JP2023064884A - Hot water storage type hot water supply device - Google Patents

Hot water storage type hot water supply device Download PDF

Info

Publication number
JP2023064884A
JP2023064884A JP2021175310A JP2021175310A JP2023064884A JP 2023064884 A JP2023064884 A JP 2023064884A JP 2021175310 A JP2021175310 A JP 2021175310A JP 2021175310 A JP2021175310 A JP 2021175310A JP 2023064884 A JP2023064884 A JP 2023064884A
Authority
JP
Japan
Prior art keywords
hot water
refrigerant
heat exchanger
water storage
valve
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2021175310A
Other languages
Japanese (ja)
Inventor
直也 竹田
Naoya Takeda
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2021175310A priority Critical patent/JP2023064884A/en
Publication of JP2023064884A publication Critical patent/JP2023064884A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Details Of Fluid Heaters (AREA)
  • Heat-Pump Type And Storage Water Heaters (AREA)

Abstract

To provide a hot water storage type hot water supply device capable of suppressing adverse influences caused by an excessive coolant in a case where an incoming water temperature rises, while avoiding additional installation of an apparatus.SOLUTION: A hot water storage type hot water supply device comprises: an air heat exchanger including a plurality of coolant passages; an inlet-side coolant valve provided at an inlet side of a partial coolant passage in the plurality of coolant passages of the air heat exchanger; an outlet-side coolant valve provided at an outlet side of the partial coolant passage; and control means for implementing hot water storage operation. The hot water storage type hot water supply device is capable of implementing first hot water storage operation in which the inlet-side coolant valve and the outlet-side coolant valve are opened and a coolant flows into the plurality of coolant passages of the air heat exchanger, and second hot water storage operation in which the inlet-side coolant valve and the outlet-side coolant valve are closed in a state where the coolant is encapsulated in the partial coolant passage of the air heat exchanger, and the coolant flows into the other coolant passages other than the partial coolant passage in the plurality of coolant passages of the air heat exchanger.SELECTED DRAWING: Figure 1

Description

本開示は、貯湯式給湯装置に関する。 The present disclosure relates to a hot water storage type hot water supply apparatus.

下記特許文献1の図2にヒートポンプ給湯装置が開示されている。以下、特許文献1における符号を括弧内に記す。このヒートポンプ給湯装置では、圧縮機(31)と主給湯用熱交換器(32)との間の配管は分岐して、開閉弁(50)、外気と熱交換する補助熱交換器(51)、副絞り装置(52)を順に介して、蒸発器(34)と圧縮機(31)の間の配管と接続する副回路を構成している。主給湯用熱交換器(32)に流入する入水温度を検知する入水温度センサ(53)で検知した入水温度が制御装置(54)にあらかじめ設定してある温度よりも上昇した場合には、開閉弁(50)を開放する方向に動作させる。こうすることにより、圧縮機(31)より吐出した高温高圧の冷媒の一部は、開閉弁(50)を通り補助熱交換器(51)に流入する。開閉弁(50)を開放する方向に動作させることにより、圧縮機(31)より吐出した高温高圧の冷媒の一部が、開閉弁(50)を通り補助熱交換器(51)に流入して冷媒温度を下げ、そこにおける冷媒量を多く保有することができるため、主回路に存在する冷媒量が減少して圧縮機(31)の吐出圧力、吐出温度を低減することができる。 A heat pump water heater is disclosed in FIG. 2 of Patent Document 1 listed below. Reference numerals in Patent Document 1 are shown in parentheses below. In this heat pump water heater, the piping between the compressor (31) and the main hot water supply heat exchanger (32) is branched to include an on-off valve (50), an auxiliary heat exchanger (51) that exchanges heat with outside air, A sub-circuit is connected to the piping between the evaporator (34) and the compressor (31) through the sub-throttling device (52) in order. When the temperature of incoming water detected by the incoming water temperature sensor (53) for detecting the temperature of incoming water flowing into the heat exchanger (32) for main hot water supply rises above the temperature preset in the control device (54), the opening/closing is performed. Operate the valve (50) in the direction of opening. As a result, part of the high-temperature, high-pressure refrigerant discharged from the compressor (31) flows through the on-off valve (50) into the auxiliary heat exchanger (51). By operating the on-off valve (50) in the direction of opening, part of the high-temperature, high-pressure refrigerant discharged from the compressor (31) flows through the on-off valve (50) into the auxiliary heat exchanger (51). Since the refrigerant temperature is lowered and a large amount of refrigerant can be retained therein, the amount of refrigerant existing in the main circuit is reduced, and the discharge pressure and discharge temperature of the compressor (31) can be reduced.

