JP2023072499A - Method for manufacturing power storage device - Google Patents

Method for manufacturing power storage device Download PDF

Info

Publication number
JP2023072499A
JP2023072499A JP2021185092A JP2021185092A JP2023072499A JP 2023072499 A JP2023072499 A JP 2023072499A JP 2021185092 A JP2021185092 A JP 2021185092A JP 2021185092 A JP2021185092 A JP 2021185092A JP 2023072499 A JP2023072499 A JP 2023072499A
Authority
JP
Japan
Prior art keywords
laminate
storage device
manufacturing
electricity storage
exterior body
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2021185092A
Other languages
Japanese (ja)
Inventor
佳樹 丸山
Yoshiki Maruyama
幸二 西
Koji Nishi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JTEKT Corp
Original Assignee
JTEKT Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JTEKT Corp filed Critical JTEKT Corp
Priority to JP2021185092A priority Critical patent/JP2023072499A/en
Publication of JP2023072499A publication Critical patent/JP2023072499A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Secondary Cells (AREA)
  • Electric Double-Layer Capacitors Or The Like (AREA)

Abstract

To provide a method for manufacturing a power storage device, with which manufacturing quality can be improved.SOLUTION: There is provided a method 1 for manufacturing a power storage device 100 that comprises a laminate 101 enclosed in a film-like exterior body 102, the laminate being formed by laminating sheet-like positive and negative electrodes together with a separator. In an initial charge/discharge step S2, initial charge/discharge is performed for a workpiece 10. The workpiece 10 comprises the laminate 101 enclosed in the exterior body 102, and has a laminate part 11 in which the exterior body 102 and the laminate 101 overlap in a thickness direction X, and a gas pocket part 12 where the exterior body 102 extends outward from an outer edge of the laminate part 11. In a degassing step S3, after the initial charge/discharge step S2, gas is removed from the workpiece 10 by opening the gas pocket part 12 to reduce the inner pressure of the workpiece 10, while at least part of the laminate part 11 is pressed against a reference surface 50a. In a resealing step S4, a boundary part 12a between the laminate part 11 and the gas pocket part 12 is sealed in a decompressed state.SELECTED DRAWING: Figure 10

Description

本発明は、蓄電デバイスの製造方法に関する。 The present invention relates to a method for manufacturing an electricity storage device.

従来、シート状の正極及び負極をセパレータとともに積層してなる積層体をフィルム状の外装体に封入してなる蓄電デバイスの製造方法において、初回充放電時に外装体内に発生するガスを除去する方法が種々提案されている。例えば、特許文献1には、外装体の周縁部の一部に外装体内のガスが溜まるガス溜まり部を設けて、初回充放電後にガス溜まり部に開口部を形成して外装体内のガスを除去した後、開口部を封止する方法が開示されている。 Conventionally, in a method for manufacturing an electricity storage device in which a laminate obtained by laminating a sheet-like positive electrode and a negative electrode together with a separator is enclosed in a film-like outer package, a method of removing the gas generated in the outer package during the initial charging and discharging has been used. Various proposals have been made. For example, in Patent Document 1, a gas reservoir in which gas in the exterior body is accumulated is provided in a part of the periphery of the exterior body, and after the first charge and discharge, an opening is formed in the gas reservoir to remove the gas in the exterior body. A method is disclosed for sealing the opening after the opening.

特開2015-220199号公報JP 2015-220199 A

しかしながら、特許文献1に開示の方法では、外装体内のガスを除去する際に外装体内の積層体が反り返ったりして変形することがある。そして、かかる積層体の変形を放置すると完成された蓄電デバイスの厚み寸法に過度のばらつきが生じたり、外装体内の金属箔が剥離したりして、製造品質が低下するおそれがある。 However, in the method disclosed in Patent Literature 1, when the gas in the exterior is removed, the laminate in the exterior may be warped and deformed. If such deformation of the laminate is left as it is, the thickness of the completed electricity storage device may vary excessively, or the metal foil inside the outer package may peel off, resulting in a decrease in manufacturing quality.

本発明は、かかる課題に鑑みてなされたもので、製造品質の向上が図られる蓄電デバイスの製造方法を提供しようとするものである。 SUMMARY OF THE INVENTION The present invention has been made in view of such problems, and an object thereof is to provide a method of manufacturing an electricity storage device that can improve manufacturing quality.

本発明の一態様は、シート状の正極及び負極をセパレータとともに積層してなる積層体をフィルム状の外装体に封入してなる蓄電デバイスの製造方法において、
上記積層体が上記外装体に封入されてなるワークであって、上記外装体と上記積層体とが厚さ方向に重なる積層体部と、上記外装体が上記積層体部の外縁から外方に延出して上記外装体の内側に発生したガスを貯留するように構成されたガスポケット部とを有するワークに対して、初回充放電を行う初回充放電工程と、
上記初回充放電工程後に、上記積層体部の少なくとも一部を基準面に押し当てた押圧状態で、上記ガスポケット部を開放するとともに上記ワークの内圧を低下させて上記ワークから上記ガスを除去するガス抜き工程と、
上記押圧状態と上記ワークの内圧を低下させた状態とを維持して、上記積層体部と上記ガスポケット部との境界部分をシールする再封止工程と、
を含む蓄電デバイスの製造方法にある。
One aspect of the present invention is a method for producing an electricity storage device in which a laminate obtained by laminating a sheet-shaped positive electrode and a negative electrode together with a separator is enclosed in a film-shaped outer package,
A work in which the laminate is enclosed in the exterior body, and includes a laminate portion in which the exterior body and the laminate overlap in a thickness direction, and the exterior body extends outward from the outer edge of the laminate portion. an initial charging/discharging step of performing initial charging/discharging on a workpiece having a gas pocket portion configured to extend and store gas generated inside the exterior body;
After the initial charging/discharging step, in a pressed state in which at least a part of the laminate portion is pressed against a reference surface, the gas pocket portion is opened and the internal pressure of the work is lowered to remove the gas from the work. a degassing process;
a resealing step of sealing a boundary portion between the laminate portion and the gas pocket portion while maintaining the pressed state and the state in which the internal pressure of the work is reduced;
A method for manufacturing an electricity storage device including

上記蓄電デバイスの製造方法においては、ガス抜き工程から再封止工程が完了するまで、積層体部の少なくとも一部を基準面に押し当てた押圧状態が維持されるため、外装体内のガス抜きから再封止までの間において積層体部の変形を抑制することができる。これにより、完成された蓄電デバイスの厚み寸法のばらつきを低減するとともに、外装体内において電極等を構成する金属箔の破損を防止して、製造品質の向上を図ることができる。 In the above electricity storage device manufacturing method, since the pressed state in which at least a part of the laminate portion is pressed against the reference surface is maintained from the degassing step to the completion of the resealing step, degassing from the exterior body is continued. Deformation of the laminate portion can be suppressed until resealing. As a result, it is possible to reduce variations in the thickness dimension of the completed electricity storage device, prevent breakage of the metal foil forming the electrodes and the like in the exterior body, and improve manufacturing quality.

