JP2023067364A - Heat shield member, component set thereof, and apparatus and method for manufacturing single crystal using heat shield member - Google Patents

Heat shield member, component set thereof, and apparatus and method for manufacturing single crystal using heat shield member Download PDF

Info

Publication number
JP2023067364A
JP2023067364A JP2021178519A JP2021178519A JP2023067364A JP 2023067364 A JP2023067364 A JP 2023067364A JP 2021178519 A JP2021178519 A JP 2021178519A JP 2021178519 A JP2021178519 A JP 2021178519A JP 2023067364 A JP2023067364 A JP 2023067364A
Authority
JP
Japan
Prior art keywords
heat insulating
wall portion
heat
single crystal
insulating portion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2021178519A
Other languages
Japanese (ja)
Inventor
浩二 細田
Koji Hosoda
敬也 平岡
Takaya Hiraoka
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumco Corp
Original Assignee
Sumco Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumco Corp filed Critical Sumco Corp
Priority to JP2021178519A priority Critical patent/JP2023067364A/en
Publication of JP2023067364A publication Critical patent/JP2023067364A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Crystals, And After-Treatments Of Crystals (AREA)

Abstract

To provide a heat shield member capable of growing single crystals having different crystal diameters using the same CZ pulling furnace, and an apparatus and method for manufacturing a single crystal using the same.SOLUTION: A heat shield member 20 used for pulling a single crystal by the CZ method and surrounding the single crystal pulled from a melt in a crucible includes an approximately cylindrical insulating member 30 and a wall member 40 covering the exposed surface of the insulating member 30. The wall member 40 includes: an outer wall part 41 covering at least the outer peripheral surface of the insulating member 30; an inner wall part 42 covering the inner peripheral surface of the insulating member 30; and a bottom wall part 43 covering the lower end surface of the insulating member 30. The insulating member 30 includes an approximately cylindrical first heat insulation part 31 and an approximately cylindrical second heat insulation part 32 provided in the inside of the first heat insulation part 31, and the second heat insulation part 32 is freely attachably/detachably constituted of the first heat insulation part 31.SELECTED DRAWING: Figure 2

Description

本発明は、チョクラルスキー法(CZ法)による単結晶の引き上げに用いられる熱遮蔽部材及びその部品セットに関する。また本発明は、そのような熱遮蔽部材を用いた単結晶製造装置及び単結晶の製造方法に関する。 TECHNICAL FIELD The present invention relates to a heat shield member and its component set used for pulling a single crystal by the Czochralski method (CZ method). The present invention also relates to a single crystal manufacturing apparatus and a single crystal manufacturing method using such a heat shield member.

半導体デバイスの基板材料となるシリコン単結晶の多くはCZ法により製造されている。CZ法では石英ルツボ内に収容されたシリコン融液に種結晶を浸漬し、種結晶及び石英ルツボを回転させながら種結晶を徐々に引き上げることにより、種結晶の下端に大きな単結晶を成長させる。CZ法によれば、高品質のシリコン単結晶インゴットを高い歩留まりで製造することが可能である。 Most of the silicon single crystals used as substrate materials for semiconductor devices are manufactured by the CZ method. In the CZ method, a seed crystal is immersed in a silicon melt contained in a quartz crucible, and the seed crystal and the quartz crucible are rotated while the seed crystal is gradually pulled up to grow a large single crystal at the lower end of the seed crystal. According to the CZ method, it is possible to manufacture a high quality silicon single crystal ingot with a high yield.

シリコン単結晶の結晶品質の向上のため、CZ法では、シリコン融液から引き上げられたシリコン単結晶を包囲してヒーターからの輻射熱を遮蔽する熱遮蔽部材が用いられている。熱遮蔽部材に関し、例えば特許文献1には、熱遮蔽体の円板状の底板部を2分割にすることで、切欠部への熱応力の集中を防止する方法が記載されている。また特許文献2には、膨出部底部のみを交換可能な熱遮蔽部材が記載されている。 In order to improve the crystal quality of the silicon single crystal, the CZ method uses a heat shield member that surrounds the silicon single crystal pulled up from the silicon melt and shields the radiant heat from the heater. Regarding heat shield members, for example, Patent Document 1 describes a method of preventing concentration of thermal stress on a notch by dividing a disk-shaped bottom plate portion of a heat shield into two parts. Further, Patent Literature 2 describes a heat shielding member in which only the bottom portion of the bulging portion can be replaced.

特許文献3には、熱遮蔽部材を取替えることなく、直胴径の異なるシリコン単結晶棒を引上げるため、放射状に移動可能に構成された複数の熱輻射体のシリコン単結晶棒の周面に対する距離を変更することが記載されている。シリコン単結晶棒の肩部の形成時には、複数の熱輻射体を肩部から離した位置に移動し、シリコン単結晶棒の直胴部の形成時には複数の熱輻射体を直胴部近傍に移動する。 In Patent Document 3, in order to pull silicon single crystal rods having different diameters without replacing the heat shield member, a plurality of heat radiators configured to be radially movable are applied to the peripheral surface of the silicon single crystal rod. It mentions changing the distance. When forming the shoulder portion of the silicon single crystal rod, the plurality of heat radiators are moved away from the shoulder portion, and when forming the straight body portion of the silicon single crystal rod, the plurality of heat radiators are moved near the straight body portion. do.

シリコン単結晶は、半導体デバイスの基板材料だけでなく、例えばプラズマエッチング装置の電極材料としても使用されている。特許文献4には、プラズマエッチング装置の電極板としてシリコン単結晶を用いることが記載されている。 Silicon single crystals are used not only as substrate materials for semiconductor devices, but also as electrode materials for plasma etching apparatuses, for example. Patent Document 4 describes that a silicon single crystal is used as an electrode plate of a plasma etching apparatus.

特開2004-323322号公報Japanese Patent Application Laid-Open No. 2004-323322 特開2004-352581号公報JP-A-2004-352581 特開2000-7488号公報JP-A-2000-7488 特開2003-51491号公報JP-A-2003-51491

電極材料用のシリコン単結晶は、半導体向けシリコン単結晶のように結晶直径が規格化されておらず、要求される結晶直径が装置設計に応じて異なる。そのため、電極材料用のシリコン単結晶の製造では、直胴部の直径(以下、単に結晶直径という)が異なるシリコン単結晶をその受注量に合わせて効率よく生産することが求められている。このような要求に対して、従来は、引き上げようとする結晶直径ごとに専用の熱遮蔽部材を用意していた。しかしながら、結晶直径ごとに専用の熱遮蔽部材を用意すると、保有パーツの種類の増加によるコストの増加の問題があり、また保管スペースの確保も問題となる。 Silicon single crystals for electrode materials are not standardized in crystal diameter unlike silicon single crystals for semiconductors, and the required crystal diameter varies depending on the device design. Therefore, in the production of silicon single crystals for electrode materials, it is required to efficiently produce silicon single crystals having different straight body diameters (hereinafter simply referred to as crystal diameters) according to the order quantity. In response to such demands, conventionally, a dedicated heat shield member was prepared for each crystal diameter to be pulled. However, if a dedicated heat shield member is prepared for each crystal diameter, there is a problem of an increase in cost due to an increase in the number of types of parts to be possessed, and there is also a problem of securing storage space.

したがって、本発明の目的は、同じCZ引き上げ炉を用いて結晶直径が異なる単結晶を効率よく引き上げることが可能な熱遮蔽部材及びその部品セット並びに熱遮蔽部材を用いた単結晶製造装置及び単結晶の製造方法を提供することにある。 SUMMARY OF THE INVENTION Accordingly, an object of the present invention is to provide a heat shielding member and a component set thereof, a single crystal manufacturing apparatus using the heat shielding member, and a single crystal, which are capable of efficiently pulling single crystals having different crystal diameters using the same CZ pulling furnace. It is to provide a manufacturing method of

上記課題を解決するため、本発明による熱遮蔽部材は、CZ法による単結晶の引き上げに用いられ、ルツボ内の融液から引き上げられた前記単結晶を包囲する部材であって、略円筒状の断熱部材と、前記断熱部材の露出面を覆う壁部材とを備え、前記壁部材は、前記断熱部材の少なくとも外周面を覆う外壁部と、前記断熱部材の内周面を覆う内壁部と、前記断熱部材の下端面を覆う底壁部とを備え、前記断熱部材は、略円筒状の第1断熱部と、前記第1断熱部の内側に設けられた略円筒状の第2断熱部を含み、前記第2断熱部は前記第1断熱部から着脱自在に構成されていることを特徴とする。 In order to solve the above problems, a heat shield member according to the present invention is a member that is used for pulling a single crystal by the CZ method, surrounds the single crystal pulled from the melt in the crucible, and has a substantially cylindrical shape. a heat insulating member; and a wall member covering an exposed surface of the heat insulating member, wherein the wall member includes an outer wall portion covering at least an outer peripheral surface of the heat insulating member, an inner wall portion covering an inner peripheral surface of the heat insulating member, and the a bottom wall portion covering a lower end surface of a heat insulating member, the heat insulating member including a substantially cylindrical first heat insulating portion and a substantially cylindrical second heat insulating portion provided inside the first heat insulating portion; , wherein the second heat insulating part is detachably attached to the first heat insulating part.

本発明によれば、結晶直径が異なる複数種類の単結晶を引き上げる場合に、断熱部材の第1断熱部及び壁部材の外壁部を共通部品とし、第2断熱部や内壁部といった第1断熱部よりも内側の部品を省略又は交換することにより開口サイズを変えることができる。したがって、同じCZ引き上げ炉を用いて結晶直径が異なる複数種類の単結晶を効率よく引き上げることができる。 According to the present invention, when pulling a plurality of types of single crystals having different crystal diameters, the first heat insulating portion of the heat insulating member and the outer wall portion of the wall member are used as common parts, and the first heat insulating portion such as the second heat insulating portion and the inner wall portion are used. The opening size can be changed by omitting or replacing the parts inside. Therefore, it is possible to efficiently pull a plurality of types of single crystals having different crystal diameters using the same CZ pulling furnace.

本発明において、前記第1断熱部の外周面は前記外壁部に覆われており、前記第2断熱部の内周面は前記内壁部に覆われており、前記第2断熱部の外周面は前記第1断熱部の内周面に密着していることが好ましい。これにより、第1及び第2断熱部を一つの断熱部材として取り扱うことができ、第1及び第2断熱部を組み合わせることで小口径の単結晶の引き上げに好適な熱遮蔽部材を提供することができる。また、第2断熱部を取り外すことで大口径の単結晶の引き上げに好適な熱遮蔽部材を提供することができる。 In the present invention, the outer peripheral surface of the first heat insulating portion is covered with the outer wall portion, the inner peripheral surface of the second heat insulating portion is covered with the inner wall portion, and the outer peripheral surface of the second heat insulating portion is It is preferable that it is in close contact with the inner peripheral surface of the first heat insulating portion. As a result, the first and second heat insulating portions can be treated as one heat insulating member, and by combining the first and second heat insulating portions, it is possible to provide a heat shielding member suitable for pulling small-diameter single crystals. can. Also, by removing the second heat insulating portion, it is possible to provide a heat shielding member suitable for pulling a large-diameter single crystal.

本発明において、前記底壁部は前記外壁部から着脱自在に構成されており、前記内壁部は前記底壁部及び前記外壁部から着脱自在に構成されている、前記第2底壁部は前記第1底壁部から着脱自在に構成されていることが好ましい。これにより、小口径の単結晶と大口径の単結晶の両方に対応することができる。 In the present invention, the bottom wall portion is configured to be detachable from the outer wall portion, and the inner wall portion is configured to be detachable from the bottom wall portion and the outer wall portion. It is preferably configured to be detachable from the first bottom wall portion. This makes it possible to deal with both small-diameter single crystals and large-diameter single crystals.

本発明において、前記内壁部の下端部に接続される前記底壁部の内周端部の上面には径方向の外側に向かって傾斜したテーパー面が設けられており、前記内壁部の下端部は前記テーパー面に当接していることが好ましい。これにより内壁部と底壁部との接続位置における両者の密着性を高めることができ、壁部材による断熱部材の封止状態を維持することができる。したがって、断熱部材が劣化して粉状になったとしても、断熱部材の微粉が外側に漏れ出すことによる単結晶の歩留まりの悪化を防止することができる。 In the present invention, the upper surface of the inner peripheral end portion of the bottom wall portion connected to the lower end portion of the inner wall portion is provided with a tapered surface inclined radially outward, and the lower end portion of the inner wall portion is provided with a tapered surface. is preferably in contact with the tapered surface. As a result, it is possible to improve the adhesion between the inner wall portion and the bottom wall portion at the connecting position, and it is possible to maintain the sealed state of the heat insulating member by the wall member. Therefore, even if the heat insulating member deteriorates and becomes powdery, it is possible to prevent deterioration of the single crystal yield due to leakage of fine powder of the heat insulating member to the outside.