特開2005-300057号公報JP 2005-300057 A

特許文献1の発明では、副回路の冷媒配管と、開閉弁(50)と、補助熱交換器(51)と、副絞り装置(52)とを追加で設置することが必要になるので、製造コストが大きく上昇しやすい。また、機器の追加設置により、装置のサイズが増大しやすい。 In the invention of Patent Document 1, it is necessary to additionally install a refrigerant pipe of the sub circuit, an on-off valve (50), an auxiliary heat exchanger (51), and a sub expansion device (52). Costs are likely to rise significantly. In addition, the additional installation of equipment tends to increase the size of the apparatus.

本開示は、上述のような課題を解決するためになされたもので、機器の追加設置を回避しつつ、入水温度上昇時の余剰冷媒による悪影響を抑制することのできる貯湯式給湯装置を提供することを目的とする。 The present disclosure has been made to solve the above-described problems, and provides a hot water storage type hot water supply apparatus that can suppress the adverse effects of excess refrigerant when the temperature of incoming water rises while avoiding the installation of additional equipment. for the purpose.

本開示に係る貯湯式給湯装置は、貯湯タンクと、冷媒を圧縮する圧縮機と、水と、圧縮機により圧縮された冷媒との間で熱を交換する水熱交換器と、水熱交換器を通過した冷媒を減圧する減圧器と、複数の冷媒通路を有し、空気と、減圧器により減圧された冷媒との間で熱を交換する空気熱交換器と、空気熱交換器の複数の冷媒通路のうちの一部の冷媒通路の入口側に設けられた入口側冷媒弁と、一部の冷媒通路の出口側に設けられた出口側冷媒弁と、貯湯タンクから流出した水を水熱交換器に流入させ、水熱交換器により加熱された湯を貯湯タンクに流入させる貯湯運転を実施する制御手段と、を備え、入口側冷媒弁及び出口側冷媒弁が開かれ、空気熱交換器の複数の冷媒通路に冷媒が流れる第一貯湯運転と、空気熱交換器の一部の冷媒通路内に冷媒が閉じ込められた状態で入口側冷媒弁及び出口側冷媒弁が閉じられ、空気熱交換器の複数の冷媒通路のうちの一部の冷媒通路以外の冷媒通路に冷媒が流れる第二貯湯運転と、を実施可能であるものである。 A hot water storage type hot water supply apparatus according to the present disclosure includes a hot water storage tank, a compressor that compresses refrigerant, a water heat exchanger that exchanges heat between water and the refrigerant compressed by the compressor, and a water heat exchanger. an air heat exchanger having a plurality of refrigerant passages and exchanging heat between the air and the refrigerant decompressed by the decompressor; and a plurality of air heat exchangers An inlet-side refrigerant valve provided on the inlet side of some of the refrigerant passages, an outlet-side refrigerant valve provided on the outlet side of some of the refrigerant passages, and water heating the water flowing out of the hot water storage tank. and a control means for performing a hot water storage operation in which the hot water heated by the water heat exchanger flows into the hot water storage tank, the inlet side refrigerant valve and the outlet side refrigerant valve are opened, and the air heat exchanger The first hot water storage operation in which the refrigerant flows through the plurality of refrigerant passages, and the inlet side refrigerant valve and the outlet side refrigerant valve are closed with the refrigerant trapped in a part of the refrigerant passage of the air heat exchanger, and the air heat is exchanged. a second hot water storage operation in which the refrigerant flows through refrigerant passages other than some of the plurality of refrigerant passages of the device.

本開示によれば、機器の追加設置を回避しつつ、入水温度上昇時の余剰冷媒による悪影響を抑制することのできる貯湯式給湯装置を提供することが可能となる。 Advantageous Effects of Invention According to the present disclosure, it is possible to provide a hot water storage type hot water supply apparatus capable of suppressing the adverse effects of excess refrigerant when the temperature of incoming water rises while avoiding the installation of additional equipment.