以上のごとく、上記態様によれば、製造品質の向上が図られる蓄電デバイスの製造方法を提供することができる。 As described above, according to the above aspect, it is possible to provide a method for manufacturing an electricity storage device that improves manufacturing quality.

実施形態1における、(a)蓄電デバイスの斜視図、(b)同図(a)のIb-Ib線位置での断面概念図。1(a) is a perspective view of an electric storage device, and (b) is a conceptual cross-sectional view taken along the line Ib-Ib in FIG. 1(a) in Embodiment 1. FIG. 実施形態1における、蓄電デバイスの製造方法のフロー図。4 is a flowchart of a method for manufacturing an electricity storage device according to Embodiment 1. FIG. 実施形態1における、(a)蓄電デバイスの製造方法における前工程及び初回充放電工程を説明するための正面概念図、(b)同図(a)のIIIb-IIIb線位置での断面図。1(a) is a conceptual front view for explaining a pre-process and an initial charging/discharging process in a method for manufacturing an electricity storage device, and (b) a cross-sectional view taken along line IIIb-IIIb of FIG. 1(a) in Embodiment 1; 実施形態1における、(a)及び(b)蓄電デバイスの製造方法におけるガス抜き工程を説明するための正面概念図。4A and 4B are front conceptual views for explaining a degassing step in the method for manufacturing an electricity storage device in Embodiment 1. FIG. 実施形態1における、(a)図4(b)のVa-Va線位置での断面概念図、及び(b)蓄電デバイスの製造方法におけるガス抜き工程を説明するための上面概念図。4(a) and 4(b) are conceptual top views for explaining a degassing step in the method for manufacturing an electricity storage device, according to Embodiment 1. FIG. 実施形態1における、蓄電デバイスの製造方法におけるガス抜き工程を説明するための他の正面概念図。4 is another conceptual front view for explaining the degassing step in the method for manufacturing an electricity storage device according to Embodiment 1. FIG. 実施形態1における、(a)図6のVIIa-VIIa線位置での断面概念図、及び(b)蓄電デバイスの製造方法におけるガス抜き工程を説明するための他の上面概念図。7A and 7B are schematic cross-sectional views taken along the line VIIa-VIIa of FIG. 6 and FIG. 7B are other conceptual top views for explaining the degassing step in the method for manufacturing an electricity storage device, according to Embodiment 1. FIG. 実施形態1における、(a)図6のVIIa-VIIa線位置での他の断面概念図、及び(b)蓄電デバイスの製造方法におけるガス抜き工程を説明するための他の上面概念図。(a) Another conceptual cross-sectional view taken along the line VIIa-VIIa in FIG. 6, and (b) Another conceptual top view for explaining the degassing step in the method for manufacturing an electricity storage device, according to Embodiment 1. FIG. 実施形態1における、(a)図6のVIIa-VIIa線位置でのさらに他の断面概念図、及び(b)蓄電デバイスの製造方法におけるガス抜き工程を説明するためのさらに他の上面概念図。7A and 7B are still another conceptual cross-sectional view taken along the line VIIa-VIIa of FIG. 6 and FIG. 7B are still another conceptual top view for explaining the degassing step in the method for manufacturing an electricity storage device, according to Embodiment 1; 実施形態1における、(a)再封止工程を説明するための図6のVIIa-VIIa線位置での断面図、及び(b)蓄電デバイスの製造方法における再封止工程を説明するための上面概念図。(a) a cross-sectional view taken along line VIIa-VIIa in FIG. 6 for explaining the resealing step, and (b) a top surface for explaining the resealing step in the method for manufacturing an electricity storage device, in Embodiment 1. Conceptual diagram. 実施形態1における、蓄電デバイスの製造方法における切除工程を説明するための図3(a)のIIIb-IIIb線位置での断面概念図。FIG. 3 is a conceptual cross-sectional view taken along line IIIb-IIIb of FIG.

(実施形態1)
蓄電デバイスの製造方法の実施形態について、図1~図10を用いて説明する。
本実施形態1において、図1(a)に示す蓄電デバイス100は、図1(b)に示すようにシート状の正極及び負極をセパレータとともに積層してなる積層体101をフィルム状の外装体102に封入してなる。そして、当該蓄電デバイス100の製造方法1は、図2に示すように、初回充放電工程S2、ガス抜き工程S3、再封止工程S4を含む。
初回充放電工程S2では、図3(a)に示すワーク10に対して初回充放電を行う。ワーク10は、図3(b)に示すように、積層体101が外装体102に封入されてなり、外装体102と積層体101とが厚さ方向Xに重なる積層体部11と、外装体102が積層体部11の外縁から外方に延出して外装体102の内側に発生したガスを貯留するように構成されたガスポケット部12とを有する。
ガス抜き工程S3では、初回充放電工程S2後に、図8(a)及び図8(b)に示すように、積層体部11の少なくとも一部を基準面50aに押し当てた押圧状態でワーク10の内圧を低下させて、ガスポケット部12を開放してワーク10からガスを除去する。
そして、再封止工程S4では、図10(a)及び図10(b)に示すように、押圧状態とワーク10の内圧を低下させた状態とを維持して、積層体部11とガスポケット部12との境界部分12aをシールする。
(Embodiment 1)
An embodiment of a method for manufacturing an electricity storage device will be described with reference to FIGS. 1 to 10. FIG.
In Embodiment 1, an electricity storage device 100 shown in FIG. 1A includes a laminate 101 formed by laminating sheet-like positive and negative electrodes together with a separator as shown in FIG. Enclosed in And the manufacturing method 1 of the said electrical storage device 100 includes initial charging/discharging process S2, degassing process S3, and resealing process S4, as shown in FIG.
In the initial charge/discharge step S2, the workpiece 10 shown in FIG. 3(a) is subjected to the initial charge/discharge. As shown in FIG. 3B, the workpiece 10 is formed by enclosing a laminate 101 in an exterior body 102. The exterior body 102 and the laminate 101 overlap each other in the thickness direction X, and the exterior body 102 has a gas pocket portion 12 extending outward from the outer edge of the laminate portion 11 and configured to store gas generated inside the exterior body 102 .
In the degassing step S3, after the initial charging/discharging step S2, as shown in FIGS. The internal pressure of is lowered to open the gas pocket portion 12 and remove the gas from the workpiece 10 .
Then, in the resealing step S4, as shown in FIGS. 10(a) and 10(b), the laminated body portion 11 and the gas pocket are kept in the pressed state and the state in which the internal pressure of the workpiece 10 is lowered. The boundary portion 12a with the portion 12 is sealed.