本発明において、前記底壁部の外周端部に接続される前記外壁部の下端部には径方向の外側に向かって傾斜したテーパー面が設けられており、前記底壁部の外周端部は前記テーパー面に当接していることが好ましい。これにより底壁部と外壁部との接続位置における両者の密着性を高めることができ、壁部材による断熱部材の封止状態を維持することができる。したがって、断熱部材が劣化して粉状になったとしても、断熱部材の微粉が外側に漏れ出すことによる単結晶の歩留まりの悪化を防止することができる。 In the present invention, the lower end portion of the outer wall portion connected to the outer peripheral end portion of the bottom wall portion is provided with a tapered surface inclined radially outward, and the outer peripheral end portion of the bottom wall portion is It is preferable to abut on the tapered surface. As a result, the contact between the bottom wall portion and the outer wall portion can be enhanced at the connecting position, and the sealing state of the heat insulating member by the wall member can be maintained. Therefore, even if the heat insulating member deteriorates and becomes powdery, it is possible to prevent deterioration of the single crystal yield due to leakage of fine powder of the heat insulating member to the outside.

本発明において、前記外壁部の下端部には突起部が設けられており、前記底壁部の外周端部には前記突起部に係合するフック部が設けられていることが好ましい。この場合も、底壁部と外壁部との接続位置における両者の密着性を高めることができ、壁部材による断熱部材の封止状態を維持することができる。 In the present invention, it is preferable that a protrusion is provided at the lower end of the outer wall, and a hook that engages with the protrusion is provided at the outer peripheral end of the bottom wall. Also in this case, it is possible to improve the adhesion between the bottom wall portion and the outer wall portion at the connection position between them, and it is possible to maintain the sealed state of the heat insulating member by the wall member.

本発明において、前記第1断熱部を単独で使用したときの熱遮蔽部材の開口径と前記第1断熱部と前記第2断熱部を組み合わせて使用したときの熱遮蔽部材の開口径との差は50mm(約2インチ)以上であることが好ましい。これにより、同じCZ引き上げ炉を用いて結晶直径が異なる複数種類の単結晶を効率よく引き上げることができる。 In the present invention, the difference between the opening diameter of the heat shielding member when the first heat insulating portion is used alone and the opening diameter of the heat shielding member when the first heat insulating portion and the second heat insulating portion are used in combination. is preferably greater than or equal to 50 mm (about 2 inches). As a result, multiple types of single crystals having different crystal diameters can be efficiently pulled using the same CZ pulling furnace.

本発明において、前記内壁部は、前記第1断熱部の内周面を覆う略円筒状の第1内壁部又は前記第2断熱部の内周面を覆う略円筒状の第2内壁部であることが好ましい。第1内壁部を第1断熱部と組み合わせて使用することにより、開口サイズが大きな熱遮蔽部材を実現できる。また、第2内壁部を第1及び第2断熱部と組み合わせることにより、開口サイズが小さな熱遮蔽部材を実現できる。 In the present invention, the inner wall portion is a substantially cylindrical first inner wall portion that covers the inner peripheral surface of the first heat insulating portion or a substantially cylindrical second inner wall portion that covers the inner peripheral surface of the second heat insulating portion. is preferred. By using the first inner wall portion in combination with the first heat insulating portion, a heat shielding member having a large opening size can be realized. Further, by combining the second inner wall portion with the first and second heat insulating portions, it is possible to realize a heat shielding member with a small opening size.

本発明において、前記第1内壁部の開口径と前記第2内壁部の開口径との差は50mm以上であることが好ましい。これにより、直径差が50mm以上ある2種類の単結晶を効率よく引き上げることができる。 In the present invention, it is preferable that the difference between the opening diameter of the first inner wall portion and the opening diameter of the second inner wall portion is 50 mm or more. As a result, two types of single crystals having a diameter difference of 50 mm or more can be efficiently pulled.

本発明による熱遮蔽部材は、第1の単結晶を引き上げる場合に、前記第2断熱部を省略して前記第1断熱部が単独で使用されると共に、前記底壁部を省略して前記第1内壁部が前記外壁部と組み合わせて使用され、前記第1の単結晶よりも小さな直径を有する第2の単結晶を引き上げる場合に、前記第2断熱部が前記第1断熱部と組み合わせて使用されると共に、前記第2内壁部及び前記底壁部が前記外壁部と組み合わせて使用されることが好ましい。このように、本発明による熱遮蔽部材は、結晶直径が互いに異なる第1及び第2の単結晶のCZ引き上げ工程のどちらにも適用することができる。 In the heat shielding member according to the present invention, when the first single crystal is pulled, the second heat insulating portion is omitted and the first heat insulating portion is used alone, and the bottom wall portion is omitted and the first heat insulating portion is used alone. An inner wall portion is used in combination with the outer wall portion, and the second heat insulation portion is used in combination with the first heat insulation portion when pulling a second single crystal having a smaller diameter than the first single crystal. and preferably the second inner wall portion and the bottom wall portion are used in combination with the outer wall portion. Thus, the heat shield member according to the present invention can be applied to both the CZ pulling process of the first and second single crystals having different crystal diameters.

前記底壁部は、前記第1断熱部の下端面を覆う略円環状の第1底壁部又は前記第1及び第2断熱部の下端面を覆う略円環状の第2底壁部であることが好ましい。第1底壁部を第1断熱部及び第1内壁部と組み合わせて使用することにより、開口サイズが大きな熱遮蔽部材を構成することができる。また、第2底壁部を第1及び第2断熱部及び第2内壁部と組み合わせて使用することにより、開口サイズが小さな熱遮蔽部材を構成することができる。 The bottom wall portion is a substantially annular first bottom wall portion that covers the lower end surface of the first heat insulating portion or a substantially annular second bottom wall portion that covers the lower end surfaces of the first and second heat insulating portions. is preferred. By using the first bottom wall portion in combination with the first heat insulation portion and the first inner wall portion, a heat shield member having a large opening size can be constructed. Also, by using the second bottom wall portion in combination with the first and second heat insulating portions and the second inner wall portion, a heat shielding member having a small opening size can be constructed.

本発明による熱遮蔽部材は、第1の単結晶を引き上げる場合に、前記第2断熱部を省略して前記第1断熱部が単独で使用されると共に、前記第1内壁部及び前記第1底壁部が前記外壁部と組み合わせて使用されることが好ましく、前記第1の単結晶よりも小さな直径を有する第2の単結晶を引き上げる場合に、前記第2断熱部が前記第1断熱部と組み合わせて使用されると共に、前記第2内壁部及び前記第2底壁部が前記外壁部と組み合わせて使用されることが好ましい。このように、本発明による熱遮蔽部材は、結晶直径が互いに異なる第1及び第2の単結晶のCZ引き上げ工程のどちらにも適用することができる。 In the heat shielding member according to the present invention, when the first single crystal is pulled, the second heat insulating portion is omitted and the first heat insulating portion is used alone, and the first inner wall portion and the first bottom are used. Preferably, a wall portion is used in combination with the outer wall portion, and the second heat insulating portion overlaps with the first heat insulating portion when pulling a second single crystal having a smaller diameter than the first single crystal. Preferably, they are used in combination and the second inner wall and the second bottom wall are used in combination with the outer wall. Thus, the heat shield member according to the present invention can be applied to both the CZ pulling process of the first and second single crystals having different crystal diameters.

また本発明は、CZ法による単結晶の引き上げに用いられ、ルツボ内の融液から引き上げられた前記単結晶を包囲する熱遮蔽部材の部品セットであって、略円筒状の第1断熱部と、前記第1断熱部の内側に着脱自在に設けられる略円筒状の第2断熱部と、前記第1断熱部の外周面を覆う外壁部と、前記第1断熱部の内周面を覆う第1内壁部と、前記第2断熱部の内周面を覆う第2内壁部とを備え、第1の熱遮蔽部材は、前記第1断熱部、前記外壁部及び前記第1内壁部により構成され、前記第1の熱遮蔽部材よりも小さな開口径を有する第2の熱遮蔽部材は、前記第1断熱部、前記第2断熱部、前記外壁部及び前記第2内壁部により構成されることを特徴とする。 The present invention also provides a component set of a heat shield member used for pulling a single crystal by the CZ method and surrounding the single crystal pulled from the melt in the crucible, comprising a substantially cylindrical first heat insulating portion and , a substantially cylindrical second heat insulating portion detachably provided inside the first heat insulating portion; an outer wall portion covering the outer peripheral surface of the first heat insulating portion; and a second inner wall covering the inner peripheral surface of the second heat insulating part, wherein the first heat shielding member is composed of the first heat insulating part, the outer wall and the first inner wall. , wherein the second heat shielding member having an opening diameter smaller than that of the first heat shielding member is composed of the first heat insulating portion, the second heat insulating portion, the outer wall portion, and the second inner wall portion. Characterized by

本発明によれば、熱遮蔽部材の構成部品の一部を追加又は交換することで熱遮蔽部材の開口径を変更することができ、結晶直径が異なる複数種類の単結晶の引き上げに対応することができる。 According to the present invention, the opening diameter of the heat shielding member can be changed by adding or exchanging some of the constituent parts of the heat shielding member, and it is possible to handle the pulling of multiple types of single crystals with different crystal diameters. can be done.

また、本発明による熱遮蔽部材の部品セットは、少なくも前記第2断熱部の下端面を覆う底壁部をさらに備え、前記第2の熱遮蔽部材は前記底壁部をさらに含むことが好ましい。また、本発明による熱遮蔽部材の部品セットは、前記第1断熱部の下端面を覆う第1底壁部と、前記第1及び第2断熱部の下端面を覆う第2底壁部とをさらに備え、前記第1の熱遮蔽部材は前記第1底壁部をさらに含み、前記第2の熱遮蔽部材は前記第2底壁部をさらに含むものであってもよい。このように、底壁部を追加又は交換することで、結晶直径が異なる複数の単結晶の引き上げに対応可能な熱遮蔽部材を提供することができる。 Moreover, it is preferable that the parts set of the heat shielding member according to the present invention further includes a bottom wall portion covering at least the lower end surface of the second heat insulating portion, and the second heat shielding member further includes the bottom wall portion. . Further, the parts set for the heat shield member according to the present invention includes a first bottom wall portion covering the lower end surface of the first heat insulating portion and a second bottom wall portion covering the lower end surfaces of the first and second heat insulating portions. Further, the first heat shield member may further include the first bottom wall portion, and the second heat shield member may further include the second bottom wall portion. In this way, by adding or replacing the bottom wall portion, it is possible to provide a heat shield member that can handle pulling of a plurality of single crystals having different crystal diameters.

本発明において、前記第1内壁部の開口径と前記第2内壁部の開口径との差は50mm以上であることが好ましい。これにより、同じCZ引き上げ炉を用いて結晶直径が異なる複数種類の単結晶を効率よく引き上げることができる。 In the present invention, it is preferable that the difference between the opening diameter of the first inner wall portion and the opening diameter of the second inner wall portion is 50 mm or more. As a result, multiple types of single crystals having different crystal diameters can be efficiently pulled using the same CZ pulling furnace.

また、本発明による単結晶製造装置は、チャンバーと、前記チャンバー内で前記融液を支持するルツボと、前記融液を加熱するヒーターと、前記ルツボを回転及び昇降させるルツボ駆動機構と、前記融液から前記単結晶を引き上げる結晶引き上げ機構と、前記融液の上方に設置され、前記融液から引き上げられた前記単結晶を包囲して前記ヒーターからの輻射熱を遮蔽する上述した本発明による熱遮蔽部材を備えることを特徴とする。本発明によれば、一部のパーツの省略や変更により開口サイズを変えることができる。したがって、同じCZ引き上げ炉を用いて結晶直径が異なる複数種類の単結晶を効率よく引き上げることができる。 Further, the single crystal manufacturing apparatus according to the present invention includes a chamber, a crucible supporting the melt in the chamber, a heater for heating the melt, a crucible driving mechanism for rotating and raising and lowering the crucible, and the melt. A crystal pulling mechanism for pulling the single crystal from the liquid, and a heat shield according to the present invention, which is installed above the melt and surrounds the single crystal pulled from the melt to shield the radiant heat from the heater. A member is provided. According to the present invention, the opening size can be changed by omitting or changing some parts. Therefore, it is possible to efficiently pull a plurality of types of single crystals having different crystal diameters using the same CZ pulling furnace.

また、本発明による単結晶の製造方法は、ルツボ内の融液から単結晶を引き上げるCZ法において、上述した本発明による熱遮蔽部材を用いて融液から引き上げられた単結晶を包囲することを特徴とする。本発明によれば、一部のパーツの省略や変更により開口サイズを変えることができ、結晶直径が異なる複数種類の単結晶を効率よく引き上げることができる。 Further, the method for producing a single crystal according to the present invention is a CZ method in which a single crystal is pulled from a melt in a crucible, and the heat shielding member according to the present invention is used to surround the single crystal pulled from the melt. Characterized by According to the present invention, the opening size can be changed by omitting or changing some parts, and multiple types of single crystals having different crystal diameters can be efficiently pulled.

