JP2023070302A - 誘導加熱コイル - Google Patents

誘導加熱コイル Download PDF

Info

Publication number
JP2023070302A
JP2023070302A JP2021182386A JP2021182386A JP2023070302A JP 2023070302 A JP2023070302 A JP 2023070302A JP 2021182386 A JP2021182386 A JP 2021182386A JP 2021182386 A JP2021182386 A JP 2021182386A JP 2023070302 A JP2023070302 A JP 2023070302A
Authority
JP
Japan
Prior art keywords
coil
induction heating
heating coil
cross
cooling
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2021182386A
Other languages
English (en)
Inventor
学 廣瀬
Manabu Hirose
光崇 芳田
Mitsutaka Yoshida
豪 五上
Takeshi Gogami
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2021182386A priority Critical patent/JP2023070302A/ja
Publication of JP2023070302A publication Critical patent/JP2023070302A/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/25Process efficiency

Landscapes

  • General Induction Heating (AREA)

Abstract

【課題】造形時に、誘導加熱コイルの中心軸を水平方向に対し傾斜させることなく、金属積層造形法を用いて製造され、冷却流路内の圧力損失の低減と冷却能力の向上とを図れる、誘導加熱コイルを得る。【解決手段】誘導加熱コイル10は、金属積層造形法によって作られ、少なくとも1つのリング状部11,12を含む。リング状部11,12に、コイル周方向に延びる冷却流路20,21が形成される。冷却流路20,21は、コイル軸方向に沿って切断した場合の断面形状が、コイル径方向の内外の両端に2つの頂点がある六角形であり、コイル周方向に連続して形成される六角流路を有する。六角流路の断面形状において、コイル径方向における両端のそれぞれで、V字形を形成する2つの直線A1~A4がコイル径60に対して傾斜する角度θ1,θ2,θ3,θ4は45度以下である。【選択図】図6