実施の形態1による貯湯式給湯装置を示す図である。1 is a diagram showing a hot water storage type hot water supply apparatus according to Embodiment 1. FIG. 実施の形態1による貯湯式給湯装置が備える空気熱交換器の他の例を示す斜視図である。4 is a perspective view showing another example of the air heat exchanger included in the hot water storage type hot water supply apparatus according to Embodiment 1. FIG. 実施の形態1による貯湯式給湯装置が実施する余剰冷媒密閉動作に関するフローチャートである。4 is a flow chart relating to the operation of sealing the surplus refrigerant performed by the hot water storage type hot water supply apparatus according to Embodiment 1. FIG.

以下、図面を参照して実施の形態について説明する。各図において共通または対応する要素には、同一の符号を付して、説明を簡略化または省略する。以下の説明において、「水」、「湯」、または「湯水」との記載は、原則として、液体の水を意味し、冷水から熱湯までもが含まれうるものとする。 Embodiments will be described below with reference to the drawings. Elements that are common or correspond to each figure are denoted by the same reference numerals, and their explanations are simplified or omitted. In the following description, the terms "water", "hot water", and "hot water" basically mean liquid water, and can include cold water to hot water.

実施の形態1.
図1は、実施の形態1による貯湯式給湯装置を示す図である。図1に示すように、本実施の形態による貯湯式給湯装置1は、ヒートポンプユニット101と、貯湯ユニット102とを備える。ヒートポンプユニット101は、圧縮機107と、水熱交換器106と、減圧器105と、空気熱交換器104と、室外ファン103とを備える。ヒートポンプユニット101は、室外に設置される。
Embodiment 1.
FIG. 1 is a diagram showing a hot water storage type hot water supply apparatus according to Embodiment 1. FIG. As shown in FIG. 1 , hot water storage type hot water supply apparatus 1 according to the present embodiment includes heat pump unit 101 and hot water storage unit 102 . The heat pump unit 101 includes a compressor 107 , a water heat exchanger 106 , a pressure reducer 105 , an air heat exchanger 104 and an outdoor fan 103 . The heat pump unit 101 is installed outdoors.

圧縮機107は、冷媒を圧縮する。水熱交換器106は、水と、圧縮機107により圧縮された冷媒との間で熱を交換することにより、水を加熱する。減圧器105は、水熱交換器106を通過した冷媒を減圧する。減圧器105は、例えば、膨張弁でもよいし、キャピラリーチューブでもよい。空気熱交換器104は、室外の空気と、減圧器105により減圧された冷媒との間で熱を交換することにより、室外の空気の熱を冷媒に吸収させる。室外ファン103は、室外の空気を空気熱交換器104へ送風する。 Compressor 107 compresses the refrigerant. Water heat exchanger 106 heats water by exchanging heat between the water and the refrigerant compressed by compressor 107 . The pressure reducer 105 reduces the pressure of the refrigerant that has passed through the water heat exchanger 106 . The pressure reducer 105 may be, for example, an expansion valve or a capillary tube. The air heat exchanger 104 exchanges heat between the outdoor air and the refrigerant decompressed by the decompressor 105, thereby causing the refrigerant to absorb the heat of the outdoor air. The outdoor fan 103 blows outdoor air to the air heat exchanger 104 .

空気熱交換器104は、複数の冷媒通路111を有する。図1の例において、空気熱交換器104は、4つの冷媒通路111を有する。図2は、実施の形態1による貯湯式給湯装置1が備える空気熱交換器104の他の例を示す斜視図である。図2の例において、空気熱交換器104は、6つの冷媒通路111を有する。 The air heat exchanger 104 has multiple refrigerant passages 111 . In the example of FIG. 1, air heat exchanger 104 has four refrigerant passages 111 . FIG. 2 is a perspective view showing another example of air heat exchanger 104 included in hot water storage type hot water supply apparatus 1 according to Embodiment 1. As shown in FIG. In the example of FIG. 2, air heat exchanger 104 has six refrigerant passages 111 .