本発明による単結晶の製造方法は、前記第1断熱部を単独で用いて構成された前記熱遮蔽部材を使用して第1の結晶直径を有する第1の単結晶を引き上げ、前記第1断熱部及び前記第2断熱部を組み合わせて構成された前記熱遮蔽部材を使用して前記第1の結晶直径よりも小さな第2の結晶直径を有する第2の単結晶を引き上げることが好ましい。これにより、一部のパーツの省略や変更により開口サイズを変えることができ、結晶直径が異なる2種類の単結晶を効率よく引き上げることができる。 In the method for producing a single crystal according to the present invention, a first single crystal having a first crystal diameter is pulled using the heat shield member configured by using the first heat insulating portion alone, and the first heat insulating portion is pulled up. It is preferable to pull a second single crystal having a second crystal diameter smaller than the first crystal diameter using the heat shield member configured by combining a portion and the second heat insulating portion. As a result, the opening size can be changed by omitting or changing some parts, and two types of single crystals having different crystal diameters can be efficiently pulled.

本発明において、前記第1の結晶直径と前記第2の結晶直径との差は50mm(約2インチ)以上であることが好ましい。これにより、同じCZ引き上げ炉を用いて結晶直径が異なる2種類の単結晶を効率よく引き上げることができる。 In the present invention, the difference between the first crystal diameter and the second crystal diameter is preferably 50 mm (about 2 inches) or more. As a result, two types of single crystals having different crystal diameters can be efficiently pulled using the same CZ pulling furnace.

本発明によれば、同じCZ引き上げ炉を用いて結晶直径が異なる単結晶を効率よく引き上げることが可能な熱遮蔽部材及びその部品セット並びに熱遮蔽部材を用いた単結晶製造装置及び単結晶の製造方法を提供することができる。 INDUSTRIAL APPLICABILITY According to the present invention, a heat shielding member and a set of components therefor, and a single crystal manufacturing apparatus and a single crystal manufacturing apparatus using the heat shielding member, are capable of efficiently pulling single crystals having different crystal diameters using the same CZ pulling furnace. can provide a method.

図1は、本発明の実施の形態による単結晶製造装置の構成を示す略側面断面図である。FIG. 1 is a schematic side cross-sectional view showing the configuration of a single crystal manufacturing apparatus according to an embodiment of the present invention. 図2は、本発明の第1の実施の形態による熱遮蔽部材の完成状態の構成を示す略断面図である。FIG. 2 is a schematic cross-sectional view showing the completed configuration of the heat shield member according to the first embodiment of the present invention. 図3は、本発明の第1の実施の形態による熱遮蔽部材の分解状態の構成を示す略断面図である。FIG. 3 is a schematic cross-sectional view showing the configuration of the heat shield member in an exploded state according to the first embodiment of the present invention. 図4は、本発明の第2の実施の形態による熱遮蔽部材の完成状態の構成を示す略断面図である。FIG. 4 is a schematic cross-sectional view showing the completed configuration of the heat shield member according to the second embodiment of the present invention. 図5は、本発明の第2の実施の形態による熱遮蔽部材の分解状態の構成を示す略断面図である。FIG. 5 is a schematic cross-sectional view showing the disassembled configuration of a heat shield member according to a second embodiment of the present invention. 図6は、本発明の第3の実施の形態による熱遮蔽部材の完成状態の構成を示す略断面図である。FIG. 6 is a schematic cross-sectional view showing the completed configuration of a heat shield member according to a third embodiment of the present invention. 図7は、本発明の第4の実施の形態による熱遮蔽部材の完成状態の構成を示す略断面図である。FIG. 7 is a schematic cross-sectional view showing the completed configuration of a heat shield member according to a fourth embodiment of the present invention. 図8は、本発明の第4の実施の形態による熱遮蔽部材の分解状態の構成を示す略断面図である。FIG. 8 is a schematic cross-sectional view showing the disassembled configuration of a heat shield member according to a fourth embodiment of the present invention. 図9は、本発明の第5の実施の形態による熱遮蔽部材の完成状態の構成を示す略断面図である。FIG. 9 is a schematic cross-sectional view showing the completed configuration of a heat shield member according to a fifth embodiment of the present invention. 図10は、本発明の第5の実施の形態による熱遮蔽部材の分解状態の構成を示す略断面図である。FIG. 10 is a schematic cross-sectional view showing the disassembled configuration of a heat shield member according to a fifth embodiment of the present invention. 図11は、本発明の第6の実施の形態による熱遮蔽部材の完成状態の構成を示す略断面図である。FIG. 11 is a schematic cross-sectional view showing the completed configuration of a heat shield member according to a sixth embodiment of the present invention. 図12は、本発明の第6の実施の形態による熱遮蔽部材の分解状態の構成を示す略断面図である。FIG. 12 is a schematic cross-sectional view showing the configuration of the heat shield member in an exploded state according to the sixth embodiment of the present invention. 図13は、本発明の第7の実施の形態による熱遮蔽部材の完成状態の構成を示す略断面図である。FIG. 13 is a schematic cross-sectional view showing the configuration of the completed heat shield member according to the seventh embodiment of the present invention. 図14は、本発明の第7の実施の形態による熱遮蔽部材の分解状態の構成を示す略断面図である。FIG. 14 is a schematic cross-sectional view showing the configuration of the heat shield member in an exploded state according to the seventh embodiment of the invention.

以下、添付図面を参照しながら、本発明の好ましい実施の形態について詳細に説明する。 Preferred embodiments of the present invention will now be described in detail with reference to the accompanying drawings.

図1は、本発明の実施の形態による単結晶製造装置の構成を示す略側面断面図である。 FIG. 1 is a schematic side cross-sectional view showing the configuration of a single crystal manufacturing apparatus according to an embodiment of the present invention.

図1に示すように、単結晶製造装置1は、水冷式のチャンバー10と、チャンバー10内においてシリコン融液2を保持する石英ルツボ11と、石英ルツボ11を保持する黒鉛ルツボ12と、黒鉛ルツボ12を支持する回転シャフト13と、回転シャフト13及び黒鉛ルツボ12を介して石英ルツボ11を回転及び昇降駆動するシャフト駆動機構14と、黒鉛ルツボ12の周囲に配置されたヒーター15と、ヒーター15の外側であってチャンバー10の内面に沿って配置された断熱材16と、石英ルツボ11の上方であって回転シャフト13と同軸上に配置された単結晶引き上げ用のワイヤー17と、チャンバー10の上方に配置されたワイヤー巻き取り機構18と、石英ルツボ11の上方に配置された熱遮蔽部材20とを備えている。 As shown in FIG. 1, a single crystal manufacturing apparatus 1 includes a water-cooled chamber 10, a quartz crucible 11 holding a silicon melt 2 in the chamber 10, a graphite crucible 12 holding the quartz crucible 11, and a graphite crucible. a shaft driving mechanism 14 for rotating and vertically driving the quartz crucible 11 via the rotating shaft 13 and the graphite crucible 12; a heater 15 arranged around the graphite crucible 12; A heat insulating material 16 arranged outside and along the inner surface of the chamber 10, a wire 17 for pulling a single crystal arranged above the quartz crucible 11 and coaxially with the rotating shaft 13, and above the chamber 10. and a heat shielding member 20 arranged above the quartz crucible 11 .

チャンバー10は、メインチャンバー10aと、メインチャンバー10aの上部開口に連結された細長い円筒状のプルチャンバー10bとで構成されており、石英ルツボ11、黒鉛ルツボ12、ヒーター15及び熱遮蔽部材20はメインチャンバー10a内に設けられている。プルチャンバー10bにはチャンバー10内にアルゴンガス等の不活性ガス(パージガス)やドーパントガスを導入するためのガス導入口10cが設けられており、メインチャンバー10aの下部にはチャンバー10内の雰囲気ガスを排出するためのガス排出口10dが設けられている。また、メインチャンバー10aの上部には覗き窓(不図示)が設けられており、シリコン単結晶3の育成状況を覗き窓から観察可能である。 The chamber 10 is composed of a main chamber 10a and an elongated cylindrical pull chamber 10b connected to an upper opening of the main chamber 10a. It is provided in the chamber 10a. The pull chamber 10b is provided with a gas introduction port 10c for introducing an inert gas (purge gas) such as argon gas or a dopant gas into the chamber 10. At the bottom of the main chamber 10a, the atmospheric gas in the chamber 10 is provided. A gas outlet 10d for discharging is provided. A viewing window (not shown) is provided in the upper portion of the main chamber 10a, and the growing state of the silicon single crystal 3 can be observed through the viewing window.

石英ルツボ11は、略円筒状の側壁部と湾曲した底部とを有するシリカガラス製の容器である。黒鉛ルツボ12は、加熱によって軟化した石英ルツボ11の形状を維持するため、石英ルツボ11の外表面に密着して石英ルツボ11を支持する。石英ルツボ11及び黒鉛ルツボ12はチャンバー10内においてシリコン融液を支持する二重構造のルツボを構成している。 The quartz crucible 11 is a silica glass container having a substantially cylindrical side wall and a curved bottom. The graphite crucible 12 supports the quartz crucible 11 in close contact with the outer surface of the quartz crucible 11 in order to maintain the shape of the quartz crucible 11 softened by heating. The quartz crucible 11 and the graphite crucible 12 form a double structure crucible that supports the silicon melt in the chamber 10 .

黒鉛ルツボ12は回転シャフト13の上端部に固定されており、回転シャフト13の下端部はチャンバー10の底部を貫通してチャンバー10の外側に設けられたシャフト駆動機構14に接続されている。回転シャフト13及びシャフト駆動機構14は石英ルツボ11を回転及び昇降駆動するルツボ駆動機構を構成している。 Graphite crucible 12 is fixed to the upper end of rotary shaft 13 , and the lower end of rotary shaft 13 penetrates the bottom of chamber 10 and is connected to shaft drive mechanism 14 provided outside chamber 10 . The rotating shaft 13 and the shaft driving mechanism 14 constitute a crucible driving mechanism that drives the quartz crucible 11 to rotate and move up and down.

ヒーター15は、石英ルツボ11内に充填されたシリコン原料を加熱してシリコン融液2を生成すると共に、シリコン融液2の溶融状態を維持するために用いられる。ヒーター15はカーボン製の抵抗加熱式ヒーターであり、黒鉛ルツボ12内の石英ルツボ11を取り囲むように設けられている。ヒーター15の外側には断熱材16がヒーター15を取り囲むように設けられており、これによりチャンバー10内の保温性が高められている。 The heater 15 is used to heat the silicon raw material filled in the quartz crucible 11 to generate the silicon melt 2 and to keep the silicon melt 2 in a molten state. The heater 15 is a resistance heating heater made of carbon, and is provided so as to surround the quartz crucible 11 inside the graphite crucible 12 . A heat insulating material 16 is provided on the outside of the heater 15 so as to surround the heater 15 , thereby increasing heat retention in the chamber 10 .

石英ルツボ11の上方には、シリコン単結晶3の引き上げ軸であるワイヤー17と、ワイヤー17を巻き取るワイヤー巻き取り機構18が設けられている。ワイヤー巻き取り機構18はワイヤー17と共にシリコン単結晶3を回転させながら引き上げる結晶引き上げ機構を構成している。ワイヤー巻き取り機構18はプルチャンバー10bの上方に配置されており、ワイヤー17はワイヤー巻き取り機構18からプルチャンバー10b内を通って下方に延びており、ワイヤー17の先端部はメインチャンバー10aの内部空間まで達している。図1には、育成途中のシリコン単結晶3がワイヤー17に吊設された状態が示されている。シリコン単結晶3の引き上げ時には石英ルツボ11とシリコン単結晶3とをそれぞれ回転させながらワイヤー17を徐々に引き上げることによりシリコン単結晶3を成長させる。 Above the quartz crucible 11, a wire 17 as a pulling shaft for the silicon single crystal 3 and a wire winding mechanism 18 for winding the wire 17 are provided. The wire winding mechanism 18 constitutes a crystal pulling mechanism that pulls the silicon single crystal 3 while rotating it together with the wire 17 . The wire winding mechanism 18 is arranged above the pull chamber 10b, the wire 17 extends downward through the inside of the pull chamber 10b from the wire winding mechanism 18, and the tip of the wire 17 extends inside the main chamber 10a. reaching the space. FIG. 1 shows a state in which a silicon single crystal 3 in the process of growing is suspended from a wire 17 . When the silicon single crystal 3 is pulled up, the silicon single crystal 3 is grown by gradually pulling up the wire 17 while rotating the quartz crucible 11 and the silicon single crystal 3 .

熱遮蔽部材20は、シリコン融液2の温度変動を抑制して結晶成長界面近傍に適切なホットゾーンを形成するとともに、ヒーター15及び石英ルツボ11からの輻射熱によるシリコン単結晶3の加熱を防止するために設けられている。熱遮蔽部材20は略円筒状の黒鉛製の部材であり、シリコン単結晶3の引き上げ経路を除いたシリコン融液2の上方の領域を覆うように設けられている。 The heat shield member 20 suppresses temperature fluctuations in the silicon melt 2 to form an appropriate hot zone in the vicinity of the crystal growth interface, and prevents heating of the silicon single crystal 3 by radiant heat from the heater 15 and the quartz crucible 11. is established for The heat shield member 20 is a substantially cylindrical member made of graphite, and is provided so as to cover the area above the silicon melt 2 excluding the pulling path of the silicon single crystal 3 .

