 can be screwed onto the male threaded portion 80 c of the male threaded member 80 . When the nut 82 is screwed onto the male threaded portion 80c of the male threaded member 80, the male threaded member 80 is pulled toward the installation plate 96 with the head portion 80a engaged with the stepped portion 36c of the housing hole 36. Become. Even when the configuration of FIG. 9 is adopted, the same effects as those of the above-described first embodiment can be obtained. Also in the second embodiment, which will be described later, a male threaded member may be employed as the coupling member instead of the female threaded member 538, and a nut may be employed as the coupled member instead of the bolt 98. FIG.

上述した第1実施形態において、冷却基材30の下面からウエハ載置面22aに至るようにウエハ載置台10を貫通する穴を設けてもよい。こうした穴としては、ウエハWの裏面に熱伝導ガス(例えばHeガス)を供給するためのガス供給穴や、ウエハ載置面22aに対してウエハWを上下させるリフトピンを挿通するためのリフトピン穴などが挙げられる。熱伝導ガスは、ウエハ載置面22aに設けれられた図示しない多数の小突起(ウエハWを支持する)とウエハWとによって形成される空間に供給される。リフトピン穴は、ウエハWを例えば3本のリフトピンで支持する場合には3箇所に設けられる。冷却基材30の下面と設置板96の上面との間には、こうした穴に対向する位置に樹脂製又は金属製のシールリング(例えばOリング)を配置する。ウエハ載置台10の中央領域がボルト98によって固定されているため、これらのシールリングはしっかりと押し潰された状態で維持される。したがって、これらのシールリングはシール性を十分に確保することができる。この点は、後述する第2実施形態も同様である。 In the above-described first embodiment, a hole may be provided through the wafer mounting table 10 so as to reach the wafer mounting surface 22a from the lower surface of the cooling substrate 30. FIG. Such holes include a gas supply hole for supplying a heat-conducting gas (eg, He gas) to the rear surface of the wafer W, a lift pin hole for inserting a lift pin for moving the wafer W up and down with respect to the wafer mounting surface 22a, and the like. are mentioned. The heat transfer gas is supplied to a space formed by the wafer W and a large number of small projections (not shown) provided on the wafer mounting surface 22a (supporting the wafer W). Three lift pin holes are provided when the wafer W is supported by, for example, three lift pins. Between the lower surface of the cooling base material 30 and the upper surface of the installation plate 96, a resin or metal seal ring (for example, an O-ring) is arranged at a position facing the hole. Since the central region of wafer platform 10 is fixed by bolts 98, these seal rings are maintained in a firmly crushed state. Therefore, these seal rings can ensure sufficient sealing performance. This point also applies to a second embodiment, which will be described later.

上述した第1実施形態では、冷却基材30をMMCで作製したが、MMC以外の脆性材料(例えばアルミナ材料)で作製してもよい。この点は、後述する第2実施形態の冷却基材530も同様である。 In the first embodiment described above, the cooling base material 30 is made of MMC, but it may be made of a brittle material other than MMC (for example, an alumina material). This point also applies to the cooling base material 530 of the second embodiment, which will be described later.

上述した第1実施形態では、アルミナ基材20の中央部22にウエハ吸着用電極26を内蔵したが、これに代えて又は加えて、プラズマ発生用のRF電極を内蔵してもよいし、ヒータ電極(抵抗発熱体)を内蔵してもよい。また、アルミナ基材20の外周部24にフォーカスリング(FR)吸着用電極を内蔵してもよいし、RF電極やヒータ電極を内蔵してもよい。この点は、後述する第2実施形態も同様である。 In the above-described first embodiment, the wafer adsorption electrode 26 is built in the central portion 22 of the alumina base material 20, but instead of or in addition to this, an RF electrode for plasma generation may be built in, or a heater An electrode (resistive heating element) may be incorporated. In addition, a focus ring (FR) adsorption electrode, an RF electrode, and a heater electrode may be built in the peripheral portion 24 of the alumina base material 20 . This point also applies to a second embodiment, which will be described later.

上述した第1実施形態では、図6Aのアルミナ焼結体120はアルミナ粉末の成形体をホットプレス焼成することにより作製したが、そのときの成形体は、テープ成形体を複数枚積層して作製してもよいし、モールドキャスト法によって作製してもよいし、アルミナ粉末を押し固めることによって作製してもよい。この点は、後述する第2実施形態も同様である。 In the above-described first embodiment, the alumina sintered body 120 in FIG. 6A was produced by hot-press firing a compact of alumina powder, but the compact at that time was produced by laminating a plurality of tape compacts. It may be produced by a mold casting method, or may be produced by compacting alumina powder. This point also applies to a second embodiment, which will be described later.

上述した第1実施形態では、アルミナ基材20と冷却基材30とを金属接合層40で接合したが、金属接合層40の代わりに樹脂接合層を用いてもよい。この点は、後述する第2実施形態も同様である。 In the above-described first embodiment, the alumina base material 20 and the cooling base material 30 are bonded with the metal bonding layer 40, but instead of the metal bonding layer 40, a resin bonding layer may be used. This point also applies to a second embodiment, which will be described later.

上述した第1実施形態において、雌ネジ部材38と収納穴36の第1収納部36aとの隙間に充填材を充填してもよい。こうすれば、この隙間が空間になっている場合に比べて、熱伝導が良好になる。そのため、ウエハWの均熱性が向上する。充填材としては、例えば、接着性樹脂や非接着性樹脂のほか、これらの樹脂に熱伝導性粉末(金属粉末など)を添加したものなどが挙げられる。雌ネジ部材38には、雌ネジ部材38を上下方向に貫通する貫通穴(円筒部38bの内部空間から頭部38aの頂面に至る貫通穴)を設けるのが好ましい。こうすれば、図6Fの段階で、貫通穴を介して流動性のある充填材を雌ネジ部材38と収納穴36の第1収納部36aとの隙間に容易に注入することができる。 In the first embodiment described above, the gap between the female screw member 38 and the first storage portion 36a of the storage hole 36 may be filled with a filler. By doing so, the heat conduction is better than when the gap is a space. Therefore, the temperature uniformity of the wafer W is improved. Examples of fillers include adhesive resins, non-adhesive resins, and thermally conductive powders (such as metal powders) added to these resins. The female screw member 38 is preferably provided with a through hole (a through hole extending from the inner space of the cylindrical portion 38b to the top surface of the head portion 38a) penetrating the female screw member 38 in the vertical direction. 6F, the fluid filler can be easily injected into the gap between the female screw member 38 and the first storage portion 36a of the storage hole 36 through the through hole.

