JP2023066568A - Valuable metal recovery method and valuable metal recovery device - Google Patents

Valuable metal recovery method and valuable metal recovery device Download PDF

Info

Publication number
JP2023066568A
JP2023066568A JP2021177226A JP2021177226A JP2023066568A JP 2023066568 A JP2023066568 A JP 2023066568A JP 2021177226 A JP2021177226 A JP 2021177226A JP 2021177226 A JP2021177226 A JP 2021177226A JP 2023066568 A JP2023066568 A JP 2023066568A
Authority
JP
Japan
Prior art keywords
valuable metal
metal
alloy
heated
valuable
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2021177226A
Other languages
Japanese (ja)
Inventor
考志 中村
Takashi Nakamura
将輝 西岡
Masateru Nishioka
聖 植村
Sei Uemura
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
National Institute of Advanced Industrial Science and Technology AIST
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute of Advanced Industrial Science and Technology AIST filed Critical National Institute of Advanced Industrial Science and Technology AIST
Priority to JP2021177226A priority Critical patent/JP2023066568A/en
Publication of JP2023066568A publication Critical patent/JP2023066568A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Landscapes

  • Constitution Of High-Frequency Heating (AREA)
  • Processing Of Solid Wastes (AREA)
  • Manufacture And Refinement Of Metals (AREA)

Abstract

To recover with efficiency a valuable metal from a substrate using a metal forming an alloy with the valuable metal.SOLUTION: A valuable metal recovery device 10 includes a pretreatment device 12 having a pretreatment chamber 20, a microwave irradiation device 14 having microwave irradiation chamber 70, a posttreatment device 16 having a posttreatment chamber 90, and conveying member 18. In the pretreatment chamber 20, a valuable metal recovery agent containing an additive metal that forms an alloy with the valuable metal and a flux that promotes alloying of the additive metal that forms an alloy with the valuable metal is placed on the valuable metal of the composite to obtain a body to be heated P1. The microwave irradiation chamber 70 irradiates the object to be heated P1 with a magnetic field based on microwaves to heat the object to be heated P1 to form an alloy containing the valuable metal and the additive metal to obtain an alloyed object to be heated P2. The post-treatment chamber 90 strips part or larger of the alloy from the alloyed body to be heated P2. The transport member 18 transports the object P to be processed between the pretreatment chamber 20, the microwave irradiation chamber 70 and the posttreatment chamber 90.SELECTED DRAWING: Figure 7

Description

本願は、マイクロ波を用いて、基材上に接合された有価金属を回収する方法と装置に関するものである。 The present application relates to a method and apparatus for recovering valuable metals bonded onto substrates using microwaves.

従来、金属製ローラーブラシを用いて、基材上の金属成分を基材から削り取って回収している(特許文献1)。しかしながら、特許文献1の金属成分回収方法では、物理的な強い力で基材から金属成分を剥離しているので、基材も一緒に削り取られる。このため、金属の回収率が低下するとともに、金属半導体およびアルミナなどの金属酸化物のように、基材に含まれ、金属と分離困難な不純物が混入するおそれがあった。また、金、銀、または銅などの有価金属は溶融温度が高く、基材上に強固に接合されている。このため、特許文献1の金属回収方法では、基材から有価金属が剥がれにくい。 Conventionally, a metal roller brush is used to scrape off and recover metal components on a substrate (Patent Document 1). However, in the metal component recovery method of Patent Document 1, the metal component is peeled off from the base material with a strong physical force, so the base material is also scraped off. As a result, the recovery rate of the metal is lowered, and there is a possibility that impurities such as metal semiconductors and metal oxides such as alumina, which are contained in the base material and are difficult to separate from the metal, may be mixed. Valuable metals such as gold, silver, or copper have high melting temperatures and are strongly bonded onto the substrate. Therefore, in the metal recovery method of Patent Document 1, the valuable metal is less likely to peel off from the substrate.

特開2014-54593号公報JP 2014-54593 A

本願は、このような事情に鑑みてなされたものであり、有価金属と合金を形成する添加金属を用いて、基材に接合された有価金属を回収することを課題とする。 The present application has been made in view of such circumstances, and an object thereof is to recover a valuable metal bonded to a substrate by using an additive metal that forms an alloy with the valuable metal.

本願の有価金属回収方法は、基材上に接合された有価金属に、有価金属と合金を形成し、かつ有価金属の融点より低い融点を有する添加金属と、添加金属の有価金属との合金化を促進するフラックスとを接触させながらマイクロ波に基づく磁界を照射し加熱して、有価金属と添加金属を含有する合金を形成させるマイクロ波照射工程と、基材から合金を剥離する剥離工程を有する。 The valuable metal recovery method of the present application forms an alloy with the valuable metal bonded on the base material, and alloys the additive metal with the valuable metal with the additive metal having a lower melting point than the melting point of the valuable metal. It has a microwave irradiation step of forming an alloy containing a valuable metal and an additive metal by irradiating and heating a magnetic field based on microwaves while being in contact with a flux that promotes, and a peeling step of peeling the alloy from the base material. .

本願の有価金属回収装置は、基材と基材上に接合された有価金属とを有する複合体の有価金属上に、有価金属と合金を形成する添加金属と添加金属の有価金属との合金化を促進するフラックスとを含有する有価金属回収剤を設置し、被加熱体を得る前処理室を備える前処理装置と、被加熱体にマイクロ波に基づく磁界を照射し被加熱体を加熱して、有価金属と添加金属を含有する合金を形成させ、合金化被加熱体を得るマイクロ波照射室を備えるマイクロ波照射装置と、合金化被加熱体から合金の一部以上を剥離する後処理室を備える後処理装置と、前処理室、マイクロ波照射室、および後処理室の間で、この順番に被処理体を搬送する搬送部材を有する。 The valuable metal recovery device of the present application is an additive metal that forms an alloy with the valuable metal on the valuable metal of the composite having the base material and the valuable metal joined on the base material, and the alloying of the additive metal with the valuable metal. A pretreatment device equipped with a pretreatment chamber for obtaining a heated body by installing a valuable metal recovery agent containing a flux that promotes , a microwave irradiation device having a microwave irradiation chamber for forming an alloy containing a valuable metal and an additive metal to obtain an alloyed heated body, and a post-treatment chamber for peeling off a part or more of the alloy from the alloyed heated body and a transfer member for transferring the object to be processed in this order between the pretreatment chamber, the microwave irradiation chamber, and the posttreatment chamber.

本願の有価金属回収方法では、マイクロ波に基づく磁界による加熱によって、有価金属と、この有価金属の融点より低い融点を有する添加金属を含む合金が形成される。合金が形成されると有価金属と基材の接合力が低下する。このため、基材に接合された有価金属を伝熱、対流、または輻射によって加熱・融解する方法と比べて、エネルギー使用量を抑えつつ、短時間で有価金属と基材の接合力が低下できる。基材との接合力が低下した有価金属を含むこの合金は、金属製ブレードなどを用いて基材から容易に剥離できる。 In the valuable metal recovery method of the present application, heating by a microwave-based magnetic field forms an alloy containing a valuable metal and an additive metal having a melting point lower than the melting point of the valuable metal. The formation of an alloy reduces the bonding strength between the valuable metal and the base material. Therefore, compared to the method of heating and melting the valuable metal bonded to the base material by heat transfer, convection, or radiation, it is possible to lower the bonding strength between the base material and the valuable metal in a short period of time while reducing the amount of energy used. . This alloy containing a valuable metal with reduced bonding strength to the substrate can be easily peeled off from the substrate using a metal blade or the like.

本願の有価金属回収装置は、基材上に接合された有価金属と合金を形成し、添加金属を含有する有価金属回収剤を有価金属上に設置する前処理室と、マイクロ波に基づく磁界によって被加熱体を加熱して、有価金属と添加金属を含有する合金を形成させるマイクロ波照射室と、この合金を基材から剥がす後処理室と、これらの各室間で被処理体を搬送する搬送部材を備えている。このため、基材に接合された有価金属を効率よく回収できる。 The valuable metal recovery apparatus of the present application comprises a pretreatment chamber in which an alloy is formed with the valuable metal joined on the base material, and a valuable metal recovery agent containing additive metals is placed on the valuable metal, and a magnetic field based on microwaves is used. A microwave irradiation chamber for heating an object to be heated to form an alloy containing a valuable metal and an additive metal, a post-treatment chamber for stripping the alloy from a substrate, and transporting the object to be treated between these chambers A carrier member is provided. Therefore, the valuable metal bonded to the substrate can be efficiently recovered.