熱遮蔽部材20の下端の開口20aの直径はシリコン単結晶3の直径よりも大きく、これによりシリコン単結晶3の引き上げ経路が確保されている。また熱遮蔽部材20の下端部の外径は石英ルツボ11の口径よりも小さく、熱遮蔽部材20の下端部は石英ルツボ11の内側に位置するので、石英ルツボ11のリム上端を熱遮蔽部材20の下端よりも上方まで上昇させても熱遮蔽部材20が石英ルツボ11と干渉することはない。 The diameter of the opening 20a at the lower end of the heat shield member 20 is larger than the diameter of the silicon single crystal 3, thereby securing a pulling path for the silicon single crystal 3. As shown in FIG. The outer diameter of the lower end of the heat shielding member 20 is smaller than the diameter of the quartz crucible 11, and the lower end of the heat shielding member 20 is located inside the quartz crucible 11. The heat shield member 20 does not interfere with the quartz crucible 11 even if the heat shield member 20 is raised above the lower end of the quartz crucible 11 .

シリコン単結晶3の成長と共に石英ルツボ11内の融液量は減少するが、融液面と熱遮蔽部材20との間のギャップが一定になるように石英ルツボ11を上昇させることにより、シリコン融液2の温度変動を抑制すると共に、融液面近傍を流れるガスの流速を一定にしてシリコン融液2からのドーパントの蒸発量を制御することができる。したがって、シリコン単結晶3の引き上げ軸方向の結晶欠陥分布、酸素濃度分布、抵抗率分布等の安定性を向上させることができる。 As the silicon single crystal 3 grows, the amount of melt in the quartz crucible 11 decreases. The temperature fluctuation of the liquid 2 can be suppressed, and the amount of evaporation of the dopant from the silicon melt 2 can be controlled by keeping the flow velocity of the gas flowing near the melt surface constant. Therefore, it is possible to improve the stability of crystal defect distribution, oxygen concentration distribution, resistivity distribution, etc. in the direction of pulling axis of the silicon single crystal 3 .

シリコン単結晶3の製造では、まず石英ルツボ11内に多結晶シリコン原料を投入し、ヒーター15で石英ルツボ11内の原料を加熱して溶融し、シリコン融液2を生成する。次に、ワイヤー17の下端に取り付けた種結晶を降下させてシリコン融液2に着液させる。その後、シリコン融液2との接触状態を維持しながら種結晶を徐々に引き上げてシリコン単結晶3を成長させる。結晶引き上げ工程では、直径を徐々に増加させてショルダー部を形成した後、直径を一定に維持して直胴部を形成する。所望の長さの直胴部を形成した後、直径を徐々に減少させてシリコン融液2から切り離す。以上により、シリコン単結晶インゴットが完成する。 In manufacturing the silicon single crystal 3 , first, polycrystalline silicon raw material is put into the quartz crucible 11 , and the raw material in the quartz crucible 11 is heated and melted by the heater 15 to form the silicon melt 2 . Next, the seed crystal attached to the lower end of the wire 17 is lowered and brought into contact with the silicon melt 2 . After that, while maintaining contact with the silicon melt 2 , the seed crystal is gradually pulled up to grow a silicon single crystal 3 . In the crystal pulling step, the diameter is gradually increased to form the shoulder portion, and then the diameter is kept constant to form the straight body portion. After forming a straight body of a desired length, the diameter is gradually reduced and separated from the silicon melt 2 . As described above, a silicon single crystal ingot is completed.

図2及び図3は、本発明の第1の実施の形態による熱遮蔽部材の構成を示す略断面図であって、図2は完成図、図3は分解図である。 2 and 3 are schematic sectional views showing the configuration of the heat shield member according to the first embodiment of the present invention, wherein FIG. 2 is a completed drawing and FIG. 3 is an exploded view.

図2及び図3に示すように、本実施形態による熱遮蔽部材20は、略円筒状の断熱部材30と、断熱部材30の露出面を覆う壁部材40とを備えている。断熱部材30としては、カーボン繊維からなるフェルト材を用いることができる。或いは、アルミナ等を断熱部材として用いてもよい。壁部材40の材料は、熱的に安定で高純度な黒鉛或いは表面がSiCコーティングされた黒鉛を用いることができる。或いは、熱的に安定なMo(モリブデン)やW(タングステン)を壁部材として用いてもよい。 As shown in FIGS. 2 and 3 , the heat shield member 20 according to this embodiment includes a substantially cylindrical heat insulating member 30 and a wall member 40 covering the exposed surface of the heat insulating member 30 . A felt material made of carbon fiber can be used as the heat insulating member 30 . Alternatively, alumina or the like may be used as a heat insulating member. As the material of the wall member 40, thermally stable and high-purity graphite or graphite whose surface is coated with SiC can be used. Alternatively, thermally stable Mo (molybdenum) or W (tungsten) may be used as the wall member.

断熱部材30は、略円筒状の第1断熱部31からなる。第1断熱部31の外周面31aは垂直面であり、断熱部材30の外周面30aを構成している。第1断熱部31の内周面31bは下方に向かって下りのテーパー面を構成している。第1断熱部31の下端面31cは水平面であり、さらに外周側のコーナー部には面取り加工されたテーパー面が設けられている。第1断熱部31の外周面31aは、下方に向かって下りのテーパー面を構成していてもよい。 The heat insulating member 30 is composed of a substantially cylindrical first heat insulating portion 31 . An outer peripheral surface 31 a of the first heat insulating portion 31 is a vertical surface and constitutes an outer peripheral surface 30 a of the heat insulating member 30 . An inner peripheral surface 31b of the first heat insulating portion 31 forms a downwardly tapered surface. A lower end surface 31c of the first heat insulating portion 31 is a horizontal surface, and a chamfered tapered surface is provided at a corner portion on the outer peripheral side. The outer peripheral surface 31a of the first heat insulating portion 31 may form a downward tapered surface.

壁部材40は、断熱部材30の外周面30aと下端面30cの外周側領域を覆う外壁部41と、断熱部材30の内周面30bを覆う内壁部42と、断熱部材30の下端面30cの内周側領域を覆う底壁部43とを備えている。 The wall member 40 includes an outer wall portion 41 that covers the outer peripheral side region of the outer peripheral surface 30a and the lower end surface 30c of the heat insulating member 30, an inner wall portion 42 that covers the inner peripheral surface 30b of the heat insulating member 30, and a lower end surface 30c of the heat insulating member 30. and a bottom wall portion 43 covering the inner peripheral region.

外壁部41は略円筒状の部材であり、第1断熱部31の外周面31aと下端面31cの外周側領域を覆っている。外壁部41の内周面は第1断熱部31の外周面31aに密着している。外壁部41の上部開口から内側に第1断熱部31を挿入することにより、第1断熱部31は外壁部41内に収納される。第1断熱部21を上方に持ち上げれば外壁部41から容易に取り出すことができる。本実施形態において、外壁部41の円筒形状は、上端部から下方のテーパー部の位置まではその直径が一定であるが、直径が徐々に小さくなる略逆円錐台形状であってもよい。 The outer wall portion 41 is a substantially cylindrical member, and covers the outer peripheral side regions of the outer peripheral surface 31 a and the lower end surface 31 c of the first heat insulating portion 31 . The inner peripheral surface of the outer wall portion 41 is in close contact with the outer peripheral surface 31 a of the first heat insulating portion 31 . By inserting the first heat insulating portion 31 inside through the upper opening of the outer wall portion 41 , the first heat insulating portion 31 is housed inside the outer wall portion 41 . The first heat insulating portion 21 can be easily removed from the outer wall portion 41 by lifting it upward. In this embodiment, the cylindrical shape of the outer wall portion 41 has a constant diameter from the upper end portion to the position of the tapered portion below, but may be a substantially inverted truncated cone shape in which the diameter gradually decreases.

内壁部42は略円筒状の部材であり、略円筒状の外壁部41の内側に設置されて、第1断熱部31の内周面31bを覆っている。内壁部42としては、第1断熱部31の内周面31bにフィットする形状を有する第1内壁部42Xが使用され、第1内壁部42Xの外周面は第1断熱部31の内周面31bに密着している。第1内壁部42Xの上端部は外壁部41の上端部近傍の内周面に当接しており、断熱部材30の上端面30dを構成する第1断熱部31の上端面31dを覆っている。第1内壁部42Xの下端部は底壁部43の内周端部近傍の上面に当接している。第1内壁部42Xは、上端部から下端部に向かって斜めに真っすぐ傾斜した平坦な形状であるが、途中に段差を有していてもよい。 The inner wall portion 42 is a substantially cylindrical member, is installed inside the substantially cylindrical outer wall portion 41 , and covers the inner peripheral surface 31 b of the first heat insulating portion 31 . As the inner wall portion 42, a first inner wall portion 42X having a shape that fits the inner peripheral surface 31b of the first heat insulating portion 31 is used. is closely related to The upper end portion of the first inner wall portion 42X contacts the inner peripheral surface of the outer wall portion 41 near the upper end portion, and covers the upper end surface 31d of the first heat insulating portion 31 forming the upper end surface 30d of the heat insulating member 30. A lower end portion of the first inner wall portion 42X is in contact with the upper surface of the bottom wall portion 43 near the inner peripheral end portion. The first inner wall portion 42X has a flat shape that slopes obliquely straight from the upper end to the lower end, but may have a step in the middle.

通常、熱遮蔽部材20の開口径は下方に行くほど小さくなり、下端部近傍で最小となる。単結晶の引き上げに大きな影響を与える熱遮蔽部材の開口形状は、固液界面に近い下端部近傍の開口径であるため、内壁部42の開口径とは、下端部近傍における開口径の最小値のことを言う。熱遮蔽部材20及びその他の部品の開口径に関しても同様である。 Normally, the opening diameter of the heat shield member 20 becomes smaller as it goes downward, and is the smallest near the lower end. The opening shape of the heat shielding member, which has a large effect on the pulling of the single crystal, is the opening diameter near the lower end near the solid-liquid interface. say about The same applies to the opening diameters of the heat shield member 20 and other parts.

底壁部43は略円環状の部材であり、略円筒状の外壁部41の内側に設置されて、第1断熱部31の下端面31cの内周側領域を覆っている。底壁部43としては、第1断熱部32Xの大きさに合わせた大口径用の第1底壁部43Xが使用される。第1底壁部43Xの上面は、第1断熱部31の下端面31cに密着していることが好ましい。第1底壁部43Xは、外壁部41の内周端部(下端部)の上面に載置されており、円環状の底板を構成している。第1底壁部43Xには段差が設けられており、この段差が外壁部41の内周端部と嵌合することにより、第1底壁部43Xが熱遮蔽部材20の中心に位置決め固定される。 The bottom wall portion 43 is a substantially annular member, is installed inside the substantially cylindrical outer wall portion 41 , and covers the inner peripheral region of the lower end surface 31 c of the first heat insulating portion 31 . As the bottom wall portion 43, a large-diameter first bottom wall portion 43X matching the size of the first heat insulating portion 32X is used. It is preferable that the upper surface of the first bottom wall portion 43X is in close contact with the lower end surface 31c of the first heat insulating portion 31 . The first bottom wall portion 43X is placed on the upper surface of the inner peripheral end portion (lower end portion) of the outer wall portion 41, and constitutes an annular bottom plate. A step is provided on the first bottom wall portion 43X, and this step is fitted to the inner peripheral end portion of the outer wall portion 41, thereby positioning and fixing the first bottom wall portion 43X at the center of the heat shield member 20. be.

第1内壁部42Xの設置状態において、第1内壁部42Xの下端部は第1底壁部43Xの内周端部に密着していることが好ましい。そのような密着状態を確保するため、第1内壁部42Xの下端面には、その設置状態において、径方向の中心に向かって斜め上方に傾斜したテーパー面42tが形成されていることが好ましい。同様に、第1底壁部43Xの内周端部の上面にも、第1内壁部42Xの下端面とほぼ同じ傾斜角度のテーパー面43tが形成されていることが好ましい。このように、第1内壁部42Xの下端部のテーパー面42tが第1底壁部43Xの内周端部のテーパー面43tに面接触して係合することにより、断熱部材30の収容空間を密封することができる。 In the installed state of the first inner wall portion 42X, the lower end portion of the first inner wall portion 42X is preferably in close contact with the inner peripheral end portion of the first bottom wall portion 43X. In order to ensure such a close contact state, it is preferable that the lower end surface of the first inner wall portion 42X is formed with a tapered surface 42t that is inclined upward toward the center in the radial direction in the installed state. Similarly, the upper surface of the inner peripheral edge of the first bottom wall portion 43X is preferably formed with a tapered surface 43t having substantially the same inclination angle as the lower end surface of the first inner wall portion 42X. In this manner, the tapered surface 42t at the lower end of the first inner wall portion 42X is in surface contact with and engages with the tapered surface 43t at the inner peripheral end portion of the first bottom wall portion 43X, so that the housing space for the heat insulating member 30 is reduced. Can be sealed.