[第2実施形態]
図10はチャンバ94に設置されたウエハ載置台510の縦断面図(ウエハ載置台510の中心軸を含む面で切断したときの断面図)、図11は収納穴536及び雌ネジ部材538の周辺を示す拡大断面図である。
[Second embodiment]
FIG. 10 is a longitudinal sectional view of the wafer mounting table 510 installed in the chamber 94 (sectional view taken along a plane including the central axis of the wafer mounting table 510), and FIG. is an enlarged cross-sectional view showing the.

ウエハ載置台510も、ウエハWにプラズマを利用してCVDやエッチングなどを行うために用いられるものであり、半導体プロセス用のチャンバ94の内部に設けられた設置板96に固定されている。チャンバ94については、第1実施形態で説明済みであるため、同じ構成要素については同じ符号を付し、その説明を省略する。ウエハ載置台510は、アルミナ基材20と、冷却基材530と、金属接合層540とを備えている。 The wafer mounting table 510 is also used to perform CVD, etching, etc. on the wafer W using plasma, and is fixed to a mounting plate 96 provided inside the semiconductor process chamber 94 . Since the chamber 94 has already been described in the first embodiment, the same components are denoted by the same reference numerals, and the description thereof will be omitted. The wafer mounting table 510 includes an alumina substrate 20 , a cooling substrate 530 and a metal bonding layer 540 .

アルミナ基材20は、第1実施形態で説明済みであるため、同じ構成要素については同じ符号を付し、その説明を省略する。 Since the alumina base material 20 has already been described in the first embodiment, the same components are denoted by the same reference numerals, and the description thereof is omitted.

冷却基材530は、円板部材であり、冷却基材30と同様の材料で形成される。ここでは、冷却基材530は、MMC製の円板部材とする。冷却基材530は、冷媒流路溝582を有している。冷媒流路溝582は、一端から他端まで一筆書きの要領で形成され、冷却基材530の下面に開口するように冷却基材530に設けられている。冷媒流路溝582は、チャンバ94の設置板96の上面によって開口が塞がれることにより、冷媒流路532を形成する。そのため、冷媒流路溝582は、冷媒流路532の側壁及び天井面を構成するものである。冷媒流路532も、上述した第1実施形態の冷媒流路32と同様、図示しない冷媒供給路及び冷媒排出路に接続されており、冷媒排出路から排出された冷媒は温度調整されたあと再び冷媒供給路に戻される。冷却基材530のうち冷媒流路溝582よりも上側の厚みは、5mm以下であることが好ましく、3mm以下であることがより好ましい。また、冷媒流路溝582の上側の角部(側壁と天井面とが交叉する角部)はR面になっていることが好ましく、R面の曲率半径は、例えば0.5~2mmが好ましい。冷却基材530は、RF電源62に給電端子64を介して接続されている。冷却基材530とRF電源62との間には、HPF63が配置されている。冷却基材530は、設置板96にクランプするのに用いられるフランジ部534を有する。 The cooling base material 530 is a disk member and is made of the same material as the cooling base material 30 . Here, the cooling base material 530 is a disk member made of MMC. The cooling substrate 530 has coolant flow channels 582 . The coolant channel groove 582 is formed in a unicursal manner from one end to the other end, and is provided in the cooling base material 530 so as to open to the lower surface of the cooling base material 530 . The coolant channel groove 582 forms the coolant channel 532 by closing the opening with the upper surface of the installation plate 96 of the chamber 94 . Therefore, the coolant channel groove 582 forms the side wall and the ceiling surface of the coolant channel 532 . The coolant channel 532 is also connected to a coolant supply channel and a coolant discharge channel (not shown) in the same manner as the coolant channel 32 of the first embodiment described above, and the coolant discharged from the coolant discharge channel is again cooled after being temperature-controlled. returned to the coolant supply path. The thickness of the cooling substrate 530 above the coolant channel grooves 582 is preferably 5 mm or less, more preferably 3 mm or less. In addition, the upper corner of the coolant channel groove 582 (the corner where the side wall and the ceiling surface intersect) is preferably an R surface, and the radius of curvature of the R surface is preferably 0.5 to 2 mm, for example. . Cooling substrate 530 is connected to RF power supply 62 via power supply terminal 64 . An HPF 63 is positioned between the cooling substrate 530 and the RF power supply 62 . Cooling substrate 530 has a flange portion 534 that is used to clamp to mounting plate 96 .