実施例1の被加熱試料の上面画像で、(a)加熱前、(b)加熱中、(c)加熱後の画像。Fig. 2 is a top view image of the heated sample of Example 1, (a) before heating, (b) during heating, and (c) after heating. 実施例1の合金の電子顕微鏡像。1 is an electron microscope image of the alloy of Example 1. FIG. 実施例1の合金、Sn、およびAgSnのそれぞれのX線回折パターン。X-ray diffraction patterns of the alloy of Example 1, Sn, and Ag 3 Sn, respectively. 実施例3の被加熱試料の上面画像で、(a)加熱前、(b)加熱中、(c)加熱後の画像。FIG. 10 is an image of the top surface of the sample to be heated in Example 3, (a) before heating, (b) during heating, and (c) after heating. 比較例1の試料複合体の上面画像で、(a)加熱前、(b)加熱中、(c)加熱後の画像。Fig. 2 is a top view image of the sample composite of Comparative Example 1, (a) before heating, (b) during heating, and (c) after heating. 実施例2の合金の電子顕微鏡像とスズおよび銀の元素マッピング。Electron micrograph of the alloy of Example 2 and elemental mapping of tin and silver. 実施形態の有価金属回収装置の側面模式図。1 is a schematic side view of a valuable metal recovery device according to an embodiment; FIG. 実施形態の前処理装置の断面模式図。BRIEF DESCRIPTION OF THE DRAWINGS The cross-sectional schematic diagram of the pretreatment apparatus of embodiment. 他の実施形態の前処理装置の断面模式図。The cross-sectional schematic diagram of the pretreatment apparatus of other embodiment. 他の実施形態の前処理装置の断面模式図。The cross-sectional schematic diagram of the pretreatment apparatus of other embodiment. 他の実施形態の前処理装置の断面模式図。The cross-sectional schematic diagram of the pretreatment apparatus of other embodiment. 実施形態のマイクロ波照射装置の断面模式図。BRIEF DESCRIPTION OF THE DRAWINGS The cross-sectional schematic diagram of the microwave irradiation apparatus of embodiment. 実施形態の後処理装置の断面模式図。FIG. 2 is a schematic cross-sectional view of the post-processing device of the embodiment; 他の実施形態の後処理装置の断面模式図。FIG. 2 is a schematic cross-sectional view of a post-processing device of another embodiment; 他の実施形態の有価金属回収装置の上面模式図。FIG. 2 is a schematic top view of a valuable metal recovery device of another embodiment.

以下、本願の有価金属回収装置および有価金属回収方法について、実施形態と実施例に基づいて説明する。重複説明は適宜省略する。図7は、本願の実施形態の有価金属回収装置10の側面を模式的に示している。有価金属回収装置10は、被処理体Pを前処理、マイクロ波照射処理、および後処理の順番で処理するための装置である。なお、被処理体Pは、処理段階に応じて、複合体C、被加熱体P1、合金化被加熱体P2、または剥離後被処理体P3と称することがある。 Hereinafter, a valuable metal recovery apparatus and a valuable metal recovery method of the present application will be described based on embodiments and examples. Redundant description will be omitted as appropriate. FIG. 7 schematically shows a side view of the valuable metal recovery device 10 of the embodiment of the present application. The valuable metal recovery apparatus 10 is an apparatus for treating the object P to be treated in order of pretreatment, microwave irradiation treatment, and posttreatment. Note that the object to be processed P may be referred to as a composite C, an object to be heated P1, an alloyed object to be heated P2, or an object to be processed P3 after peeling, depending on the stage of treatment.

有価金属回収装置10は、前処理装置12と、マイクロ波照射装置14と、後処理装置16と、搬送部材18を備えている。搬送部材18は、前処理装置12を構成する前処理室20、マイクロ波照射装置14を構成するマイクロ波照射室70、および後処理装置16を構成する後処理室90の間で、この順番に被処理体Pを搬送する。本願の有価金属回収方法は、マイクロ波照射工程と、剥離工程を備えており、例えば有価金属回収装置10を用いて実施される。 The valuable metal recovery device 10 includes a pretreatment device 12 , a microwave irradiation device 14 , a posttreatment device 16 and a conveying member 18 . The conveying member 18 is transported between the pretreatment chamber 20 constituting the pretreatment device 12, the microwave irradiation chamber 70 constituting the microwave irradiation device 14, and the posttreatment chamber 90 constituting the posttreatment device 16 in this order. The object P to be processed is transported. The valuable metal recovery method of the present application includes a microwave irradiation step and a stripping step, and is carried out using, for example, the valuable metal recovery device 10 .

図8は、基本的な構成を備える前処理装置12の断面を模式的に示している。前処理装置12は、前処理室20と、塗布部22と、タンク24と、配管26を備えている。前処理室20では、複合体Cの有価金属V上に有価金属回収剤Mを設置して被加熱体P1を得る。なお、複合体Cおよび被加熱体P1は、図8の矢印方向に搬送される(以下同様)。前処理室20は、搬送部材18によって被処理体Pが搬入されたり搬出されたりできるように、かつ有価金属回収剤Mが周囲に拡散しないように区画された中空の構造物である。なお、前処理室、または後述するマイクロ波照射室もしくは後処理室は、必ずしも構造物で区画されている必要がなく、被加熱体P1、合金化被加熱体P2、および剥離後被処理体P3が得られれば、空間の領域であってもよい。 FIG. 8 schematically shows a cross section of the pretreatment device 12 having a basic configuration. The pretreatment device 12 includes a pretreatment chamber 20 , an application section 22 , a tank 24 and a pipe 26 . In the pretreatment chamber 20, the valuable metal recovery agent M is placed on the valuable metal V of the composite C to obtain the object to be heated P1. The composite C and the object to be heated P1 are conveyed in the direction of the arrow in FIG. 8 (the same applies hereinafter). The pretreatment chamber 20 is a hollow structure partitioned so that the object P to be treated can be carried in and out by the conveying member 18 and the valuable metal recovery agent M is not diffused around. It should be noted that the pretreatment chamber, or the microwave irradiation chamber or posttreatment chamber, which will be described later, does not necessarily have to be partitioned by a structure, and the object to be heated P1, the alloyed object to be heated P2, and the object to be processed after peeling P3 can be a region of space.

複合体Cは、基材Sと、基材S上に接合された有価金属Vを備えている。「基材上に接合されている」とは、接着剤または融着剤などを介して基材上に接着または融着されている状態、基材上に融着されている状態、および物理的結合または化学的結合によって基材上に析出されている状態などを示す。基材Sとしては、太陽電池基板、プリント基板の基板部、セラミックス基板、および放熱用絶縁基板などが挙げられる。太陽電池およびプリント基板などに形成された金属配線は、金、銀、または銅などの有価金属から構成されることが多い。これらの有価金属は、基材に対する重量比率が低いこと、および基材に対して化学的に接着しているため剥離が困難であることから、積極的な回収およびリサイクルが試みられていない。 Composite C comprises a substrate S and a valuable metal V bonded onto the substrate S. "Bonded on a substrate" means the state of being bonded or fused onto the substrate via an adhesive or fusion agent, the state of being fused onto the substrate, and the state of being physically bonded to the substrate. It shows the state of being deposited on a base material by bonding or chemical bonding. Examples of the substrate S include a solar cell substrate, a substrate portion of a printed circuit board, a ceramics substrate, and an insulating substrate for heat dissipation. Metal wiring formed in solar cells, printed circuit boards, and the like is often composed of valuable metals such as gold, silver, or copper. Since these valuable metals have a low weight ratio to the base material and are chemically adhered to the base material and are difficult to peel off, active recovery and recycling have not been attempted.

さらに、これらの有価金属の融点は1000℃程度と高いので、電気炉または熱風などの伝熱、対流、または輻射による従来の加熱方式では、有価金属を加熱・溶融するのに大量のエネルギーが必要であった。本願の有価金属回収装置または有価金属回収方法によれば、マイクロ波照射を利用して有価金属を回収できるので、これらの従来の加熱方式と比べて、エネルギー使用量が抑えられる。有価金属とは、周期表の第四周期以上かつ第3~第16族の元素であり、単一の元素からなる金属または二種類以上の元素からなる合金をいう。複合体Cとしては、太陽電池、プリント基板、表面に有価金属を備えるセラミックス基板、および表面に有価金属を備える放熱用絶縁基板などが挙げられる。 Furthermore, since the melting points of these valuable metals are as high as about 1000°C, conventional heating methods using heat transfer, convection, or radiation, such as electric furnaces or hot air, require a large amount of energy to heat and melt the valuable metals. Met. According to the valuable metal recovery apparatus or the valuable metal recovery method of the present application, since the valuable metal can be recovered using microwave irradiation, the amount of energy used can be reduced compared to these conventional heating methods. Valuable metals are elements of period 4 or higher and groups 3 to 16 of the periodic table, and refer to metals composed of a single element or alloys composed of two or more elements. Examples of the composite C include a solar cell, a printed circuit board, a ceramic substrate having a valuable metal on its surface, and a heat dissipation insulating substrate having a valuable metal on its surface.