同様のテーパー面は、外壁部41と第1底壁部43Xとの接続位置にも設けられることが好ましい。すなわち、外壁部41の内周端部の上面にはテーパー面41uが形成されており、第1底壁部43Xの外周端部の底面にはテーパー面41uとほぼ同じ傾斜角度のテーパー面43uが形成されている。そのため、両者の接続を強固にして断熱部材30の収容空間を密封することができる。 A similar tapered surface is preferably provided also at the connecting position between the outer wall portion 41 and the first bottom wall portion 43X. That is, a tapered surface 41u is formed on the upper surface of the inner peripheral end of the outer wall portion 41, and a tapered surface 43u having substantially the same inclination angle as the tapered surface 41u is formed on the bottom surface of the outer peripheral end of the first bottom wall portion 43X. formed. Therefore, the connection between the two can be made strong, and the accommodation space of the heat insulating member 30 can be sealed.

断熱部材30は徐々に劣化して粉状となるため、壁部材40による断熱部材30の封止状態が不十分では断熱部材30の微粉が外側に漏れ出して単結晶の歩留まりに悪影響を与える。しかし、壁部材40を構成する複数のパーツ間のつなぎ目が密着している場合には、微粉の漏れ出しを防止することができる。 Since the heat insulating member 30 gradually deteriorates and becomes powdery, if the sealing state of the heat insulating member 30 by the wall member 40 is insufficient, the fine powder of the heat insulating member 30 leaks out and adversely affects the yield of the single crystal. However, when the joints between the plurality of parts forming the wall member 40 are in close contact with each other, it is possible to prevent the fine powder from leaking out.

図3に示すように、本実施形態による熱遮蔽部材20は、外壁部41の内側に各パーツを所定の順番で設置することで完成する。単に各パーツを外壁部41内に収容すればよく、特別な固定手段は不要である。そのため、各パーツの取り出しや交換が極めて容易である。 As shown in FIG. 3, the heat shield member 20 according to the present embodiment is completed by installing each part inside the outer wall portion 41 in a predetermined order. Each part simply needs to be accommodated within the outer wall portion 41, and no special fixing means is required. Therefore, it is extremely easy to take out and replace each part.

上記のように、本実施形態による断熱部材30は第1断熱部31のみで構成され、また壁部材40としては、第1断熱部31に対応する第1内壁部42X及び第1底壁部43Xがそれぞれ使用され、これにより相対的に大きな開口サイズを有する熱遮蔽部材20が構成されている。相対的に小さな開口サイズを有する熱遮蔽部材20を構成したい場合には、パーツの追加又は変更が必要である。 As described above, the heat insulating member 30 according to the present embodiment is composed only of the first heat insulating portion 31, and the wall member 40 includes the first inner wall portion 42X and the first bottom wall portion 43X corresponding to the first heat insulating portion 31. are used, respectively, thereby constructing the heat shield member 20 having a relatively large opening size. If it is desired to construct the heat shield member 20 with a relatively small opening size, additional or modified parts are required.

図4及び図5は、本発明の第2の実施の形態による熱遮蔽部材の構成を示す略断面図であって、図4は完成図、図5は分解図である。 4 and 5 are schematic cross-sectional views showing the configuration of a heat shield member according to a second embodiment of the present invention, wherein FIG. 4 is a completed drawing and FIG. 5 is an exploded view.

図4及び図5に示すように、本実施形態による熱遮蔽部材20は、図2及び図3に示した第1の実施の形態の変形例であって、断熱部材30が第1断熱部31及び第2断熱部32の組み合わせからなる。第1断熱部31は第1の実施の形態で用いたものと同じである。第2断熱部32は、第1断熱部31の内周側に設けられる略円筒状の部材であって、第1断熱部31から着脱自在に構成されている。すなわち、本実施形態による断熱部材30は、第1の実施の形態との共通部品である第1断熱部31に第2断熱部32を追加したものである。 As shown in FIGS. 4 and 5, the heat shield member 20 according to this embodiment is a modification of the first embodiment shown in FIGS. and the second heat insulating portion 32 . The first heat insulating portion 31 is the same as that used in the first embodiment. The second heat insulating portion 32 is a substantially cylindrical member provided on the inner peripheral side of the first heat insulating portion 31 and configured to be detachable from the first heat insulating portion 31 . That is, the heat insulating member 30 according to the present embodiment is obtained by adding the second heat insulating portion 32 to the first heat insulating portion 31, which is a common component with the first embodiment.

第2断熱部32の外周面32aは第1断熱部31の内周面31bにフィットするテーパー面であり、内周面31bに密着している。第2断熱部32の内周面32bは外周面32aに近い傾斜角度を持つテーパー面であり、断熱部材30の内周面30bを構成している。第1断熱部31の上部開口から内側に第2断熱部32を挿入すると、第2断熱部32の外周面32aは第1断熱部31の内周面31bに密着し、両者は一体化する。第2断熱部32を上方に持ち上げれば第1断熱部31から容易に取り出すことができる。 The outer peripheral surface 32a of the second heat insulating portion 32 is a tapered surface that fits the inner peripheral surface 31b of the first heat insulating portion 31, and is in close contact with the inner peripheral surface 31b. The inner peripheral surface 32 b of the second heat insulating portion 32 is a tapered surface having an inclination angle close to that of the outer peripheral surface 32 a and constitutes the inner peripheral surface 30 b of the heat insulating member 30 . When the second heat insulating portion 32 is inserted inside through the upper opening of the first heat insulating portion 31, the outer peripheral surface 32a of the second heat insulating portion 32 is in close contact with the inner peripheral surface 31b of the first heat insulating portion 31, and the two are integrated. The second heat insulating portion 32 can be easily removed from the first heat insulating portion 31 by lifting it upward.

本実施形態において、第2断熱部32は、第1断熱部31の上端から下端まで広範囲に延在する比較的大きな部材であるが、第1断熱部31の下端部だけに設けられた比較的小さな部材であってもよい。 In this embodiment, the second heat insulating portion 32 is a relatively large member that extends over a wide range from the upper end to the lower end of the first heat insulating portion 31, but is provided only at the lower end portion of the first heat insulating portion 31 and is relatively large. It may be a small member.

壁部材40は、断熱部材30の外周面30aと下端面30cの外周側領域を覆う外壁部41と、断熱部材30の内周面30bを覆う内壁部42と、断熱部材30の下端面30cの内周側領域を覆う底壁部43とを備えている。ここで、外壁部41は第1の実施の形態で用いたものと同じであり、第1断熱部31と同様に、第1及び第2の実施の形態に共通の部品である。 The wall member 40 includes an outer wall portion 41 that covers the outer peripheral side region of the outer peripheral surface 30a and the lower end surface 30c of the heat insulating member 30, an inner wall portion 42 that covers the inner peripheral surface 30b of the heat insulating member 30, and a lower end surface 30c of the heat insulating member 30. and a bottom wall portion 43 covering the inner peripheral region. Here, the outer wall portion 41 is the same as that used in the first embodiment, and is a component common to the first and second embodiments, like the first heat insulating portion 31 .

内壁部42としては、第2断熱部32の内周面32bにフィットする形状を有する第2内壁部42Yが使用され、底壁部43としては、第2断熱部32の使用に合わせた小口径用の第2底壁部43Yが使用される。そのため、第2内壁部42Yの形状は第1内壁部42Xとわずかに異なり、また第2底壁部43Yの形状は第1底壁部43Xの形状とわずかに異なる。 As the inner wall portion 42, a second inner wall portion 42Y having a shape that fits the inner peripheral surface 32b of the second heat insulating portion 32 is used. The second bottom wall portion 43Y for is used. Therefore, the shape of the second inner wall portion 42Y is slightly different from that of the first inner wall portion 42X, and the shape of the second bottom wall portion 43Y is slightly different from that of the first bottom wall portion 43X.

第2内壁部42Yの外周面は第2断熱部32の内周面32bに密着しており、第2底壁部43Yの上面は、少なくとも第2断熱部32の下端面32cに密着している。第2内壁部42Yの上端部は外壁部41の上端部近傍の内周面に当接しており、断熱部材30の上端面30dを構成する第1断熱部31の上端面31d及び第2断熱部32の上端面32dを覆っている。第2内壁部42Yの下端部は底壁部43の内周端部近傍の上面に当接している。内壁部42は、上端部から下端部に向かって斜めに真っすぐ傾斜した平坦な形状であるが、途中に段差を有していてもよい。 The outer peripheral surface of the second inner wall portion 42Y is in close contact with the inner peripheral surface 32b of the second heat insulating portion 32, and the upper surface of the second bottom wall portion 43Y is in close contact with at least the lower end surface 32c of the second heat insulating portion 32. . The upper end portion of the second inner wall portion 42Y is in contact with the inner peripheral surface near the upper end portion of the outer wall portion 41, and the upper end surface 31d and the second heat insulating portion of the first heat insulating portion 31 that constitute the upper end surface 30d of the heat insulating member 30 and the second heat insulating portion. 32 covers the upper end surface 32d. A lower end portion of the second inner wall portion 42Y is in contact with the upper surface of the bottom wall portion 43 near the inner peripheral end portion. The inner wall portion 42 has a flat shape that slopes obliquely straight from the upper end to the lower end, but may have a step in the middle.

図2及び図3を用いて説明したように第1断熱部31を単独で使用した場合には、熱遮蔽部材20の開口サイズを大きくすることができ、結晶直径の大きなシリコン単結晶の引き上げに好ましく用いることができる。一方、本実施形態のように第1断熱部31と第2断熱部32を組み合わせた場合には、熱遮蔽部材20の開口サイズ(開口20aの直径)を小さくすることができ、結晶直径の小さなシリコン単結晶の引き上げに好ましく用いることができる。 As described with reference to FIGS. 2 and 3, when the first heat insulating portion 31 is used alone, the opening size of the heat shielding member 20 can be increased, which is suitable for pulling a silicon single crystal having a large crystal diameter. It can be preferably used. On the other hand, when the first heat insulating portion 31 and the second heat insulating portion 32 are combined as in the present embodiment, the opening size (diameter of the opening 20a) of the heat shield member 20 can be reduced, and the crystal diameter is small. It can be preferably used for pulling a silicon single crystal.

このように、熱遮蔽部材20の内壁部42としては、第1断熱部31の内周面31bの形状に合わせた第1内壁部42Xと、第2断熱部32の内周面32bの形状に合わせた第2内壁部42Yの2種類が用意され、第2断熱部32の使用状態に合わせてどちらか一方が選択的に使用される。同様に、熱遮蔽部材20の底壁部43としては、第1断熱部31を単独で使用したときの底面形状に合わせた第1底壁部43Xと、第1断熱部31と第2断熱部32を組み合わせて使用したときの底面形状に合わせた第2底壁部43Yの2種類が用意され、第2断熱部32の使用状態に合わせてどちらか一方が選択的に使用される。 In this way, the inner wall portion 42 of the heat shielding member 20 has a first inner wall portion 42X that matches the shape of the inner peripheral surface 31b of the first heat insulating portion 31 and a shape of the inner peripheral surface 32b of the second heat insulating portion 32. Two types of the combined second inner wall portion 42Y are prepared, and one of them is selectively used according to the use condition of the second heat insulating portion 32 . Similarly, as the bottom wall portion 43 of the heat shielding member 20, a first bottom wall portion 43X matching the shape of the bottom surface when the first heat insulating portion 31 is used alone, the first heat insulating portion 31, and the second heat insulating portion Two types of the second bottom wall portion 43Y are prepared according to the shape of the bottom surface when the second heat insulating portion 32 is used in combination.

熱遮蔽部材20の開口サイズを大きくした時の開口径Rと開口サイズを小さくした時の開口径Rとの差は50mm(約2インチ)以上であることが好ましい。結晶直径が異なる2種類のシリコン単結晶の直径差が50mmよりも小さい場合には、熱遮蔽部材20の開口サイズを変更しなくても、他の結晶引上げ条件を微調整することで、実質的に同じ品質のシリコン単結晶を引き上げることが可能だからである。このように、熱遮蔽部材20の開口サイズを変更しなければならない場合とは、2種類のシリコン単結晶の直径差がある程度大きいため、2種類のシリコン単結晶の品質を実質的に同一にすることが困難な場合であって、2種類のシリコン単結晶の直胴部の直径差が50mm以上の場合である。 The difference between the opening diameter R1 when the opening size of the heat shield member 20 is increased and the opening diameter R2 when the opening size is decreased is preferably 50 mm (about 2 inches) or more. If the diameter difference between two types of silicon single crystals having different crystal diameters is less than 50 mm, fine adjustment of other crystal pulling conditions without changing the opening size of the heat shield member 20 can substantially This is because it is possible to pull silicon single crystals of the same quality in In this way, when the opening size of the heat shield member 20 must be changed, the two types of silicon single crystals have substantially the same quality because the difference in diameter between the two types of silicon single crystals is large to some extent. This is the case in which the difference in diameter between the straight bodies of the two types of silicon single crystals is 50 mm or more.

なお開口径の差の上限は特に限定されない。したがって、例えば、直径約200mmのシリコン単結晶と直径約400mmのシリコン単結晶を同じCZ引き上げ炉で引き上げるため、熱遮蔽部材20の大きな開口径と小さな開口径との差を200mm以上とすることも可能である。 The upper limit of the difference in opening diameter is not particularly limited. Therefore, for example, since a silicon single crystal with a diameter of about 200 mm and a silicon single crystal with a diameter of about 400 mm are pulled in the same CZ pulling furnace, the difference between the large opening diameter and the small opening diameter of the heat shield member 20 may be 200 mm or more. It is possible.