冷却基材530には、複数の収納穴536が設けられ、収納穴536には、雌ネジ部材538(結合部材)が収納されている。複数の収納穴536は、第1実施形態の収納穴36と同様、冷却基材530の同心円に沿って等間隔に複数設けられている。収納穴536は、図11に示すように、第1収納部536aと、第2収納部536bと、段差部536cとを備える。第1収納部536aは、収納穴536の上部に設けられた空間であり、冷却基材530の上面に開口している。第1収納部536aの開口面(上面)は、金属接合層540によって覆われている。第2収納部536bは、第1収納部536aから冷却基材530の下面に至るように第1収納部536aよりも細く設けられた通路である。段差部536cは、第1収納部536aと第2収納部536bとの繋ぎ目に設けられた段差面である。第1収納部536aには、雌ネジ部材538が収納されている。雌ネジ部材538は、中央にネジ穴(雌ネジ)を有する直方体形状(平面視で長方形状)のナットである。第1収納部536aも、直方体形状(平面視で略長方状)の空間であり、雌ネジ部材538をあそびをもって収納する。雌ネジ部材538と第1収納部536aとの隙間は、充填材539で充填されている。具体的には、雌ネジ部材538の上面及び側面と第1収納部536aの内周面と金属接合層540とで囲まれた隙間は、充填材539で充填されている。充填材539としては、例えば、接着性樹脂や非接着性樹脂のほか、これらの樹脂に熱伝導性粉末(金属粉末など)を添加したものなどが挙げられる。充填材539の熱伝導率は、1×10-4W/mm・K以上が好ましく、1×10-3W/mm・K以上がより好ましく、1×10-2W/mm・K以上が更に好ましい。充填材539の熱伝導率は、例えば樹脂に添加する熱伝導性粉末の量によって調節することができる。雌ネジ部材538と第1収納部536aとの隙間の幅dは、この隙間に流動性のある未硬化充填材を注入することを考慮すると、0.2mm以上が好ましい。段差部536cは、冷媒流路溝582の天井面以下に配置されている。雌ネジ部材538は、収納穴536の段差部536cに係合している。雌ネジ部材538が軸回転しようとすると、第1収納部536aの側壁に当たって軸回転が規制されるようになっている。本実施形態では、充填材539が存在するため、雌ネジ部材538は充填材539によっても軸回転が規制されている。雌ネジ部材538は、延性材料(例えばTi,Mo,Wなど)で形成されている。 A plurality of housing holes 536 are provided in the cooling base material 530, and female screw members 538 (coupling members) are housed in the housing holes 536. As shown in FIG. A plurality of storage holes 536 are provided at regular intervals along the concentric circles of the cooling substrate 530, like the storage holes 36 of the first embodiment. As shown in FIG. 11, the storage hole 536 includes a first storage portion 536a, a second storage portion 536b, and a stepped portion 536c. The first storage portion 536 a is a space provided above the storage hole 536 and opens to the upper surface of the cooling base material 530 . The opening surface (upper surface) of the first storage portion 536 a is covered with a metal bonding layer 540 . The second storage portion 536b is a passage narrower than the first storage portion 536a so as to reach the lower surface of the cooling base material 530 from the first storage portion 536a. The stepped portion 536c is a stepped surface provided at the joint between the first storage portion 536a and the second storage portion 536b. A female screw member 538 is housed in the first housing portion 536a. The female screw member 538 is a rectangular parallelepiped (rectangular in plan view) nut having a screw hole (female screw) in the center. The first storage portion 536a is also a rectangular parallelepiped (substantially rectangular in plan view) space, and stores the female screw member 538 with play. A gap between the female screw member 538 and the first storage portion 536a is filled with a filler 539. As shown in FIG. Specifically, a gap surrounded by the top and side surfaces of the female screw member 538, the inner peripheral surface of the first storage portion 536a, and the metal bonding layer 540 is filled with the filler 539. As shown in FIG. Examples of the filler 539 include adhesive resins, non-adhesive resins, and thermally conductive powders (metal powders, etc.) added to these resins. The thermal conductivity of the filler 539 is preferably 1×10 −4 W/mm·K or more, more preferably 1×10 −3 W/mm·K or more, and more preferably 1×10 −2 W/mm·K or more. More preferred. The thermal conductivity of filler 539 can be adjusted, for example, by the amount of thermally conductive powder added to the resin. The width d of the gap between the female screw member 538 and the first storage portion 536a is preferably 0.2 mm or more, considering that the fluid uncured filler is injected into this gap. The stepped portion 536 c is arranged below the ceiling surface of the coolant channel groove 582 . The female screw member 538 is engaged with the stepped portion 536 c of the housing hole 536 . When the female screw member 538 tries to rotate about its axis, it abuts against the side wall of the first housing portion 536a and its rotation is restricted. In this embodiment, since the filling material 539 is present, the axial rotation of the female screw member 538 is also restricted by the filling material 539 . Female threaded member 538 is formed of a ductile material (eg, Ti, Mo, W, etc.).

金属接合層540は、アルミナ基材20の下面と冷却基材530の上面とを接合する。金属接合層540は、第1実施形態の金属接合層40と同じであるため、その説明を省略する。 The metal bonding layer 540 bonds the bottom surface of the alumina substrate 20 and the top surface of the cooling substrate 530 . Since the metal bonding layer 540 is the same as the metal bonding layer 40 of the first embodiment, its description is omitted.

アルミナ基材20の外周部24の側面、金属接合層540の外周及び冷却基材530の側面は、絶縁膜542で被覆されている。絶縁膜542としては、例えばアルミナやイットリアなどの溶射膜が挙げられる。 The side surface of the outer peripheral portion 24 of the alumina base material 20 , the outer periphery of the metal bonding layer 540 and the side surface of the cooling base material 530 are covered with an insulating film 542 . As the insulating film 542, for example, a sprayed film such as alumina or yttria can be used.

こうしたウエハ載置台510は、チャンバ94の内部に設けられた設置板96の上に大径のシールリング576及び小径のシールリング577~579を介して取り付けられる。シールリング576~579は、金属製又は樹脂製である。シールリング576は、冷却基材530の外縁のやや内側に配置され、冷媒がシールリング576の外側へ漏れ出るのを防止する。シールリング577は、ボルト98の足部の周囲を取り囲むように配置され、冷媒がシールリング577の内側に入り込むのを防止する。シールリング578は、絶縁管55の開口縁に配置され、冷媒がシールリング578の内側に入り込むのを防止する。シールリング579は、給電端子64の周囲を取り囲むように配置され、冷媒がシールリング579の内側に入り込むのを防止する。 The wafer mounting table 510 is mounted on a mounting plate 96 provided inside the chamber 94 via a large-diameter seal ring 576 and small-diameter seal rings 577 to 579 . The seal rings 576-579 are made of metal or resin. The seal ring 576 is positioned slightly inside the outer edge of the cooling substrate 530 to prevent coolant from leaking outside the seal ring 576 . A seal ring 577 is arranged to surround the foot of the bolt 98 to prevent coolant from entering inside the seal ring 577 . A seal ring 578 is arranged at the opening edge of the insulating tube 55 to prevent coolant from entering inside the seal ring 578 . The seal ring 579 is arranged to surround the power supply terminal 64 and prevents the refrigerant from entering inside the seal ring 579 .

冷却基材530の外周に設けられたフランジ部534は、クランプ部材70及びボルト72を用いて設置板96に取り付けられる。クランプ部材70、ボルト72及びクランプ方法については、第1実施形態で説明済みのため、その説明を省略する。また、冷却基材530の中央領域は、ボルト98(被結合部材)を用いて設置板96に取り付けられる。図11に示すように、ボルト98の足部には、雄ネジ98aが設けられている。ボルト98は、設置板96のうち収納穴536に対向する位置に設けられた貫通穴97に設置板96の下面から挿通され、雄ネジ98aが第1収納部536a内の雌ネジ部材538に螺合される。貫通穴97は、上部が小径、下部が大径となっており、上部と下部との間に段差部97aを有する。ボルト98の頭部は、貫通穴97の段差部97aに引っ掛かる。雌ネジ部材538は第1収納部536a内に軸回転を規制された状態で収納されているため、ボルト98を雌ネジ部材538に螺合することができる。ボルト98を雌ネジ部材538に螺合すると、雌ネジ部材538は収納穴536の段差部536cに係合した状態で設置板96に向かって引っ張られた状態になる。 A flange portion 534 provided on the outer circumference of the cooling base material 530 is attached to the installation plate 96 using the clamp members 70 and bolts 72 . Since the clamping member 70, the bolt 72 and the clamping method have already been explained in the first embodiment, the explanation thereof will be omitted. Also, the central region of the cooling substrate 530 is attached to the mounting plate 96 using bolts 98 (bonded members). As shown in FIG. 11, the leg portion of the bolt 98 is provided with a male screw 98a. The bolt 98 is inserted from the lower surface of the installation plate 96 through a through hole 97 provided in the installation plate 96 at a position facing the housing hole 536, and the male screw 98a is screwed into the female screw member 538 in the first housing portion 536a. combined. The through hole 97 has a small diameter at the top and a large diameter at the bottom, and has a stepped portion 97a between the top and bottom. The head of the bolt 98 is hooked on the stepped portion 97 a of the through hole 97 . Since the female screw member 538 is housed in the first storage portion 536 a with its axial rotation restricted, the bolt 98 can be screwed into the female screw member 538 . When the bolt 98 is screwed into the female threaded member 538 , the female threaded member 538 is pulled toward the mounting plate 96 while being engaged with the stepped portion 536 c of the housing hole 536 .