空気熱交換器104の複数の冷媒通路111のうちの一部の冷媒通路111の入口側に、入口側冷媒弁110が設けられている。当該一部の冷媒通路111を、以下、「冷媒密閉用通路120」と呼ぶ場合がある。図示の例において、冷媒密閉用通路120の数は、一つである。すなわち、空気熱交換器104の複数の冷媒通路111のうちの一つが冷媒密閉用通路120に相当している。冷媒密閉用通路120の出口側に出口側冷媒弁121が設けられている。 An inlet-side refrigerant valve 110 is provided on the inlet side of some of the plurality of refrigerant passages 111 of the air heat exchanger 104 . The part of the refrigerant passage 111 may be hereinafter referred to as a "refrigerant sealing passage 120". In the illustrated example, the number of refrigerant sealing passages 120 is one. That is, one of the plurality of refrigerant passages 111 of the air heat exchanger 104 corresponds to the refrigerant sealing passage 120 . An outlet-side refrigerant valve 121 is provided on the outlet side of the refrigerant sealing passage 120 .

空気熱交換器104の冷媒入口部に液ヘッダー109が設けられている。冷媒管122は、減圧器105の出口を、液ヘッダー109の入口につないでいる。複数の冷媒通路111のそれぞれの入口側が液ヘッダー109に接続されている。液ヘッダー109と空気熱交換器104との間において冷媒密閉用通路120に入口側冷媒弁110が設けられている。 A liquid header 109 is provided at the refrigerant inlet of the air heat exchanger 104 . A refrigerant pipe 122 connects the outlet of the pressure reducer 105 to the inlet of the liquid header 109 . Each inlet side of the plurality of refrigerant passages 111 is connected to the liquid header 109 . An inlet side refrigerant valve 110 is provided in the refrigerant sealing passage 120 between the liquid header 109 and the air heat exchanger 104 .

空気熱交換器104の冷媒出口部にガスヘッダー119が設けられている。複数の冷媒通路111のそれぞれの出口側がガスヘッダー119に接続されている。空気熱交換器104とガスヘッダー119との間において冷媒密閉用通路120に出口側冷媒弁121が設けられている。 A gas header 119 is provided at the refrigerant outlet of the air heat exchanger 104 . Each outlet side of the plurality of refrigerant passages 111 is connected to a gas header 119 . An outlet-side refrigerant valve 121 is provided in the refrigerant sealing passage 120 between the air heat exchanger 104 and the gas header 119 .

図1に示すように、冷媒管123は、ガスヘッダー119の出口を、圧縮機107の入口につないでいる。貯湯ユニット102は、貯湯タンク108と、分岐弁112と、給湯温度調整用混合弁113と、減圧弁114と、タンク下部温度センサ115と、循環ポンプ118とを備える。 As shown in FIG. 1, refrigerant pipe 123 connects the outlet of gas header 119 to the inlet of compressor 107 . The hot water storage unit 102 includes a hot water storage tank 108 , a branch valve 112 , a hot water supply temperature adjusting mixing valve 113 , a pressure reducing valve 114 , a tank bottom temperature sensor 115 and a circulation pump 118 .

貯湯タンク108の内部では、温度に応じた水の密度の差によって、上側が高温で下側が低温になる温度成層が形成される。本実施の形態における貯湯タンク108は、単一の容器により構成されている。変形例として、貯湯タンク108は、複数の容器が管を介して直列に接続された構造を有するものでもよい。その複数の容器においては、温度成層の上層側すなわち高温側の容器の下部が、当該容器に対して温度成層の下層側すなわち低温側の容器の上部に対して、管により連通する。 Inside the hot water storage tank 108, a temperature stratification is formed in which the upper side has a high temperature and the lower side has a low temperature due to the difference in water density according to the temperature. Hot water storage tank 108 in the present embodiment is composed of a single container. As a modification, the hot water storage tank 108 may have a structure in which a plurality of containers are connected in series via pipes. In the plurality of containers, the lower part of the container on the upper layer side of the temperature stratification, ie, the high temperature side, communicates with the upper part of the container on the lower layer side of the temperature stratification, ie, the low temperature side, by a pipe.