以下、本実施形態の蓄電デバイス100の製造方法1について、詳述する。
まず、本実施形態における蓄電デバイス100は、図1(a)及び図1(b)に示すように、積層体101をフィルム状の外装体102に封入して構成される。積層体101は図示しないシート状の正極及び負極をセパレータとともに積層してなる。本実施形態では、蓄電デバイス100はキャパシタや二次電池などを含むものであって、本実施形態では、蓄電デバイス100として、活物質が塗工された金属製の集電箔からなる複数の正極及と複数の負極がセパレータを介在させて交互に積層されるとともに負極にリチウムイオンがプレドープされた積層体101を、リチウム塩を電解質とする電解液とともに外装体102に封止してなるリチウムイオンキャパシタを採用している。図1(a)に示すように、蓄電デバイス100の外形は扁平な四角形状をなしており、積層体部11、外周シール部13、集電タブ14を備える。積層体部11は蓄電デバイス100の中央部分に位置し、図1(b)に示すように、外装体102と積層体101とが厚さ方向Yに重なって形成されている。外周シール部13は積層体部11の外周を囲んでおり、表側の外装体102aと裏側の外装体102bとが互いに熱溶着されて形成されている。なお、蓄電デバイス100の上端の外周シール部13は、後述する再シール部70aにより構成されている。集電タブ14は一対設けられており、外装体102における幅方向Xの一方側の外縁である後述の第3の側辺部10cから外方に突出している。一対の集電タブ14は、図示しないが、積層体101を構成する正極と負極にそれぞれ接続されている。また、図示しないが、外装体102内には上述の電解液が満たされている。
Hereinafter, the manufacturing method 1 of the electric storage device 100 of this embodiment will be described in detail.
First, as shown in FIGS. 1A and 1B, an electricity storage device 100 according to the present embodiment is configured by enclosing a laminate 101 in a film-like exterior body 102 . The laminate 101 is formed by laminating a sheet-like positive electrode and a negative electrode together with a separator (not shown). In this embodiment, the electricity storage device 100 includes a capacitor, a secondary battery, and the like. And a lithium ion obtained by sealing a laminated body 101 in which a plurality of negative electrodes are alternately laminated with a separator interposed and the negative electrode is pre-doped with lithium ions, together with an electrolytic solution containing a lithium salt as an electrolyte, in an outer package 102. It uses a capacitor. As shown in FIG. 1( a ), the electricity storage device 100 has a flat rectangular outer shape, and includes a laminate portion 11 , an outer peripheral seal portion 13 and a current collecting tab 14 . The laminated body part 11 is located in the central part of the electric storage device 100, and is formed by overlapping the outer package 102 and the laminated body 101 in the thickness direction Y as shown in FIG. 1(b). The outer peripheral seal portion 13 surrounds the outer periphery of the laminate portion 11, and is formed by heat-sealing a front-side outer package 102a and a back-side outer package 102b to each other. It should be noted that the outer peripheral seal portion 13 at the upper end of the electricity storage device 100 is configured by a reseal portion 70a, which will be described later. A pair of current collecting tabs 14 are provided, and protrude outward from a later-described third side portion 10c that is an outer edge on one side in the width direction X of the exterior body 102 . The pair of current collecting tabs 14 are connected to the positive electrode and the negative electrode that constitute the laminate 101 , although not shown. Moreover, although not shown, the interior of the exterior body 102 is filled with the above-described electrolytic solution.

そして、本実施形態における当該蓄電デバイス100の製造方法1は、図2に示すように、前工程S1、初回充放電工程S2、ガス抜き工程S3、再封止工程S4及び切除工程S5を含む。前工程S1では、ワーク10を用意する。ワーク10は、図3(a)及び図3(b)に示すように、積層体部11、ガスポケット部12、外周シール部13、集電タブ14を備える。ガスポケット部12は、外装体102を積層体部11から鉛直方向Zの上方に延長して形成されている。なお、図3(b)に示すように、ガスポケット部12において表側の外装体102aと裏側の外装体102bとは互いに溶着されておらず、両者の間に空間部が形成されている。また、図示しないが、外装体102内には電解液が満たされている。そして、図3(a)に示すように、ワーク10は、ガスポケット部12が設けられた第1の側辺部10aと、第1の側辺部10aと反対側に位置する第2の側辺部10bと、集電タブ14が設けられた第3の側辺部10cと、第3の側辺部10cと反対側に位置する第4の側辺部10dとからなる4つの側辺部10a~10cを有する。当該側辺部10a~10cはいずれも外周シール部13によりシールされている。 And the manufacturing method 1 of the said electrical storage device 100 in this embodiment, as shown in FIG. 2, includes a pre-process S1, an initial charging/discharging process S2, a degassing process S3, a resealing process S4, and a cutting process S5. In the pre-process S1, a workpiece 10 is prepared. The workpiece 10 includes a laminate portion 11, a gas pocket portion 12, an outer peripheral seal portion 13, and a current collecting tab 14, as shown in FIGS. 3(a) and 3(b). The gas pocket portion 12 is formed by extending the exterior body 102 upward in the vertical direction Z from the laminate portion 11 . As shown in FIG. 3(b), in the gas pocket portion 12, the exterior body 102a on the front side and the exterior body 102b on the back side are not welded to each other, and a space is formed between them. Moreover, although not shown, the exterior body 102 is filled with an electrolytic solution. As shown in FIG. 3A, the workpiece 10 includes a first side portion 10a provided with the gas pocket portion 12 and a second side opposite to the first side portion 10a. Four side portions consisting of a side portion 10b, a third side portion 10c provided with a current collecting tab 14, and a fourth side portion 10d located on the opposite side of the third side portion 10c. 10a-10c. All of the side portions 10a to 10c are sealed by an outer peripheral seal portion 13. As shown in FIG.

次いで、図2に示す初回充放電工程S2において、ワーク10に対して初回充放電を行う。初回充放電の態様は限定されず、公知の方法で行うことができる。初回充放電工程S2において、充放電を行うことにより外装体102内に積層体101からガスが発生する。発生したガスは、ガスポケット部12における表側の外装体102aと裏側の外装体102bとの間の空間部に溜まることとなる。なお、負極にリチウムイオンをプレドープするために、初回充放電工程S2の前にプレドーピング工程を行ってもよい。また、初回充放電工程S2後に所望のエージング工程を行ってもよい。 Next, in the initial charge/discharge step S2 shown in FIG. 2, the workpiece 10 is subjected to initial charge/discharge. The mode of the initial charging/discharging is not limited, and can be performed by a known method. In the initial charging/discharging step S2, gas is generated from the laminate 101 in the exterior body 102 by performing charging/discharging. The generated gas accumulates in the space between the exterior body 102 a on the front side and the exterior body 102 b on the back side in the gas pocket section 12 . In addition, in order to pre-dope the negative electrode with lithium ions, a pre-doping step may be performed before the initial charge/discharge step S2. Moreover, you may perform a desired aging process after initial charge/discharge process S2.