Description

本発明は、金属積層造形法によって作られた誘導加熱コイルであって、冷却流路内の圧力損失の低減と冷却能力の向上とに関する。
特許文献1には、金属積層造形法(金属3Dプリンタ成形法)によって、内部に冷却流路を有する誘導加熱コイルを製造することが記載されている。
特開2018-10876号公報
誘導加熱コイルを金属積層造形法により製造する場合に、冷却流路の断面形状によっては、冷却流路内に形状崩れを防止するためのサポートが必要になる。例えば、冷却流路の断面において、金属積層方向に関して冷却流路の上端に、水平方向と一致する直線がある場合、例えば冷却流路の断面形状が矩形である場合には、内部にサポートが必要になる。
完成後の誘導加熱コイルは、冷却流路に冷却水を流しながらコイル内側に配置した被加熱対象物を誘導加熱する。誘導加熱コイルの電気抵抗を低くし、磁気性能を維持する面から、誘導加熱コイル自体の温度は低い方がよい。上記のサポートが冷却流路内に形成される場合には、冷却流路内の冷却水の圧力損失につながることでエネルギー損失が増大し、また、冷却水流れが円滑にならないので誘導加熱コイルの冷却能力が低下する原因となる。
一方、誘導加熱コイルの金属積層造形法による造形時に、誘導加熱コイルの中心軸を水平方向に対し45度の角度で傾斜させることが考えられる。この場合には、冷却流路の断面形状を矩形とする場合でも、造形時に、断面形状の矩形が45度傾くので、金属積層方向に関して冷却流路の上端に、水平方向と一致する直線が形成されない。このため、冷却流路の内部に、上端の形状崩れを防止するためのサポートが形成されることを防止できる可能性がある。しかしながら、この場合には、誘導加熱コイルの巻き数が少ない等により軸方向全体の厚みが、コイルの直径であるコイル径の長さに比べて小さい場合に、造形時の誘導加熱コイルを上から見た平面視形状で、傾斜した厚み方向端面を上から見た長さが大きくなる。これにより、誘導加熱コイルの平面視面積が大きくなってしまう。また、金属積層造形では、造形時に、誘導加熱コイルの外形の崩れを防止するために、外面から下側に延びる外部サポートが形成されるので、上下方向に重ねた状態で複数の誘導加熱コイルを成形することはできない。このため、1つの誘導加熱コイルの造形時の平面視面積が大きくなることにより、限られた造形スペースで1度に形成できる誘導加熱コイルの数が少なくなる可能性がある。これにより、誘導加熱コイルを同時に複数製造する場合の各誘導加熱コイルのコスト上昇につながる可能性がある。
本発明の目的は、造形時に、誘導加熱コイルの中心軸を水平方向に対し傾斜させることなく、金属積層造形法を用いて製造され、冷却流路内の圧力損失の低減と冷却能力の向上とを図れる、誘導加熱コイルを得ることである。
本発明に係る誘導加熱コイルは、金属積層造形法によって作られ、少なくとも1つのリング状部を備える誘導加熱コイルであって、前記リング状部に、コイル周方向に延びる冷却流路が形成され、前記冷却流路は、コイル軸方向に沿って切断した場合の断面形状が、コイル径方向の内外の両端に2つの頂点がある六角形であり、前記コイル周方向に連続して形成される六角流路を含み、前記六角流路の前記断面形状において、前記コイル径方向における両端のそれぞれで、V字形を形成する2つの直線が前記コイル径に対して傾斜する角度は45度以下である、誘導加熱コイルである。
本発明に係る誘導加熱コイルによれば、冷却流路の六角流路のコイル軸方向に沿って切断した場合の断面形状は、六角形である。これにより、コイル中心軸を水平方向に一致させた姿勢で誘導加熱コイルを金属積層造形法で造形するときに、六角流路を上下方向に沿ってコイル中心軸を含む平面、または上下方向に沿ってコイル中心軸に平行な平面で切断したときの断面形状は、上端に、水平方向に対し傾斜した2つの直線からなるV字形部を有する六角形となる。また、六角流路のコイル軸方向に沿って切断した場合の断面形状では、コイル径方向の両端のV字形を形成する2つの直線がコイル径に対して傾斜する角度は45度以下である。このため、六角流路の内部にサポートを形成することなく、六角流路の上部での形状崩れを防止できる。したがって、冷却流路内のサポートを少なくできるか、またはなくせるので、冷却流路内の圧力損失の低減と冷却能力の向上とを図れる。さらに、この場合には、誘導加熱コイルの造形時に、誘導加熱コイルの中心軸を水平方向に対し傾斜させることなく、造形効率を向上可能である。
本発明によれば、造形時に、誘導加熱コイルの中心軸を水平方向に対し傾斜させることなく、金属積層造形法を用いて製造され、冷却流路内の圧力損失の低減と冷却能力の向上とを図れる、誘導加熱コイルを得られる。