貯湯タンク108の下部に給水管124が接続されている。例えば上水道のような水源から供給される水が給水管124を通って貯湯タンク108に流入することで、貯湯タンク108内が満水状態に維持される。給水管124に設けられた減圧弁114は、水源からの水圧を所定圧力に減圧する。 A water supply pipe 124 is connected to the lower portion of the hot water storage tank 108 . For example, water supplied from a water source such as tap water flows into the hot water storage tank 108 through the water supply pipe 124, so that the inside of the hot water storage tank 108 is maintained in a full water state. A pressure reducing valve 114 provided in the water supply pipe 124 reduces the water pressure from the water source to a predetermined pressure.

タンク下部温度センサ115は、貯湯タンク108の下部に設置されている。タンク下部温度センサ115は、貯湯タンク108の下部の水温を検知する。本開示において、水熱交換器106により加熱される前の水温を「加熱前温度」と称する。タンク下部温度センサ115は、加熱前温度を検知する加熱前温度検知手段に相当する。 The tank bottom temperature sensor 115 is installed at the bottom of the hot water storage tank 108 . A tank bottom temperature sensor 115 detects the water temperature at the bottom of the hot water storage tank 108 . In the present disclosure, the water temperature before being heated by the water heat exchanger 106 is referred to as "pre-heating temperature." The tank bottom temperature sensor 115 corresponds to pre-heating temperature detection means for detecting the pre-heating temperature.

水路125は、貯湯タンク108の下部を水熱交換器106の入水口につなぐ。水路125の途中に循環ポンプ118が接続されている。水路126は、水熱交換器106の出湯口を分岐弁112の入口につなぐ。分岐弁112の第一出口は、貯湯タンク108の上部に接続されている。分岐弁112の第二出口は、給湯温度調整用混合弁113の第一入口に連通している。給湯温度調整用混合弁113の第一入口は、貯湯タンク108の上部にも連通している。給水管127は、減圧弁114の下流側の給水管124から分岐して、給湯温度調整用混合弁113の第二入口に接続されている。給湯温度調整用混合弁113の出口に給湯管128が接続されている。 A water channel 125 connects the lower part of the hot water storage tank 108 to the water inlet of the water heat exchanger 106 . A circulation pump 118 is connected in the middle of the water channel 125 . A water line 126 connects the hot water outlet of the water heat exchanger 106 to the inlet of the branch valve 112 . A first outlet of the branch valve 112 is connected to the top of the hot water tank 108 . A second outlet of the branch valve 112 communicates with a first inlet of the hot water supply temperature adjusting mixing valve 113 . A first inlet of hot water supply temperature adjusting mixing valve 113 also communicates with the upper portion of hot water storage tank 108 . The water supply pipe 127 branches from the water supply pipe 124 on the downstream side of the pressure reducing valve 114 and is connected to the second inlet of the hot water supply temperature adjusting mixing valve 113 . A hot water supply pipe 128 is connected to the outlet of the hot water supply temperature adjusting mixing valve 113 .

貯湯式給湯装置1は、貯湯式給湯装置1の動作を制御する制御手段130を備える。制御手段130は、貯湯運転を実施可能である。貯湯運転は、貯湯タンク108から流出した水を水熱交換器106に流入させ、水熱交換器106により加熱された湯を貯湯タンク108に流入させる運転である。本実施の形態における制御手段130は、入口側冷媒弁110及び出口側冷媒弁121に信号を送る弁制御部116と、入口側冷媒弁110及び出口側冷媒弁121の開度を決定する演算部117とを備える。 The hot water storage type hot water supply apparatus 1 includes a control means 130 that controls the operation of the hot water storage type hot water supply apparatus 1 . The control means 130 can carry out the hot water storage operation. The hot water storage operation is an operation in which the water flowing out of the hot water storage tank 108 flows into the water heat exchanger 106 and the hot water heated by the water heat exchanger 106 flows into the hot water storage tank 108 . The control means 130 in the present embodiment includes a valve control section 116 that sends signals to the inlet-side refrigerant valve 110 and the outlet-side refrigerant valve 121, and a calculation section that determines the opening degrees of the inlet-side refrigerant valve 110 and the outlet-side refrigerant valve 121. 117.