断熱部材30を構成する第1断熱部31及び第2断熱部32と、壁部材40を構成する外壁部41、第1内壁部42X、第2内壁部42Y、第1底壁部43X、第2底壁部43Yは、2種類の開口サイズに対応する熱遮蔽部材の部品セットを構成している。第1断熱部31及び外壁部41は大口径及び小口径に共通の基本部品であり、第2断熱部32は小口径にのみ使用される追加部品である。第1内壁部42X及び第1底壁部43Xは大口径にのみ使用される選択部品であり、第2内壁部42Y及び第2底壁部43Yは小口径にのみ使用される選択部品である。 A first heat insulating portion 31 and a second heat insulating portion 32 forming the heat insulating member 30, an outer wall portion 41 forming the wall member 40, a first inner wall portion 42X, a second inner wall portion 42Y, a first bottom wall portion 43X, and a second heat insulating portion 43X. The bottom wall portion 43Y constitutes a part set of heat shield members corresponding to two types of opening sizes. The first heat insulating part 31 and the outer wall part 41 are basic parts common to both large and small diameters, and the second heat insulating part 32 is an additional part used only for small diameters. The first inner wall portion 42X and the first bottom wall portion 43X are optional parts used only for large diameters, and the second inner wall portion 42Y and the second bottom wall portion 43Y are optional parts used only for small diameters.

上記のように、大口径(例えば395mm)のシリコン単結晶を引き上げる場合、断熱部材30として第1断熱部31が単独で使用され、また内壁部42として第1断熱部31にフィットする第1内壁部42Xが採用され、底壁部43として第1断熱部31の下端面をカバーする第1底壁部43Xが採用される。 As described above, when pulling a silicon single crystal with a large diameter (for example, 395 mm), the first heat insulating portion 31 is used alone as the heat insulating member 30, and the first inner wall that fits the first heat insulating portion 31 as the inner wall portion 42. A first bottom wall portion 43X that covers the lower end surface of the first heat insulating portion 31 is used as the bottom wall portion 43 .

一方、小口径(例えば320mm)のシリコン単結晶を引き上げる場合、断熱部材30として第1断熱部31と第2断熱部32の両方が使用され、また内壁部42として第2断熱部32にフィットする第2内壁部42Yが採用され、底壁部43として第1断熱部31及び第2断熱部32の下端面をカバーする第2底壁部43Yが採用される。 On the other hand, when pulling a silicon single crystal with a small diameter (for example, 320 mm), both the first heat insulating portion 31 and the second heat insulating portion 32 are used as the heat insulating member 30, and the inner wall portion 42 is fitted to the second heat insulating portion 32. A second inner wall portion 42</b>Y is employed, and a second bottom wall portion 43</b>Y that covers the lower end surfaces of the first heat insulating portion 31 and the second heat insulating portion 32 is employed as the bottom wall portion 43 .

以上説明したように、本実施形態による熱遮蔽部材20は、その部品の一部を共通で使用しながら、他の一部を交換したり、追加又は省略したりすることで開口サイズを変更可能に構成されているので、結晶直径が異なる2種類のシリコン単結晶の引き上げを同一のCZ引き上げ炉を用いて行うことができ、結晶直径が異なる2種類のシリコン単結晶の品質のばらつきを低減することができる。 As described above, the heat shield member 20 according to the present embodiment can change the opening size by replacing, adding, or omitting other parts while using some of the parts in common. Therefore, two types of silicon single crystals with different crystal diameters can be pulled using the same CZ pulling furnace, and the variation in quality of two types of silicon single crystals with different crystal diameters is reduced. be able to.

また、本実施形態による単結晶の製造方法は、結晶直径が大きいシリコン単結晶を引き上げる場合には、第1断熱部31Xを単独で用いて構成された熱遮蔽部材20(第1の熱遮蔽部材)を使用し、結晶直径が小さいシリコン単結晶を引き上げる場合には、第1断熱部31及び第2断熱部32を組み合わせて構成された二重構造の熱遮蔽部材20(第2の熱遮蔽部材)を使用するため、結晶直径が異なる2種類のシリコン単結晶の引き上げを同一のCZ引き上げ炉を用いて行うことができ、結晶直径が異なる2種類のシリコン単結晶の品質のばらつきを低減することができる。 Further, in the method for manufacturing a single crystal according to the present embodiment, when pulling a silicon single crystal having a large crystal diameter, the heat shielding member 20 (the first heat shielding member ) is used to pull a silicon single crystal with a small crystal diameter, a double-structure heat shielding member 20 (second heat shielding member ), two types of silicon single crystals with different crystal diameters can be pulled using the same CZ pulling furnace, and variations in the quality of two types of silicon single crystals with different crystal diameters can be reduced. can be done.

図6は、本発明の第3の実施の形態による熱遮蔽部材の構成を示す略断面図である。 FIG. 6 is a schematic cross-sectional view showing the configuration of a heat shield member according to a third embodiment of the invention.

図6に示すように、本実施形態による熱遮蔽部材20は、図4及び図5に示した第2の実施の形態による熱遮蔽部材のさらなる変形例であって、断熱部材30が第1断熱部31、第2断熱部32及び第3断熱部33の組み合わせからなる点にある。第1断熱部31及び第2断熱部32は第2の実施の形態で用いたものと同じである。第3断熱部33は、第2断熱部32の内周側に設けられる略円筒状の部材であって、第2断熱部32から着脱自在に構成されている。すなわち、本実施形態による断熱部材30は、第1の実施の形態との共通部品である第1断熱部31に第2断熱部32及び第3断熱部33を追加したものである。 As shown in FIG. 6, the heat shield member 20 according to this embodiment is a further modification of the heat shield member according to the second embodiment shown in FIGS. It consists of a combination of the portion 31 , the second heat insulating portion 32 and the third heat insulating portion 33 . The first heat insulating portion 31 and the second heat insulating portion 32 are the same as those used in the second embodiment. The third heat insulating portion 33 is a substantially cylindrical member provided on the inner peripheral side of the second heat insulating portion 32 and configured to be detachable from the second heat insulating portion 32 . That is, the heat insulating member 30 according to the present embodiment is obtained by adding the second heat insulating portion 32 and the third heat insulating portion 33 to the first heat insulating portion 31 which is a common component with the first embodiment.

第3断熱部33を使用しない時の開口径R(図4参照)と第3断熱部33を使用して開口サイズを小さくした時の開口径Rとの差は50mm(約2インチ)以上であることが好ましい。結晶直径が異なる2種類のシリコン単結晶の直径差が50mmよりも小さい場合には、熱遮蔽部材20の開口サイズを変更しなくても、他の結晶引上げ条件を微調整することで、実質的に同じ品質のシリコン単結晶を引き上げることが可能だからである。 The difference between the opening diameter R 2 (see FIG. 4) when the third heat insulating portion 33 is not used and the opening diameter R 3 when the opening size is reduced using the third heat insulating portion 33 is 50 mm (about 2 inches). It is preferable that it is above. If the diameter difference between two types of silicon single crystals having different crystal diameters is less than 50 mm, fine adjustment of other crystal pulling conditions without changing the opening size of the heat shield member 20 can substantially This is because it is possible to pull silicon single crystals of the same quality in

第3断熱部33の外周面33aは第2断熱部32の内周面32bにフィットするテーパー面であり、内周面32bに密着している。第3断熱部33の内周面33bは外周面33aに近い傾斜角度を持つテーパー面であり、断熱部材30の内周面30bを構成している。第2断熱部32の上部開口から内側に第3断熱部33を挿入すると、第3断熱部33の外周面33aは第2断熱部32の内周面32bに密着し、両者は一体化する。第3断熱部33を上方に持ち上げれば第2断熱部32から容易に取り出すことができる。 The outer peripheral surface 33a of the third heat insulating portion 33 is a tapered surface that fits the inner peripheral surface 32b of the second heat insulating portion 32, and is in close contact with the inner peripheral surface 32b. An inner peripheral surface 33 b of the third heat insulating portion 33 is a tapered surface having an inclination angle close to that of the outer peripheral surface 33 a , and constitutes an inner peripheral surface 30 b of the heat insulating member 30 . When the third heat insulating portion 33 is inserted inside from the upper opening of the second heat insulating portion 32, the outer peripheral surface 33a of the third heat insulating portion 33 is brought into close contact with the inner peripheral surface 32b of the second heat insulating portion 32, and the two are integrated. The third heat insulating portion 33 can be easily removed from the second heat insulating portion 32 by lifting it upward.

本実施形態において、第3断熱部33は、第1断熱部31及び第2断熱部32の上端から下端まで広範囲に延在する比較的大きな部材であるが、第1断熱部31及び第2断熱部32の下端部だけに設けられた比較的小さな部材であってもよい。 In the present embodiment, the third heat insulating portion 33 is a relatively large member that extends over a wide range from the upper end to the lower end of the first heat insulating portion 31 and the second heat insulating portion 32. It may be a relatively small member provided only at the lower end of the portion 32 .

壁部材40は、断熱部材30の外周面30aと下端面30cの外周側領域を覆う外壁部41と、断熱部材30の内周面30bを覆う内壁部42と、断熱部材30の下端面30cの内周側領域を覆う底壁部43とを備えている。ここで、外壁部41は第1の実施の形態で用いたものと同じであり、第1断熱部31と同様に、第1~第3の実施の形態に共通の部品である。 The wall member 40 includes an outer wall portion 41 that covers the outer peripheral side region of the outer peripheral surface 30a and the lower end surface 30c of the heat insulating member 30, an inner wall portion 42 that covers the inner peripheral surface 30b of the heat insulating member 30, and a lower end surface 30c of the heat insulating member 30. and a bottom wall portion 43 covering the inner peripheral region. Here, the outer wall portion 41 is the same as that used in the first embodiment, and, like the first heat insulating portion 31, is a component common to the first to third embodiments.

内壁部42としては、第3断熱部33の内周面33bにフィットする形状を有する第3内壁部42Zが使用され、底壁部43としては、第3断熱部33の使用に合わせた、開口サイズがさらに小さな第3底壁部43Zが使用される。そのため、第3内壁部42Zの形状は第2内壁部42Yとわずかに異なり、また第3底壁部43Zの形状は第2底壁部43Yの形状とわずかに異なる。 As the inner wall portion 42, a third inner wall portion 42Z having a shape that fits the inner peripheral surface 33b of the third heat insulating portion 33 is used. A third bottom wall portion 43Z having a smaller size is used. Therefore, the shape of the third inner wall portion 42Z is slightly different from that of the second inner wall portion 42Y, and the shape of the third bottom wall portion 43Z is slightly different from that of the second bottom wall portion 43Y.

断熱部材30を構成する第1断熱部31、第2断熱部32及び第3断熱部33と、壁部材40を構成する外壁部41、第1内壁部42X、第2内壁部42Y、第3内壁部42Z、第1底壁部43X、第2底壁部43Y、第3底壁部43Zは、3種類の開口サイズに対応する熱遮蔽部材の部品セットを構成している。第1断熱部31及び外壁部41は大口径、中口径及び小口径に共通の基本部品であり、第2断熱部32及びは中口径及び小口径に共通の追加部品であり、第3断熱部33は小口径にのみ使用される追加部品である。第1内壁部42X及び第1底壁部43Xは大口径にのみ使用される選択部品であり、第2内壁部42Y及び第2底壁部43Yは中口径にのみ使用される選択部品であり、第3内壁部42Z及び第3底壁部43Zは小口径にのみ使用される選択部品である。このように、本実施形態によれば、熱遮蔽部材20の開口サイズの選択肢をさらに広げることができる。 A first heat insulating portion 31, a second heat insulating portion 32, and a third heat insulating portion 33 forming the heat insulating member 30, and an outer wall portion 41, a first inner wall portion 42X, a second inner wall portion 42Y, and a third inner wall forming the wall member 40. The portion 42Z, the first bottom wall portion 43X, the second bottom wall portion 43Y, and the third bottom wall portion 43Z constitute a part set of heat shield members corresponding to three types of opening sizes. The first heat insulating part 31 and the outer wall part 41 are basic parts common to the large, medium and small diameters, the second heat insulating part 32 is an additional part common to the medium and small diameters, and the third heat insulating part 33 is an additional part used only for small diameters. The first inner wall portion 42X and the first bottom wall portion 43X are optional parts used only for large diameters, the second inner wall portion 42Y and the second bottom wall portion 43Y are optional parts used only for medium diameters, The third inner wall portion 42Z and the third bottom wall portion 43Z are optional parts used only for small diameters. Thus, according to this embodiment, the options for the opening size of the heat shield member 20 can be further expanded.

図7及び図8は、本発明の第4の実施の形態による熱遮蔽部材の構成を示す略断面図であって、図7は完成図、図8は分解図である。 7 and 8 are schematic cross-sectional views showing the configuration of a heat shield member according to a fourth embodiment of the present invention, FIG. 7 being a completed drawing and FIG. 8 being an exploded view.