塗布部22は、下面に複数の孔が設けられており、これらの孔から複合体Cの有価金属Vに向けて有価金属回収剤Mを吐出する。有価金属回収剤Mは、有価金属Vと合金を形成する添加金属Dと、添加金属Dの有価金属との合金化を促進するフラックスFを含有する。添加金属Dは、有価金属Vと合金を形成し、かつ有価金属Vの融点より低い融点を有する金属である。 The applicator 22 has a plurality of holes on its lower surface, and discharges the valuable metal recovery agent M from these holes toward the valuable metal V of the composite C. As shown in FIG. The valuable metal recovery agent M contains an additive metal D that forms an alloy with the valuable metal V, and a flux F that promotes the alloying of the additive metal D with the valuable metal. The additive metal D is a metal that forms an alloy with the valuable metal V and has a melting point lower than that of the valuable metal V.

添加金属Dとしては、有価金属が金、銀、または銅であるときのスズ、インジウム、ビスマス、またはアルミニウムなどが挙げられる。フラックスFは、添加金属Dと有価金属Vの合金化を促進する。フラックスFとしては、酸成分、アルコールなどの有機成分、およびロジンなどの合金化促進成分などが含有される液体が挙げられる。有価金属回収剤Mは、タンク24内に蓄えられており、配管26を通じて塗布部22に供給される。 Additive metal D includes tin, indium, bismuth, or aluminum when the valuable metal is gold, silver, or copper. The flux F promotes the alloying of the additive metal D and the valuable metal V. Examples of the flux F include a liquid containing an acid component, an organic component such as alcohol, and an alloying-promoting component such as rosin. A valuable metal recovery agent M is stored in a tank 24 and supplied to the application section 22 through a pipe 26 .

図9は、本願の他の実施形態の前処理装置30の断面を模式的に示している。前処理装置30では、複合体CにフラックスFと添加金属Dを順次塗布することによって、複合体Cの有価金属(不図示)上に、添加金属DとフラックスFを有する有価金属回収剤Mを設置して被加熱体P1を得る。前処理装置30は、塗布部32,33と、受部材34,35と、搬送部材である搬送ベルト36,37,38,39と、前処理室40を備えている。塗布部32では、フラックスFを蓄え、複合体Cの有価金属に向けてフラックスFを吐出する。ふるい状の塗布部33では、添加金属Dの粉体を蓄え、複合体C上のフラックスFに向けて添加金属Dを振りかける。 FIG. 9 schematically shows a cross section of a pretreatment device 30 according to another embodiment of the present application. In the pretreatment device 30, the flux F and the additive metal D are sequentially applied to the composite C, so that the valuable metal recovery agent M having the additive metal D and the flux F is deposited on the valuable metal (not shown) of the composite C. It installs and obtains the to-be-heated body P1. The pretreatment device 30 includes coating units 32 and 33 , receiving members 34 and 35 , transfer belts 36 , 37 , 38 and 39 as transfer members, and a pretreatment chamber 40 . The application unit 32 stores the flux F and discharges the flux F toward the valuable metal of the composite C. As shown in FIG. In the sieve-like coating part 33, powder of the additive metal D is stored and the additive metal D is sprinkled toward the flux F on the composite body C. As shown in FIG.

受部材34は過剰なフラックスFを回収する。受部材35は過剰な添加金属Dを回収する。搬送ベルト36は複合体Cを搬送する。搬送ベルト37は、複合体Cと複合体Cの上面に被覆されたフラックスFを備える被処理体Pを搬送する。搬送ベルト38では、被処理体Pが搬送されながら、フラックスF上に添加金属Dが振りかかり、被加熱体P1が作製される。搬送ベルト39は、被加熱体P1を搬送しながら振動させて、過剰な添加金属Dを受部材35に落下させる。前処理室40は、複合体Cの有価金属上に有価金属回収剤Mを設置して被加熱体P1を得る領域である。 The receiving member 34 collects the excess flux F. The receiving member 35 recovers the excess additive metal D. The transport belt 36 transports the composite C. As shown in FIG. The conveying belt 37 conveys the object to be processed P including the composite C and the flux F coated on the upper surface of the composite C. As shown in FIG. In the conveying belt 38, the additive metal D is sprinkled on the flux F while the object P to be processed is conveyed, and the object to be heated P1 is produced. The conveyor belt 39 vibrates the object to be heated P<b>1 while conveying it, and causes the excessive additive metal D to drop onto the receiving member 35 . The pretreatment chamber 40 is a region where the valuable metal recovery agent M is placed on the valuable metal of the composite C to obtain the object to be heated P1.

前処理装置30では、隙間が形成されるように搬送ベルト36,37が設けられており、この隙間から過剰なフラックスFが回収・再利用できる。このため、塗布部32からフラックスFを吐出し続けることができ、複合体Cの有価金属上に均一に効率よくフラックスFを設置できる。また、前処理装置30では、隙間が形成されるように搬送ベルト38,39が設けられており、この隙間から過剰な添加金属Dが回収・再利用できる。このため、塗布部33から添加金属Dを降下させ続けることができ、複合体C上のフラックスF上に均一に効率よく添加金属Dを設置できる。 In the pretreatment device 30, conveying belts 36 and 37 are provided so as to form a gap, through which excess flux F can be recovered and reused. Therefore, the flux F can be continuously discharged from the application part 32, and the flux F can be uniformly and efficiently placed on the valuable metal of the composite C. Further, in the pretreatment device 30, the conveyor belts 38 and 39 are provided so as to form a gap, through which the excessive additive metal D can be recovered and reused. Therefore, the additive metal D can be continuously lowered from the application portion 33, and the additive metal D can be uniformly and efficiently placed on the flux F on the composite C.

図10は、本願の他の実施形態の前処理装置50の断面を模式的に示している。前処理装置50は、塗布部52と、搬送部材である搬送ベルト36,37と、前処理室54を備えている。スプレー式の塗布部52は、複合体Cの有価金属(不図示)に向けて有価金属回収剤Mを噴霧塗布する。前処理室54は、複合体Cの有価金属上に有価金属回収剤Mを設置して被加熱体P1を得る領域である。前処理装置50では、スプレー式の塗布部52によって、細かい粒状で有価金属回収剤Mが複合体Cの有価金属上に塗布される。このため、有価金属回収剤Mが有価金属と密着しやすい。また、上流の搬送ベルト36でのみ有価金属回収剤Mが塗布されるので、下流の搬送ベルト37で有価金属回収剤Mを乾燥させやすい。 FIG. 10 schematically shows a cross section of a pretreatment device 50 according to another embodiment of the present application. The pretreatment device 50 includes an application section 52 , conveyance belts 36 and 37 as conveyance members, and a pretreatment chamber 54 . The spray-type applicator 52 sprays and applies the valuable metal recovery agent M toward the valuable metal (not shown) of the composite C. The pretreatment chamber 54 is a region where the valuable metal recovery agent M is placed on the valuable metal of the composite C to obtain the object to be heated P1. In the pretreatment device 50 , the valuable metal recovery agent M is applied in the form of fine particles onto the valuable metal of the composite C by the spray-type applicator 52 . Therefore, the valuable metal recovery agent M easily adheres to the valuable metal. In addition, since the valuable metal recovery agent M is applied only on the upstream conveyor belt 36, the valuable metal recovery agent M can be easily dried on the downstream conveyor belt 37.

