JP2023069772A - Powder magnetic core - Google Patents

Powder magnetic core Download PDF

Info

Publication number
JP2023069772A
JP2023069772A JP2021181889A JP2021181889A JP2023069772A JP 2023069772 A JP2023069772 A JP 2023069772A JP 2021181889 A JP2021181889 A JP 2021181889A JP 2021181889 A JP2021181889 A JP 2021181889A JP 2023069772 A JP2023069772 A JP 2023069772A
Authority
JP
Japan
Prior art keywords
powder
soft magnetic
particle size
magnetic
core
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2021181889A
Other languages
Japanese (ja)
Inventor
哲隆 加古
Noritaka KAKO
英一郎 島津
Eiichiro Shimazu
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NTN Corp
Original Assignee
NTN Corp
NTN Toyo Bearing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NTN Corp, NTN Toyo Bearing Co Ltd filed Critical NTN Corp
Priority to JP2021181889A priority Critical patent/JP2023069772A/en
Priority to PCT/JP2022/038753 priority patent/WO2023079945A1/en
Publication of JP2023069772A publication Critical patent/JP2023069772A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/05Metallic powder characterised by the size or surface area of the particles
    • B22F1/052Metallic powder characterised by the size or surface area of the particles characterised by a mixture of particles of different sizes or by the particle size distribution
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/16Metallic particles coated with a non-metal
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/14Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys
    • H01F1/20Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys in the form of particles, e.g. powder
    • H01F1/22Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys in the form of particles, e.g. powder pressed, sintered, or bound together
    • H01F1/24Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys in the form of particles, e.g. powder pressed, sintered, or bound together the particles being insulated
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/33Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials mixtures of metallic and non-metallic particles; metallic particles having oxide skin

Abstract

To provide a powder magnetic core which becomes a high magnetic permeability, a low iron loss, and a high volume resistance.SOLUTION: A powder magnetic core includes: a soft magnetic particle; and an isolation layer formed in a front face of the soft magnetic particle. The soft magnetic particle contains Fe and an element which becomes easier oxidation than Fe. A 50% particle size (D50) in the case of being measured in a volume reference is 10 to 40 μm, a ratio D10/D50 of 10% particle sizes (D10) and (D50) is 0.3 to 0.7, a ratio D90/D50 of 90% particle sizes (D90) and D50 is 1.5 to 2.5, and a density is 5.8 g/cm3 or more.SELECTED DRAWING: Figure 1

Description

本発明は、圧粉磁心に関する。 The present invention relates to dust cores.

圧粉磁心は、軟磁性粉の表面を絶縁被膜で被覆し、絶縁被膜付きの軟磁性粉を圧縮成形することで製造される。圧粉磁心の用途として、DC-DCコンバータ、インバータ、スイッチング電源等に使用される変成器、さらにはノイズカット用チョークコイルなどが代表例として挙げられる。 A powder magnetic core is manufactured by coating the surface of soft magnetic powder with an insulating film and compressing the soft magnetic powder with the insulating film. Typical applications of dust cores include DC-DC converters, inverters, transformers used in switching power supplies, and choke coils for noise reduction.

変成器のうち、特に電源回路の基板に実装されるインダクタ(チップインダクタ)は、数100kHz~数MHzの高周波域で使用される場合が多い。そのため、その圧粉磁心にも高周波域での使用に対応した材料組成が必要とされる。高周波になるほど圧粉磁心に吸収され、熱になる損失(鉄損)が大きくなる。この損失の大部分は渦電流損失に起因するため、渦電流損失を如何に低減するかが圧粉磁心の材料や組成を検討する上で重要な課題となる。この他、チップインダクタ用圧粉磁心には、高い体積抵抗率と高透磁率が求められる。また、耐電圧の要求水準も高まっている。 Among transformers, inductors (chip inductors) mounted on a substrate of a power supply circuit, in particular, are often used in a high frequency range of several 100 kHz to several MHz. Therefore, the powder magnetic core is also required to have a material composition suitable for use in a high frequency range. The higher the frequency, the greater the loss (iron loss) that is absorbed by the dust core and turned into heat. Since most of this loss is caused by eddy current loss, how to reduce eddy current loss is an important issue in studying the material and composition of the powder magnetic core. In addition, high volume resistivity and high magnetic permeability are required for powder magnetic cores for chip inductors. In addition, the required level of withstand voltage is also increasing.

渦電流損失を抑制するためには、圧粉磁心を構成する軟磁性粉を適切に選定する必要がある。非特許文献1に記載されているように、渦電流損失は軟磁性粉の粒子径の2乗に比例し、体積抵抗率に反比例することが知られている。したがって、渦電流損失を抑制するには、粒径が小さく、体積抵抗率の高い軟磁性粉を選定することが好適である。なお、体積抵抗率が高い軟磁性粉とは、合金成分が多く含まれる軟磁性粉と同義である。 In order to suppress eddy current loss, it is necessary to appropriately select the soft magnetic powder that constitutes the dust core. As described in Non-Patent Document 1, it is known that the eddy current loss is proportional to the square of the particle diameter of the soft magnetic powder and inversely proportional to the volume resistivity. Therefore, in order to suppress the eddy current loss, it is preferable to select a soft magnetic powder having a small particle size and a high volume resistivity. A soft magnetic powder having a high volume resistivity is synonymous with a soft magnetic powder containing a large amount of an alloy component.

一方、合金成分が多く、粒径の小さい軟磁性粉を利用して圧粉磁心を作製すると、もう一つの重要指標である、透磁率が低下するという問題がある。使用条件にもよるが、電源系チップインダクタ用の軟磁性粉は、合金成分は多くても10mass%以下、平均粒径は小さくても10μm以上とするのが一般的である。圧粉磁心の透磁率を高くするという意図から、アモルファスやナノ結晶といった高透磁率材を適用する場合もある。 On the other hand, if soft magnetic powder with a large amount of alloy components and a small particle size is used to produce a powder magnetic core, there is a problem that the magnetic permeability, which is another important index, is lowered. Although it depends on the conditions of use, soft magnetic powder for power supply system chip inductors generally has an alloy component of 10 mass% or less at most and an average particle size of 10 μm or more at least. With the intention of increasing the magnetic permeability of the powder magnetic core, a high magnetic permeability material such as amorphous or nanocrystal may be applied.

ところで、特許文献1、2のように、軟磁性粉からなる圧粉磁心を酸化雰囲気で磁気焼鈍して、軟磁性粉周囲に絶縁被膜を形成し、周波数特性を向上させる方法が知られている。この場合、軟磁性粉の組成はFeとFeよりも酸化しやすい元素を含むことが必須であり、特にFeSiCr、FeAlCrが一般的に使用される。また、特許文献3のように、FeNi軟磁性粉を熱処理することで、結晶粒界に高抵抗層を設ける方法も知られている。これにより、特許文献1、2と同様に均質な絶縁被膜が得られ、鉄損や体積抵抗率に優れた圧粉磁心が得られる。 By the way, as in Patent Documents 1 and 2, a method is known in which a powder magnetic core made of soft magnetic powder is magnetically annealed in an oxidizing atmosphere to form an insulating coating around the soft magnetic powder, thereby improving frequency characteristics. . In this case, the composition of the soft magnetic powder must contain Fe and an element that is more easily oxidized than Fe, and FeSiCr and FeAlCr are commonly used. Further, as in Patent Document 3, a method of heat-treating FeNi soft magnetic powder to provide a high-resistance layer at the grain boundary is also known. As a result, a homogeneous insulating coating can be obtained as in Patent Documents 1 and 2, and a powder magnetic core excellent in iron loss and volume resistivity can be obtained.