貯湯運転のときには、以下のようになる。圧縮機107及び循環ポンプ118が駆動される。貯湯タンク108の下部から流出した水が、水路125と循環ポンプ118を通って、水熱交換器106に流入する。圧縮機107によって圧縮された高温高圧状態の冷媒が水熱交換器106に流入する。当該冷媒が水熱交換器106にて水と熱を交換することで湯が生成する。当該湯は、水熱交換器106から、水路126と分岐弁112を通って、貯湯タンク108の上部に流入する。貯湯運転の最中には、貯湯タンク108内で上側にある湯と、貯湯タンク108内で下側にある水との間の温度境界層が、徐々に下へ移動する。 During the hot water storage operation, the operation is as follows. Compressor 107 and circulation pump 118 are driven. The water flowing out from the lower part of the hot water storage tank 108 flows into the water heat exchanger 106 through the water channel 125 and the circulation pump 118 . The high-temperature and high-pressure refrigerant compressed by the compressor 107 flows into the water heat exchanger 106 . The refrigerant exchanges heat with water in the water heat exchanger 106 to generate hot water. The hot water flows from the water heat exchanger 106 into the upper part of the hot water storage tank 108 through the water channel 126 and the branch valve 112 . During the hot water storage operation, the temperature boundary layer between the hot water on the upper side in the hot water storage tank 108 and the water on the lower side in the hot water storage tank 108 gradually moves downward.

水熱交換器106を通過した高圧冷媒は、減圧器105によって減圧されて、低圧冷媒になる。低圧冷媒は、液ヘッダー109を通して、空気熱交換器104の複数の冷媒通路111のそれぞれに分配される。空気熱交換器104にて、低圧冷媒は、室外ファン103により送られる外気と熱を交換することで、蒸発する。空気熱交換器104から流出した低圧冷媒ガスは、ガスヘッダー119と冷媒管123を通って、圧縮機107に流入する。 The high-pressure refrigerant that has passed through the water heat exchanger 106 is decompressed by the decompressor 105 to become low-pressure refrigerant. Low-pressure refrigerant is distributed through the liquid header 109 to each of the plurality of refrigerant passages 111 of the air heat exchanger 104 . In the air heat exchanger 104, the low-pressure refrigerant exchanges heat with the outside air sent by the outdoor fan 103 to evaporate. The low-pressure refrigerant gas that has flowed out of the air heat exchanger 104 flows through the gas header 119 and refrigerant pipes 123 into the compressor 107 .

給湯管128の下流側は、給湯先に接続されている。給湯先は、例えば、浴槽、シャワー、流し台の蛇口、洗面台の蛇口などでもよい。給湯先に湯を供給するときには、貯湯タンク108の上部から流出した湯が給湯温度調整用混合弁113の第一入口に流入し、給水管127の水が給湯温度調整用混合弁113の第二入口に流入する。給湯温度調整用混合弁113は、第一入口から流入した湯と、第二入口から流入した水とを混合し、給湯管128に流入させる。給湯温度調整用混合弁113の開度を調整すると、第一入口から流入する湯と、第二入口から流入する水との混合比が変わることで、給湯管128へ流出する湯の温度が変わる。制御手段130は、給湯管128を通過する湯の温度が設定温度に等しくなるように、給湯温度調整用混合弁113の動作を制御する。 The downstream side of hot water supply pipe 128 is connected to a hot water supply destination. The hot water supply destination may be, for example, a bathtub, a shower, a sink faucet, a washbasin faucet, or the like. When hot water is supplied to the hot water supply destination, the hot water flowing out from the upper part of the hot water storage tank 108 flows into the first inlet of the hot water supply temperature adjusting mixing valve 113, and the water in the water supply pipe 127 flows into the second inlet of the hot water supply temperature adjusting mixing valve 113. flow into the entrance. Hot water supply temperature adjusting mixing valve 113 mixes the hot water flowing in from the first inlet and the water flowing in from the second inlet, and causes the mixture to flow into hot water supply pipe 128 . When the opening degree of the hot water supply temperature adjusting mixing valve 113 is adjusted, the mixing ratio between the hot water flowing in from the first inlet and the water flowing in from the second inlet changes, thereby changing the temperature of the hot water flowing out to the hot water supply pipe 128. . The control means 130 controls the operation of the hot water supply temperature adjusting mixing valve 113 so that the temperature of the hot water passing through the hot water supply pipe 128 becomes equal to the set temperature.