その後、図2に示すガス抜き工程S3では、まず、図4(a)に示すようにワーク10を矢印Pで示すように移動させて、図4(b)に示すようにステージ20から鉛直方向Zに立ち上がった支持部30によりステージ20上の所定位置に支持する。支持部30は、第1の支持部31及び第2の支持部32を有しており、第1の支持部31及び第2の支持部32は、ワーク10における第3の側辺部10cと第4の側辺部10dに対応する間隔で水平方向に互いに離間している。図5(b)に示すように、第1の支持部31及び第2の支持部32は、ステージ20から立ち上がった一対の棒状部材がスリットSを形成するようにワーク10の厚さ方向Yである奥行き方向に互いに離間している。スリットSの大きさは限定されず、ワーク10における第3の側辺部10c及び第4の側辺部10dの厚さよりも若干大きいものとすることができる。なお、図5(a)及び図5(b)に示すように、第1の支持部31及び第2の支持部32を構成する一対の棒状部材は鉛直方向Zの上端において、厚さ方向Yに互いに離れるように開いてスリットSは鉛直方向Zの上端が幅広に形成されている。これにより、スリットSにワーク10における第3の側辺部10c及び第4の側辺部10dを差し込みやすくしている。 Thereafter, in the degassing step S3 shown in FIG. 2, first, as shown in FIG. 4(a), the workpiece 10 is moved as indicated by an arrow P, and then moved vertically from the stage 20 as shown in FIG. 4(b). It is supported at a predetermined position on the stage 20 by the supporting portion 30 which rises in Z direction. The support portion 30 has a first support portion 31 and a second support portion 32 , and the first support portion 31 and the second support portion 32 are arranged between the third side portion 10 c of the workpiece 10 and the second support portion 32 . They are horizontally spaced apart from each other by a spacing corresponding to the fourth side portion 10d. As shown in FIG. 5B, the first support portion 31 and the second support portion 32 are arranged in the thickness direction Y of the work 10 so that a pair of rod-like members rising from the stage 20 form a slit S. They are spaced apart from each other in a certain depth direction. The size of the slit S is not limited, and may be slightly larger than the thickness of the third side portion 10c and the fourth side portion 10d of the workpiece 10. FIG. In addition, as shown in FIGS. 5A and 5B, the pair of rod-shaped members that constitute the first support portion 31 and the second support portion 32 extend in the thickness direction Y at the upper ends in the vertical direction Z. The upper ends of the slits S in the vertical direction Z are widened. This makes it easier to insert the third side portion 10c and the fourth side portion 10d of the workpiece 10 into the slit S. As shown in FIG.

そして、図5(a)及び図5(b)に示すように、第1の支持部31及び第2の支持部32のそれぞれのスリットSに、ワーク10の第3の側辺部10cと第4の側辺部10dがそれぞれ差し込まれることにより、ワーク10が支持部30に遊嵌された状態で支持されることとなる。このようにワーク10が支持部30に遊嵌された状態において、図4(b)及び図5(a)に示すように、ワーク10の鉛直方向Zの下端に位置する第2の側辺部10bがステージ20の上面に当接することにより、鉛直方向Zにおけるワーク10の位置決めがなされる。なお、第1の支持部31及び第2の支持部32の鉛直方向Zにおける高さは、ワーク10を支持した状態で、第1の支持部31及び第2の支持部32の上端が積層体部11の上端を超えないように設定されている。 Then, as shown in FIGS. 5A and 5B, the third side portion 10c and the third side portion 10c of the workpiece 10 are inserted into the slits S of the first support portion 31 and the second support portion 32, respectively. By inserting the four side portions 10d respectively, the work 10 is supported in a state of being loosely fitted in the support portion 30. As shown in FIG. In the state in which the work 10 is loosely fitted to the support portion 30 as described above, as shown in FIGS. The work 10 is positioned in the vertical direction Z by contacting the upper surface of the stage 20 with the work 10b. The height of the first support portion 31 and the second support portion 32 in the vertical direction Z is such that the upper ends of the first support portion 31 and the second support portion 32 are the laminated body in the state where the work 10 is supported. It is set so as not to exceed the upper end of the portion 11 .

引き続き、図2に示すガス抜き工程S3において、図6、図7(a)及び図7(b)に示すように、支持部30を介してワーク10をステージ20に支持した状態でチャンバー40内に載置する。そして、図7(a)及び図7(b)に示す基準面50aを有する基準板50を積層体部11に向けて予め設定された基準位置までに移動して、図8(a)及び図8(b)に示すようにワーク10における積層体部11の一方の面11aに基準面50aを当接させる。これとともに、図7(a)及び図7(b)に示す加圧面51aを有する加圧板51を積層体部11に向けて移動して、図8(a)及び図8(b)に示すようにワーク10における積層体部11の他方の面11bに加圧面51aを押し当てる。これにより、積層体部11は基準面50aと加圧面51aとによって挟み込まれることとなり、その結果、積層体部11が基準面50aに押し当てられた押圧状態となる。 Subsequently, in the degassing step S3 shown in FIG. 2, as shown in FIGS. be placed on. Then, the reference plate 50 having the reference surface 50a shown in FIGS. 7(a) and 7(b) is moved toward the laminate portion 11 to a preset reference position, and the reference plate 50 shown in FIGS. As shown in 8(b), one surface 11a of the laminate portion 11 of the work 10 is brought into contact with the reference surface 50a. Along with this, the pressure plate 51 having the pressure surface 51a shown in FIGS. Then, the pressure surface 51a is pressed against the other surface 11b of the laminate portion 11 of the workpiece 10. As shown in FIG. As a result, the laminate portion 11 is sandwiched between the reference surface 50a and the pressure surface 51a, and as a result, the laminate portion 11 is pressed against the reference surface 50a.

図2に示すガス抜き工程S3において、基準面50aの上記基準位置は、基準面50aが面11aに当接したときにワーク10が厚さ方向Yにおいて所定位置に位置決めされるように、支持部30に対して設定することができる。本実施形態では、図8(b)に示すように、鉛直方向Zの上方から見て、基準面50aが積層体部11の面11aに当接した状態で、集電タブ14が積層体部11における厚さ方向Yの中央線11cに重なるとともに両者が平行となる位置に設定されている。当該基準位置は、積層体部11の厚さTに応じて適宜設定することができる。 In the degassing step S3 shown in FIG. 2, the reference position of the reference surface 50a is set to the support portion so that the workpiece 10 is positioned at a predetermined position in the thickness direction Y when the reference surface 50a contacts the surface 11a. 30 can be set. In the present embodiment, as shown in FIG. 8B, the current collecting tab 14 is attached to the laminate portion 11 with the reference surface 50a in contact with the surface 11a of the laminate portion 11 when viewed from above in the vertical direction Z. 11, and is set at a position where both are parallel to each other while being overlapped with the center line 11c in the thickness direction Y. The reference position can be appropriately set according to the thickness T of the laminate portion 11 .