図11は、本願の他の実施形態の前処理装置60の断面を模式的に示している。前処理装置60は、塗布部62と、タンク63と、搬送部材である搬送ベルト36,37と、前処理室64を備えている。ローラー転写式の塗布部62では、タンク63に貯えられた有価金属回収剤Mが、複数のローラーの表面を介して、複合体Cの有価金属(不図示)上に塗布される。前処理室64は、複合体Cの有価金属上に有価金属回収剤Mを設置して被加熱体P1を得る領域である。前処理装置60では、ローラー転写式の塗布部62によって、必要量の有価金属回収剤Mが複合体Cの有価金属上に無駄なく塗布される。また、上流の搬送ベルト36でのみ有価金属回収剤Mが塗布されるので、下流の搬送ベルト37で有価金属回収剤Mを乾燥させやすい。 FIG. 11 schematically shows a cross section of a pretreatment device 60 according to another embodiment of the present application. The pretreatment device 60 includes an application section 62 , a tank 63 , transfer belts 36 and 37 as transfer members, and a pretreatment chamber 64 . In the roller transfer type application unit 62, the valuable metal recovery agent M stored in the tank 63 is applied onto the valuable metal (not shown) of the composite C via the surfaces of a plurality of rollers. The pretreatment chamber 64 is a region where the valuable metal recovery agent M is placed on the valuable metal of the composite C to obtain the object to be heated P1. In the pretreatment device 60, the required amount of the valuable metal recovery agent M is applied onto the valuable metal of the composite C by the roller transfer type coating unit 62 without waste. In addition, since the valuable metal recovery agent M is applied only on the upstream conveyor belt 36, the valuable metal recovery agent M can be easily dried on the downstream conveyor belt 37.

図12は、本願の実施形態のマイクロ波照射装置14の断面を模式的に示している。マイクロ波照射装置14としては、例えば、特開2019-140103号公報に記載されたマイクロ波加熱装置が採用できる。マイクロ波照射装置14は、マイクロ波照射室70と、マイクロ波供給装置72と、制御部73と、放射温度計74と、電磁場センサ75と、搬送部材76を備えている。マイクロ波照射室70では、被加熱体P1にマイクロ波に基づく磁界を照射し被加熱体P1を加熱して、有価金属Vと添加金属Dを含有する合金Aを形成させ、合金化被加熱体P2を得る。 FIG. 12 schematically shows a cross section of the microwave irradiation device 14 of the embodiment of the present application. As the microwave irradiation device 14, for example, a microwave heating device described in Japanese Patent Application Laid-Open No. 2019-140103 can be employed. The microwave irradiation device 14 includes a microwave irradiation chamber 70 , a microwave supply device 72 , a control section 73 , a radiation thermometer 74 , an electromagnetic field sensor 75 and a conveying member 76 . In the microwave irradiation chamber 70, the object to be heated P1 is irradiated with a magnetic field based on microwaves, and the object to be heated P1 is heated to form an alloy A containing the valuable metal V and the additive metal D to form an alloyed object to be heated. Get P2.

すなわち、マイクロ波照射装置14では、ある態様のマイクロ波照射工程が行われる。このマイクロ波照射工程では、基材S上に接合された有価金属Vに、つまり複合体Cの表面の有価金属Vに、フラックスFと、有価金属Vの融点より低い融点を有する添加金属Dとを接触させながら、マイクロ波に基づく磁界を照射し加熱して、有価金属Vと添加金属Dを含有する合金Aを形成させる。合金Aは基材S上に球状にまとまる。このため、有価金属Vは、合金Aの形で基材Sから剥離・回収しやすい。 That is, in the microwave irradiation device 14, a certain aspect of the microwave irradiation process is performed. In this microwave irradiation step, the valuable metal V bonded on the base material S, that is, the valuable metal V on the surface of the composite C, the flux F and the additive metal D having a lower melting point than the melting point of the valuable metal V are in contact with each other, a magnetic field based on microwaves is irradiated and heated to form an alloy A containing a valuable metal V and an additive metal D. Alloy A collects on the substrate S in a spherical shape. Therefore, the valuable metal V is easily peeled off and recovered from the substrate S in the form of the alloy A.

金または銀などの有価金属Vは、溶融温度が高い上、基材S上に固着している。このため、複合体Cをそのまま加熱しても、有価金属Vは基材Sから剥がれない。そこで、有価金属V上に添加金属DとフラックスFを共存させてマイクロ波を照射することにより、有価金属Vの融点低下と基材Sへの密着強度低下を促し、後述する剥離工程で有価金属Vが回収できる。 The valuable metal V such as gold or silver has a high melting temperature and is fixed on the substrate S. Therefore, even if the composite C is heated as it is, the valuable metal V is not separated from the base material S. Therefore, by coexisting the additive metal D and the flux F on the valuable metal V and irradiating microwaves, the melting point of the valuable metal V and the adhesion strength to the base material S are lowered, and the valuable metal V is removed in the peeling process described later. V can be recovered.

マイクロ波照射室70は、円筒形状を備える空胴共振器であり、マイクロ波照射空間が内部に形成されている。マイクロ波照射室70では、円筒の中心軸71で電界強度が極小で磁界強度が極大な定在波が形成される。すなわち、電界強度が極小で磁界強度が極大となるように、マイクロ波に基づく磁界を有価金属Vに照射できる。電界強度が極小であれば、被加熱体P1の好ましくない放電を抑えることができ、磁界強度が極大であれば、被加熱体P1の加熱速度を上げることができるからである。 The microwave irradiation chamber 70 is a cavity resonator having a cylindrical shape, and a microwave irradiation space is formed inside. In the microwave irradiation chamber 70, a standing wave is formed with a minimum electric field strength and a maximum magnetic field strength at the center axis 71 of the cylinder. That is, the valuable metal V can be irradiated with a magnetic field based on microwaves so that the electric field strength is minimal and the magnetic field strength is maximal. This is because if the electric field intensity is minimal, undesirable discharge of the object to be heated P1 can be suppressed, and if the magnetic field intensity is maximal, the heating rate of the object to be heated P1 can be increased.

なお、「磁界強度が極大」とは、極大値だけでなく、極大値を含むその周囲の領域の磁界強度が、それ以外の領域の磁界強度より大きいことをいう。極大値を含むその周囲の磁界強度は、例えば極大値の3/4以上である。「電界強度が極小」とは、極小値だけでなく、極小値を含むその周囲の領域の電界強度が、それ以外の領域の電界強度より小さいことをいう。極小値を含むその周囲の電界強度は、例えばマイクロ波照射室70における電界強度の最大値の1/4以下である。 In addition, "the magnetic field strength is maximum" means that the magnetic field strength of not only the maximum value, but also the magnetic field strength of the surrounding region including the maximum value is greater than the magnetic field strength of the other regions. The magnetic field strength in its surroundings, including the local maximum, is, for example, 3/4 or more of the local maximum. The term "minimum electric field strength" means that the electric field strength not only in the minimum value but also in the surrounding region including the minimum value is smaller than the electric field strength in the other regions. The surrounding electric field intensity including the minimum value is, for example, 1/4 or less of the maximum electric field intensity in the microwave irradiation chamber 70 .

マイクロ波照射工程では、有価金属Vと、添加金属DおよびフラックスFとの接触部に、TM110モードの定在波が形成されるようにマイクロ波に基づく磁界を照射することが好ましい。マイクロ波照射室70の中心軸71で磁界強度が極大となり、かつ中心軸71に沿って磁界強度が均一となり、被加熱体P1が均一に加熱できるからである。また、マイクロ波照射工程では、添加金属Dの融点以上かつ有価金属Vの融点未満の温度で加熱して、例えば添加金属の融点以上かつ500℃以下で加熱して、有価金属Vと添加金属Dを含有する合金Aを形成させることが好ましい。使用エネルギーを抑えながら、複合体Cから合金Aの形で有価金属Vが回収できるからである。 In the microwave irradiation step, it is preferable to irradiate a magnetic field based on microwaves so that a standing wave of TM 110 mode is formed at the contact portion between the valuable metal V and the additive metal D and the flux F. This is because the magnetic field intensity becomes maximum at the central axis 71 of the microwave irradiation chamber 70, and the magnetic field intensity becomes uniform along the central axis 71, so that the object to be heated P1 can be uniformly heated. Further, in the microwave irradiation step, heating is performed at a temperature equal to or higher than the melting point of the additive metal D and lower than the melting point of the valuable metal V, for example, at a temperature equal to or higher than the melting point of the additive metal and 500 ° C. or lower, and the valuable metal V and the additive metal D are heated. It is preferred to form an alloy A containing This is because the valuable metal V can be recovered in the form of the alloy A from the composite C while suppressing the energy used.

マイクロ波供給装置72は、マイクロ波発振器77と、マイクロ波増幅器78と、アイソレータ79と、インピーダンス整合器80と、アンテナ82を備えている。マイクロ波発振器77としては、マグネトロン型マイクロ波発振器または半導体固体素子を用いたマイクロ波発振器が挙げられる。マイクロ波増幅器78は、マイクロ波発振器77で発生されたマイクロ波の出力を増幅する。アイソレータ79は、マイクロ波照射室70内で発生した反射波を抑えてマイクロ波発振器77を保護する。 The microwave supply device 72 includes a microwave oscillator 77 , a microwave amplifier 78 , an isolator 79 , an impedance matcher 80 and an antenna 82 . Examples of the microwave oscillator 77 include a magnetron microwave oscillator and a microwave oscillator using a semiconductor solid state device. A microwave amplifier 78 amplifies the output of the microwave generated by the microwave oscillator 77 . The isolator 79 protects the microwave oscillator 77 by suppressing reflected waves generated in the microwave irradiation chamber 70 .