実施形態の誘導加熱コイルを組み込んだ誘導加熱装置を斜め上方から見た図である。 図1Aの誘導加熱装置を斜め下方から見た図である。 図1の誘導加熱装置から誘導加熱コイルを取り出して示す斜視図である。 図2の誘導加熱コイルを図2の矢印A方向に見た図である。 図2のB-B断面と、冷却流路の六角流路の複数位置での断面を示す図である。 図3のC-C断面を含む斜視図である。 (a)は図3のC-C断面図であり、(b)は(a)のD部拡大図である。 図3のE-E断面図である。 実施形態の誘導加熱コイルの製造方法において、複数の誘導加熱コイルの造形直後の状態を示す斜視図である。 金属積層造形法によって、サポートが必要になる条件を示すイメージ図である。 比較例の第1例において、誘導加熱コイルのリング状部における冷却流路の断面形状が円形である場合の不都合を示す図である。 比較例の第2例において、誘導加熱コイルのリング状部における冷却流路の断面形状が矩形である場合の不都合を示す図である。 比較例の第3例において、誘導加熱コイルのリング状部における冷却流路の断面形状が五角形である場合の不都合を示す図である。 複数の誘導加熱コイルの中心軸を水平方向に対し傾斜させた状態で製造するときの不都合を示す図である。 冷却水を用いて誘導加熱コイルを冷却する場合の温度解析に用いた、実施例と比較例1~3の誘導加熱コイルの冷却流路の断面形状を示す図である。
以下、本発明に係る実施形態の誘導加熱コイルを説明する。まず、図1A、図1Bを用いて誘導加熱コイル10を組み込んだ誘導加熱装置100を説明する。図1A、図1Bは、誘導加熱装置100をそれぞれ設置時の斜め上方、斜め下方から見た図である。図1A、図1Bでは、誘導加熱装置100において誘導加熱コイル10がある側を前側とし、誘導加熱装置100の固定部(図示せず)に対する取り付け部であるリード部101,102の裏面が向く側を下側とし、誘導加熱装置100を図1Aの前側から見た場合の右左を、それぞれ右側、左側とする。
誘導加熱装置100は、シャフトなどの被加熱対象物に高周波焼き入れ処理などを行うために用いられ、商用電源等からの電力によって、被加熱対象物を誘導加熱して、被加熱対象物を熱処理する。
また、誘導加熱装置100の誘導加熱コイル10は、導電性が優れる材料である銅等の金属材料を用いた金属積層造形法によって製造される。
誘導加熱装置100は、リード部101,102と、複数の配管110,111,112,113と、誘導加熱コイル10とを含んで構成される。リード部101,102には、電源から交流電力が供給され、その交流電力が誘導加熱コイル10に供給される。
リード部101,102は、シート状の絶縁体(図示せず)を挟んで対向配置され、左右対称な形状に形成される。
各リード部101,102は、左右方向内端に連結され上下方向及び前側に延びる縦板部105と、縦板部105の外側面に結合された外側水路107とを有する。外側水路107の一端部は、縦板部105の後端部の上端から上側に導出される。外側水路107の他端が、複数の配管110,111によって接続されることで冷却流路を形成し、その冷却流路の内部に冷却水を流すことによりリード部101が冷却される。
図2は、誘導加熱装置100から誘導加熱コイル10を取り出して示す斜視図である。図3は、誘導加熱コイル10を図2の矢印A方向に見た図である。図1A、図1B、図2、図3を参照して、誘導加熱コイル10では、上側の第1リング状部11と下側の第2リング状部12とが中心軸であるコイル中心軸Oを一致させるように対向配置される。各リング状部11,12は、コイル軸方向に沿った外形の断面形状が矩形であり、全体がコイル周方向の一部で分断された略円環状に形成される。第1リング状部11の周方向一端部には、コイル径方向外側に突出する第1直線状部13が形成される。第1直線状部13の外面には、リード部101側の縦板部105の前端部が結合される。第2リング状部12の周方向他端部には、第1直線状部13の突出位置の近くから、コイル径方向外側に突出する第2直線状部14が形成される。第2直線状部14の外面には、リード部102側の縦板部105の前端部が結合される。
各リング状部11,12の外周面の複数位置には、外径側に突出する取付突部15が形成される。誘導加熱コイル10は、各取付突部15を貫通したボルト(図示せず)によって、誘導加熱コイル10を固定する固定部材(図示せず)に取り付けられる。
さらに、後で詳しく説明するように、誘導加熱コイル10の内部には、誘導加熱コイル10の内部に冷却水を流すための冷却流路20,21が形成される。冷却流路20,21は、第1リング状部11及び第2リング状部12のそれぞれに周方向に沿って形成される。冷却流路20の第1リング状部11に形成された部分と、冷却流路21の第2リング状部12に形成された部分とは、第1リング状部11の周方向他端部と第2リング状部12の周方向一端部との結合部16(図1A)で接続される。冷却流路20の一端は、第1直線状部13の後端に開口する。冷却流路21の他端は、第2直線状部14の後端に開口する。誘導加熱コイル10がリード部101に結合された状態で、冷却流路20において、第1直線状部13の後端に開口する一端には、リード部101の外側面に隣り合って配置された配管112の一端が接続される。冷却流路21において、第2直線状部14の後端に開口する他端には、リード部102の外側面に隣り合って配置された配管113の一端が接続される。