粒度分布を限定することにより、高周波対応を図る場合もある。例えば、特許文献4に示すように、D50(累積粒度分布の累積50%の粒径)が5μm以下で、D10(累積粒度分布の累積10%の粒径)に対するD90(累積粒度分布の累積90%粒径)の比D90/D10が19以下となるように、軟磁性粉の粒度分布を限定している。これと軟磁性粉の硬度範囲を組み合わせることにより、高周波域で良好な磁気特性が得られる。さらには、特許文献5や特許文献6のように、軟磁性粉の累積粒度分布を調整することで、充填率と磁気特性のバランスに優れた圧粉磁心が得られる。 In some cases, by limiting the particle size distribution, it is possible to cope with high frequencies. For example, as shown in Patent Document 4, D 50 (particle size at cumulative 50% of cumulative particle size distribution) is 5 μm or less, and D 90 (cumulative particle size distribution) for D 10 (particle size at cumulative 10% of cumulative particle size distribution) The particle size distribution of the soft magnetic powder is limited so that the ratio D 90 /D 10 of the cumulative 90% particle size of the soft magnetic powder is 19 or less. By combining this with the hardness range of the soft magnetic powder, good magnetic properties can be obtained in the high frequency range. Furthermore, as in Patent Documents 5 and 6, by adjusting the cumulative particle size distribution of the soft magnetic powder, it is possible to obtain a powder magnetic core with an excellent balance between the filling rate and the magnetic properties.

武本・斉藤:電気製鋼, 第81巻, 2号 (2010) pp117-122.Takemoto and Saito: Electric Steelmaking, Vol.81, No.2 (2010) pp117-122. 特許第4866971号公報Japanese Patent No. 4866971 特許第5626672号公報Japanese Patent No. 5626672 特許第6855936号公報Japanese Patent No. 6855936 特開2021-68749号公報JP 2021-68749 A 特開2021-48176号公報Japanese Patent Application Laid-Open No. 2021-48176 特開2016-139748号公報JP 2016-139748 A

特許文献1、2のように、軟磁性粉からなる圧粉磁心を酸化雰囲気で磁気焼鈍する場合、安定した特性(周波数特性、体積抵抗率)を得るためには、Si, Al, Crといった合金成分の量を多くする必要がある。合金成分が多くなるほど軟磁性粉が硬くなることから、圧縮性が低下する。圧縮性の低下は重要特性の一つである比透磁率の低下を引き起こす。また、圧粉磁心の表面から侵入する酸素が、合金成分と反応することで絶縁被膜を形成するが、高密度な圧粉磁心ほど内部まで酸素が拡散しにくくなるため、10 mm以上のように比較的厚みのある圧粉磁心の製造は困難となる。 As in Patent Documents 1 and 2, when a dust core made of soft magnetic powder is magnetically annealed in an oxidizing atmosphere, alloys such as Si, Al, and Cr are used in order to obtain stable characteristics (frequency characteristics, volume resistivity). The amount of ingredients should be increased. As the alloying component increases, the soft magnetic powder becomes harder, resulting in lower compressibility. A decrease in compressibility causes a decrease in relative permeability, which is one of the important properties. In addition, oxygen that enters from the surface of the powder magnetic core reacts with the alloy components to form an insulating film, but the higher the density of the powder magnetic core, the more difficult it is for oxygen to diffuse into the interior. It becomes difficult to manufacture a relatively thick dust core.

特許文献3のように、FeNi軟磁性粉を熱処理することで結晶粒界に高抵抗層を設ける方法は、Niの含有量を高くしなければならないため、特許文献1、2と同様に、圧縮性の低下による比透磁率の低下という問題がある。 As in Patent Document 3, the method of heat-treating FeNi soft magnetic powder to form a high-resistance layer at the grain boundary requires a high Ni content. There is a problem of a decrease in relative magnetic permeability due to a decrease in properties.

特許文献4のように粒度分布を限定する方法では、平均粒径が小さすぎるため、高圧成形しても高い透磁率を得ることが困難であるという懸念がある。また、特許文献5、6のように累積粒度分布を調整する方法では、分級により不要な鉄粉が生じ、製造コストが高くなったり、資源の無駄が生じたりする問題がある。 In the method of limiting the particle size distribution as in Patent Document 4, the average particle size is too small, so there is a concern that it is difficult to obtain a high magnetic permeability even with high-pressure molding. Further, in the method of adjusting the cumulative particle size distribution as in Patent Documents 5 and 6, unnecessary iron powder is generated by classification, which raises manufacturing costs and wastes resources.

以上の実情に鑑み、本発明は、高透磁率、低鉄損、高体積抵抗率を両立する圧粉磁心を提供することを目的とする。 In view of the above circumstances, an object of the present invention is to provide a powder magnetic core that achieves both high magnetic permeability, low iron loss, and high volume resistivity.

本発明に係る圧粉磁心は、軟磁性粒子と、軟磁性粒子の表面に形成された絶縁層とを有する圧粉磁心において、前記軟磁性粒子が、FeとFeより酸化しやすい元素を含み、体積基準で測定した場合の50%粒子径(D50)が10~40μmであり、10%粒子径(D10)と(D50)の比D10/D50が0.3~0.7であり、90%粒子径(D90)とD50の比D90/D50が1.5~2.5であり、密度が5.8 g/cm3以上である。 A dust core according to the present invention is a dust core having soft magnetic particles and an insulating layer formed on the surface of the soft magnetic particles, wherein the soft magnetic particles contain Fe and an element that is more easily oxidized than Fe, The 50% particle size (D 50 ) measured on a volume basis is 10 to 40 μm, the ratio D 10 /D 50 of the 10% particle size (D 10 ) to (D 50 ) is 0.3 to 0.7, and 90 The ratio D 90 /D 50 between % particle size (D 90 ) and D 50 is 1.5 to 2.5, and the density is 5.8 g/cm 3 or more.

本発明では、前記軟磁性粒子がFeとFeより酸化しやすい元素を含み、軟磁性粒子のD10、D50、D90を前記範囲に調整することにより、粉末粒界が大きくなりすぎることがなく、必要な透磁率を得ることができ、鉄損の増大を防止できる。また、分級による粒度調整が必要ないため、生産性が良くなり、絶縁層の膜厚を保ち、鉄損の悪化を防止することができる。さらには、圧粉磁心の密度が5.8 g/cm3以上であるため、必要な比透磁率と強度を得ることができる。 In the present invention, the soft magnetic particles contain Fe and an element that is more easily oxidized than Fe, and by adjusting the D 10 , D 50 , and D 90 of the soft magnetic particles within the above ranges, the grain boundaries of the powder are prevented from becoming too large. Therefore, it is possible to obtain the required magnetic permeability and prevent an increase in iron loss. In addition, since there is no need to adjust the particle size by classification, the productivity is improved, the film thickness of the insulating layer can be maintained, and deterioration of iron loss can be prevented. Furthermore, since the dust core has a density of 5.8 g/cm 3 or more, the required relative permeability and strength can be obtained.