アイソレータ79によって、マイクロ波は、マイクロ波発振器77からアンテナ82への一方向にマイクロ波が供給される。インピーダンス整合器80は、マイクロ波発振器77、マイクロ波増幅器78、およびアイソレータ79とアンテナ82とのインピーダンスを整合させる。アンテナ82は、マイクロ波発振器77から印加されたマイクロ波によって磁界を発生し、マイクロ波照射室70内に磁界を導入して定在波を形成する。 Isolator 79 provides microwaves in one direction from microwave oscillator 77 to antenna 82 . Impedance matching device 80 matches the impedance of microwave oscillator 77 , microwave amplifier 78 and isolator 79 with antenna 82 . The antenna 82 generates a magnetic field by microwaves applied from the microwave oscillator 77, introduces the magnetic field into the microwave irradiation chamber 70, and forms a standing wave.

放射温度計74は、マイクロ波照射室70内の被処理体Pの温度を測定する。放射温度計74で測定した被処理体Pの温度情報は、制御部73に送信される。電磁場センサ75は、マイクロ波照射室70内の電磁場エネルギーに対応する信号を検出する。電磁場センサ75で検出した電磁場エネルギー信号は、制御部73に送信される。制御部73は、被処理体Pの温度情報とマイクロ波照射室70内の電磁場エネルギー信号に基づいて、マイクロ波発振器77でのマイクロ波周波数、およびマイクロ波増幅器78でのマイクロ波出力を調整する。 A radiation thermometer 74 measures the temperature of the object P in the microwave irradiation chamber 70 . Temperature information of the object P measured by the radiation thermometer 74 is transmitted to the control unit 73 . The electromagnetic field sensor 75 detects signals corresponding to electromagnetic field energy within the microwave irradiation chamber 70 . An electromagnetic field energy signal detected by the electromagnetic field sensor 75 is transmitted to the controller 73 . The control unit 73 adjusts the microwave frequency in the microwave oscillator 77 and the microwave output in the microwave amplifier 78 based on the temperature information of the object P to be processed and the electromagnetic field energy signal in the microwave irradiation chamber 70. .

搬送部材76は、搬送ローラー76rと搬送シート76sを備えている。搬送シート76sは、一対の搬送ローラー76r,76rによって上下から挟まれている。搬送ローラー76r,76rの回転によって、搬送シート76s上の被処理体Pを所定の方向に搬送する。なお、搬送ローラー76r,76rは、搬送シート76sの幅全体にわたって存在するのではなく、搬送シート76s上の被処理体Pが搬送ローラー76r,76rの側方を通過できるように配置されている。 The conveying member 76 includes a conveying roller 76r and a conveying sheet 76s. The conveying sheet 76s is sandwiched from above and below by a pair of conveying rollers 76r, 76r. The object to be processed P on the conveying sheet 76s is conveyed in a predetermined direction by the rotation of the conveying rollers 76r, 76r. The transport rollers 76r, 76r do not exist over the entire width of the transport sheet 76s, but are arranged so that the object P on the transport sheet 76s can pass sideways of the transport rollers 76r, 76r.

図13は、本願の実施形態の後処理装置16の断面を模式的に示している。後処理装置16は後処理室90を備えている。後処理室90では、合金化被加熱体P2から合金Aの一部以上を剥離する。すなわち、後処理装置16では、基材Sから合金Aを剥離する剥離工程が行われる。後処理装置16は、搬送部材である搬送ベルト36,37と、後処理室90と、剥離部材であるブラシロール92と、回収部材である合金受け94を備えている。ブラシロール92は、合金化被加熱体P2の表面に接触して合金化被加熱体P2から合金Aを剥離する。合金受け94は、ブラシロール92で剥離した合金Aを回収する。すなわち、合金化被加熱体P2がブラシロール92を通過すると剥離後被処理体P3となり、合金受け94で合金Aが回収される。合金Aは、公知の手法によって、有価金属Vと添加金属Dに分離される。 FIG. 13 schematically shows a cross section of the post-processing device 16 of the embodiment of the present application. The post-treatment device 16 has a post-treatment chamber 90 . In the post-treatment chamber 90, part or more of the alloy A is stripped from the alloyed body to be heated P2. That is, in the post-treatment device 16, a peeling step of peeling the alloy A from the base material S is performed. The post-treatment device 16 includes transfer belts 36 and 37 as transfer members, a post-treatment chamber 90, a brush roll 92 as a stripping member, and an alloy receiver 94 as a recovery member. The brush roll 92 comes into contact with the surface of the alloyed body to be heated P2 and strips the alloy A from the alloyed body to be heated P2. The alloy receiver 94 collects the alloy A separated by the brush roll 92 . That is, when the alloyed object to be heated P2 passes through the brush roll 92, it becomes the object to be treated P3 after peeling, and the alloy A is recovered in the alloy receiver 94. Alloy A is separated into valuable metal V and additive metal D by a known technique.

図14は、本願の他の実施形態の後処理装置96の断面を模式的に示している。後処理装置96は、搬送部材である搬送ベルト36,37と、後処理室97と、剥離部材であるスキージ98と、合金受け94を備えている。合金化被加熱体P2がスキージ98を通過すると剥離後被処理体P3となり、合金受け94で合金Aが回収される。合金Aの有価金属と添加金属の組成分析をすれば、下記の計算式から有価金属の回収率(%)が算出できる。
(剥離した合金の質量-剥離した合金中の添加金属の質量)/基材上の有価金属の質量×100
FIG. 14 schematically shows a cross section of a post-processing device 96 according to another embodiment of the present application. The post-treatment device 96 includes transfer belts 36 and 37 as transfer members, a post-treatment chamber 97 , a squeegee 98 as a stripping member, and an alloy receiver 94 . When the alloyed object to be heated P2 passes through the squeegee 98, it becomes the object to be treated P3 after peeling, and the alloy A is recovered in the alloy receiver 94. By analyzing the composition of the valuable metals and additive metals of the alloy A, the recovery rate (%) of the valuable metals can be calculated from the following formula.
(mass of exfoliated alloy - mass of additive metal in exfoliated alloy)/mass of valuable metal on substrate x 100

図15は、本願の他の実施形態の有価金属回収装置100の上面を模式的に示している。有価金属回収装置10は連続式の装置であったが、本実施形態の有価金属回収装置100は枚様式の装置である。すなわち、有価金属回収装置100は、前処理室20を備える前処理装置12と、マイクロ波照射室70を備えるマイクロ波照射装置14と、後処理室90を備える後処理装置16と、搬送部材である搬送ベルト102,104,106と、バッファー108を備えている。 FIG. 15 schematically shows the upper surface of a valuable metal recovery device 100 according to another embodiment of the present application. The valuable metal recovery device 10 was a continuous device, but the valuable metal recovery device 100 of this embodiment is a disc type device. That is, the valuable metal recovery apparatus 100 includes a pretreatment device 12 having a pretreatment chamber 20, a microwave irradiation device 14 having a microwave irradiation chamber 70, a posttreatment device 16 having a posttreatment chamber 90, and a conveying member. It has certain transport belts 102 , 104 , 106 and a buffer 108 .

被処理体Pは、搬送ベルト102によってバッファー108から前処理室20に搬送され、前処理室20で被加熱体P1となってバッファー108に戻され、搬送ベルト104によってバッファー108からマイクロ波照射室70に搬送され、マイクロ波照射室70で合金化被加熱体P2となってバッファー108に戻され、搬送ベルト106によってバッファー108から後処理室90に搬送され、後処理室90で合金Aが回収され剥離後被処理体P3となってバッファー108に戻される。すなわち、搬送ベルト102,104,106によって、前処理室20、マイクロ波照射室70、および後処理室90の間で、この順番に被処理体Pが搬送される。 The object P to be processed is transported from the buffer 108 to the pretreatment chamber 20 by the transport belt 102, becomes the object to be heated P1 in the pretreatment chamber 20, is returned to the buffer 108, and is transported from the buffer 108 by the transport belt 104 to the microwave irradiation chamber. 70, the material to be alloyed P2 is returned to the buffer 108 in the microwave irradiation chamber 70, and is transported from the buffer 108 to the post-treatment chamber 90 by the transfer belt 106, where the alloy A is recovered in the post-treatment chamber 90. After being peeled off, it is returned to the buffer 108 as the object to be processed P3. That is, the object to be processed P is transported in this order between the pretreatment chamber 20, the microwave irradiation chamber 70, and the posttreatment chamber 90 by the transfer belts 102, 104, and 106. FIG.