また、誘導加熱コイル10は、コイル中心軸O方向の厚みD1(図2)がコイル径方向の長さD2(図2)より小さい。これにより、後述のように、コイル中心軸Oを水平方向に一致させて誘導加熱コイル10を造形するときに、造形スペースを小さくできる。
誘導加熱装置100に使用時には、2つの配管112,113の一方に図示しない水タンクから冷却水が供給され、その冷却水が誘導加熱コイル10の内部を流れた後、2つの配管112,113の他方から排出される。これにより誘導加熱コイル10が冷却される。
誘導加熱装置100の使用時には、第1、第2リング状部11,12の間にリングシート状の絶縁体(図示せず)が配置され、リード部101に、電源に接続された第1端子板(図示せず)が接続され、リード部102に、電源に接続された第2端子板(図示せず)が接続される。電源から各端子板を介して交流電力がリード部101に供給されることで、誘導加熱コイル10に高周波の交流電流が流れる。これにより、誘導加熱装置100を用いて誘導加熱コイル10の内側に挿入した被加熱対象物の高周波焼き入れを行える。
本例では、誘導加熱コイル10は、金属積層造形法によって作られる。造形された誘導加熱コイル10は、リード部101にロウ付けによって接合される。「金属積層造形法」は、金属粉末を薄い層状に敷く工程と、層状の金属粉末をレーザ照射装置のレーザ光により選択的に溶融し凝固により固化する工程とを繰り返すことで、複数の固化した金属層が積層状態で結合されて誘導加熱コイル10が造形される。
このように誘導加熱コイル10を金属積層造形法で製造する場合に、誘導加熱コイル10の外側には形状崩れを防止するための外部サポートの形成が必要である。また、冷却流路の断面形状によっては、冷却流路の内部にサポートを形成する必要がある。外部サポートは、誘導加熱コイルの造形後に機械加工で容易に除去できる。一方、冷却流路の内部に形成されたサポートは容易には除去できない。これにより、冷却流路の内部にサポートが残ったままとなる可能性がある。このため、冷却流路内の冷却水の圧力損失につながることでエネルギー損失が増大し、また、冷却水流れが円滑にならないので誘導加熱コイルの冷却能力が低下する原因となる。このような事情から、本例の誘導加熱コイル10では、冷却流路20,21の形状の改良によって、内部サポートを不要としている。
図4~図8を用いて、誘導加熱コイル10の冷却流路20,21を詳しく説明する。図4は、図2のB-B断面と、複数位置での冷却流路の断面を概略的に示している。図5は、図3のC-C断面を含む斜視図である。図6(a)は、図3のC-C断面図であり、図6(b)は図6(a)のD部拡大図である。図7は、図3のE-E断面図である。
図4~図7に示すように、誘導加熱コイル10の内部には、冷却流路20,21が形成される。冷却流路20,21は、第1リング状部11及び第2リング状部12に形成されたリング状流路部22,23と、第1直線状部13及び第2直線状部14に形成された直線状流路部31,32とを含む。図5、図6に示すように、各リング状部11,12のリング状流路部22,23は、2つのリング状部11,12の結合部16に設けられた部分同士が、連結流路部28で接続される。ここで、冷却流路20,21の各リング状流路部22,23の、連結流路部28とコイル周方向に一致する部分を除く部分には、対応するリング状部11,12のコイル周方向に連続して断面六角形の流路部である六角流路が形成される。
なお、第2リング状部12の外形では、内周面の軸方向一方側にテーパ面40が形成され、軸方向他方側に円筒面41が形成された形状となっているが、第1リング状部11の内周面に形成された円筒面42と同様に、軸方向の全体が円筒面であってもよい。
六角流路は、コイル軸であるコイル中心軸Oの方向に沿って切断した場合の断面形状(コイル軸方向断面の形状)、例えば図4に示すよ、コイル軸方向断面1、コイル軸方向断面2が、コイル径60方向の内外の両端に2つの頂点P1、P2がある六角形である。
さらに、図6に示すように、六角流路のコイル軸方向断面の形状において、コイル径60方向における両端のそれぞれで、V字形を形成する2つの直線A1,A2、A3,A4がコイル径60に対し傾斜する角度θ1、θ2、θ3、θ4はそれぞれ45度以下である。これにより、後述のように、コイル中心軸Oを水平方向に一致させて誘導加熱コイル10を造形するときに、六角流路の内部に形状崩れを防止するためのサポートを形成する必要がなくなる。
さらに、図5、図6に示すように、2つのリング状流路部22,23が、連結流路部28で接続される部分では、それぞれ六角流路のコイル径60に対して一方側の形状を有する断面五角形の五角形部43,44が、連結流路部28で接続される。連結流路部28は、コイル径方向外側の外壁部29で五角形部43,44の外端同士を接続し、コイル径方向内側の内壁部30で五角形部43,44の内端同士を接続する。このとき、外壁部29は、コイル中心軸Oの軸方向について第1リング状流路部22から第2リング状流路部23に向かってコイル径方向の内側に傾斜した傾斜面となっている。これにより、コイル中心軸Oを水平方向に一致させて、かつ各直線状部13,14及び連結流路部28が金属積層方向の上端部に位置するように誘導加熱コイル10を造形するときに、連結流路部28の上端となる外壁部29の内面が水平方向に対し傾斜する。このため、外壁部29のコイル周方向の長さが短い場合に、連結流路部28の内部に形状崩れを防止するためのサポートを形成する必要がなくなる。