一方、本実施形態では、図8(a)及び図8(b)に示すように、加圧板51は荷重制御部52により、加圧面51aから積層体部11の他方の面11bへ印加される荷重である目標荷重が制御される。荷重制御部52の構成は限定されず、公知のポンプ等により構成することができる。また、当該目標荷重の大きさも限定されないが、例えば、目標荷重の上限を積層体部11に破損が生じない範囲の最大値とすることができ、目標荷重の下限を積層体部11の変形が抑制可能である範囲の最小値とすることができる。本実施形態では、目標荷重を50~100kgの範囲内の値としている。 On the other hand, in the present embodiment, as shown in FIGS. 8A and 8B, the pressure plate 51 is applied by the load control unit 52 from the pressure surface 51a to the other surface 11b of the laminate unit 11. A target load, which is a load, is controlled. The configuration of the load control unit 52 is not limited, and can be configured by a known pump or the like. The magnitude of the target load is also not limited. It can be the minimum value of the range that can be suppressed. In this embodiment, the target load is a value within the range of 50-100 kg.

基準板50及び加圧板51の形状は限定されず、積層体部11の少なくとも一部を基準面50aに押し当てた押圧状態にすることができる形状であればよい。本実施形態1では、図6及び図8(b)に示すように、基準板50及び加圧板51の形状を積層体部11における集電タブ14が突出する側の側辺部11dの全域に重なる平板形状にしている。これにより、当該側辺部11dの全域を押圧状態にするように構成されている。さらに、同図に示すように、基準板50及び加圧板51の形状を積層体部11の全域に重なる平板形状にしている。これにより、基準板50と加圧板51とで積層体部11の全体を厚み方向に挟み込んで積層体部11の全域を押圧状態にするように構成されている。なお、基準板50及び加圧板51は例えば、多数の貫通孔を有するパンチングボートやメッシュ状のシートなどで構成することにより、実質的に積層体部11の全域に重なる形状にして、積層体部11の全域を実質的に押圧状態にするようにしてもよい。 The shape of the reference plate 50 and the pressure plate 51 is not limited, and any shape may be employed as long as at least a part of the laminate portion 11 can be pressed against the reference surface 50a. In the first embodiment, as shown in FIGS. 6 and 8B, the shape of the reference plate 50 and the pressure plate 51 is set over the entire side portion 11d of the laminate portion 11 on the side from which the current collecting tab 14 protrudes. It has a flat plate shape that overlaps. As a result, the entire side portion 11d is configured to be in a pressed state. Furthermore, as shown in the figure, the shape of the reference plate 50 and the pressure plate 51 is a flat plate shape overlapping the entire area of the laminate portion 11 . As a result, the entire laminate portion 11 is sandwiched between the reference plate 50 and the pressure plate 51 in the thickness direction so that the entire laminate portion 11 is pressed. Note that the reference plate 50 and the pressure plate 51 are formed of, for example, a punching boat having a large number of through holes, a mesh sheet, or the like, so that they substantially overlap the entire area of the laminate portion 11. 11 may be substantially pressed.

次いで、図2に示すガス抜き工程S3において、図9(a)及び図9(b)に示すように、積層体部11を基準面50aに押し当てた状態で、穿孔脱気装置60により、ガスポケット部12の所定位置を開放し、ワーク10の内圧を低下させる。穿孔脱気装置60は尖った先端と当該先端に開口した中空部とを有する穿孔ノズル部61と、穿孔ノズル部61の受け側となる受け部62と、穿孔ノズル部61に接続されて穿孔ノズル部61の開口部からガスを吸引するポンプ63とを有している。そして、図9(a)に示すように当該穿孔ノズル部61をガスポケット部12に押し付けるとともに反対側に受け部62をあてがって、穿孔ノズル部61をガスポケット部12に差し込むことにより、ガスポケット部12に穿孔60aを形成し、穿孔ノズル部61の開口部とガスポケット部12の内部とを連通させる。そして、ポンプ63を稼働させるとともに、チャンバー40に接続されたポンプ41によりチャンバー40内を減圧することにより、ワーク10の内圧を低下させてガスポケット部12を含む外装体102内のガスを除去する。チャンバー40内の圧力は大気圧未満とすることができ、本実施形態では実質的に真空状態としている。 Next, in the degassing step S3 shown in FIG. 2, as shown in FIGS. A predetermined position of the gas pocket portion 12 is opened to reduce the internal pressure of the workpiece 10 . The piercing degassing device 60 includes a piercing nozzle portion 61 having a sharp tip and a hollow portion opening at the tip; and a pump 63 for sucking gas from the opening of the portion 61 . Then, as shown in FIG. 9(a), the perforated nozzle portion 61 is pressed against the gas pocket portion 12, the receiving portion 62 is applied to the opposite side, and the perforated nozzle portion 61 is inserted into the gas pocket portion 12, thereby forming a gas pocket. A perforation 60 a is formed in the portion 12 , and the opening of the perforated nozzle portion 61 and the inside of the gas pocket portion 12 are communicated with each other. Then, by operating the pump 63 and reducing the pressure in the chamber 40 by the pump 41 connected to the chamber 40, the internal pressure of the workpiece 10 is lowered and the gas in the exterior body 102 including the gas pocket portion 12 is removed. . The pressure within chamber 40 may be less than atmospheric pressure, and in this embodiment is substantially a vacuum.

その後、図2に示す再封止工程S4において、図10(a)及び図10(b)に示すように、積層体部11を基準面50aに押圧した状態で、ワーク10の内圧を低下させた状態で積層体部11とガスポケット部12との境界部分12aをシールする。これにより、穿孔60aによって解放された外装体102が再封止されることとなる。境界部分12aのシールは、熱溶着装置70により行う。図10(b)に示すように、熱溶着装置70により境界部分12aを厚さ方向Yにおいて圧接した状態で加熱して外装体102を熱溶着する。これにより、積層体部11とガスポケット部12との間に再シール部70aが形成される。そして、図11に示すように、カッター80により再シール部70a上で切断して積層体部11からガスポケット部12を切除する。その後、封止状態の確認試験を行って、封止状態が良好であることが確認できたものを、図1(a)に示す蓄電デバイス100として完成させる。 After that, in the resealing step S4 shown in FIG. 2, the internal pressure of the work 10 is lowered while the laminate portion 11 is pressed against the reference surface 50a as shown in FIGS. 10(a) and 10(b). In this state, the boundary portion 12a between the laminate portion 11 and the gas pocket portion 12 is sealed. As a result, the exterior body 102 released by the perforations 60a is resealed. The sealing of the boundary portion 12a is performed by a thermal welding device 70. As shown in FIG. As shown in FIG. 10(b), the thermal welding device 70 heats the boundary portion 12a while pressing it in the thickness direction Y to thermally weld the exterior body 102. As shown in FIG. Thereby, a resealing portion 70 a is formed between the laminate portion 11 and the gas pocket portion 12 . Then, as shown in FIG. 11, a cutter 80 is used to cut above the resealing portion 70a to remove the gas pocket portion 12 from the laminate portion 11. As shown in FIG. After that, a confirmation test of the sealed state is performed, and the device that has been confirmed to have a good sealed state is completed as the electricity storage device 100 shown in FIG. 1(a).