実施例1
特に断らない限り、原材料、各種機器、各種装置、および計算式等は、各実施例で同じものを使用した。まず、基材であるシリコン基板(高純度シリコンウェハー、アズワン)から、10mm×10mmの正方形板状の試料基板を切り出した。この試料基板の表面全体に、厚さ60μmで銀ペースト(REXALPHA RAFS074、東洋インキ)をキャスト法により塗布した。電気オーブンを用いて、100℃で0.5時間加熱し、さらに400℃で3時間加熱して、試料基板上の中央に、有価金属である銀薄膜が約5mm×約10mmの長方形状で接合された試料複合体を得た。また、添加金属であるスズ粉体(和光純薬):フラックス1(TEL30、トラスコ)が質量比で5:2となるように混合し、自公転撹拌機(あわとり練太郎、シンキー)を用いて、2000rpmで1分間混錬してスズペーストを得た。試料複合体の銀薄膜表面全体にこのスズペーストを塗布して被加熱試料を得た。
Example 1
Unless otherwise specified, the same raw materials, various equipments, various devices, calculation formulas, etc. were used in each example. First, a 10 mm×10 mm square sample substrate was cut out from a silicon substrate (high-purity silicon wafer, AS ONE) as a base material. A silver paste (REXALPHA RAFS074, Toyo Ink) was applied to the entire surface of the sample substrate by casting to a thickness of 60 μm. Using an electric oven, heat at 100°C for 0.5 hours, then heat at 400°C for 3 hours, and bond a silver thin film, which is a valuable metal, to the center of the sample substrate in a rectangular shape of about 5 mm x about 10 mm. A sample composite was obtained. In addition, tin powder (Wako Pure Chemical), which is an additive metal, and flux 1 (TEL30, Trusco) are mixed so that the mass ratio is 5: 2, and a rotation and revolution stirrer (Awatori Mixer, Thinky) is used. and kneaded at 2000 rpm for 1 minute to obtain a tin paste. The tin paste was applied to the entire silver thin film surface of the sample composite to obtain a heated sample.

マイクロ波照射装置として、特開2019-140103号公報に記載されたマイクロ波加熱装置を使用した。このマイクロ波加熱装置は、マイクロ波発振器(最大出力200W、凌和電子)と、試料の載置台としてガラスクロスが配置されたTM110空胴共振器(凌和電子)と、USBカメラ(L-851、ホーザン)およびレンズ(L-870、ホーザン)を有する観察カメラと、温度計測用サーモカメラ(PI400i、Optris)を備えている。 As a microwave irradiation device, a microwave heating device described in JP-A-2019-140103 was used. This microwave heating device consists of a microwave oscillator (maximum output 200 W, Ryowa Denshi), a TM 110 cavity resonator (Ryowa Denshi) in which a glass cloth is arranged as a sample mounting table, and a USB camera (L- 851, Hozan) and a lens (L-870, Hozan), and a thermo camera for temperature measurement (PI400i, Optris).

TM110空胴共振器内のガラスクロス上に被加熱試料を載置した。2.45GHzのマイクロ波を100WでTM110空胴共振器内に照射し、17秒後に被加熱試料の表面温度が364℃に達したことを確認した。このとき、スズが融解し銀薄膜と合金を形成した。なお、被加熱試料の表面温度は、温度解析ソフト(PIX-Connect、Optris)を用いて、シリコン基板の放射率0.73に基づいて熱画像から算出した。加熱前、加熱中(マイクロ波磁界照射開始から10秒後)、および加熱後のそれぞれの被加熱試料の上面画像を、図1(a)から図1(c)に示す。 The heated sample was placed on the glass cloth inside the TM 110 cavity. A microwave of 2.45 GHz was irradiated into the TM 110 cavity at 100 W, and it was confirmed that the surface temperature of the heated sample reached 364° C. after 17 seconds. At this time, tin melted and formed an alloy with the silver thin film. The surface temperature of the sample to be heated was calculated from a thermal image using temperature analysis software (PIX-Connect, Optris) based on the emissivity of the silicon substrate of 0.73. Top images of the heated sample before heating, during heating (10 seconds after the start of microwave magnetic field irradiation), and after heating are shown in FIGS. 1(a) to 1(c).

その後、被加熱試料をTM110空胴共振器から取り出し、放冷した後、ピンセットを用いて、試料基板からこの合金を剥離した。この合金の電子顕微鏡画像を図2に示す。合金内の組織に金属界面は観察されず、均一な合金相が形成されていることを確認した。また、X線回折装置(SmartLab、リガク)で分析した結果、この合金はSnとAgSnの複合物であることを確認した。この合金、Sn(PDF No.00-004-0673)、およびAgSn(PDF No.01-084-8210)のそれぞれのX線回折パターンを図3に示す。また、SEM-EDS(S-4800、日立)を用いてこの合金の組成分析をした結果、物質量比(いわゆるモル比)でスズ:銀が91.34:8.66であった。この数値に基づいて銀の回収率を算出した。実施例1の銀の回収率は96%であった。 After that, the heated sample was removed from the TM 110 cavity resonator, allowed to cool, and then the alloy was peeled off from the sample substrate using tweezers. An electron microscope image of this alloy is shown in FIG. No metal interface was observed in the structure within the alloy, and it was confirmed that a uniform alloy phase was formed. Further, as a result of analysis with an X-ray diffractometer (SmartLab, Rigaku), it was confirmed that this alloy was a composite of Sn and Ag 3 Sn. The respective X-ray diffraction patterns of this alloy, Sn (PDF No. 00-004-0673), and Ag 3 Sn (PDF No. 01-084-8210) are shown in FIG. Further, composition analysis of this alloy was carried out using SEM-EDS (S-4800, Hitachi), and as a result, tin:silver was 91.34:8.66 in terms of the substance amount ratio (so-called molar ratio). Based on this numerical value, the recovery rate of silver was calculated. The recovery of silver in Example 1 was 96%.

実施例2
フラックス1をフラックス2(BS-850、太洋電気産業)に変更した点を除いて、実施例1と同様にして被加熱試料を得た。その後、実施例1と同様にして、マイクロ波磁界照射で被加熱試料を加熱した。マイクロ波磁界照射開始から28秒後に被加熱試料の表面温度が402℃に達し、融解したスズと銀薄膜が合金を形成したことを確認した。実施例1と同様にして、合金の剥離、合金の組成分析、および銀の回収率の算出を行った。SEM-EDSを用いたこの合金の元素マッピングを図6に示す。また、実施例2の銀の回収率は86%であった。
Example 2
A heated sample was obtained in the same manner as in Example 1, except that Flux 1 was changed to Flux 2 (BS-850, Taiyo Denki Sangyo). Thereafter, in the same manner as in Example 1, the sample to be heated was heated by microwave magnetic field irradiation. It was confirmed that the surface temperature of the sample to be heated reached 402° C. 28 seconds after the start of microwave magnetic field irradiation, and that the melted tin and silver thin films formed an alloy. In the same manner as in Example 1, exfoliation of the alloy, analysis of the composition of the alloy, and calculation of the silver recovery rate were performed. Elemental mapping of this alloy using SEM-EDS is shown in FIG. In addition, the recovery rate of silver in Example 2 was 86%.

実施例3
実施例1と同様にして試料複合体を得た。また、ハンマーでスズ粉体を延展して厚さ300μmのスズ箔を得た。このスズ箔の片面にフラックス1を塗布した。塗布したフラックス1を介して、この試料複合体の銀薄膜表面全体にこのスズ箔を設置して被加熱試料を得た。その後、実施例1と同様にして、マイクロ波磁界照射で被加熱試料を加熱した。マイクロ波磁界照射開始から15秒後に被加熱試料の表面温度が500℃に達し、融解したスズと銀薄膜が合金を形成したことを確認した。加熱前、加熱中(マイクロ波磁界照射開始から7秒後)、および加熱後のそれぞれの被加熱試料の上面画像を、図4(a)から図4(c)に示す。また、実施例1と同様にして、合金の剥離、合金の組成分析、および銀の回収率の算出を行った。実施例3の銀の回収率は89%であった。
Example 3
A sample composite was obtained in the same manner as in Example 1. Further, a tin foil having a thickness of 300 μm was obtained by spreading the tin powder with a hammer. Flux 1 was applied to one side of this tin foil. A heated sample was obtained by placing this tin foil over the entire surface of the silver thin film of this sample composite through the applied Flux 1. Thereafter, in the same manner as in Example 1, the sample to be heated was heated by microwave magnetic field irradiation. It was confirmed that the surface temperature of the sample to be heated reached 500° C. 15 seconds after the start of microwave magnetic field irradiation, and that the melted tin and silver thin films formed an alloy. FIGS. 4(a) to 4(c) show top images of the heated sample before heating, during heating (7 seconds after the start of microwave magnetic field irradiation), and after heating. In addition, in the same manner as in Example 1, the exfoliation of the alloy, the composition analysis of the alloy, and the calculation of the silver recovery rate were performed. The recovery of silver in Example 3 was 89%.