前記Feより酸化しやすい元素が、Siまたは、Siと元素M(M=Cr、Zn、Mn、Ti、Al のいずれか)であるのが好ましい。Siを含むことにより、材料の透磁率を効果的に高くすることができる。また、Siまたは、Siと元素Mの配合量が多いほど、材料の体積抵抗率が高まるので、圧粉磁心の鉄損を低減することができる。 The element that is more easily oxidized than Fe is preferably Si or Si and an element M (M=Cr, Zn, Mn, Ti or Al). By containing Si, the magnetic permeability of the material can be effectively increased. In addition, as the amount of Si or Si and the element M mixed increases, the volume resistivity of the material increases, so the core loss of the powder magnetic core can be reduced.

前記Feより酸化しやすい元素の軟磁性粒子に占める割合が3.0mass%~7.0mass%であるのが好ましい。これにより、高い比透磁率と低鉄損を両立することができる。 It is preferable that the ratio of the elements more easily oxidized than Fe to the soft magnetic particles is 3.0 mass% to 7.0 mass%. This makes it possible to achieve both high relative permeability and low core loss.

前記絶縁層は、Paulingの電気陰性度の差が1.7以下である元素からなる化合物を主成分とする材料とするのが好ましい。 The insulating layer is preferably made of a material mainly composed of a compound composed of an element having a Pauling electronegativity difference of 1.7 or less.

前記絶縁層は、シリカを主成分とするものであるのが特に好ましい。これにより、高い体積抵抗率と強度と耐電圧に優れる圧粉磁心が得られる。 It is particularly preferable that the insulating layer contains silica as a main component. As a result, a dust core having high volume resistivity, strength, and withstand voltage can be obtained.

以上述べたように、本発明によれば、高透磁率、低鉄損、高体積抵抗率を両立する圧粉磁心を得ることができる。 As described above, according to the present invention, it is possible to obtain a powder magnetic core that achieves both high magnetic permeability, low iron loss, and high volume resistivity.

圧粉磁心のミクロ組織を概略的に示す拡大断面図である。1 is an enlarged cross-sectional view schematically showing the microstructure of a dust core; FIG. 本実施形態に係る圧粉磁心の基本特性を示す表である。4 is a table showing basic characteristics of a powder magnetic core according to the present embodiment; 軟磁性粉の粒度分布が特性に及ぼす影響を示す表である。4 is a table showing the effect of particle size distribution of soft magnetic powder on properties. 軟磁性粉の組成が特性に及ぼす影響を示す表である。4 is a table showing the effects of the composition of soft magnetic powder on properties. 圧粉磁心の密度が特性に及ぼす影響を示す表である。4 is a table showing the effect of powder magnetic core density on properties.

以下、本発明の一実施形態を説明する。 An embodiment of the present invention will be described below.

本実施例に係る圧粉磁心は、特に数100kHzから数MHzの範囲で使用される電源系インダクタにおける、巻線を巻回するためのコアとして使用することができる。 The powder magnetic core according to the present embodiment can be used as a core for winding a winding in a power system inductor used especially in the range of several 100 kHz to several MHz.

圧粉磁心は、圧粉磁心用粉末を調整する調整工程と、調整した圧粉磁心用材料を圧縮成形して圧粉体を得る成形工程と、圧粉体に磁気焼鈍を施す磁気焼鈍工程とを順次経ることで製作される。 The powder magnetic core is prepared by an adjustment process for adjusting the powder for the powder magnetic core, a molding process for obtaining a compact by compression molding the adjusted material for the powder magnetic core, and a magnetic annealing process for magnetically annealing the compact. It is manufactured by going through

圧粉磁心用材料は、軟磁性粉と、軟磁性粉の表面を覆う絶縁被膜とを備える。軟磁性粉は、その組成と粒度分布によって、圧粉磁心の磁気特性に大きく影響するため、使用条件によって最適化する必要がある。 The powder magnetic core material includes soft magnetic powder and an insulating coating covering the surface of the soft magnetic powder. The composition and particle size distribution of the soft magnetic powder greatly affect the magnetic properties of the powder magnetic core, so it must be optimized according to the conditions of use.

軟磁性粉として、Feを主成分(概ね80mass%以上)とし、Feより酸化しやすい合金元素を含有し、残部を不可避的不純物とする軟磁性の合金粉が使用される。Feより酸化しやすい元素として、透磁率が高くなるという観点からSiを含むことが好ましく、Siのみ、またはSiと元素M(M=Cr、Zn、Mn、Ti、Al のいずれか)とすることにより、圧粉磁心の鉄損を抑制することができる。Feより酸化しやすい元素の軟磁性粉に占める割合は、3.0mass%~7.0mass%としている。7.0mass%を超えると、材料硬度が高くなりすぎて、高圧成形しても相対密度の高い圧粉磁心が得られないため不適であり、3.0mass%を下回ると、必要な磁気特性(高透磁率と低鉄損)が得られないため不適である。 As the soft magnetic powder, a soft magnetic alloy powder containing Fe as a main component (approximately 80 mass% or more), containing alloying elements that are more easily oxidized than Fe, and the balance being inevitable impurities is used. As an element that is more easily oxidized than Fe, it is preferable to include Si from the viewpoint of increasing the magnetic permeability. Thus, iron loss of the powder magnetic core can be suppressed. The proportion of the elements that are more easily oxidized than Fe in the soft magnetic powder is 3.0 mass% to 7.0 mass%. If it exceeds 7.0 mass%, the hardness of the material becomes too high, and it is not possible to obtain a powder magnetic core with a high relative density even with high-pressure molding. It is not suitable because it cannot obtain magnetic permeability and low iron loss).

軟磁性粉には、以上に述べた必須の合金元素の他、必要に応じて、他の合金元素(例えばNi、Co、Cu、B、Nb、Zr等の何れか一種または二種以上)を含有させてもよい。軟磁性粉としてFe基アモルファス合金やFe基ナノ結晶合金(アモルファス相にnmオーダーのαFeの微結晶が分散した材料)を使用することもできる。 In addition to the essential alloying elements described above, the soft magnetic powder may contain other alloying elements (for example, one or more of Ni, Co, Cu, B, Nb, Zr, etc.). may be included. As the soft magnetic powder, Fe-based amorphous alloys and Fe-based nanocrystalline alloys (materials in which nanocrystals of αFe of nm order are dispersed in an amorphous phase) can also be used.