次に、本実施形態の蓄電デバイス100の製造方法1における作用効果について、詳述する。
本実施形態の蓄電デバイス100の製造方法1によれば、ガス抜き工程S3から再封止工程S4が完了するまで、積層体部11の少なくとも一部を基準面50aに押し当てた押圧状態が維持されるため、外装体102内のガス抜きから再封止に亘って積層体部11の変形を抑制することができる。これにより、完成された蓄電デバイス100の厚み寸法のばらつきを低減するとともに、外装体102内において電極等を構成する金属箔の破損を防止して、製造品質の向上を図ることができる。
Next, the effects of the manufacturing method 1 of the electricity storage device 100 of the present embodiment will be described in detail.
According to the manufacturing method 1 of the electricity storage device 100 of the present embodiment, the pressed state in which at least a part of the laminate portion 11 is pressed against the reference surface 50a is maintained from the degassing step S3 to the resealing step S4. Therefore, it is possible to suppress the deformation of the laminate part 11 from degassing in the exterior body 102 to resealing. As a result, it is possible to reduce variations in the thickness dimension of the completed electricity storage device 100 and prevent breakage of the metal foil forming the electrodes and the like in the exterior body 102, thereby improving manufacturing quality.

また、本実施形態では、ガス抜き工程S3において、積層体部11の一方の面11aの少なくとも一部を基準面50aに当接させるとともに積層体部11の他方の面11bの少なくとも一部に加圧面51aを押し当てることにより、上記押圧状態にする。これにより、積層体部11は基準面50aと加圧面51aとによって挟み込まれることとなるため、積層体部11の膨張による厚さの変形を抑制することができ、蓄電デバイス100の厚み寸法のばらつきを一層低減するとともに、外装体102内の金属箔の破損を一層防止して、製造品質の向上を一層図ることができる。 Further, in the present embodiment, in the degassing step S3, at least a portion of one surface 11a of the laminate portion 11 is brought into contact with the reference surface 50a, and at least a portion of the other surface 11b of the laminate portion 11 is applied. By pressing the pressing surface 51a, the pressing state is brought about. As a result, since the laminate portion 11 is sandwiched between the reference surface 50a and the pressure surface 51a, deformation of the thickness due to expansion of the laminate portion 11 can be suppressed, and variations in the thickness dimension of the electric storage device 100 can be suppressed. can be further reduced, and damage to the metal foil in the exterior body 102 can be further prevented, thereby further improving manufacturing quality.

また、本実施形態では、ガス抜き工程S3において、ステージ20から立ち上がった支持部30によりワーク10をステージ20上の所定位置に支持し、基準面50aを支持部30に対して所定位置に位置させて上記押圧状態にする。これにより、ワーク10が支持部30と基準面50aとにより所定の位置に位置決めされて、積層体部11の厚さを所定の大きさに管理しやすくなるため、蓄電デバイス100の厚み寸法のばらつきを一層低減するとともに、外装体102内の金属箔の破損を一層防止して、製造品質の向上を一層図ることができる。 Further, in the present embodiment, in the degassing step S3, the work 10 is supported at a predetermined position on the stage 20 by the support portion 30 standing up from the stage 20, and the reference surface 50a is positioned at a predetermined position with respect to the support portion 30. to bring it into the pressed state. As a result, the workpiece 10 is positioned at a predetermined position by the support portion 30 and the reference surface 50a, and the thickness of the laminate portion 11 can be easily managed to a predetermined size, so that the thickness dimension of the electric storage device 100 is reduced. can be further reduced, and breakage of the metal foil in the exterior body 102 can be further prevented, thereby further improving manufacturing quality.

また、本実施形態では、ガス抜き工程S3において、加圧面51aを所定の目標荷重で積層体部11の他方の面11bの少なくとも一部に押し当てることにより上記押圧状態にする。これにより、積層体部11に印加される荷重の制御が容易となり、当該荷重の過不足を防止して製造品質の向上を一層図ることができる。 Further, in the present embodiment, in the degassing step S3, the pressurizing surface 51a is pressed against at least a part of the other surface 11b of the laminate portion 11 with a predetermined target load so as to be in the pressed state. This makes it easier to control the load applied to the laminate section 11, and prevents excess or deficiency of the load, thereby further improving the manufacturing quality.

また、本実施形態では、ワーク10は積層体101の外縁に接続されて外装体102から外方に突出した集電タブ14を有し、ガス抜き工程S3において、集電タブ14が積層体部11の厚さ方向の中央線11c上に位置するように基準面50aを支持部30に対して所定位置に位置させて上記押圧状態にする。これにより、集電タブ14の剥離や集電タブ14の変形を防止することができ、製造品質の向上を一層図ることができる。 Further, in the present embodiment, the workpiece 10 has a current collecting tab 14 that is connected to the outer edge of the laminate 101 and protrudes outward from the exterior body 102. The reference surface 50a is positioned at a predetermined position with respect to the support portion 30 so as to be positioned on the center line 11c in the thickness direction of the support member 11, and the pressing state is set. As a result, peeling of the current collecting tab 14 and deformation of the current collecting tab 14 can be prevented, and the manufacturing quality can be further improved.