図7及び図8に示すように、本実施形態による熱遮蔽部材20の特徴は、大口径の熱遮蔽部材の構成部品として底壁部43を省略した点にある。すなわち、壁部材40は、断熱部材30の外周面30aと下端面30cの全体を覆う外壁部41と、断熱部材30の内周面30bを覆う第1内壁部42Xとで構成されている。 As shown in FIGS. 7 and 8, the feature of the heat shielding member 20 according to this embodiment is that the bottom wall portion 43 is omitted as a component of the large-diameter heat shielding member. That is, the wall member 40 is composed of an outer wall portion 41 covering the entire outer peripheral surface 30 a and the lower end surface 30 c of the heat insulating member 30 and a first inner wall portion 42 X covering the inner peripheral surface 30 b of the heat insulating member 30 .

図9及び図10は、本発明の第5の実施の形態による熱遮蔽部材の構成を示す略断面図であって、図9は完成図、図10は分解図である。 9 and 10 are schematic cross-sectional views showing the configuration of a heat shield member according to a fifth embodiment of the present invention, wherein FIG. 9 is a completed drawing and FIG. 10 is an exploded view.

図9及び図10に示すように、本実施形態による熱遮蔽部材20は、図7及び図8に示した第4の実施の形態による熱遮蔽部材の変形例であって、断熱部材30が第1断熱部31及び第2断熱部32の組み合わせからなり、壁部材40が外壁部41及び第2内壁部42Yのほか、底壁部43をさらに備えている点にある。 As shown in FIGS. 9 and 10, the heat shield member 20 according to this embodiment is a modification of the heat shield member according to the fourth embodiment shown in FIGS. The wall member 40 is composed of a combination of a first heat insulating portion 31 and a second heat insulating portion 32, and further includes a bottom wall portion 43 in addition to the outer wall portion 41 and the second inner wall portion 42Y.

このように、熱遮蔽部材20の開口サイズを大きくする場合には底壁部を省略し、熱遮蔽部材20の開口サイズを小さくする場合には底壁部を追加するようにしても良い。この場合、第1断熱部31及び外壁部41は共通部品として使用でき、第2断熱部32及び底壁部43の追加し、内壁部42を交換することで小口径にも対応できる。 As described above, the bottom wall portion may be omitted when the opening size of the heat shield member 20 is increased, and the bottom wall portion may be added when the opening size of the heat shield member 20 is decreased. In this case, the first heat insulating portion 31 and the outer wall portion 41 can be used as common parts, and by adding the second heat insulating portion 32 and the bottom wall portion 43 and replacing the inner wall portion 42, it is possible to cope with a small diameter.

図11及び図12は、本発明の第6の実施の形態による熱遮蔽部材の構成を示す略断面図であって、図11は完成図、図12は分解図である。 11 and 12 are schematic cross-sectional views showing the construction of a heat shield member according to a sixth embodiment of the present invention, wherein FIG. 11 is a completed view and FIG. 12 is an exploded view.

図11及び図12に示すように、本実施形態による熱遮蔽部材20の特徴は、外壁部41と内壁部42との接続を強固にするため、両者の接続位置には鍵状の係合部が設けられている点にある。具体的には、外壁部41の下端部(内周端部)には上方に突出する突起部41vが形成されており、内壁部42の下端部は外壁部41の下端部(内周端部)に設けられた突起部41vに係合して固定される。内壁部42を外壁部41の内側に設置すると、内壁部42の下端部が外壁部41の突起部41vに噛み合い、両者は強固に接続される。 As shown in FIGS. 11 and 12, the heat shield member 20 according to this embodiment is characterized by a key-shaped engaging portion at the connection position of the outer wall portion 41 and the inner wall portion 42 in order to strengthen the connection between the two. is provided. Specifically, the lower end (inner peripheral end) of the outer wall 41 is formed with a protrusion 41v projecting upward, and the lower end of the inner wall 42 is the lower end (inner peripheral end) of the outer wall 41 . ) is engaged with and fixed to the protrusion 41v. When the inner wall portion 42 is installed inside the outer wall portion 41, the lower end portion of the inner wall portion 42 meshes with the projection portion 41v of the outer wall portion 41, and the two are firmly connected.

壁部材40を構成するパーツの接続箇所は、内部の断熱部材30の劣化による微粉が落ちないように鍵状の端部同士が相互に係合し、これにより壁部材40内の密閉状態が維持されていることが好ましい。断熱部材30は徐々に劣化して粉状となるため、壁部材40による断熱部材30の封止状態が不十分では断熱部材30の微粉が外側に漏れ出して単結晶の歩留まりに悪影響を与える。しかし、壁部材40を構成する複数の部品間のつなぎ目が密着している場合には、微粉の漏れ出しを防止することができる。 At the joints of the parts that make up the wall member 40, the key-shaped ends are engaged with each other so that fine powder due to the deterioration of the heat insulating member 30 inside does not fall, thereby maintaining the sealed state inside the wall member 40. It is preferable that Since the heat insulating member 30 gradually deteriorates and becomes powdery, if the sealing state of the heat insulating member 30 by the wall member 40 is insufficient, the fine powder of the heat insulating member 30 leaks out and adversely affects the yield of the single crystal. However, when the joints between the plurality of parts forming the wall member 40 are in close contact with each other, it is possible to prevent the fine powder from leaking out.

図13及び図14は、本発明の第7の実施の形態による熱遮蔽部材の構成を示す略断面図であって、図13は完成図、図14は分解図である。 13 and 14 are schematic cross-sectional views showing the construction of a heat shield member according to a seventh embodiment of the present invention, wherein FIG. 13 is a completed view and FIG. 14 is an exploded view.

図13及び図14に示すように、本実施形態による熱遮蔽部材20は、図11及び図12に示した第6の実施の形態による熱遮蔽部材の変形例であって、断熱部材30が第1断熱部31及び第2断熱部32の組み合わせからなり、壁部材40が外壁部41及び第2内壁部42Yのほか、底壁部43をさらに備えている点にある。また、外壁部41と底壁部43との接続を強固にするため、両者の接続位置には鍵状の係合部が設けられている。具体的には、外壁部41の下端部(内周端部)には上方に突出する突起部41vが形成されており、底壁部43の外周端部には外壁部41の突起部41vに係合するフック部43vが形成されている。底壁部43を外壁部41の内側に設置すると、フック部43vが突起部41vに噛み合い、両者は強固に接続される。 As shown in FIGS. 13 and 14, the heat shield member 20 according to this embodiment is a modification of the heat shield member according to the sixth embodiment shown in FIGS. The wall member 40 is composed of a combination of a first heat insulating portion 31 and a second heat insulating portion 32, and further includes a bottom wall portion 43 in addition to the outer wall portion 41 and the second inner wall portion 42Y. Further, in order to strengthen the connection between the outer wall portion 41 and the bottom wall portion 43, a key-shaped engaging portion is provided at the connection position between the two. Specifically, the lower end (inner peripheral end) of the outer wall 41 is formed with a protrusion 41v that protrudes upward, and the outer peripheral end of the bottom wall 43 is formed with the protrusion 41v of the outer wall 41. An engaging hook portion 43v is formed. When the bottom wall portion 43 is installed inside the outer wall portion 41, the hook portion 43v engages with the projection portion 41v, and the two are firmly connected.

壁部材40を構成するパーツの接続箇所は、内部の断熱部材30の劣化による微粉が落ちないように鍵状の端部同士が相互に係合し、これにより壁部材40内の密閉状態が維持されていることが好ましい。断熱部材30は徐々に劣化して粉状となるため、壁部材40による断熱部材30の封止状態が不十分では断熱部材30の微粉が外側に漏れ出して単結晶の歩留まりに悪影響を与える。しかし、壁部材40を構成する複数の部品間のつなぎ目が密着している場合には、微粉の漏れ出しを防止することができる。 At the joints of the parts that make up the wall member 40, the key-shaped ends are engaged with each other so that fine powder due to the deterioration of the heat insulating member 30 inside does not fall, thereby maintaining the sealed state inside the wall member 40. It is preferable that Since the heat insulating member 30 gradually deteriorates and becomes powdery, if the sealing state of the heat insulating member 30 by the wall member 40 is insufficient, the fine powder of the heat insulating member 30 leaks out and adversely affects the yield of the single crystal. However, when the joints between the plurality of parts forming the wall member 40 are in close contact with each other, it is possible to prevent the fine powder from leaking out.

本実施形態による熱遮蔽部材20も、第1及び第2の実施の形態による熱遮蔽部材と同様の効果を奏することができる。すなわち、構成部品の一部を取り外したり交換したりすることで開口サイズを3段階に変更することができる。したがって、結晶直径が異なる3種類のシリコン単結晶の引き上げを同一のCZ引き上げ炉を用いて行うことができ、結晶直径が異なる3種類のシリコン単結晶の品質のばらつきを低減することができる。 The heat shield member 20 according to this embodiment can also achieve the same effect as the heat shield members according to the first and second embodiments. That is, the opening size can be changed in three steps by removing or replacing some of the components. Therefore, three types of silicon single crystals with different crystal diameters can be pulled using the same CZ pulling furnace, and variations in the quality of the three types of silicon single crystals with different crystal diameters can be reduced.

以上、本発明の好ましい実施形態について説明したが、本発明は、上記の実施形態に限定されることなく、本発明の主旨を逸脱しない範囲で種々の変更が可能であり、それらも本発明の範囲内に包含されるものであることはいうまでもない。 Although the preferred embodiments of the present invention have been described above, the present invention is not limited to the above-described embodiments, and various modifications can be made without departing from the gist of the present invention. Needless to say, it is included within the scope.

例えば、上記実施形態において、第1断熱部31、第2断熱部32及び第3断熱部33の各々は単一の部品として構成されているが、高さ方向に分割された複数の部品の組み合わせからなるものであってもよい。 For example, in the above-described embodiment, each of the first heat insulating portion 31, the second heat insulating portion 32, and the third heat insulating portion 33 is configured as a single component. It may consist of

また熱遮蔽部材20の内周面を構成する内壁部42の内周面は、上端部から下端部に向かって斜めに真っすぐ傾斜した平坦面であるが、途中に段差が設けられていてもよい。例えば、内壁部42の内周面の周方向の一部或いは全周に取っ手として機能する段差を設けることにより、内壁部42の着脱の作業性を向上させることができる。そのような段差は、断熱部材30を構成する第1~第3断熱部31~33に設けられてもよく、壁部材40の外壁部41の内側に収容されるすべての部品に設けることができる。 The inner peripheral surface of the inner wall portion 42 constituting the inner peripheral surface of the heat shielding member 20 is a flat surface that is straightly inclined from the upper end to the lower end, but a step may be provided in the middle. . For example, by providing a step functioning as a handle on a part or the entire circumference of the inner peripheral surface of the inner wall portion 42, the workability of attaching and detaching the inner wall portion 42 can be improved. Such a step may be provided in the first to third heat insulating portions 31 to 33 constituting the heat insulating member 30, and may be provided in all the parts accommodated inside the outer wall portion 41 of the wall member 40. .

さらに上記実施形態においては、CZ法によるシリコン単結晶の製造に用いられる熱遮蔽部材を例に挙げたが、本発明はシリコン単結晶に限定されるものではなく、種々の単結晶の製造に適用することができる。 Furthermore, in the above embodiments, the heat shielding member used for the production of silicon single crystals by the CZ method was taken as an example, but the present invention is not limited to silicon single crystals, and can be applied to the production of various single crystals. can do.