軟磁性粉が均一径の球だと仮定すると、粉末を密充填しても粒子間に隙間を生じ、圧粉磁心の高密度化を達成することができない。微粉で隙間を埋められるように、例えば1μm~100μm程度の範囲の粒度分布を有するように軟磁性粉を調製するのが好ましい。この時、ピークが単一となる粒度分布でもよいし、ピークが複数含まれる粒度分布としてもよい。また、異なる二種以上の軟磁性粉を混合して使用することもできる。 Assuming that the soft magnetic powder is spheres with a uniform diameter, even if the powder is densely packed, gaps are generated between the particles, making it impossible to achieve high density of the powder magnetic core. It is preferable to prepare the soft magnetic powder so as to have a particle size distribution in the range of, for example, 1 μm to 100 μm so that the gaps can be filled with the fine powder. At this time, the particle size distribution may have a single peak, or may have a plurality of peaks. Also, two or more different soft magnetic powders can be mixed and used.

軟磁性粉は、体積基準で測定した場合の50%粒子径(メディアン径)(D50)が10~40μm、好ましくは20~30μmであり、10%粒子径(D10)とD50の比D10/D50が0.3~0.7であり、90%粒子径(D90)とD50の比D90/D50が1.5~2.5となるように調整する。ここで、D10、D50、D90とは、粉体の累積粒度分布において、小粒子側からの累積10体積%、累積50%、累積90%となる粒径である。D50が上述の範囲よりも低い場合は、粉末粒界が大きくなりすぎるため、必要な透磁率が得られず、D50が上述の範囲よりも高い場合は、鉄損が増大してしまうため、不適である。また、D10とD90が上述の範囲外である場合、分級による粒度調整が避けられないため、生産性が悪く、不適である。さらには、D10が小さすぎる場合、絶縁被膜の膜厚が薄くなり、鉄損が悪化するので、不適である。 The soft magnetic powder has a 50% particle diameter (median diameter) ( D50 ) measured on a volume basis of 10 to 40 μm, preferably 20 to 30 μm, and the ratio of the 10% particle diameter ( D10 ) to D50 D 10 /D 50 is 0.3 to 0.7, and the ratio of 90% particle diameter (D 90 ) to D 50 is adjusted so that D 90 /D 50 is 1.5 to 2.5. Here, D 10 , D 50 and D 90 are particle diameters at cumulative 10% by volume, cumulative 50% and cumulative 90% from the small particle side in the cumulative particle size distribution of the powder. If the D50 is lower than the above range, the grain boundaries of the powder become too large and the required magnetic permeability cannot be obtained. If the D50 is higher than the above range, iron loss increases. , is not suitable. Further, when D10 and D90 are outside the above ranges, the particle size adjustment by classification is unavoidable, and the productivity is poor, which is unsuitable. Furthermore, if D 10 is too small, the film thickness of the insulating coating becomes thin, and the core loss becomes worse, which is not suitable.

なお、体積平均粒径MVは、体積で重みづけされた平均径であり、粒子の集団中に、粒子径の小さい順から、d1,d2,・・・di,・・・dkの粒子径を持つ粒子がそれぞれn1,n2,・・・ni,・・・nk個あるとし、粒子1個あたりの体積をViとした時に、
MV=(V1×d1+V2×d2+・・・Vi×di+・・・Vk×dk)/(V1+V2+・・・Vi+・・・Vk)
MV=Σ(Vi×di)/Σ(Vi)
で表される。体積平均粒径は、レーザー回析/散乱式の粒度分布測定装置を用いることで、測定することができる。
Note that the volume average particle diameter MV is the average diameter weighted by volume, and the particle diameters of d1, d2, ... di, ... dk in the population of particles in descending order of particle diameter. Suppose that there are n1, n2, . . . ni, .
MV=(V1*d1+V2*d2+...Vi*di+...Vk*dk)/(V1+V2+...Vi+...Vk)
MV=Σ(Vi×di)/Σ(Vi)
is represented by The volume average particle diameter can be measured by using a laser diffraction/scattering particle size distribution analyzer.

軟磁性粉に微粉が多く含まれる場合、粉末の流動性が低下し、偏析や金型のクリアランスへの粉末の侵入などの問題を招く。これを防止するため、軟磁性粉として、バインダーで微粉同士を結着して見かけの粒径を大きくすることもできる。造粒用バインダーとして、各種有機バインダーおよび無機バインダーを利用することができる。特に磁気焼鈍後に絶縁性と強度の向上が期待できるため、シリコーン樹脂を使用するのが好ましい。造粒法として、転動造粒、流動層造粒、攪拌造粒、圧縮造粒、押出造粒、破砕造粒、溶融造粒、噴霧造粒等の一般的手法を用いることができる。造粒法は、湿式でも乾式でも構わない。 When a large amount of fine powder is contained in the soft magnetic powder, the fluidity of the powder is lowered, causing problems such as segregation and penetration of the powder into the clearance of the mold. In order to prevent this, it is also possible to increase the apparent particle size of the soft magnetic powder by binding the fine powder together with a binder. Various organic binders and inorganic binders can be used as the binder for granulation. In particular, it is preferable to use a silicone resin because improvement in insulation and strength can be expected after magnetic annealing. As the granulation method, general methods such as tumbling granulation, fluidized bed granulation, stirring granulation, compression granulation, extrusion granulation, crushing granulation, melt granulation and spray granulation can be used. The granulation method may be wet or dry.

軟磁性粉を被覆する絶縁被膜は、後述するように磁気焼鈍を施した後の圧粉磁心の体積抵抗率が106Ωcm以上を有していれば何を使用してもよいが、耐電圧の観点から、共有結合性が高い材料を被膜として使用することが好ましい。「共有結合性が高い」とは、元素のPaulingの電気陰性度の差が小さいことである。この差が1.7未満である場合、共有結合性が50%以上となり、一般的に共有結合性が高い材料とされる。このような材料の例としては、SiO2、SiC、Al23、P25などが挙げられる。 Any insulation film covering the soft magnetic powder may be used as long as the powder magnetic core has a volume resistivity of 10 6 Ωcm or more after magnetic annealing as described later. From this point of view, it is preferable to use a material with high covalent bond as the coating. “Highly covalent” means that the difference in Pauling electronegativity of the elements is small. If this difference is less than 1.7, the covalent bonding is 50% or more, and the material is generally regarded as having high covalent bonding. Examples of such materials include SiO2 , SiC, Al2O3 , P2O5 , and the like.

絶縁被膜として、前記した共有結合性が高い材料を、あらかじめ軟磁性粉表面に具備してもよいが、熱処理で前記した共有結合性が高い材料に変化する材料を使用してもよい。その材料の例として、例えば、各種シラン、各種シランカップリング剤、各種シリコーンオイル、各種シリコーン樹脂(例えばメチル系シリコーン樹脂)等を使用することができる。これらの材料は、雰囲気ガスの種類に依らず、磁気焼鈍時に、SiO2に変化する。これらの材料は単独で用いてもよいし、複数種を組み合わせて使用してもよい。 As the insulating coating, the surface of the soft magnetic powder may be preliminarily provided with the above-described highly covalent-bonding material, or a material that changes to the above-described highly covalent-bonding material by heat treatment may be used. Examples of materials that can be used include various silanes, various silane coupling agents, various silicone oils, and various silicone resins (eg, methyl silicone resins). These materials change to SiO 2 during magnetic annealing regardless of the type of atmosphere gas. These materials may be used alone or in combination of multiple types.