本実施形態では、ウエハ載置台510の中央領域がボルト98によって固定されているため、ウエハ載置台510が上に向かって凸になるのを防止することができるし、シールリング576~578をしっかりと押し潰した状態で維持することができる。 In this embodiment, since the central region of wafer mounting table 510 is fixed by bolts 98, wafer mounting table 510 can be prevented from protruding upward, and seal rings 576-578 can be firmly secured. and can be maintained in a crushed state.

なお、冷媒流路582への冷媒の給排は、第1実施形態で説明した図5と同様の構造を採用することにより行われる。 The supply and discharge of the coolant to and from the coolant channel 582 is performed by adopting a structure similar to that shown in FIG. 5 described in the first embodiment.

次に、ウエハ載置台10の製造例を図12を用いて説明する。図12はウエハ載置台510の製造工程図である。まず、第1実施形態と同様にして、給電端子54を備えたアルミナ焼結体120を作製する(図12A~C)。 Next, an example of manufacturing the wafer mounting table 10 will be described with reference to FIG. 12A and 12B are manufacturing process diagrams of the wafer mounting table 510. FIG. First, similarly to the first embodiment, an alumina sintered body 120 having a power supply terminal 54 is produced (FIGS. 12A to 12C).

これと並行して、MMC円板部材630を作製し(図12D)、MMC円板部材630の下面に冷媒流路溝582を形成すると共に、MMC円板部材630を上下方向に貫通する収納穴536(第1収納部536a、第2収納部536b及び段差部536c)や給電端子54を挿通するための貫通穴を形成する(図12E)。この場合、MMC円板部材630はSiSiCTi製かAlSiC製であることが好ましい。アルミナの熱膨張係数とSiSiCTiやAlSiCの熱膨張係数とは、概ね同じだからである。 In parallel with this, the MMC disk member 630 is manufactured (FIG. 12D), the cooling medium flow channel groove 582 is formed in the lower surface of the MMC disk member 630, and a storage hole vertically penetrating the MMC disk member 630 is formed. 536 (the first storage portion 536a, the second storage portion 536b, and the stepped portion 536c) and a through hole for inserting the power supply terminal 54 are formed (FIG. 12E). In this case, the MMC disk member 630 is preferably made of SiSiCTi or AlSiC. This is because the thermal expansion coefficient of alumina is approximately the same as that of SiSiCTi and AlSiC.

次に、第1収納部536aに雌ネジ部材538を収納した後、MMC円板部材630の上面に金属接合材を配置する。金属接合材には、給電端子54を挿通するための貫通穴を設けておく。次に、アルミナ焼結体120の給電端子54を金属接合材の貫通穴及びMMC円板部材630の貫通穴に挿入しながら、アルミナ焼結体120を金属接合材の上に載置する。これにより、下から順に、MMC円板部材630、金属接合材及びアルミナ焼結体120が積層した積層体を得る。この積層体を加熱しながら加圧することにより(TCB)、接合体610を得る(図12F)。接合体610は、アルミナ焼結体120とMMC円板部材630とが金属接合層540で接合されたものである。接合体610の第1収納部536aには雌ネジ部材538が収納されている。なお、金属接合材やTCBについては、第1実施形態で説明済みのため、ここではその説明を省略する。 Next, after housing the female screw member 538 in the first housing portion 536 a , a metal bonding material is arranged on the upper surface of the MMC disk member 630 . A through hole for inserting the power supply terminal 54 is provided in the metal bonding material. Next, the alumina sintered body 120 is placed on the metal bonding material while inserting the power supply terminals 54 of the alumina sintered body 120 into the through holes of the metal bonding material and the through holes of the MMC disk member 630 . As a result, a laminate is obtained in which the MMC disk member 630, the metal bonding material, and the alumina sintered body 120 are laminated in this order from the bottom. By applying pressure while heating this laminate (TCB), a joined body 610 is obtained (FIG. 12F). A bonded body 610 is obtained by bonding an alumina sintered body 120 and an MMC disc member 630 with a metal bonding layer 540 . A female screw member 538 is accommodated in the first accommodation portion 536a of the joined body 610 . Since the metal bonding material and TCB have already been described in the first embodiment, the description thereof will be omitted here.

続いて、第2収納部536b及び雌ネジ部材538のネジ穴を介して雌ネジ部材538と第1収納部536aとの隙間に流動性のある未硬化充填材を注入する。この隙間は、未硬化充填材の注入しやすさを考慮すると、0.2mm以上であることが好ましい。注入した未硬化充填材を硬化させることにより、充填材539とする。続いて、アルミナ焼結体120の外周を切削して段差を形成することにより、中央部22と外周部24とを備えたアルミナ基材20とする。また、MMC円板部材630の外周を切削して段差を形成することにおり、フランジ部534を備えた冷却基材530とする。また、給電端子54の挿入穴に絶縁管55を配置する。更に、アルミナ基材20の外周部24の側面、金属接合層540の周囲及び冷却基材530の側面を、アルミナ粉末を用いて溶射することにより絶縁膜542を形成する(図12G)。これにより、ウエハ載置台510を得る。 Subsequently, an uncured filler having fluidity is injected into the gap between the female screw member 538 and the first storage portion 536a through the screw holes of the second storage portion 536b and the female screw member 538. FIG. This gap is preferably 0.2 mm or more in consideration of ease of injection of the uncured filler. A filler 539 is obtained by curing the injected uncured filler. Subsequently, the alumina base material 20 having the central portion 22 and the outer peripheral portion 24 is formed by cutting the outer periphery of the alumina sintered body 120 to form a step. Further, by cutting the outer periphery of the MMC disk member 630 to form a step, the cooling base member 530 having the flange portion 534 is provided. Also, the insulating tube 55 is arranged in the insertion hole of the power supply terminal 54 . Further, the side surface of the outer peripheral portion 24 of the alumina base material 20, the periphery of the metal bonding layer 540, and the side surface of the cooling base material 530 are thermally sprayed using alumina powder to form an insulating film 542 (FIG. 12G). Thus, the wafer mounting table 510 is obtained.