さらに本実施形態では、ワーク10は、積層体部11の外周において、ガスポケット部12が設けられた第1の側辺部10aと、第1の側辺部10aと反対側に位置する第2の側辺部10bと、集電タブ14が設けられた第3の側辺部10cと、第3の側辺部10cと反対側に位置する第4の側辺部10dとからなる4つの側辺部を有する。また、支持部30は、ステージ20から鉛直方向Zの上方に立設されてスリット状の空間部を有するとともに、互いに水平方向に離間した位置に配設された第1の支持部31と第2の支持部32とを有する。そして、ガス抜き工程S3において、ワーク10は、第1の側辺部10aが鉛直方向Zの上方に位置し、第2の側辺部10bが鉛直方向Zの下方に位置して第2の側辺部10bの少なくとも一部がステージ20に当接し、第3の側辺部10cが第1の支持部31に遊嵌されるとともに、第4の側辺部10dが第2の支持部32に遊嵌された状態で支持部30に支持される。これにより、ワーク10を支持部30にセットするだけで厚さ方向Y及び鉛直方向Zにおけるワーク10の位置決めを精度よく容易に行うことができる。ワーク10や集電タブ14に対する基準面50a及び加圧面51aの位置ずれが生じると外装体102内の金属箔の破損が起こりやすいが、当該構成を採用することにより当該位置ずれが防止されるため、製造品質の向上を一層図ることができる。 Further, in the present embodiment, the workpiece 10 has a first side portion 10a provided with the gas pocket portion 12 and a second side portion 10a located on the opposite side of the first side portion 10a on the outer periphery of the laminate portion 11. a side portion 10b, a third side portion 10c provided with a current collecting tab 14, and a fourth side portion 10d located on the opposite side of the third side portion 10c. It has sides. The support portion 30 has a slit-shaped space portion which is erected above the stage 20 in the vertical direction Z, and a first support portion 31 and a second support portion 31 and a second support portion 31 which are horizontally separated from each other. and a support portion 32 of . Then, in the degassing step S3, the work 10 is positioned so that the first side portion 10a is positioned above the vertical direction Z, and the second side portion 10b is positioned below the vertical direction Z, so that the work 10 is positioned on the second side. At least part of the side portion 10b abuts on the stage 20, the third side portion 10c is loosely fitted on the first support portion 31, and the fourth side portion 10d is on the second support portion 32. It is supported by the support portion 30 in a loosely fitted state. Accordingly, the workpiece 10 can be accurately and easily positioned in the thickness direction Y and the vertical direction Z simply by setting the workpiece 10 on the support portion 30 . When the reference surface 50a and the pressure surface 51a are misaligned with respect to the workpiece 10 and the current collecting tab 14, the metal foil in the exterior body 102 is likely to be damaged. , the manufacturing quality can be further improved.

さらに本実施形態では、ガス抜き工程S3において、積層体部11における集電タブ14が突出する側の側辺部である第3の側辺部10cの全域を押圧状態にする。積層体部11において集電タブ14が接続された領域及びその周辺領域の変形がすると、当該変形により集電タブ14に応力が発生して集電タブ14が変形したり集電タブ14が積層体101から剥離したりするおそれがあるが、当該構成を採用することにより集電タブ14の変形や剥離を効果的に抑制することができ、製造品質の向上を一層図ることができる。 Further, in the present embodiment, in the degassing step S3, the entirety of the third side portion 10c, which is the side portion of the laminate portion 11 from which the current collecting tab 14 protrudes, is pressed. When the area where the current collecting tab 14 is connected and the surrounding area in the laminate part 11 are deformed, stress is generated in the current collecting tab 14 by the deformation, and the current collecting tab 14 is deformed or the current collecting tab 14 is laminated. Although there is a risk of peeling from the body 101, by adopting this configuration, deformation and peeling of the current collecting tab 14 can be effectively suppressed, and the manufacturing quality can be further improved.

さらに本実施形態、ガス抜き工程S3において、積層体部11の全域を押圧状態にする。これにより、積層体部11の全域において変形が効果的に抑制されるため、集電タブ14の変形や剥離を効果的に抑制しつつ、蓄電デバイス100全体における製造品質の向上を一層図ることができる。 Furthermore, in this embodiment, in the degassing step S3, the entire area of the laminate portion 11 is pressed. As a result, deformation is effectively suppressed in the entire area of the laminate portion 11, so that it is possible to further improve the manufacturing quality of the entire power storage device 100 while effectively suppressing deformation and peeling of the current collecting tab 14. can.

以上のごとく、本実施態様によれば、製造品質の向上が図られる蓄電デバイス100の製造方法1を提供することができる。 As described above, according to the present embodiment, it is possible to provide the method 1 for manufacturing the electric storage device 100 that improves manufacturing quality.

本発明は上記実施形態及び変形形態に限定されるものではなく、その要旨を逸脱しない範囲において種々の実施形態に適用することが可能である。 The present invention is not limited to the above embodiments and modifications, and can be applied to various embodiments without departing from the scope of the invention.

1:蓄電デバイスの製造方法、10:ワーク、10a~10d:側辺部、11:積層体部、12:ガスポケット部、12a:境界部分、14:集電タブ、20:ステージ、30:支持部、31:第1の支持部、32:第2の支持部、50:基準板、50a:基準面、51:加圧板、51a:加圧面、52:荷重制御部、60:穿孔脱気装置、61:穿孔ノズル部、70:熱溶着装置、70a:再シール部、80:カッター、100:蓄電デバイス、101:積層体、102:外装体 1: Electric storage device manufacturing method, 10: Work, 10a to 10d: Side part, 11: Laminate part, 12: Gas pocket part, 12a: Boundary part, 14: Current collecting tab, 20: Stage, 30: Support Section 31: First Support Section 32: Second Support Section 50: Reference Plate 50a: Reference Surface 51: Pressing Plate 51a: Pressing Surface 52: Load Control Unit 60: Perforation Degassing Device , 61: drilling nozzle part, 70: thermal welding device, 70a: resealing part, 80: cutter, 100: electricity storage device, 101: laminated body, 102: exterior body

Claims (8)