1 単結晶製造装置
2 シリコン融液
3 シリコン単結晶
10 チャンバー
10a メインチャンバー
10b プルチャンバー
10c ガス導入口
10d ガス排出口
11 石英ルツボ
12 黒鉛ルツボ
13 回転シャフト
14 シャフト駆動機構
15 ヒーター
16 断熱材
17 ワイヤー
18 ワイヤー巻き取り機構
20 熱遮蔽部材
20a 開口
30 断熱部材
30a 断熱部材の外周面
30b 断熱部材の内周面
30c 断熱部材の下端面
30d 断熱部材の上端面
31 第1断熱部
31a 外周面
31b 内周面
31c 下端面
31d 上端面
32 第2断熱部
32a 外周面
32b 内周面
32c 下端面
32d 上端面
33 第3断熱部
33a 外周面
33b 内周面
33c 下端面
33d 上端面
40 壁部材
41 外壁部
41u テーパー面
41v 突起部
42 内壁部
42X 第1内壁部
42Y 第2内壁部
42Z 第3内壁部
42t テーパー面
43 底壁部
43X 第1底壁部
43Y 第2底壁部
43Z 第2底壁部
43t テーパー面
43u テーパー面
43v フック部
1 single crystal manufacturing apparatus 2 silicon melt 3 silicon single crystal 10 chamber 10a main chamber 10b pull chamber 10c gas inlet 10d gas outlet 11 quartz crucible 12 graphite crucible 13 rotating shaft 14 shaft driving mechanism 15 heater 16 heat insulating material 17 wire 18 wire winding mechanism 20 heat shielding member 20a opening 30 heat insulating member 30a outer peripheral surface 30b of heat insulating member inner peripheral surface 30c of heat insulating member lower end surface 30d of heat insulating member upper end surface 31 first heat insulating portion 31a outer peripheral surface 31b inner peripheral surface 31c lower end surface 31d upper end surface 32 second heat insulating portion 32a outer peripheral surface 32b inner peripheral surface 32c lower end surface 32d upper end surface 33 third heat insulating portion 33a outer peripheral surface 33b inner peripheral surface 33c lower end surface 33d upper end surface 40 wall member 41 outer wall portion 41u taper Surface 41v Projection 42 Inner wall 42X First inner wall 42Y Second inner wall 42Z Third inner wall 42t Tapered surface 43 Bottom wall 43X First bottom wall 43Y Second bottom wall 43Z Second bottom wall 43t Tapered surface 43u tapered surface 43v hook portion

Claims (15)

CZ法による単結晶の引き上げに用いられ、ルツボ内の融液から引き上げられた前記単結晶を包囲する熱遮蔽部材であって、
略円筒状の断熱部材と、
前記断熱部材の露出面を覆う壁部材とを備え、
前記壁部材は、
前記断熱部材の少なくとも外周面を覆う外壁部と、
前記断熱部材の内周面を覆う内壁部と、
前記断熱部材の下端面を覆う底壁部とを備え、
前記断熱部材は、
略円筒状の第1断熱部と、
前記第1断熱部の内側に設けられた略円筒状の第2断熱部を含み、
前記第2断熱部は前記第1断熱部から着脱自在に構成されていることを特徴とする熱遮蔽部材。
A heat shield member used for pulling a single crystal by the CZ method and surrounding the single crystal pulled from the melt in the crucible,
a substantially cylindrical heat insulating member;
A wall member covering the exposed surface of the heat insulating member,
The wall member
an outer wall portion that covers at least the outer peripheral surface of the heat insulating member;
an inner wall portion covering the inner peripheral surface of the heat insulating member;
A bottom wall portion covering the lower end surface of the heat insulating member,
The heat insulating member is
a substantially cylindrical first heat insulating portion;
including a substantially cylindrical second heat insulating portion provided inside the first heat insulating portion;
A heat shielding member, wherein the second heat insulating portion is detachably attached to the first heat insulating portion.
前記第1断熱部の外周面は前記外壁部に覆われており、
前記第2断熱部の内周面は前記内壁部に覆われており、
前記第2断熱部の外周面は前記第1断熱部の内周面に密着している、請求項1に記載の熱遮蔽部材。
The outer peripheral surface of the first heat insulating portion is covered with the outer wall portion,
The inner peripheral surface of the second heat insulating portion is covered with the inner wall portion,
2. The heat shielding member according to claim 1, wherein the outer peripheral surface of said second heat insulating portion is in close contact with the inner peripheral surface of said first heat insulating portion.
前記底壁部は前記外壁部から着脱自在に構成されており、
前記内壁部は前記底壁部及び前記外壁部から着脱自在に構成されている、請求項1又は2に記載の熱遮蔽部材。
The bottom wall portion is configured to be detachable from the outer wall portion,
3. The heat shielding member according to claim 1, wherein said inner wall portion is detachable from said bottom wall portion and said outer wall portion.
前記内壁部の下端部に接続される前記底壁部の内周端部の上面には径方向の外側に向かって傾斜したテーパー面が設けられており、前記内壁部の下端部は前記テーパー面に当接している、請求項1乃至3のいずれか一項に記載の熱遮蔽部材。 An upper surface of the inner peripheral end portion of the bottom wall portion connected to the lower end portion of the inner wall portion is provided with a tapered surface inclined radially outward, and the lower end portion of the inner wall portion is the tapered surface. 4. The heat shield member according to any one of claims 1 to 3, which abuts on the 前記底壁部の外周端部に接続される前記外壁部の下端部には径方向の外側に向かって傾斜したテーパー面が設けられており、前記底壁部の外周端部は前記テーパー面に当接している、請求項1乃至4のいずれか一項に記載の熱遮蔽部材。 A lower end portion of the outer wall portion connected to the outer peripheral end portion of the bottom wall portion is provided with a tapered surface inclined radially outward, and the outer peripheral end portion of the bottom wall portion is formed on the tapered surface. 5. A heat shield according to any one of the preceding claims, abutting. 前記外壁部の下端部には突起部が設けられており、前記底壁部の外周端部には前記突起部に係合するフック部が設けられている、請求項1乃至5のいずれか一項に記載の熱遮蔽部材。 6. The apparatus according to any one of claims 1 to 5, wherein a protrusion is provided on the lower end of said outer wall, and a hook that engages with said protrusion is provided on an outer peripheral end of said bottom wall. The heat shield member according to the item. 前記第1断熱部を単独で使用したときの熱遮蔽部材の開口径と前記第1断熱部と前記第2断熱部を組み合わせて使用したときの熱遮蔽部材の開口径との差が50mm以上である、請求項1乃至6のいずれか一項に記載の熱遮蔽部材。 the difference between the opening diameter of the heat shielding member when the first heat insulating portion is used alone and the opening diameter of the heat shielding member when the first heat insulating portion and the second heat insulating portion are used in combination is 50 mm or more; 7. A heat shielding member according to any one of claims 1 to 6. CZ法による単結晶の引き上げに用いられ、ルツボ内の融液から引き上げられた前記単結晶を包囲する熱遮蔽部材の部品セットであって、
略円筒状の第1断熱部と、
前記第1断熱部の内側に着脱自在に設けられる略円筒状の第2断熱部と、
前記第1断熱部の外周面を覆う外壁部と、
前記第1断熱部の内周面を覆う第1内壁部と、
前記第2断熱部の内周面を覆う第2内壁部とを備え、
第1の熱遮蔽部材は、前記第1断熱部、前記外壁部及び前記第1内壁部により構成され、
前記第1の熱遮蔽部材よりも小さな開口径を有する第2の熱遮蔽部材は、前記第1断熱部、前記第2断熱部、前記外壁部及び前記第2内壁部により構成されることを特徴とする熱遮蔽部材の部品セット。
A parts set of a heat shield member used for pulling a single crystal by the CZ method and surrounding the single crystal pulled from the melt in the crucible,
a substantially cylindrical first heat insulating portion;
a substantially cylindrical second heat insulating portion detachably provided inside the first heat insulating portion;
an outer wall portion that covers the outer peripheral surface of the first heat insulating portion;
a first inner wall portion covering the inner peripheral surface of the first heat insulating portion;
A second inner wall portion covering the inner peripheral surface of the second heat insulating portion,
The first heat shielding member is composed of the first heat insulating portion, the outer wall portion and the first inner wall portion,
A second heat shielding member having an opening diameter smaller than that of the first heat shielding member is composed of the first heat insulating portion, the second heat insulating portion, the outer wall portion, and the second inner wall portion. A part set of heat shielding members.
少なくも前記第2断熱部の下端面を覆う底壁部をさらに備え、
前記第2の熱遮蔽部材は前記底壁部をさらに含む、請求項8に記載の熱遮蔽部材の部品セット。
further comprising a bottom wall portion that covers at least the lower end surface of the second heat insulating portion;
9. The set of parts of a heat shield according to claim 8, wherein said second heat shield further comprises said bottom wall portion.
前記第1断熱部の下端面を覆う第1底壁部と、
前記第1及び第2断熱部の下端面を覆う第2底壁部とをさらに備え、
前記第1の熱遮蔽部材は前記第1底壁部をさらに含み、
前記第2の熱遮蔽部材は前記第2底壁部をさらに含む、請求項8に記載の熱遮蔽部材の部品セット。
a first bottom wall portion covering the lower end surface of the first heat insulating portion;
A second bottom wall portion covering the lower end surfaces of the first and second heat insulating portions,
The first heat shield member further includes the first bottom wall,
9. The heat shield component set of claim 8, wherein said second heat shield further comprises said second bottom wall portion.
前記第1内壁部の開口径と前記第2内壁部の開口径との差が50mm以上である、請求項8乃至10のいずれか一項に記載の熱遮蔽部材の部品セット。 11. The heat shield component set according to claim 8, wherein the difference between the opening diameter of the first inner wall portion and the opening diameter of the second inner wall portion is 50 mm or more. チャンバーと、前記チャンバー内で前記融液を支持するルツボと、前記融液を加熱するヒーターと、前記ルツボを回転及び昇降させるルツボ駆動機構と、前記融液から前記単結晶を引き上げる結晶引き上げ機構と、前記融液の上方に設置され、前記融液から引き上げられた前記単結晶を包囲して前記ヒーターからの輻射熱を遮蔽する請求項1乃至7のいずれか一項に記載の熱遮蔽部材とを備えることを特徴とする単結晶製造装置。 a chamber, a crucible that supports the melt in the chamber, a heater that heats the melt, a crucible driving mechanism that rotates and raises and lowers the crucible, and a crystal pulling mechanism that pulls the single crystal from the melt. 8. The heat shield member according to any one of claims 1 to 7, which is installed above the melt and surrounds the single crystal pulled up from the melt to shield the radiant heat from the heater. A single crystal manufacturing apparatus comprising: ルツボ内の融液から単結晶を引き上げるCZ法による単結晶の製造方法であって、請求項1乃至7のいずれか一項に記載の熱遮蔽部材を用いて融液から引き上げられた単結晶を包囲することを特徴とする単結晶の製造方法。 A method for producing a single crystal by the CZ method in which a single crystal is pulled from a melt in a crucible, wherein the single crystal pulled from the melt is pulled using the heat shield member according to any one of claims 1 to 7. A method for producing a single crystal, characterized by surrounding. 前記第1断熱部を単独で用いて構成された前記熱遮蔽部材を使用して第1の結晶直径を有する第1の単結晶を引き上げ、
前記第1断熱部及び前記第2断熱部を組み合わせて構成された前記熱遮蔽部材を使用して前記第1の結晶直径よりも小さな第2の結晶直径を有する第2の単結晶を引き上げる、請求項13に記載の単結晶の製造方法。
Pulling up a first single crystal having a first crystal diameter using the heat shielding member configured by using the first heat insulating portion alone;
A second single crystal having a second crystal diameter smaller than the first crystal diameter is pulled using the heat shield member configured by combining the first heat insulation portion and the second heat insulation portion. Item 14. A method for producing a single crystal according to Item 13.
前記第1の結晶直径と前記第2の結晶直径との差が50mm以上である、請求項14に記載の単結晶の製造方法。 15. The method for producing a single crystal according to claim 14, wherein the difference between said first crystal diameter and said second crystal diameter is 50 mm or more.
JP2021178519A 2021-11-01 2021-11-01 Heat shield member, component set thereof, and apparatus and method for manufacturing single crystal using heat shield member Pending JP2023067364A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2021178519A JP2023067364A (en) 2021-11-01 2021-11-01 Heat shield member, component set thereof, and apparatus and method for manufacturing single crystal using heat shield member

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2021178519A JP2023067364A (en) 2021-11-01 2021-11-01 Heat shield member, component set thereof, and apparatus and method for manufacturing single crystal using heat shield member

Publications (1)

Publication Number Publication Date
JP2023067364A true JP2023067364A (en) 2023-05-16

Family

ID=86326342

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2021178519A Pending JP2023067364A (en) 2021-11-01 2021-11-01 Heat shield member, component set thereof, and apparatus and method for manufacturing single crystal using heat shield member

Country Status (1)

Country Link
JP (1) JP2023067364A (en)

Similar Documents

Publication Publication Date Title
KR100415860B1 (en) Single Crystal Manufacturing Equipment and Manufacturing Method
CN111519241B (en) Semiconductor crystal growth device
JP5240191B2 (en) Silicon single crystal pulling device
JP4097729B2 (en) Semiconductor single crystal manufacturing equipment
KR20110094025A (en) Upper heater for manufacturing single crystal, single crystal manufacturing apparatus and single crystal manufacturing method
JP2007077017A (en) Growth apparatus and growth method for single crystal
KR101842487B1 (en) Glowing equipment and methods for lithium tantalate single crystal by crucible structure
JP2023067364A (en) Heat shield member, component set thereof, and apparatus and method for manufacturing single crystal using heat shield member
TW202117096A (en) A semiconductor crystal growth apparatus
JP2007186356A (en) Apparatus and method for producing single crystal
US7195671B2 (en) Thermal shield
TW202117098A (en) A semiconductor crystal growth apparatus
KR100906281B1 (en) Heat shield structure for growing silicon single crystal ingot and grower using the same
JP4304608B2 (en) Heat shielding member of silicon single crystal pulling device
TWI823646B (en) Single crystal growth apparatus
TWI806139B (en) Single crystal manufacturing apparatus
JP2020037499A (en) Heat shield member, apparatus for pulling single crystal and method for manufacturing single crystal
WO2021157183A1 (en) Single crystal production method and single crystal pulling apparatus
TWI815688B (en) A quartz crucible, crucible component and crystal pulling furnace for producing single crystal silicon rods
KR102147460B1 (en) Heat insulating member and apparatus for growing monocrystalline ingot including the same
WO2022123957A1 (en) Monocrystal-manufacturing device
US11608567B2 (en) Crucible for ingot grower
JP5040848B2 (en) Silicon single crystal manufacturing equipment
JP3870646B2 (en) Single crystal pulling device
JP2006069803A (en) Heat-shielding member for silicon single crystal pulling apparatus

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20231218