ウエハ載置台510の使用例については、上述した第1実施形態のウエハ載置台10の使用例と同様であるため、その説明を省略する。 Since the usage example of the wafer mounting table 510 is the same as the usage example of the wafer mounting table 10 of the first embodiment described above, the description thereof will be omitted.

以上説明したウエハ載置台510では、雌ネジ部材538は、冷却基材530の下面に開口する収納穴536内に軸回転を規制された状態で且つ収納穴536から落下しないように収納穴536の段差部536c(係合部)に係合した状態で収納されている。雌ネジ部材538は軸回転が規制されているため、冷却基材530の下面側から差し込まれるボルト98の雄ネジ98aを雌ネジ部材538に螺合することができる。また、雌ネジ部材538は、収納穴536の段差部536cに係合した状態で設置板96に挿通されたボルト98によって設置板96に向かって引っ張られたとしても、延性を有しているため割れにくい。したがって、脆性な冷却基材530を備えたウエハ載置台510を設置板96に支障なく締結することができる。 In the wafer mounting table 510 described above, the female screw member 538 is placed in the housing hole 536 in such a manner that its axial rotation is restricted in the housing hole 536 that opens to the lower surface of the cooling base 530 and that it does not fall out of the housing hole 536 . It is housed in a state of being engaged with the stepped portion 536c (engagement portion). Since the axial rotation of the female screw member 538 is restricted, the male screw 98 a of the bolt 98 inserted from the lower surface side of the cooling base material 530 can be screwed into the female screw member 538 . Further, even if the female screw member 538 is pulled toward the installation plate 96 by the bolt 98 inserted through the installation plate 96 in a state of being engaged with the stepped portion 536c of the housing hole 536, the female screw member 538 has ductility. Hard to break. Therefore, the wafer mounting table 510 having the fragile cooling base material 530 can be fastened to the mounting plate 96 without any trouble.

また、冷却基材530は、MMCで形成されている。MMCは脆性材料であるため、本発明を適用する意義が高い。 Also, the cooling base material 530 is made of MMC. Since MMC is a brittle material, it is highly significant to apply the present invention.

更に、収納穴536は係合部として段差部536cを備え、雌ネジ部材538の底面は被係合部として機能する。そのため、係合部や被係合部を比較的簡単に作製することができる。 Further, the housing hole 536 has a stepped portion 536c as an engaging portion, and the bottom surface of the female screw member 538 functions as an engaged portion. Therefore, the engaging portion and the engaged portion can be produced relatively easily.

更にまた、雌ネジ部材538は、軸回転しようとすると収納穴536の第1収納部536aの側壁に当たって軸回転を規制される。そのため、比較的簡単な構成で雌ネジ部材538の軸回転を規制することができる。また、雌ネジ部材538は充填材539によっても軸回転を規制される。 Furthermore, when the female screw member 538 attempts to rotate about its axis, it abuts against the side wall of the first storage portion 536a of the storage hole 536 and is restricted from rotating about its axis. Therefore, axial rotation of the female screw member 538 can be restricted with a relatively simple configuration. In addition, the axial rotation of the female screw member 538 is also restricted by the filler 539 .

そして更に、第1収納部536aは、冷却基材530の上面に開口し、金属接合層540によって開口面が覆われている。そのため、第1実施形態のように第1収納部36aを冷却基材30の内部に内蔵する場合に比べて、第1収納部536aを比較的容易に製造することができる。こうした構造では、収納穴536を避けて冷媒流路532(冷媒流路溝582)を設ける必要があるため、ウエハWのうち収納穴536の直上付近は均熱性が低下しやすい。こうした均熱性の低下を抑えるために、雌ネジ部材538と収納穴536の第1収納部536aとの隙間は充填材539で充填されている。これにより、収納穴536の周りの熱伝導が良好になるため、均熱性の低下を抑えることができる。 Further, the first storage portion 536a opens to the upper surface of the cooling base material 530, and the opening surface is covered with the metal bonding layer 540. As shown in FIG. Therefore, the first storage portion 536a can be manufactured relatively easily compared to the case where the first storage portion 36a is built inside the cooling base material 30 as in the first embodiment. In such a structure, since it is necessary to provide the coolant channel 532 (coolant channel groove 582) while avoiding the storage hole 536, the temperature uniformity of the wafer W is likely to deteriorate in the vicinity directly above the storage hole 536. FIG. A filler 539 is filled in the gap between the female screw member 538 and the first housing portion 536a of the housing hole 536 in order to suppress such deterioration in the uniformity of heat. As a result, the heat conduction around the storage hole 536 is improved, so that the deterioration of the heat uniformity can be suppressed.

なお、本発明は上述した実施形態に何ら限定されることはなく、本発明の技術的範囲に属する限り種々の態様で実施し得ることはいうまでもない。 It goes without saying that the present invention is not limited to the above-described embodiments, and can be implemented in various forms as long as they fall within the technical scope of the present invention.