シート状の正極及び負極をセパレータとともに積層してなる積層体をフィルム状の外装体に封入してなる蓄電デバイスの製造方法において、
上記積層体が上記外装体に封入されてなるワークであって、上記外装体と上記積層体とが厚さ方向に重なる積層体部と、上記外装体が上記積層体部の外縁から外方に延出して上記外装体の内側に発生したガスを貯留するように構成されたガスポケット部とを有するワークに対して、初回充放電を行う初回充放電工程と、
上記初回充放電工程後に、上記積層体部の少なくとも一部を基準面に押し当てた押圧状態で、上記ガスポケット部を開放して上記ワークの内圧を低下させて上記ワークから上記ガスを除去するガス抜き工程と、
上記押圧状態と上記ワークの内圧を低下させた状態とを維持して、上記積層体部と上記ガスポケット部との境界部分をシールする再封止工程と、
を含む蓄電デバイスの製造方法。
In a method for manufacturing an electricity storage device, wherein a laminate obtained by laminating a sheet-like positive electrode and a negative electrode together with a separator is enclosed in a film-like exterior body,
A work in which the laminate is enclosed in the exterior body, and includes a laminate portion in which the exterior body and the laminate overlap in a thickness direction, and the exterior body extends outward from the outer edge of the laminate portion. an initial charging/discharging step of performing initial charging/discharging on a workpiece having a gas pocket portion configured to extend and store gas generated inside the exterior body;
After the initial charging/discharging step, in a pressed state in which at least part of the laminate portion is pressed against a reference surface, the gas pocket portion is opened to reduce the internal pressure of the work, thereby removing the gas from the work. a degassing process;
a resealing step of sealing a boundary portion between the laminate portion and the gas pocket portion while maintaining the pressed state and the state in which the internal pressure of the work is reduced;
A method of manufacturing an electricity storage device comprising:
上記ガス抜き工程において、上記積層体部の一方の面の少なくとも一部を上記基準面に当接させるとともに上記積層体部の他方の面の少なくとも一部に加圧面を押し当てることにより上記押圧状態にする、請求項1に記載の蓄電デバイスの製造方法。 In the degassing step, at least a portion of one surface of the laminate portion is brought into contact with the reference surface, and a pressing surface is pressed against at least a portion of the other surface of the laminate portion, thereby removing the pressed state. The method for manufacturing an electricity storage device according to claim 1, wherein 上記ガス抜き工程において、ステージから立ち上がった支持部により上記ワークをステージ上の所定位置に支持し、上記基準面を上記支持部に対して所定位置に位置させて上記押圧状態にする、請求項2に記載の蓄電デバイスの製造方法。 3. In the degassing step, the workpiece is supported at a predetermined position on the stage by a support section rising from the stage, and the reference plane is positioned at a predetermined position with respect to the support section to be in the pressing state. 3. The method for manufacturing the electricity storage device according to 1. 上記ガス抜き工程において、上記加圧面を所定の目標荷重で上記積層体部の他方の面の少なくとも一部に押し当てることにより上記押圧状態にする、請求項3に記載の蓄電デバイスの製造方法。 4. The method of manufacturing an electricity storage device according to claim 3, wherein in the degassing step, the pressurized surface is brought into the pressed state by pressing the pressurized surface against at least a part of the other surface of the laminate portion with a predetermined target load. 上記ワークは上記積層体の外縁に接続されて上記外装体から外方に突出した集電タブを有し、
上記ガス抜き工程において、上記集電タブが上記積層体部の厚さ方向の中央線上に位置するように上記基準面を上記支持部に対して所定位置に位置させて上記押圧状態にする、請求項3又は4に記載の蓄電デバイスの製造方法。
The work has a current collecting tab connected to the outer edge of the laminate and protruding outward from the exterior body,
In the degassing step, the reference surface is positioned at a predetermined position with respect to the support portion so that the current collecting tab is positioned on the center line in the thickness direction of the laminate portion to be in the pressed state. Item 5. A method for manufacturing an electricity storage device according to Item 3 or 4.
上記ワークは、上記積層体部の外周において、上記ガスポケット部が設けられた第1の側辺部と、上記第1の側辺部と反対側に位置する第2の側辺部と、上記集電タブが設けられた第3の側辺部と、上記第3の側辺部と反対側に位置する第4の側辺部とからなる4つの側辺部を有し、
上記支持部は、ステージから鉛直方向上方に立設されてスリット状の空間部を有するとともに、互いに水平方向に離間した位置に配設された第1の支持部と第2の支持部とを有し、
上記ガス抜き工程において、上記ワークは、上記第1の側辺部が鉛直方向上方に位置し、上記第2の側辺部が鉛直方向下方に位置して上記第2の側辺部の少なくとも一部が上記ステージに当接し、上記第3の側辺部が上記第1の支持部に遊嵌されるとともに、上記第4の側辺部が上記第2の支持部に遊嵌された状態で上記支持部に支持される、請求項5に記載の蓄電デバイスの製造方法。
The workpiece includes a first side portion provided with the gas pocket portion, a second side portion located on the opposite side of the first side portion, and the having four side portions, each of which includes a third side portion provided with a current collecting tab and a fourth side portion located on the opposite side of the third side portion;
The support section has a slit-shaped space which stands vertically upward from the stage, and has a first support section and a second support section which are horizontally separated from each other. death,
In the degassing step, the work has the first side portion positioned vertically upward, the second side portion positioned vertically downward, and at least one of the second side portions. part abuts the stage, the third side part is loosely fitted to the first support part, and the fourth side part is loosely fitted to the second support part. The method for manufacturing an electricity storage device according to claim 5, wherein the electricity storage device is supported by the support portion.
上記ガス抜き工程において、上記積層体部における上記集電タブが突出する側の側辺部の全域を上記押圧状態にする、請求項5又は6に記載の蓄電デバイスの製造方法。 7. The method of manufacturing an electricity storage device according to claim 5, wherein in the degassing step, the entire side portion of the laminate portion on the side from which the current collecting tab protrudes is brought into the pressed state. 上記ガス抜き工程において、上記積層体部の全域を上記押圧状態にする、請求項1~7のいずれか一項に記載の蓄電デバイスの製造方法。 8. The method for manufacturing an electricity storage device according to claim 1, wherein in the degassing step, the entire area of the laminate portion is brought into the pressed state.
JP2021185092A 2021-11-12 2021-11-12 Method for manufacturing power storage device Pending JP2023072499A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2021185092A JP2023072499A (en) 2021-11-12 2021-11-12 Method for manufacturing power storage device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2021185092A JP2023072499A (en) 2021-11-12 2021-11-12 Method for manufacturing power storage device

Publications (1)

Publication Number Publication Date
JP2023072499A true JP2023072499A (en) 2023-05-24

Family

ID=86424473

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2021185092A Pending JP2023072499A (en) 2021-11-12 2021-11-12 Method for manufacturing power storage device

Country Status (1)

Country Link
JP (1) JP2023072499A (en)

Similar Documents

Publication Publication Date Title
US9531032B2 (en) Battery case for secondary battery
JP7038964B2 (en) Electrodes with improved welding characteristics of electrode tabs and secondary batteries containing them
TWI552414B (en) Method of manufacturing secondary battery
US7385802B1 (en) Electrolytic capacitor
JP4140311B2 (en) Method for manufacturing case for power storage element
EP2605313A1 (en) Connecting contact leads to lithium-based electrodes
KR20190042800A (en) Pouch-Type Battery Case Having Structure to Prevent Crack and Method for Preparing the Same
KR20190042801A (en) Sealing Block to Prevent Crack of Pouch-Type Secondary Battery, Pouch-Type Battery Case and Sealing Method for Pouch-Type Battery Case Using thereof
JP6551220B2 (en) Manufacturing method of all solid state battery
KR20140032623A (en) Process for preparation of secondary battery
US20140308577A1 (en) Battery case for secondary battery
JP2016219327A (en) Power storage device
US20130252081A1 (en) Battery case for secondary battery
JP6598129B1 (en) Pouch forming method and pouch forming apparatus
JP5862508B2 (en) Electrode manufacturing method and electrode manufacturing apparatus
JPH09320567A (en) Device for welding tab to battery plate and manufacture of battery plate using the same
JP2023072499A (en) Method for manufacturing power storage device
CN111554960B (en) Method for manufacturing power storage element, bonding method, and bonded body
JP5279341B2 (en) Cylindrical non-aqueous electrolyte battery
JP2016167415A (en) Power storage device and method for manufacturing power storage device
JP2023119655A (en) Method for manufacturing power storage device and manufacturing apparatus therefor
KR20160098148A (en) Pouched type case, battery cell and manufacturing method of battery cell
JP2011513892A (en) Method for producing single cell for battery
JP2001283836A (en) Manufacturing method of battery and sheet-cutting method
JP2020107412A (en) Electrode unit manufacturing method and electrode unit preparation body

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20241011