上記の誘導加熱コイル10の製造時には、まずコンピュータを用いて誘導加熱コイル10を3Dモデル化し、3Dモデルのデータを、コンピュータで、誘導加熱コイル10の画像を上下方向に沿って所定の間隔毎にスライスして得られる複数のレイヤー画像である2次元画像に分割する。コンピュータは、その複数の2次元画像に基づいて、金属積層造形装置により誘導加熱コイル10を造形する。このとき、各レイヤー画像に対応する厚み分の薄い厚みの金属粉末層を敷いて、造形する部分にレーザ光を照射し金属粉末を溶融固化する工程を繰り返して、複数の金属層を上下に積層しながら結合して誘導加熱コイル10を造形する。造形後の誘導加熱コイル10は、リード部101,102とロウ付け接合して誘導加熱装置100を製造する。完成した誘導加熱装置100は、高周波焼き入れ設備に取り付けられる。
図8は、誘導加熱コイル10の製造方法において、複数の誘導加熱コイル10の造形直後の状態を示す斜視図である。図8に示すように、上記の誘導加熱コイル10は、コイル中心軸Oを水平方向に一致させて、金属積層造形法によって製造する。このとき、誘導加熱コイル10は、コイル中心軸O方向の厚みD1がコイル径方向の長さD2より小さいので、造形のための造形スペースを小さくできる。このため、図8に示すように、限られた造形スペースで、コイル中心軸O方向に多くの(図示の例では4つの)誘導加熱コイル10を並べて形成し、それを1列として、横方向に複数列(図示の例では2列)を並べることができる。このとき、誘導加熱コイル10の外面の下側には、形状崩れを防止するための外部サポート61が形成されるが、外部サポート61は、誘導加熱コイル10の造形後に、機械加工によって容易に除去できる。
さらに、本実施形態では、各誘導加熱コイル10の製造において、図8のようにコイル中心軸Oが水平方向に一致しているので、図2~図7で示した誘導加熱コイル10の前後方向が、金属積層方向についての上下方向(金属積層時上下方向)となる。この場合に、本例の誘導加熱コイル10では、冷却流路20,21のうち、リング状部11,12に形成される六角流路の、コイル軸方向に沿って切断した場合の断面形状が、コイル径方向の内外の両端に2つの頂点P1,P2がある六角形であり、コイル周方向に連続して形成される。これにより、図8の姿勢で誘導加熱コイル10を金属積層造形法で造形するときに、六角流路を金属積層時の上下方向に沿って、コイル中心軸Oを含む、またはコイル中心軸Oに平行な平面で切断したときの断面形状は、図4の前後方向断面や、コイル軸方向断面1、2、図5~図7の断面形状のように、前後方向に切断した断面形状と同じである。これにより、その断面形状は、金属積層方向について、上端と下端とのそれぞれに、水平方向に対し傾斜した2つの直線A1~A4(図6)からなるV字形部を有する六角形となる。
また、六角流路のコイル軸方向に沿って切断した場合の断面形状では、コイル径方向の両端のV字形を形成する2つの直線A1~A4がコイル径60に対して傾斜する角度は45度以下である。これにより、上記の姿勢で誘導加熱コイル10を造形するときの金属積層時の上下方向に沿って切断した断面形状では、六角形の上端を形成するV字形の2つの直線A1,A2がその上下方向に対し傾斜する角度も45度以下である。
例えば、図4のコイル軸方向断面1や、図6の各リング状流路部22,23の前端部の断面形状では、前後方向、すなわち金属積層時の上下方向に沿って、コイル中心軸Oを含む平面で切断したときの断面形状と、コイル径方向の断面形状とは一致する。このとき、図6(b)に示すように、その断面形状における六角流路の金属積層時の上端部でのV字形の2つの直線A1,A2が、金属積層時の上下方向に対し傾斜する角度θ1、θ2は、45度以下となる。これにより、後述のように、六角流路の上記の断面で内部にサポートを形成することなく、形状崩れを防止できる。
一方、図4の前後方向断面や、図7の各リング状流路部22,23の前側、後側それぞれの断面形状は、コイル軸方向の断面形状と一致せず、コイル中心軸Oから左右方向に離れた分だけ、リング状流路部22,23における前後方向長さが大きくなる。このとき、リング状流路部22,23のコイル中心軸O方向と平行な方向の流路幅wは、リング状流路部22,23がコイル中心軸Oから左右方向に離れても一定であるので、前後方向断面の形状は、コイル軸方向断面1より全体的に前後方向に細長くなる。このため、六角流路の前後方向断面の上端部でのV字形の2つの直線が、金属積層時の上下方向に対し傾斜する角度は、コイル軸方向断面1の場合の角度よりさらに小さい、45度以下となる。これにより、六角流路の金属積層時の上下方向に沿った断面は、コイル中心軸Oを含む断面以外でも、上端のV字形の直線が上下方向に対し傾斜する角度は、45度以下と小さくなる。これにより、後述のように、六角流路の金属積層時の上下方向に沿ったいずれの断面でも、内部にサポートを形成することなく、形状崩れを防止できる。