実施例4
マイクロ波を150Wで照射した点を除いて、実施例1と同様にして被加熱試料を加熱した。マイクロ波磁界照射開始から13秒後に被加熱試料の表面温度が375℃に達し、融解したスズと銀薄膜が合金を形成したことを確認した。実施例1と同様にして、合金の剥離、合金の組成分析、および銀の回収率の算出を行った。実施例4の銀の回収率は85%であった。
Example 4
The sample to be heated was heated in the same manner as in Example 1, except that the microwave was irradiated at 150 W. It was confirmed that the surface temperature of the sample to be heated reached 375° C. 13 seconds after the start of the microwave magnetic field irradiation, and that the melted tin and silver thin films formed an alloy. In the same manner as in Example 1, exfoliation of the alloy, analysis of the composition of the alloy, and calculation of the silver recovery rate were performed. The recovery of silver in Example 4 was 85%.

実施例5
実施例1と同様にして試料複合体を得た。また、ハンマーでインジウム粉体(ケニス)を延展して厚さ400μmのインジウム箔を得た。このインジウム箔の片面にフラックス1を塗布した。塗布したフラックス1を介して、この試料複合体の銀薄膜表面全体にこのインジウム箔を設置して被加熱試料を得た。その後、実施例4と同様にして、マイクロ波磁界照射で被加熱試料を加熱した。マイクロ波磁界照射開始から14秒後に被加熱試料の表面温度が458℃に達し、融解したインジウムと銀薄膜が合金を形成したことを確認した。実施例1と同様にして、合金の剥離、合金の組成分析、および銀の回収率の算出を行った。実施例5の銀の回収率は74%であった。
Example 5
A sample composite was obtained in the same manner as in Example 1. Further, the indium powder (Kennis) was spread with a hammer to obtain an indium foil having a thickness of 400 μm. Flux 1 was applied to one side of this indium foil. A heated sample was obtained by placing this indium foil over the entire surface of the silver thin film of this sample composite through the applied Flux 1. Thereafter, in the same manner as in Example 4, the sample to be heated was heated by microwave magnetic field irradiation. It was confirmed that the surface temperature of the sample to be heated reached 458° C. 14 seconds after the start of microwave magnetic field irradiation, and that the melted indium and silver thin film formed an alloy. In the same manner as in Example 1, exfoliation of the alloy, analysis of the composition of the alloy, and calculation of the silver recovery rate were performed. The recovery of silver in Example 5 was 74%.

実施例6
実施例1と同様にして試料複合体を得た。また、ハンマーでビスマス(ケニス)を粉砕してビスマス粉体を得た。この試料複合体の銀薄膜表面全体にフラックス1を塗布し、このビスマス粉体を散布して被加熱試料を得た。その後、実施例4と同様にして、マイクロ波磁界照射で被加熱試料を加熱した。マイクロ波磁界照射開始から13秒後に被加熱試料の表面温度が461℃に達し、融解したビスマスと銀薄膜が合金を形成したことを確認した。実施例1と同様にして、合金の剥離、合金の組成分析、および銀の回収率の算出を行った。実施例6の銀の回収率は74%であった。
Example 6
A sample composite was obtained in the same manner as in Example 1. Further, bismuth (Kennis) was pulverized with a hammer to obtain bismuth powder. Flux 1 was applied to the entire surface of the silver thin film of this sample composite, and this bismuth powder was dispersed to obtain a heated sample. Thereafter, in the same manner as in Example 4, the sample to be heated was heated by microwave magnetic field irradiation. It was confirmed that the surface temperature of the sample to be heated reached 461° C. 13 seconds after the start of the microwave magnetic field irradiation, and that the melted bismuth and the silver thin film formed an alloy. In the same manner as in Example 1, exfoliation of the alloy, analysis of the composition of the alloy, and calculation of the silver recovery rate were performed. The recovery of silver in Example 6 was 74%.

比較例1
実施例1と同様にして試料複合体を得た。実施例1と同様にして、マイクロ波磁界照射でこの試料複合体を加熱した。マイクロ波磁界照射開始から79秒後に試料複合体の表面温度が791℃に達したことを確認した。しかし、銀薄膜は溶融せず、シリコン基板から剥離できなかった。加熱前、加熱中(マイクロ波磁界照射開始から90秒後)、および加熱後のそれぞれの被加熱試料の上面画像を、図5(a)から図5(c)に示す。銀薄膜の溶融が確認できなかった。また、シリコン基板から銀薄膜の剥離ができなかった。すなわち、銀と合金を形成する添加金属がない状態では、試料複合体上の銀が回収できなかった。
Comparative example 1
A sample composite was obtained in the same manner as in Example 1. As in Example 1, this sample composite was heated by microwave magnetic field irradiation. It was confirmed that the surface temperature of the sample composite reached 791° C. 79 seconds after the start of microwave magnetic field irradiation. However, the thin silver film did not melt and could not be peeled off from the silicon substrate. Top surface images of the heated sample before heating, during heating (90 seconds after the start of microwave magnetic field irradiation), and after heating are shown in FIGS. 5(a) to 5(c). Melting of the silver thin film could not be confirmed. Also, the silver thin film could not be peeled off from the silicon substrate. In other words, the silver on the sample composite could not be recovered in the absence of the additive metal that forms an alloy with silver.

比較例2
実施例3と同様にして試料複合体とスズ箔を得た。この試料複合体の銀薄膜表面全体にこのスズ箔を設置して被加熱試料を得た。実施例1と同様にして、マイクロ波磁界照射でこの被加熱試料を加熱した。マイクロ波磁界照射開始から70秒後に被加熱試料の表面温度が755℃に達したことを確認した。しかし、スズは融解せず、スズと銀薄膜の合金化は確認できなかった。また、シリコン基板から銀薄膜の剥離ができなかった。すなわち、有価金属である銀と添加金属であるスズとの合金化を促進するフラックスがない状態では、試料複合体上の銀が回収できなかった。
Comparative example 2
A sample composite and a tin foil were obtained in the same manner as in Example 3. A heated sample was obtained by placing this tin foil over the entire surface of the silver thin film of this sample composite. In the same manner as in Example 1, this sample to be heated was heated by microwave magnetic field irradiation. It was confirmed that the surface temperature of the sample to be heated reached 755° C. 70 seconds after the start of microwave magnetic field irradiation. However, tin did not melt, and alloying of tin and silver thin film could not be confirmed. Also, the silver thin film could not be peeled off from the silicon substrate. In other words, the silver on the sample composite could not be recovered in the absence of the flux that promotes the alloying of silver, which is a valuable metal, and tin, which is an additive metal.