絶縁被膜の形成方法は特に限定されず、例えばミキサーを使用した混合、加圧ニーダを使用した混錬、流動層を用いたコーティング、各種化成処理等を用いることができる。 The method of forming the insulating coating is not particularly limited, and for example, mixing using a mixer, kneading using a pressure kneader, coating using a fluidized bed, various chemical conversion treatments, and the like can be used.

成形工程では、調製工程で得た軟磁性粉を所定形状の金型で圧縮成形することにより、圧粉体を成形する。圧粉成形中に金型と圧粉磁心材、圧粉磁心同士が摩擦し、金型の短寿命化や絶縁被膜の劣化の懸念がある。そこで、圧縮成形で使用する金型の長寿命化又は軟磁性粉の流動性を確保する観点から、内部潤滑剤の配合(圧縮成形の前に原料粉末となる軟磁性粉に配合)、金型潤滑(金型の壁面に付着)の両方又はどちらかを採用してもよい。内部潤滑剤の種類は種々のものが採用でき、例えば、各種金属セッケン、各種アミドワックス、黒鉛、MoSなどが使用できる。これらは単独で使用してもよいし、複数を組み合わせて使用してもよい。 In the molding step, the soft magnetic powder obtained in the preparation step is compression-molded with a mold having a predetermined shape to form a green compact. Friction between the mold and the powder magnetic core material, and between the powder magnetic cores during compaction, may shorten the life of the mold and deteriorate the insulating coating. Therefore, from the viewpoint of extending the life of the mold used in compression molding or ensuring the fluidity of the soft magnetic powder, it is necessary to add an internal lubricant (mixed with the soft magnetic powder that becomes the raw material powder before compression molding), Either or both lubrication (sticking to the walls of the mold) may be employed. Various kinds of internal lubricants can be used, for example, various metal soaps, various amide waxes, graphite, MoS and the like can be used. These may be used alone, or may be used in combination.

圧縮成形は、必要な磁気特性が得られるように調整するが、可能な限り低成形圧とすることが好ましい。一般的には、成形圧は、588MPa~1960MPaの範囲とする。また、軟磁性粉の降伏点を低くするために、温間成形を適用してもよい。 Compression molding is adjusted so as to obtain the required magnetic properties, but it is preferable to use a molding pressure as low as possible. Generally, the molding pressure is in the range of 588MPa to 1960MPa. Also, warm compaction may be applied to lower the yield point of the soft magnetic powder.

圧縮成形直後の圧粉体中の軟磁性粉はひずみが多いので、軟磁気特性が悪い。このため、磁気焼鈍工程では、ひずみを除去して軟磁気特性を改善する目的で、当該圧粉体に磁気焼鈍処理を施す。この焼鈍処理の雰囲気ガスの種類は特に問わないが、軟磁性粉が酸化して磁気特性が劣化しないように、不活性または還元雰囲気ガスを使用することが望ましい。これらの雰囲気ガスには、例えば窒素、アルゴンなどの不活性ガス、水素やAXガス(アンモニア分解ガス)などの還元性ガスが挙げられる。 The soft magnetic powder in the green compact immediately after compression molding is highly distorted, resulting in poor soft magnetic properties. Therefore, in the magnetic annealing step, the green compact is magnetically annealed for the purpose of removing the strain and improving the soft magnetic properties. Although the type of atmosphere gas for this annealing treatment is not particularly limited, it is desirable to use an inert or reducing atmosphere gas so as not to oxidize the soft magnetic powder and degrade its magnetic properties. Examples of these atmospheric gases include inert gases such as nitrogen and argon, and reducing gases such as hydrogen and AX gas (ammonia decomposition gas).

磁気焼鈍処理時の加熱温度(磁気焼鈍温度)は、対象となる軟磁性粉の材質を考慮して設定するのがよく、例えば最高温度500℃~900℃の範囲で、必要に応じた条件で施すが、前述の各種シラン、各種シランカップリング剤、各種シリコーンオイル、各種シリコーン樹脂を使用する場合は、SiO2へ化学変化させるため、700℃~900℃の範囲とすることが好ましい。 The heating temperature (magnetic annealing temperature) during magnetic annealing treatment should be set in consideration of the material of the target soft magnetic powder. However, when using the various silanes, various silane coupling agents, various silicone oils, and various silicone resins described above, the temperature is preferably in the range of 700° C. to 900° C. in order to chemically transform them into SiO 2 .

磁気焼鈍の処理時間(磁気焼鈍温度の保持時間)は、圧粉磁心の内部まで十分に加熱できるように、圧粉磁心の大きさ、材料等を考慮して設定することが肝要である。 It is important to set the magnetic annealing treatment time (holding time of the magnetic annealing temperature) in consideration of the size and material of the powder magnetic core so that the inside of the powder magnetic core can be sufficiently heated.

以上に述べた磁気焼鈍処理を施すことで、圧粉成形体内のひずみが除去される。磁気焼鈍後の圧粉磁心は、図1に示すように、軟磁性粉に由来する軟磁性粒子10と、絶縁被膜に由来し、軟磁性粒子10を被覆する絶縁層11と、絶縁層11の間に形成された多数の空孔12とを有する多孔質状に形成される。 By performing the magnetic annealing treatment described above, strain in the powder compact is removed. As shown in FIG. 1, the powder magnetic core after magnetic annealing has soft magnetic particles 10 derived from soft magnetic powder, an insulating layer 11 derived from an insulating coating and covering the soft magnetic particles 10, and the insulating layer 11. It is formed in a porous shape having a large number of pores 12 formed therebetween.

軟磁性粒子10に含まれる合金元素の種類、含有量、及び粒度は、磁気焼鈍前の軟磁性粉に含まれる合金元素の種類、含有量、及び粒度と実質的に同じとなる。従って、圧粉磁心において、軟磁性粒子10は、体積基準で測定した場合の50%粒子径(D50)が10~40μmであり、10%粒子径(D10)とD50の比D10/D50が0.3~0.7であり、90%粒子径(D90)とD50の比D90/D50が1.5~2.5となる。このように、D10、D50、D90を前記範囲とすることで、鉄損と耐電圧に優れる圧粉磁心を得ることができる。また、Feより酸化しやすい元素の割合が3.0mass%~7.0mass%となっており、これにより、高い比透磁率と低鉄損を両立することができる。特に、Feより酸化しやすい元素が、Siまたは、Siと元素M(M=Cr、Zn、Mn、Ti、Al のいずれか)とすると、Siを含むことにより、材料の透磁率を効果的に高くすることができ、さらに圧粉磁心の鉄損を抑制することができる。 The type, content, and grain size of the alloying element contained in the soft magnetic particles 10 are substantially the same as the type, content, and grain size of the alloying element contained in the soft magnetic powder before magnetic annealing. Therefore, in the dust core, the soft magnetic particles 10 have a 50% particle diameter (D 50 ) of 10 to 40 μm when measured on a volume basis, and the ratio D 10 between the 10% particle diameter (D 10 ) and D 50 /D 50 is 0.3 to 0.7, and the ratio D 90 /D 50 between the 90% particle size (D 90 ) and D 50 is 1.5 to 2.5. Thus, by setting D 10 , D 50 , and D 90 within the above ranges, it is possible to obtain a powder magnetic core excellent in iron loss and withstand voltage. In addition, the proportion of elements that are more easily oxidized than Fe is 3.0 mass% to 7.0 mass%, which makes it possible to achieve both high relative permeability and low core loss. In particular, if the element that is more easily oxidized than Fe is Si, or Si and element M (M = one of Cr, Zn, Mn, Ti, and Al), the inclusion of Si effectively increases the magnetic permeability of the material. In addition, the iron loss of the powder magnetic core can be suppressed.