図9は、金属積層造形法によって、サポートが必要になる条件を示すイメージ図である。図9に示すように金属積層造形法では、金属粉末62の薄い層を敷いた状態で造形する部分にレーザ光63を照射し、金属粉末62を溶融固化させて層状の溶融固化部65を形成する。図9では、砂地を付した部分により溶融固化部65を示している。溶融固化部65の隣接する位置には、全体の形状が固定されない金属粉末62が位置する。このとき、溶融固化部65の積層された層によって水平方向に対し傾斜した傾斜面Saを形成する場合に、鉛直方向に対し傾斜面Saが傾斜する角度である自己支持角θkが45度より大きくなると、傾斜面Saの大きさによっては形状崩れが発生しやすくなる。このため、自己支持角θkが45度より大きく、かつ傾斜面Saがある程度大きい場合には、傾斜面Saを支えるためのサポートを、溶融固化部の一部として形成する必要がある。
本実施形態では、上記のように六角流路において、金属積層時の上端部におけるV字形の2つの直線が鉛直方向に対し傾斜する角度が45度以下となる。これにより、六角流路の内部にサポートを形成することなく、六角流路の上部での形状崩れを防止できる。したがって、冷却流路20,21内のサポートを少なくできるか、またはなくせるので、冷却流路20,21内の圧力損失の低減と冷却能力の向上とを図れる。
図10は、比較例の第1例において、誘導加熱コイルのリング状部70における冷却流路71の断面形状が円形である場合の不都合を示す図である。図10の比較例でも、実施形態と同様に、誘導加熱コイルを、コイル中心軸を水平方向に一致させて、金属積層造形法によって製造する。図10の比較例では、リング状部70での冷却流路71の断面形状が円形である。この場合には、冷却流路の断面形状の内径が比較的大きい場合、例えば冷却流路20,21の円形の内径D3が5mm以上の場合には、形状精度を高くする面からサポート72の形成が望まれる。また、誘導加熱コイル10を銅材料等の熱伝導が高い材料により形成する場合には、冷却流路71の内径D3が小さい場合、例えば冷却流路20,21の内径D3が4mmでも、溶融固化部に隣接した金属粉末に熱が伝わりやすくなり、円形断面の冷却流路の上端での造形不良が発生しやすいので、サポート72の形成が望まれる。
図11は、比較例の第2例において、誘導加熱コイル10aのリング状部73,74における冷却流路75の断面形状が矩形である場合の不都合を示す図である。図11の比較例でも、実施形態と同様に、誘導加熱コイル10aを、コイル中心軸Oを水平方向に一致させて、金属積層造形法によって製造する。図11の比較例では、リング状部73,74での冷却流路75の断面形状が矩形である。この場合には、冷却流路75の金属積層方向についての上下方向に切断した断面形状において、上端が水平方向と一致した直線状となるので、図9に示した自己支持角θkが90度となる。このため、サポートが必要になる。例えば、図11で示したように、冷却流路75の内部に複数のリング状のサポート76が形成される。
図12は、比較例の第3例において、誘導加熱コイル10bのリング状部77,78における冷却流路79の断面形状が五角形である場合の不都合を示す図である。図12の比較例でも、実施形態と同様に、誘導加熱コイル10bを、コイル中心軸Oを水平方向に一致させて、金属積層造形法によって製造する。
図12の比較例では、リング状部77,78での冷却流路79の断面形状がコイル径方向の内周端にV字形の頂点を有する五角形である。この場合には、冷却流路20,21のうち、金属積層方向について下側となる流路の断面では上端にV字形部が形成されるので、実施形態と同様にサポートが不要になる可能性はある。しかしながら、冷却流路20,21のうち、金属積層方向について上側となる流路の断面では上端が水平方向と一致した直線状となるので、流路の内部に複数のサポート80が必要になる。
図10~図12で示した各比較例の場合には、サポートが必要になるか、または大きさによってサポートが必要になる。これにより、冷却流路内の圧力損失が増大し、冷却能力が低下する可能性がある。
図13は、複数の誘導加熱コイル10cのコイル中心軸Oを水平方向に対し傾斜させた状態で製造するときの不都合を示す図である。図13に示すように、図10~図12の各比較例のいずれかにおいて、コイル中心軸Oを水平方向に対し例えば45度傾斜させた状態で、金属積層造形を行うことが考えられる。この場合には、冷却流路の断面形状を例えば図11の比較例と同様に矩形または円形とする場合でも、造形時に、金属積層方向に関して冷却流路の上端に、水平方向と一致する直線が形成されない等により、冷却流路の内部に、上端の形状崩れを防止するためのサポートが形成されることを防止できる可能性がある。