上述した第2実施形態において、図13に示すように、雌ネジ部材538は、雌ネジ部材538よりもヤング率の低い応力緩衝部材537を介して収納穴536の段差部536cに係合していてもよい。例えば、雌ネジ部材538をTi合金とし、応力緩衝部材537を純Alとしてもよい。こうすれば、雌ネジ部材538が設置板96に設けられたボルト98によって設置板96に向かって引っ張られたとしても、雌ネジ部材538と段差部536cとの間に応力緩衝部材537が介在しているため、応力が分散しやすい。第1収納部536aにおける応力を低減するためには、第1に、段差部536cと雌ネジ部材538とが間接的に接触する環状領域の幅wは3mm以上が好ましく、5mm以上がより好ましい。第2に、雌ネジ部材538のネジ穴の内径xは、10mm以下が好ましく、7mm以下がより好ましい。第3に、第1収納部536aの底面と側面とのコーナーをR面(丸まった面)としたときの曲率半径rは、0.3mm以上とするのが好ましく、0.5mm以上とするのがより好ましい。第1~第3は応力低減効果の順位を表し、第1の条件が最も応力低減効果が高い。また、雌ネジ部材538の底面と側面とのコーナーはR面又はC面が好ましい。段差部536cから冷却基材530の下面までの厚みtは、3mm以上10mm以下が好ましい。これらの数値範囲については、応力緩衝部材537のない場合や第1実施形態でも同様でもある。 In the above-described second embodiment, as shown in FIG. 13, the female screw member 538 is engaged with the stepped portion 536c of the housing hole 536 via the stress buffering member 537 having a Young's modulus lower than that of the female screw member 538. may For example, the female screw member 538 may be made of Ti alloy and the stress buffer member 537 may be made of pure Al. In this way, even if the female screw member 538 is pulled toward the installation plate 96 by the bolt 98 provided on the installation plate 96, the stress buffering member 537 is interposed between the female screw member 538 and the stepped portion 536c. stress is easily distributed. In order to reduce the stress in the first storage portion 536a, firstly, the width w of the annular region where the stepped portion 536c and the female screw member 538 indirectly contact is preferably 3 mm or more, more preferably 5 mm or more. Second, the inner diameter x of the screw hole of the female screw member 538 is preferably 10 mm or less, more preferably 7 mm or less. Third, when the corner between the bottom surface and the side surface of the first housing portion 536a is defined as an R surface (a rounded surface), the radius of curvature r is preferably 0.3 mm or more, and preferably 0.5 mm or more. is more preferred. 1st to 3rd indicate the order of stress reduction effect, and the first condition has the highest stress reduction effect. Moreover, the corner between the bottom surface and the side surface of the female screw member 538 is preferably an R surface or a C surface. The thickness t from the stepped portion 536c to the lower surface of the cooling substrate 530 is preferably 3 mm or more and 10 mm or less. These numerical ranges are the same in the case without the stress buffering member 537 and in the first embodiment.

上述した第2実施形態では、冷却基材530の下面に冷媒流路溝582を設け、冷却基材530の下方に設置板96(下方基材)を配置し、冷却基材530の下面と設置板96との間に、冷媒流路溝582を液密に閉鎖するシールリングを配置したが、特にこれに限定されない。例えば、冷媒流路溝を冷却基材の下面ではなく設置板の上面に設け、冷却基材の下面と設置板との間にその冷媒流路溝を液密に閉鎖するシールリングを配置してもよい。冷却基材は、脆性のMMCやアルミナなどであり、その冷却基材に第1収納部を設ける。 In the above-described second embodiment, the coolant channel groove 582 is provided on the lower surface of the cooling base material 530, and the installation plate 96 (lower base material) is arranged below the cooling base material 530 to be installed on the lower surface of the cooling base material 530. Although the seal ring that liquid-tightly closes the coolant channel groove 582 is arranged between the plate 96 and the plate 96, it is not particularly limited to this. For example, the coolant channel groove is provided on the upper surface of the mounting plate instead of the lower surface of the cooling base material, and a seal ring is arranged between the lower surface of the cooling base material and the mounting plate to liquid-tightly close the coolant channel groove. good too. The cooling base material is brittle MMC, alumina, or the like, and the cooling base material is provided with a first housing.

上述した第2実施形態において、雌ネジ部材538として、図14Aに示すように、三角柱形状(平面視が三角形)で中央にネジ穴を有するナットを用いてもよい。その場合、収納穴536を図14Bのように形成してもよい。図14Bは、収納穴536の周辺を冷却基材530の下からみたときの部分拡大図である。図14Bでは、第2収納部536bを、雌ネジ部材538が通過可能な平面視が三角形の穴とし、第1収納部536aを雌ネジ部材538が所定の角度だけ軸回転可能な空間(平面視が三角形と円との複合図形)としている。雌ネジ部材538が第2収納部536bに差し込まれて第1収納部536aに収納された直後の様子を2点鎖線で示し、第1収納部536aに収納された雌ネジ部材538を所定の角度だけ矢印方向に軸回転した様子を1点鎖線で示す。このとき段差部536cは、第1収納部536aの外縁の内側で且つ第2収納部536bの開口縁の外側の部分であり、この部分が雌ネジ部材538と係合する。こうした構造によれば、アルミナ基材20と冷却基材530とを接合した後に雌ネジ部材538を第1収納部536aに収納することができる。例えば、まず、第1収納部536aに雌ネジ部材538を収納することなくアルミナ基材20と冷却基材530とを金属接合層540で接合する。次いで、冷却基材30の下面が上向きになるようにして流動性のある未硬化充填材を第1収納部536aに注入する。次いで、雌ネジ部材538を第2収納部536bから第1収納部536aに収納し、その後雌ネジ部材538を所定の角度だけ軸回転させる。これにより、雌ネジ部材538と第1収納部536aとの間に未硬化充填材が満遍なく充填される。その後、未硬化充填材を硬化させて充填材539とする。なお、こうした構造は、三角柱形状のナットだけでなく、多角柱形状(四角柱形状や六角柱形状など)のナットにも適用することができる。 In the above-described second embodiment, as shown in FIG. 14A, a nut having a triangular prism shape (triangular in plan view) and having a screw hole in the center may be used as the female screw member 538 . In that case, a storage hole 536 may be formed as shown in FIG. 14B. FIG. 14B is a partially enlarged view of the periphery of the storage hole 536 when viewed from below the cooling base material 530. FIG. In FIG. 14B, the second storage portion 536b is a triangular hole in plan view through which the female screw member 538 can pass, and the first storage portion 536a is a space (in plan view) through which the female screw member 538 can rotate by a predetermined angle. is a composite figure of a triangle and a circle). The state immediately after the female screw member 538 is inserted into the second storage portion 536b and stored in the first storage portion 536a is shown by a two-dot chain line, and the female screw member 538 stored in the first storage portion 536a is shown at a predetermined angle. The one-dot chain line shows a state in which the axis rotates in the direction of the arrow. At this time, the step portion 536 c is a portion inside the outer edge of the first storage portion 536 a and outside the opening edge of the second storage portion 536 b , and this portion engages with the female screw member 538 . According to such a structure, after joining the alumina base material 20 and the cooling base material 530, the female screw member 538 can be accommodated in the first accommodating portion 536a. For example, first, the alumina base material 20 and the cooling base material 530 are bonded by the metal bonding layer 540 without accommodating the female screw member 538 in the first accommodating portion 536a. Next, the fluid uncured filling material is injected into the first storage portion 536a so that the lower surface of the cooling base material 30 faces upward. Next, the female screw member 538 is stored from the second storage portion 536b into the first storage portion 536a, and then the female screw member 538 is axially rotated by a predetermined angle. As a result, the uncured filling material is evenly filled between the female screw member 538 and the first storage portion 536a. After that, the uncured filler material is cured to form the filler material 539 . Note that such a structure can be applied not only to a triangular prism-shaped nut but also to a polygonal prism-shaped (square prism, hexagonal prism, etc.) nut.