絶縁層として、Paulingの電気陰性度の差が1.7未満である化合物を主成分とする材料で構成されているので、高い耐電圧を有するものとなる。また、絶縁層はシリカ(SiO2)を主成分とすることで、高い耐電圧を有するものとなる。SiO2を主成分とする絶縁層は、SiとOを含有する物質(シランカップリング剤、シリコーンオリゴマー、シリコーン樹脂等)を磁気焼鈍に伴って加熱することで得られるため、雰囲気ガスに頼ることなく絶縁層を形成することが可能となる。そのため、絶縁層の形成に際して酸素の侵入が必要とされず、厚みの大きい圧粉磁心の内部にも絶縁層を形成することが可能となる。 Since the insulating layer is composed of a material mainly composed of a compound having a Pauling electronegativity difference of less than 1.7, it has a high withstand voltage. In addition, since the insulating layer contains silica (SiO 2 ) as a main component, it has a high withstand voltage. Insulating layers mainly composed of SiO2 are obtained by heating substances containing Si and O (silane coupling agents, silicone oligomers, silicone resins, etc.) with magnetic annealing, so they rely on atmospheric gases. It is possible to form an insulating layer without Therefore, it is possible to form an insulating layer even inside a dust core having a large thickness without the need for oxygen to enter when forming the insulating layer.

磁気焼鈍後の圧粉磁心の密度は、5.8 g/cm3以上とする。5.8g/cm3未満の場合、必要な比透磁率と強度を確保することが難しく、密度を5.8g/cm3以上とすることによって
、必要な比透磁率と強度を得ることができる。
The density of the powder magnetic core after magnetic annealing shall be 5.8 g/cm 3 or more. If the density is less than 5.8 g/cm 3 , it is difficult to ensure the required relative permeability and strength. By setting the density to 5.8 g/cm 3 or more, the required relative permeability and strength can be obtained.

さらなる耐電圧確保のため、圧粉磁心表面に絶縁被膜をコーティングしてもよい。コーティング方法は限定しないが、例えばディップコーティング、スプレーコーティング、CVD、PVD、各種エッチングなどの各種手法が利用できる。コーティング材料は、共有結合性が高いものを使用することが好ましく、特にシロキサン結合(Si-O-Si結合)を含む材料が好ましい。このような材料の例としては、各種シラン、各種シランカッフ゜リンク゛剤、各種シリコーンイル、各種シリコーン樹脂などが挙げられる。コーティングの膜厚は、製品サイズなどにもよるが、100μm以下にすることが好ましい。 In order to further secure the withstand voltage, the surface of the dust core may be coated with an insulating coating. Although the coating method is not limited, various techniques such as dip coating, spray coating, CVD, PVD, and various etchings can be used. It is preferable to use a coating material having a high covalent bond, and a material containing a siloxane bond (Si--O--Si bond) is particularly preferable. Examples of such materials include various silanes, various silane coupling agents, various silicone oils, various silicone resins, and the like. The film thickness of the coating is preferably 100 μm or less, although it depends on the size of the product.

以上の手順で製作した圧粉磁心の体積抵抗率は1×106Ωcm以上であるのが好ましい。体積抵抗率が1×106Ωcmを下回ると、使用する周波数によっては渦電流損失が大きくなる等の不具合を招くおそれがある。なお、ここでいう「体積抵抗率」は、磁心の内部に1m3の立方体を考え、その相対する両面間に電圧を加えた場合の両面間の電気抵抗を意味する(JIS C2560-1)。 The volume resistivity of the powder magnetic core manufactured by the above procedure is preferably 1×10 6 Ωcm or more. If the volume resistivity is less than 1×10 6 Ωcm, problems such as increased eddy current loss may occur depending on the frequency used. The "volume resistivity" referred to here means the electric resistance between the opposite sides of a 1 m 3 cube in the magnetic core when a voltage is applied between the opposite sides (JIS C2560-1).

[実施例]
以下、本発明の有用性を確認するために行った試験について説明する。
[Example]
Tests conducted to confirm the usefulness of the present invention are described below.

<試験片の作製条件>
図2は、実施例1についての上記評価項目の測定結果を示している。実施例1は、軟磁性粉としてFe-4.5Si-2.0Cr(D10=10μm、D50=20μm、D90=40μm)を用いた。なお、粒度分布の形状は、ピークを一つだけ持つ一山である。D10/D50:0.5、D90/D50:2.0である。軟磁性粉の表面にシランカップリング剤を用いて絶縁被膜を形成し、この絶縁被膜付き軟磁性粉を、シリコーン樹脂を用いて造粒した。造粒後の粉末に適量の滑剤(固体潤滑剤)を配合し、室温下で所定の圧力で圧縮成形し、750℃窒素中で磁気焼鈍を施してリング状の試験片(圧粉磁心)を製作した。試験片の密度は6.2g/cm3である。
<Conditions for preparing test piece>
FIG. 2 shows the measurement results of the above evaluation items for Example 1. As shown in FIG. In Example 1, Fe-4.5Si-2.0Cr (D 10 =10 μm, D 50 =20 μm, D 90 =40 μm) was used as the soft magnetic powder. The shape of the particle size distribution is a single peak with only one peak. D10 / D50 : 0.5, D90 / D50 : 2.0. An insulating coating was formed on the surface of the soft magnetic powder using a silane coupling agent, and the soft magnetic powder with the insulating coating was granulated using a silicone resin. An appropriate amount of lubricant (solid lubricant) is added to the powder after granulation, compression molding is performed at room temperature under a predetermined pressure, magnetic annealing is performed in nitrogen at 750° C., and a ring-shaped test piece (powder magnetic core) is obtained. made. The density of the specimen is 6.2g/ cm3 .

評価項目を比透磁率、鉄損、耐電圧、体積抵抗率および圧環強さとした。比透磁率は、JIS C 2560-2:2006に記載の初透磁率の測定方法に則って測定し、LCRメータ(1kHz 1mA定電流モード)で測定した。鉄損はBHアナライザ(0.05T 100kHz)により測定した。この際、圧粉磁心に2巻線を施して測定した。耐電圧は、JIS C 2110-1:2016に記載の方法に則って測定し、体積抵抗率は、JIS K 7194:1994に記載の方法に則って測定した。圧環強さはJIS Z 2507:2000に記載の方法に則って測定した。 Evaluation items were relative magnetic permeability, iron loss, withstand voltage, volume resistivity and radial crushing strength. The relative magnetic permeability was measured according to the initial magnetic permeability measurement method described in JIS C 2560-2:2006 with an LCR meter (1 kHz 1 mA constant current mode). Iron loss was measured with a BH analyzer (0.05T 100kHz). At this time, the powder magnetic core was wound with two windings and measured. The withstand voltage was measured according to the method described in JIS C 2110-1:2016, and the volume resistivity was measured according to the method described in JIS K 7194:1994. Radial crushing strength was measured according to the method described in JIS Z 2507:2000.