10,100 有価金属回収装置
12,30,50,60 前処理装置
14 マイクロ波照射装置
16,96 後処理装置
18 搬送部材
20,40,54,64 前処理室
22,32,33,52,62 塗布部
24,63 タンク
26 配管
34,35 受部材
36,37,38,39,102,104,106 搬送ベルト
70 マイクロ波照射室
71 中心軸
72 マイクロ波供給装置
73 制御部
74 放射温度計
75 電磁場センサ
76 搬送部材
76s 搬送シート
76r 搬送ローラー
77 マイクロ波発振器
78 マイクロ波増幅器
79 アイソレータ
80 インピーダンス整合器
82 アンテナ
90,97 後処理室
92 ブラシロール
94 合金受け
98 スキージ
108 バッファー
P 被処理体
S 基材
V 有価金属
C 複合体
D 添加金属
F フラックス
M 有価金属回収剤
P1 被加熱体
A 合金
P2 合金化被加熱体
P3 剥離後被処理体
REFERENCE SIGNS LIST 10, 100 Valuable metal recovery device 12, 30, 50, 60 Pretreatment device 14 Microwave irradiation device 16, 96 Post-treatment device 18 Conveying member 20, 40, 54, 64 Pretreatment chamber 22, 32, 33, 52, 62 Applicator 24, 63 Tank 26 Piping 34, 35 Receiving member 36, 37, 38, 39, 102, 104, 106 Conveyor belt 70 Microwave irradiation chamber 71 Central shaft 72 Microwave supply device 73 Control unit 74 Radiation thermometer 75 Electromagnetic field Sensor 76 Conveying member 76s Conveying sheet 76r Conveying roller 77 Microwave oscillator 78 Microwave amplifier 79 Isolator 80 Impedance matching device 82 Antenna 90, 97 Post-processing chamber 92 Brush roll 94 Alloy receiver 98 Squeegee 108 Buffer P Object to be processed S Base material V Valuable metal C Composite D Added metal F Flux M Valuable metal recovery agent P1 Object to be heated A Alloy P2 Alloyed object to be heated P3 Object to be treated after peeling

Claims (8)

基材上に接合された有価金属に、前記有価金属と合金を形成し、かつ前記有価金属の融点より低い融点を有する添加金属と、前記添加金属の前記有価金属との合金化を促進するフラックスとを接触させながらマイクロ波に基づく磁界を照射し加熱して、前記有価金属と前記添加金属を含有する合金を形成させるマイクロ波照射工程と、
前記基材から前記合金を剥離する剥離工程と、
を有する有価金属回収方法。
A flux that forms an alloy with the valuable metal bonded on the substrate and promotes the alloying of the additive metal with the valuable metal and the additive metal that has a melting point lower than the melting point of the valuable metal. A microwave irradiation step of irradiating and heating a magnetic field based on microwaves while contacting with to form an alloy containing the valuable metal and the additive metal;
a peeling step of peeling the alloy from the substrate;
Valuable metal recovery method having.
請求項1において、
前記マイクロ波照射工程では、電界強度が極小で磁界強度が極大となるように前記有価金属に前記マイクロ波に基づく磁界を照射する有価金属回収方法。
In claim 1,
In the microwave irradiation step, the valuable metal recovery method includes irradiating the valuable metal with a magnetic field based on the microwave so that the electric field intensity is minimal and the magnetic field intensity is maximal.
請求項1または2において、
前記マイクロ波照射工程では、前記有価金属と前記添加金属の接触部に、TM110モードの定在波が形成されるように前記マイクロ波に基づく磁界を照射する有価金属回収方法。
In claim 1 or 2,
In the microwave irradiation step, a magnetic field based on the microwave is applied to the contact portion between the valuable metal and the additive metal so that a standing wave of TM 110 mode is formed.
請求項1から3のいずれかにおいて、
前記マイクロ波照射工程では、前記添加金属の融点以上かつ前記有価金属の融点未満の温度で加熱して、前記有価金属と前記添加金属を含有する合金を形成させる有価金属回収方法。
In any one of claims 1 to 3,
In the microwave irradiation step, the valuable metal recovery method includes heating at a temperature equal to or higher than the melting point of the additive metal and lower than the melting point of the valuable metal to form an alloy containing the valuable metal and the additive metal.
請求項4において、
前記マイクロ波照射工程では、前記添加金属の融点以上かつ500℃以下で加熱して、前記有価金属と前記添加金属を含有する合金を形成させる有価金属回収方法。
In claim 4,
In the microwave irradiation step, the valuable metal recovery method includes heating the additive metal at a melting point or higher and 500° C. or lower to form an alloy containing the valuable metal and the additive metal.
請求項1から5のいずれかにおいて、
前記有価金属が銀であり、前記添加金属がスズ、インジウム、およびビスマスの少なくとも一種である有価金属回収方法。
In any one of claims 1 to 5,
A valuable metal recovery method, wherein the valuable metal is silver and the additive metal is at least one of tin, indium and bismuth.
基材と前記基材上に接合された有価金属とを有する複合体の前記有価金属上に、前記有価金属と合金を形成する添加金属と前記添加金属の前記有価金属との合金化を促進するフラックスとを含有する有価金属回収剤を設置し、被加熱体を得る前処理室を備える前処理装置と、
前記被加熱体にマイクロ波に基づく磁界を照射し前記被加熱体を加熱して、前記有価金属と前記添加金属を含有する合金を形成させ、合金化被加熱体を得るマイクロ波照射室を備えるマイクロ波照射装置と、
前記合金化被加熱体から前記合金の一部以上を剥離する後処理室を備える後処理装置と、
前記前処理室、前記マイクロ波照射室、および前記後処理室の間で、この順番に被処理体を搬送する搬送部材と、
を有する有価金属回収装置。
facilitating the alloying of an additive metal that forms an alloy with said valuable metal and said additive metal with said valuable metal on said valuable metal of a composite having a substrate and said valuable metal bonded onto said substrate; a pretreatment device having a pretreatment chamber in which a valuable metal recovery agent containing flux is installed to obtain an object to be heated;
A microwave irradiation chamber for irradiating the object to be heated with a magnetic field based on microwaves to heat the object to form an alloy containing the valuable metal and the additive metal to obtain an alloyed object to be heated. a microwave irradiation device;
a post-treatment device comprising a post-treatment chamber for stripping part or more of the alloy from the alloyed body to be heated;
a conveying member that conveys an object to be processed in this order between the pretreatment chamber, the microwave irradiation chamber, and the posttreatment chamber;
Valuable metal recovery equipment with.
請求項7において、
前記後処理装置が、前記合金化被加熱体の表面に接触して前記合金化被加熱体から前記合金を剥離する剥離部材と、剥離した前記合金を回収する回収部材とを備える有価金属回収装置。
In claim 7,
A valuable metal recovery device, wherein the post-treatment device includes a stripping member that contacts the surface of the alloyed body to be heated and strips the alloy from the alloyed body to be heated, and a recovery member that recovers the stripped alloy. .
JP2021177226A 2021-10-29 2021-10-29 Valuable metal recovery method and valuable metal recovery device Pending JP2023066568A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2021177226A JP2023066568A (en) 2021-10-29 2021-10-29 Valuable metal recovery method and valuable metal recovery device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2021177226A JP2023066568A (en) 2021-10-29 2021-10-29 Valuable metal recovery method and valuable metal recovery device

Publications (1)

Publication Number Publication Date
JP2023066568A true JP2023066568A (en) 2023-05-16

Family

ID=86326615

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2021177226A Pending JP2023066568A (en) 2021-10-29 2021-10-29 Valuable metal recovery method and valuable metal recovery device

Country Status (1)

Country Link
JP (1) JP2023066568A (en)

Similar Documents

Publication Publication Date Title
KR101900500B1 (en) Conductive substrate
JP5691129B2 (en) Polyimide film, manufacturing method thereof, polyimide metal laminate and circuit board
EP0133201B1 (en) Metallization of ceramics
CN104737629A (en) Resistance welding pretreatment process and preparation process of high-frequency PCB
EP3637964A1 (en) Ceramic circuit substrate
JP2005230830A (en) Soldering method
Li et al. Conductive line preparation on resin surfaces by laser micro-cladding conductive pastes
JP2023066568A (en) Valuable metal recovery method and valuable metal recovery device
CN110843272B (en) Ceramic copper-clad plate and preparation process and application thereof
CN102762037B (en) A kind of ceramic circuit board and manufacture method thereof
RU2687598C1 (en) Metallization method of ceramics for soldering
EP0180091B1 (en) Method of selectively depositing metal layers on a substrate
JP3422495B2 (en) Manufacturing method of ceramic DBC substrate
CA2502140A1 (en) Method and device for coating printed boards with solder stop lacquers and galvanoresists that can be laser-structured and thermally hardened
JP2021041637A (en) Copper-clad laminate and method for producing copper-clad laminate
KR102659693B1 (en) Manufacturing Method of Roll-to-roll Flexible Printed Circuit Board including Inkjet Printing Process
JP2003218516A (en) Manufacturing method for wiring board
JP3924479B2 (en) Manufacturing method of ceramic circuit board
JP4639975B2 (en) Manufacturing method of three-dimensional circuit board
WO2005125290A1 (en) A method for processing an electrically conductive pattern
JP5645053B2 (en) Metal copper film manufacturing method and metal copper pattern
JP2004214419A (en) Method for forming conductive circuit
JP2004022963A (en) Method for connecting part and method and apparatus for mounting part using the same
KR101404681B1 (en) Flexible PCB manufacturing method using high temperature heat treatment and the Flexible PCB thereof
RU2219145C1 (en) Method for metallic coating of ceramics under soldering