上述した第2実施形態の雌ネジ部材538の代わりに、第1実施形態の雌ネジ部材38(図3,図7又は図8)を採用してもよい。その場合、雌ネジ部材38には、雌ネジ部材38を上下方向に貫通する貫通穴(円筒部38bの内部空間から頭部38aの頂面に至る貫通穴)を設けるのが好ましい。この貫通穴を利用すれば頭部38aと収納穴の第1収納部との隙間に流動性のある未硬化充填材を充填しやすいからである。 Instead of the female screw member 538 of the second embodiment described above, the female screw member 38 (FIGS. 3, 7 or 8) of the first embodiment may be adopted. In that case, the female screw member 38 is preferably provided with a through hole (a through hole extending from the inner space of the cylindrical portion 38b to the top surface of the head portion 38a) penetrating the female screw member 38 in the vertical direction. This is because the gap between the head portion 38a and the first storage portion of the storage hole can be easily filled with a fluid uncured filler by using the through hole.

上述した第2実施形態において、図15に示すように、冷却基材530に冷媒流路溝582(冷媒流路532)を設ける代わりに、設置板96の上面に冷媒流路溝91を設け、冷媒流路溝91の上部開口を冷却基材530で塞ぐことにより冷媒流路92を形成してもよい。図15では、上述した第2実施形態と同じ構成要素については同じ符号を付した。なお、第1実施形態においても、冷却基材30に冷媒流路32を設ける代わりに、図15のように設置板96の上面に冷媒流路溝を設け、冷媒流路溝の上部開口を冷却基材30で塞ぐことにより冷媒流路を形成してもよい。 In the above-described second embodiment, as shown in FIG. 15, instead of providing the coolant channel groove 582 (coolant channel 532) in the cooling substrate 530, the coolant channel groove 91 is provided on the upper surface of the installation plate 96, The coolant channel 92 may be formed by closing the upper opening of the coolant channel groove 91 with the cooling substrate 530 . In FIG. 15, the same symbols are attached to the same components as in the second embodiment described above. Also in the first embodiment, instead of providing the coolant flow path 32 in the cooling base material 30, a coolant flow path groove is provided on the upper surface of the installation plate 96 as shown in FIG. The coolant flow path may be formed by blocking with the base material 30 .

10 ウエハ載置台、20 アルミナ基材、22 中央部、22a ウエハ載置面、24 外周部、24a フォーカスリング載置面、26 ウエハ吸着用電極、27 穴、30 冷却基材、32 冷媒流路、32a 底面、32p 第1供給路、32q 冷媒供給用シールリング、32r 第2供給路、32s 第1排出路、32t 冷媒排出用シールリング、32u 第2排出路、34 フランジ部、36 収納穴、36a 第1収納部、36b 第2収納部、36c 段差部、36d 天井面、36e 傾斜部、38 雌ネジ部材、38a 頭部、38b 円筒部、38c 傾斜面、40 金属接合層、42 絶縁膜、52 ウエハ吸着用直流電源、53 ローパスフィルタ、54 給電端子、55 絶縁管、62 RF電源、63 ハイパスフィルタ、64 給電端子、70 クランプ部材、70a 内周段差面、72 ボルト、76 シールリング、78 フォーカスリング、80 雄ネジ部材、80a 頭部、80b 足部、80c 雄ネジ部、82 ナット、91 冷媒流路溝、92 冷媒流路、94 チャンバ、95 シャワーヘッド、96 設置板、97 貫通穴、97a 段差部、98 ボルト、98a 雄ネジ、110 接合体、120 アルミナ焼結体、130 MMCブロック、131、133,135 MMC円板部材、132 溝、136 段差穴、321 冷媒供給路、322 冷媒排出路、510 ウエハ載置台、530 冷却基材、532 冷媒流路、534 フランジ部、536 収納穴、536 収納部、536a 第1収納部、536b 第2収納部、536c 段差部、537 応力緩衝部材、538 雌ネジ部材、539 充填材、540 金属接合層、542 絶縁膜、576~579 シールリング、582 冷媒流路溝、610 接合体、630 MMC円板部材、W ウエハ。 10 wafer mounting table, 20 alumina substrate, 22 central portion, 22a wafer mounting surface, 24 outer peripheral portion, 24a focus ring mounting surface, 26 wafer adsorption electrode, 27 hole, 30 cooling substrate, 32 coolant channel, 32a bottom surface 32p first supply passage 32q refrigerant supply seal ring 32r second supply passage 32s first discharge passage 32t refrigerant discharge seal ring 32u second discharge passage 34 flange portion 36 storage hole 36a First storage portion 36b Second storage portion 36c Stepped portion 36d Ceiling surface 36e Inclined portion 38 Female screw member 38a Head 38b Cylindrical portion 38c Inclined surface 40 Metal bonding layer 42 Insulating film 52 DC power supply for wafer adsorption, 53 low-pass filter, 54 power supply terminal, 55 insulating tube, 62 RF power supply, 63 high-pass filter, 64 power supply terminal, 70 clamp member, 70a inner peripheral step surface, 72 bolt, 76 seal ring, 78 focus ring , 80 male screw member, 80a head, 80b foot, 80c male screw, 82 nut, 91 coolant channel groove, 92 coolant channel, 94 chamber, 95 shower head, 96 installation plate, 97 through hole, 97a step Part, 98 bolt, 98a male screw, 110 joined body, 120 alumina sintered body, 130 MMC block, 131, 133, 135 MMC disk member, 132 groove, 136 stepped hole, 321 coolant supply path, 322 coolant discharge path, 510 wafer mounting table, 530 cooling substrate, 532 coolant channel, 534 flange portion, 536 storage hole, 536 storage portion, 536a first storage portion, 536b second storage portion, 536c stepped portion, 537 stress buffer member, 538 female screw member, 539 filler, 540 metal bonding layer, 542 insulating film, 576 to 579 seal ring, 582 refrigerant channel groove, 610 joined body, 630 MMC disk member, W wafer.