一方、図13の状態で誘導加熱コイル10cを造形する場合には、誘導加熱コイル10cの巻き数が少ない等により軸方向全体の厚みがコイル径の長さに比べて小さい場合に、造形時の誘導加熱コイル10cを上から見た平面視形状で、傾斜した厚み方向端面を上から見た長さが大きくなる。これにより、誘導加熱コイル10cの平面視面積が大きくなってしまう。また、金属積層造形では、造形時に、誘導加熱コイル10の外形の崩れを防止するために、外面から下側に延びる外部サポート61が形成されるので、上下方向に重ねた状態で複数の誘導加熱コイル10cを成形することはできない。このため、1つの誘導加熱コイル10の造形時の平面視面積が大きくなることにより、限られた造形スペースで1度に形成できる誘導加熱コイル10cの数が少なくなる。図13の場合には、図8の実施形態の場合と同様のスペースで同じ大きさの誘導加熱コイル10を複数製造することを検討した結果、図8の場合の半分の4つの誘導加熱コイル10cしか製造できないことが分かった。これにより、誘導加熱コイル10cを同時に複数製造する場合の各誘導加熱コイル10cのコスト上昇につながる可能性がある。
図1~図8で示した実施形態では、図10~図12の比較例及び図13の製造方法での不都合をいずれもなくすことができる。
次に、実施形態と同様の形状を有する実施例の誘導加熱コイル10と、比較例1~3の誘導加熱コイル10d、10e、10fとを用いて、冷却水による冷却を行いながら高周波焼き入れを行うときのコイルの最大温度を確認したCAEでの温度解析結果を説明する。
図14は、上記の温度解析に用いた、実施例(a)と比較例1~3((b)~(d))の誘導加熱コイル10,10d、10e、10fの冷却流路20(21),81~83の断面形状を示している。比較例1の冷却流路81は、コイル径方向に切断した断面形状が長円形である。比較例2の冷却流路82は、コイル径方向に切断した断面形状が矩形である。比較例3の冷却流路83は、コイル径方向に切断した断面形状が三角形である。比較例1~3のいずれも内部にサポートは形成されないと仮定する。
比較例3の三角形の冷却流路83では、実施形態と同様に、コイル中心軸を水平方向に一致させて金属積層造形法によって製造した場合でも、冷却流路83の金属積層方向の上下方向に切断した断面形状の上端を、水平方向に対し大きく傾斜した直線とできるので、サポートが不要になる可能性はある。一方、比較例1では、コイル中心軸を水平方向に一致させて金属積層造形法によって製造する場合に、冷却流路81の断面形状における内径を小さくしない限り、サポートが必要になる。比較例2では、コイル中心軸を水平方向に一致させて金属積層造形法によって製造する場合には、サポートが必要になる。
一方、上記の温度解析によって、誘導加熱コイル10,10d、10e、10fの最大温度は、実施例で88.0℃、比較例1で84.6℃、比較例2で80.6℃、比較例3で91.3℃となった。このため、実施例及び比較例1,2では、誘導加熱コイル10,10d、10eの最大温度は許容範囲となったが、比較例3では誘導加熱コイル10fの温度が大幅に上昇し許容範囲を超えることが分かった。この理由は、誘導加熱コイルの断面形状における冷却流路83の面積割合が小さくなることによると考えられる。このため、比較例3のように冷却流路83の断面形状を三角形とした場合には、実施形態と異なり、冷却能力の向上を図ることが困難である。
また、実施形態と異なり、冷却流路の断面形状が六角形より角数が多い多角形であると、自己支持角θkが45度より大きくなるか、その断面形状が円形に近づくため、造形時にコイル中心軸を水平方向に対し傾斜させない限り、冷却流路の断面形状の大きさによっては冷却流路の内部にサポートが必要になる。このため、誘導加熱コイルの冷却能力が低下し、圧力損失が増大する可能性がある。実施形態によれば、冷却流路20,21の六角流路にサポートが形成されないので、誘導加熱コイルの冷却能力の向上及び圧力損失の低減を図れる。
なお、上記の実施形態の誘導加熱コイル10では、リング状部11,12が2つである場合を説明したが、これに限定せず、リング状部は、1つのみ、または3つ以上としてもよい。
10,10a,10b,10c,10d,10e,10f 誘導加熱コイル、11 第1リング状部、12 第2リング状部、13 第1直線状部、14 第2直線状部、15 取付突部、16 結合部、20,21 冷却流路、22,23 リング状流路部、28 連結流路部、29 外壁部、30 内壁部、31,32 直線状流路部、40 テーパ面、41、42 円筒面、60 コイル径、61 外部サポート、62 金属粉末、63 レーザ光、65 溶融固化部、70 リング状部、71 冷却流路、72 サポート、73、74 リング状部、75 冷却流路、76 サポート、77,78 リング状部、79冷却流路、80 サポート、81,82,83 冷却流路、100 誘導加熱装置、101,102 リード部、105 縦板部、107 外側水路、110,111、112,113 配管。