測定結果を図2~図5に基づいて説明する。なお、比透磁率は50以上、鉄損は700kW/m3未満、耐電圧は100V/mm以上、体積抵抗率は106Ω cm以上、圧環強さは40MPa以上を合格(〇)とした。図2に示すように、実施例1では、全てにおいて良好な結果が得られた。 The measurement results will be described with reference to FIGS. 2 to 5. FIG. A relative magnetic permeability of 50 or more, a core loss of less than 700 kW/m 3 , a withstand voltage of 100 V/mm or more, a volume resistivity of 10 6 Ω cm or more, and a radial crushing strength of 40 MPa or more were evaluated as passing (○). As shown in FIG. 2, in Example 1, good results were obtained in all cases.

次に、実施例1に対して、軟磁性粉の粒度分布を変更した試験片について、各評価項目を測定した。その結果を実施例1と併せて図3に示す。 Next, each evaluation item was measured for a test piece in which the particle size distribution of the soft magnetic powder was changed from that of Example 1. The results are shown in FIG. 3 together with Example 1.

実施例2は、D50=20μm 、D10/D50:0.7、D90/D50:1.8、試験片の密度は6.3g/cm3であり、比較例1は、D50=20μm 、D10/D50:0.3、D90/D50:2.5、試験片の
密度は6.5 g/cm3である。実施例3、比較例2は、D50を10μmに変更したものである。
実施例3は、D10/D50:0.5、D90/D50:2.5、試験片の密度は5.9g/cm3であり、比較
例2は、D10/D50:0.3、D90/D50:3.5、試験片の密度は6.1 g/cm3である。実施例4
、比較例3は、D50を40μmに変更したものである。実施例4は、D10/D50:0.6、D90/D50:1.5、試験片の密度は6.6 g/cm3であり、比較例3は、D10/D50:0.3、D90/D50
:3.0、試験片の密度は6.9 g/cm3である。
Example 2 has D50 = 20 µm, D10 / D50 : 0.7, D90 / D50 : 1.8, and the density of the test piece is 6.3 g/ cm3 . Comparative Example 1 has D50 = 20 µm, D 10 / D50 : 0.3, D90 / D50 : 2.5, and the density of the test piece is 6.5 g/ cm3 . In Example 3 and Comparative Example 2, D50 was changed to 10 μm.
Example 3 has D10 / D50 : 0.5, D90 / D50 : 2.5, and the density of the test piece is 5.9 g/ cm3 . Comparative Example 2 has D10 / D50 : 0.3, D90 / D50 : 3.5, density of specimen is 6.1 g/ cm3 . Example 4
, in Comparative Example 3, the D 50 was changed to 40 μm. Example 4 has D10 / D50 : 0.6, D90 / D50 : 1.5, and the density of the test piece is 6.6 g/ cm3 . Comparative Example 3 has D10 / D50 : 0.3, D90 / D50
: 3.0, the density of the specimen is 6.9 g/ cm3 .

実施例2の結果は、実施例1より低鉄損である他は、実施例1とほぼ同じ水準の良好なものだった。これは、実施例2の粒度分布が実施例1よりシャープであり、絶縁被膜が均一に施されたためと考える。実施例1より幅広の粒度分布を示す比較例1は、比透磁率が向上するが、鉄損、体積抵抗率、耐電圧のいずれかが悪化した。比較例1は細かい粉末が多く、粒子間の絶縁被膜の膜厚のばらつきが大きかったことが主要因と推定する。比較例2は、実施例3よりも耐電圧が低い。これは、比較例2が幅広の粒度分布であることに起因するものと考える。比較例3は、実施例4よりも鉄損が低い。これは、比較例3が幅広の粒度分布であることに起因するものと考える。以上の結果から、D10/D 50は0.3を超え0.7以下、かつD90/D10は1.5を超え2.5以下に調整することが好ましいことが分かった。 The results of Example 2 were as good as those of Example 1 except that the iron loss was lower than that of Example 1. It is considered that this is because the particle size distribution of Example 2 was sharper than that of Example 1, and the insulating coating was uniformly applied. Comparative Example 1, which has a wider particle size distribution than Example 1, has an improved relative magnetic permeability, but deteriorates in any one of iron loss, volume resistivity, and withstand voltage. It is presumed that the main reason for this is that Comparative Example 1 contained a large amount of fine powder and that the film thickness of the insulating coating between the particles varied greatly. Comparative Example 2 has a lower withstand voltage than Example 3. It is considered that this is due to the fact that Comparative Example 2 has a wide particle size distribution. Comparative Example 3 has a lower iron loss than Example 4. This is considered to be due to the wide particle size distribution of Comparative Example 3. From the above results, it was found that it is preferable to adjust D 10 /D 50 to more than 0.3 and 0.7 or less and D 90 /D 10 to more than 1.5 and 2.5 or less.

次に、実施例1に対して、軟磁性粉の組成を変更し、軟磁性粉の粒度分布は実施例1と同等水準である場合の評価項目の変化を測定した。その結果を図4に示す。 Next, with respect to Example 1, the composition of the soft magnetic powder was changed, and the change in the evaluation items was measured when the particle size distribution of the soft magnetic powder was at the same level as in Example 1. The results are shown in FIG.

図4における実施例5は、軟磁性粉としてFe-7.0Siを使用し、試験片の密度は6.3 g/cm
3であり、実施例6は、軟磁性粉としてFe3.0Siを使用し、試験片の密度は6.5 g/cm3
ある。比較例4は、軟磁性粉としてFe-3.5Si5.0Crを使用し、試験片の密度は5.8 g/cm3
であり、比較例5は、軟磁性粉としてFe2.0Siを使用し、試験片の密度は6.7 g/cm3であ
る。
Example 5 in FIG. 4 uses Fe-7.0Si as the soft magnetic powder, and the density of the test piece is 6.3 g/cm
3 , Example 6 uses Fe3.0Si as the soft magnetic powder, and the density of the test piece is 6.5 g/cm 3 . Comparative Example 4 uses Fe-3.5Si5.0Cr as the soft magnetic powder, and the density of the test piece is 5.8 g/cm 3 .
and Comparative Example 5 uses Fe2.0Si as the soft magnetic powder, and the density of the test piece is 6.7 g/cm 3 .