Claims (12)

上面にウエハ載置面を有し、電極を内蔵するアルミナ基材と、
前記アルミナ基材の下面に接合された脆性の冷却基材と、
前記冷却基材の下面に開口する収納穴内に軸回転を規制された状態で且つ前記収納穴の係合部に係合した状態で収納され、雄ネジ部又は雌ネジ部を有する延性の結合部材と、
を備えたウエハ載置台。
an alumina base material having a wafer mounting surface on its upper surface and containing an electrode;
a brittle cooling substrate bonded to the lower surface of the alumina substrate;
A ductile coupling member having a male screw portion or a female screw portion, which is accommodated in a storage hole opening to the lower surface of the cooling base material in a state in which rotation of the shaft is restricted and in a state in which the engaging portion of the storage hole is engaged. and,
A wafer mounting table.
前記結合部材は、前記雌ネジ部を有し、前記冷却基材の下面側から差し込まれるボルトの雄ネジと螺合可能な部材である、
請求項1に記載のウエハ載置台。
The coupling member has the female screw portion and is a member that can be screwed with a male screw of a bolt that is inserted from the lower surface side of the cooling base material.
The wafer mounting table according to claim 1.
前記冷却基材は、金属とセラミックとの複合材料又はアルミナ材料で形成されている、
請求項1又は2に記載のウエハ載置台。
The cooling base is made of a composite material of metal and ceramic or an alumina material,
The wafer mounting table according to claim 1 or 2.
前記係合部は、前記収納穴の内周面に設けられた段差部又は傾斜部であり、
前記結合部材は、前記係合部に係合して前記結合部材が前記収納穴から落下しないようにする被係合部を有する、
請求項1又は2に記載のウエハ載置台。
The engaging portion is a stepped portion or an inclined portion provided on the inner peripheral surface of the housing hole,
The coupling member has an engaged portion that engages with the engaging portion to prevent the coupling member from falling out of the housing hole.
The wafer mounting table according to claim 1 or 2.
前記結合部材は、軸回転しようとすると前記収納穴の壁に当たって軸回転を規制される、
請求項1又は2に記載のウエハ載置台。
When the coupling member is about to rotate, it hits the wall of the housing hole and is restricted from rotating.
The wafer mounting table according to claim 1 or 2.
前記冷却基材は、内部に冷媒流路を有しており、
前記収納穴は、前記冷却基材のうち前記冷媒流路の底面よりも低い領域に設けられている、
請求項1又は2に記載のウエハ載置台。
The cooling base material has a coolant channel inside,
The storage hole is provided in a region of the cooling substrate that is lower than the bottom surface of the coolant channel,
The wafer mounting table according to claim 1 or 2.
前記結合部材は、前記収納穴で前記冷却基材と接合されておらずフリーな状態で収納されている、
請求項1又は2に記載のウエハ載置台。
The connecting member is housed in a free state without being joined to the cooling base material in the housing hole,
The wafer mounting table according to claim 1 or 2.
前記結合部材は、前記結合部材よりもヤング率の低い応力緩衝部材を介して前記係合部に係合している、
請求項1又は2に記載のウエハ載置台。
The coupling member is engaged with the engaging portion via a stress buffering member having a Young's modulus lower than that of the coupling member.
The wafer mounting table according to claim 1 or 2.
前記結合部材と前記収納穴との隙間は、充填材で充填されている、
請求項1又は2に記載のウエハ載置台。
a gap between the coupling member and the housing hole is filled with a filler;
The wafer mounting table according to claim 1 or 2.
前記収納穴は、前記結合部材を収納する第1収納部と、前記第1収納部から前記冷却基材の下面に至るように設けられた第2収納部と、を備え、
前記係合部は、前記第1収納部と前記第2収納部との繋ぎ目に設けられた段差面である、
請求項1又は2に記載のウエハ載置台。
The storage hole includes a first storage portion that stores the coupling member, and a second storage portion that extends from the first storage portion to the lower surface of the cooling substrate,
The engaging portion is a stepped surface provided at the joint between the first storage portion and the second storage portion,
The wafer mounting table according to claim 1 or 2.
前記第1収納部は、前記冷却基材の上面に開口し、前記セラミック基材と前記冷却基材とを接合する接合層によって開口面が覆われている、
請求項10に記載のウエハ載置台。
The first storage part opens to the upper surface of the cooling base material, and the opening surface is covered with a bonding layer that bonds the ceramic base material and the cooling base material.
The wafer mounting table according to claim 10.
前記段差面と前記結合部材とが直接又は間接的に接触する環状領域の幅は、3mm以上である、
請求項10に記載のウエハ載置台。
The width of the annular region where the step surface and the coupling member are in direct or indirect contact is 3 mm or more.
The wafer mounting table according to claim 10.
JP2022108438A 2021-11-15 2022-07-05 Wafer mount table Pending JP2023073194A (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US17/816,006 US20230154781A1 (en) 2021-11-15 2022-07-29 Wafer placement table
TW111128889A TWI816495B (en) 2021-11-15 2022-08-02 Wafer placement table
KR1020220098526A KR20230071049A (en) 2021-11-15 2022-08-08 Wafer placement table
CN202210953556.7A CN116130324A (en) 2021-11-15 2022-08-10 Wafer carrying table

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021185369 2021-11-15
JP2021185369 2021-11-15

Publications (1)

Publication Number Publication Date
JP2023073194A true JP2023073194A (en) 2023-05-25

Family

ID=86425082

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2022108438A Pending JP2023073194A (en) 2021-11-15 2022-07-05 Wafer mount table

Country Status (1)

Country Link
JP (1) JP2023073194A (en)

Similar Documents

Publication Publication Date Title
JP2023073194A (en) Wafer mount table
TWI816495B (en) Wafer placement table
TWI833589B (en) Wafer placement table
TWI836924B (en) Wafer placement table
TWI829212B (en) Wafer mounting table
TW202403950A (en) Wafer placement table
TW202343657A (en) Wafer placement table
US20230238258A1 (en) Wafer placement table, and member for semiconductor manufacturing apparatus, using the same
WO2024047858A1 (en) Wafer placement table
TW202410282A (en) Wafer placement table
WO2024047857A1 (en) Wafer placement table
KR20230053499A (en) Wafer placement table
WO2024004039A1 (en) Wafer placement table
TW202412166A (en) Wafer placement table
TWI841078B (en) Wafer placement table
JP2023109671A (en) Wafer placement table and member for semiconductor manufacturing apparatus using the same
WO2023153021A1 (en) Member for semiconductor manufacturing device
WO2024004040A1 (en) Wafer placement stage
WO2024079880A1 (en) Wafer stage
TW202410283A (en) Wafer placement table
JP2023056710A (en) Wafer mounting table
US20230144107A1 (en) Wafer placement table
TW202316483A (en) Wafer placement table
JP2023079422A (en) Wafer table
KR20240046104A (en) wafer placement table

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20240417