Claims (1)

  1. 金属積層造形法によって作られ、少なくとも1つのリング状部を備える誘導加熱コイルであって、
    前記リング状部に、コイル周方向に延びる冷却流路が形成され、
    前記冷却流路は、コイル軸方向に沿って切断した場合の断面形状が、コイル径方向の内外の両端に2つの頂点がある六角形であり、前記コイル周方向に連続して形成される六角流路を含み、
    前記六角流路の前記断面形状において、前記コイル径方向における両端のそれぞれで、V字形を形成する2つの直線が前記コイル径に対して傾斜する角度は45度以下である、
    誘導加熱コイル。



JP2021182386A 2021-11-09 2021-11-09 誘導加熱コイル Pending JP2023070302A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2021182386A JP2023070302A (ja) 2021-11-09 2021-11-09 誘導加熱コイル

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2021182386A JP2023070302A (ja) 2021-11-09 2021-11-09 誘導加熱コイル

Publications (1)

Publication Number Publication Date
JP2023070302A true JP2023070302A (ja) 2023-05-19

Family

ID=86331426

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2021182386A Pending JP2023070302A (ja) 2021-11-09 2021-11-09 誘導加熱コイル

Country Status (1)

Country Link
JP (1) JP2023070302A (ja)

Similar Documents

Publication Publication Date Title
JP6219228B2 (ja) 誘導加熱コイル、および、誘導加熱コイルの製造方法
EP3353484B1 (en) Heat exchanger
JP7132285B2 (ja) 誘導加熱コイルの製造方法
JP5108169B1 (ja) 電池ブロックおよびその製造方法
US11090867B2 (en) Manufacturing method of three-dimensional shaped object and additive manufacturing apparatus used therefor
JP2023070302A (ja) 誘導加熱コイル
KR20090034634A (ko) 웨이퍼 냉각용 쿨 플레이트 및 그 제조방법
JP5604018B2 (ja) 電池ブロックおよびその製造方法
JP2007061867A (ja) ダイカスト金型及びダイカスト金型の製造方法
JP6503423B2 (ja) 誘導加熱コイル
US20220209331A1 (en) Temperature control mechanism for an electrical component
CN114144533B (zh) 氧气输送装置及其制造方法、拉伐尔喷嘴及其制造方法
CN105436504B (zh) 一种基于金属快速成型工艺的薄壁密封液冷通道
JP6503424B2 (ja) 誘導加熱コイル
JP6503425B2 (ja) 誘導加熱コイル
JP6405012B2 (ja) 誘導加熱コイル
JP7223460B1 (ja) 高周波加熱装置用の加熱コイル
JP7333097B2 (ja) 高周波加熱装置用の加熱コイル
JP7333108B1 (ja) 高周波加熱装置用の加熱コイル
JP7485576B2 (ja) 構造体
US11638957B2 (en) Additive manufactured object
KR101864323B1 (ko) 쿨러 조립체 및 쿨러 조립체의 제조 방법
JP2024081337A (ja) 高周波加熱装置用の加熱コイル
JP2023030967A (ja) 金型の冷却構造
JP2022118381A (ja) 誘導加熱コイル及びその製造方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20240320