図4に示すように、軟磁性粉を構成するFeより酸化しやすい元素の割合が3.0mass%(実施例6)または7.0mass%(実施例5)である場合、組成に依らず結果は良好である。その一方、Feより酸化しやすい元素の割合が2.0mass%(比較例5)である場合、鉄損が悪化した。また、Feより酸化しやすい元素の割合が8.5mass%(比較例4)である場合、比透磁率が低い結果となった。以上から、酸化しやすい元素の割合は3.0~7.0mass%である場合、好ましい結果が得られることが分かった。 As shown in FIG. 4, when the proportion of the element more easily oxidized than Fe constituting the soft magnetic powder was 3.0 mass% (Example 6) or 7.0 mass% (Example 5), the results were good regardless of the composition. is. On the other hand, when the ratio of elements more easily oxidized than Fe was 2.0 mass% (Comparative Example 5), the iron loss was worsened. In addition, when the ratio of elements more easily oxidized than Fe was 8.5 mass% (Comparative Example 4), the result was that the relative magnetic permeability was low. From the above, it was found that favorable results can be obtained when the ratio of easily oxidizable elements is 3.0 to 7.0 mass%.

さらに、試験片の成形圧を変更し、密度を調整した。密度以外は実施例1と同じ条件である。その結果を図5に示す。比較例6に示すように、密度が低すぎる場合、低透磁率となり、合格基準未満だった。また、圧環強さも必要水準を満たさなかった。一方、実施例7及び実施例8に示すように、密度が高くなると、磁粉の充填率が高くなるため、比透磁率や圧環強さは増加した。また、鉄損、体積抵抗率、耐電圧も問題はなかった。以上から、密度が5.8 g/cm3以上である場合、好ましい結果が得られることが分かった。 Furthermore, the molding pressure of the test piece was changed to adjust the density. The conditions are the same as in Example 1 except for the density. The results are shown in FIG. As shown in Comparative Example 6, when the density was too low, the magnetic permeability was low and was below the acceptance criteria. Moreover, the radial crushing strength did not satisfy the required level. On the other hand, as shown in Examples 7 and 8, the higher the density, the higher the filling rate of the magnetic powder, so the relative magnetic permeability and radial crushing strength increased. In addition, there were no problems with iron loss, volume resistivity, and withstand voltage. From the above, it was found that favorable results were obtained when the density was 5.8 g/cm 3 or more.

10 軟磁性粒子
11 絶縁層
12 空孔
10 soft magnetic particles 11 insulating layer 12 holes

Claims (5)

軟磁性粒子と、軟磁性粒子の表面に形成された絶縁層とを有する圧粉磁心において、
前記軟磁性粒子が、FeとFeより酸化しやすい元素を含み、体積基準で測定した場合の50%粒子径(D50)が10~40μmであり、10%粒子径(D10)と(D50)の比D10/D50が0.3~0.7であり、90%粒子径(D90)とD50の比D90/D50が1.5~2.5であり、
密度が5.8 g/cm3以上であることを特徴とする圧粉磁心。
In a powder magnetic core having soft magnetic particles and an insulating layer formed on the surface of the soft magnetic particles,
The soft magnetic particles contain Fe and an element that is more easily oxidized than Fe, and have a 50% particle size (D 50 ) measured on a volume basis of 10 to 40 μm, and a 10% particle size (D 10 ) and (D 50 ) has a ratio D10 / D50 of 0.3 to 0.7, a ratio D90 / D50 of 90% particle size ( D90 ) to D50 is 1.5 to 2.5,
A dust core having a density of 5.8 g/cm 3 or more.
前記Feより酸化しやすい元素が、Siまたは、Siと元素M(M=Cr、Zn、Mn、Ti、Al のいずれか)であることを特徴とする請求項1に記載の圧粉磁心。 2. The dust core according to claim 1, wherein the element that is more easily oxidized than Fe is Si or Si and an element M (M=Cr, Zn, Mn, Ti, or Al). 前記Feより酸化しやすい元素の軟磁性粒子に占める割合が3.0mass%~7.0mass%であることを特徴とする請求項1または2に記載の圧粉磁心。 3. The powder magnetic core according to claim 1, wherein the proportion of the element more easily oxidized than Fe in the soft magnetic particles is 3.0 mass % to 7.0 mass %. 前記絶縁層は、Paulingの電気陰性度の差が1.7以下である元素からなる化合物を主成分とする材料であることを特徴とする請求項1から請求項3のいずれか1項に記載の圧粉磁心。 4. The pressure according to any one of claims 1 to 3, wherein the insulating layer is made of a material mainly composed of a compound composed of an element having a Pauling electronegativity difference of 1.7 or less. powder magnetic core. 前記絶縁層は、シリカを主成分とすることを特徴とする請求項1から請求項4のいずれか1項に記載の圧粉磁心。 5. The dust core according to claim 1, wherein the insulating layer contains silica as a main component.
JP2021181889A 2021-11-08 2021-11-08 Powder magnetic core Pending JP2023069772A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2021181889A JP2023069772A (en) 2021-11-08 2021-11-08 Powder magnetic core
PCT/JP2022/038753 WO2023079945A1 (en) 2021-11-08 2022-10-18 Powder magnetic core

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2021181889A JP2023069772A (en) 2021-11-08 2021-11-08 Powder magnetic core

Publications (1)

Publication Number Publication Date
JP2023069772A true JP2023069772A (en) 2023-05-18

Family

ID=86241479

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2021181889A Pending JP2023069772A (en) 2021-11-08 2021-11-08 Powder magnetic core

Country Status (2)

Country Link
JP (1) JP2023069772A (en)
WO (1) WO2023079945A1 (en)

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5032711B1 (en) * 2011-07-05 2012-09-26 太陽誘電株式会社 Magnetic material and coil component using the same

Also Published As

Publication number Publication date
WO2023079945A1 (en) 2023-05-11

Similar Documents

Publication Publication Date Title
JP5626672B1 (en) Dust core manufacturing method, dust core and coil component
JP5739348B2 (en) Reactor and manufacturing method thereof
WO2011077601A1 (en) Dust core and process for producing same
WO2009128425A1 (en) Composite magnetic material and manufacturing method thereof
JP6601389B2 (en) Magnetic core, coil component, and manufacturing method of magnetic core
CN107658090B (en) Soft magnetic metal powder magnetic core and reactor provided with same
JP3580253B2 (en) Composite magnetic material
US20110097584A1 (en) Soft magnetic material, powder magnetic core and method for manufacturing the same
JP2007019134A (en) Method of manufacturing composite magnetic material
JP2015126047A (en) Dust core, coil component using the same, and method for producing dust core
JP5703749B2 (en) Powder core
JP2013098384A (en) Dust core
JP6213809B2 (en) Powder magnetic core, coil component using the same, and method for manufacturing powder magnetic core
JP6460505B2 (en) Manufacturing method of dust core
WO2003060930A1 (en) Powder magnetic core and high frequency reactor using the same
JP2012222062A (en) Composite magnetic material
JP2012151179A (en) Dust core
JP2007220876A (en) Soft magnetic alloy consolidation object, and its manufacturing method
JP2010219161A (en) Dust core and method of manufacturing the same
WO2023079945A1 (en) Powder magnetic core
JP2010238930A (en) Composite soft magnetic material, method of manufacturing the composite soft magnetic material, and electromagnetic circuit component
JP4723609B2 (en) Dust core, dust core manufacturing method, choke coil and manufacturing method thereof
JP7418194B2 (en) Manufacturing method of powder magnetic core
WO2022070786A1 (en) Dust core
JP2011211026A (en) Composite magnetic material