貯湯運転のときに水熱交換器106から流出する湯の温度は、沸き上げ温度と呼ばれる。貯湯運転のときに、制御手段130は、沸き上げ温度が目標値に等しくなるように、循環ポンプ118の回転速度を調整してもよい。沸き上げ温度は、例えば60℃から80℃程度の比較的高い温度でもよいが、例えば50℃から60℃程度の比較的低い温度であることが望ましい。沸き上げ温度が低いほど、圧縮機吐出温度を低くできるので、圧縮機107の入力エネルギーを削減でき、消費電力を抑えた運転が可能となるからである。 The temperature of the hot water flowing out of the water heat exchanger 106 during the hot water storage operation is called the boiling temperature. During the hot water storage operation, the control means 130 may adjust the rotation speed of the circulation pump 118 so that the boiling temperature becomes equal to the target value. The boiling temperature may be, for example, a relatively high temperature of about 60°C to 80°C, but is preferably a relatively low temperature of, for example, about 50°C to 60°C. This is because the lower the boiling temperature, the lower the discharge temperature of the compressor, so that the input energy of the compressor 107 can be reduced, and the power consumption can be suppressed.

本開示では、比較的高い沸き上げ温度の湯を貯湯タンク108に蓄えることを「高温貯湯」と称し、比較的低い沸き上げ温度の湯を貯湯タンク108に蓄えることを「低温貯湯」と称する。また、水熱交換器106に流入する水の温度を「入水温度」と呼ぶ。また、水熱交換器106から流出する冷媒の温度を「出口冷媒温度」と呼ぶ。また、水熱交換器106で水と冷媒とが交換する熱量を「水-冷媒熱交換量」と称する。また、冷媒回路の高圧側の圧力を「高圧側冷媒圧力」と称する。高圧側冷媒圧力は、水熱交換器106内の冷媒の圧力に相当する。 In the present disclosure, storing hot water with a relatively high boiling temperature in the hot water storage tank 108 is referred to as "high temperature storage", and storing hot water with a relatively low boiling temperature in the hot water storage tank 108 is referred to as "low temperature storage". Also, the temperature of the water flowing into the water heat exchanger 106 is called "inlet water temperature". Also, the temperature of the refrigerant flowing out of the water heat exchanger 106 is called "outlet refrigerant temperature". Also, the amount of heat exchanged between the water and the refrigerant in the water heat exchanger 106 is referred to as "water-refrigerant heat exchange amount". Also, the pressure on the high pressure side of the refrigerant circuit is referred to as "high pressure side refrigerant pressure". The high pressure side refrigerant pressure corresponds to the pressure of the refrigerant inside the water heat exchanger 106 .

高温貯湯の場合と同じ熱量を低温貯湯で貯湯タンク108に蓄えるには、貯湯タンク108に蓄える湯の体積を、高温貯湯の場合よりも大きくする必要がある。このため、低温貯湯の場合には、貯湯タンク108内の下部にまで、湯を蓄える必要がある。それゆえ、低温貯湯の場合には、貯湯運転の終了時に、貯湯タンク108内の下部の水温が、貯湯運転の開始時に比べて、高くなりやすい。貯湯タンク108内の下部の水温が上がると、入水温度が上がる。入水温度が上がると、水熱交換器106の出口冷媒温度が上がり、水熱交換器106の水-冷媒熱交換量が減少する。水熱交換器106の水-冷媒熱交換量が減少すると、冷媒回路が必要とする冷媒量が減少するため、冷媒回路内で余剰冷媒が発生する。 In order to store the same amount of heat in the hot water storage tank 108 as in the case of high temperature storage, the volume of hot water stored in the hot water storage tank 108 must be larger than in the case of high temperature storage. Therefore, in the case of low-temperature hot water storage, it is necessary to store hot water up to the lower portion of the hot water storage tank 108 . Therefore, in the case of low-temperature hot water storage, the water temperature in the lower part of hot water storage tank 108 tends to be higher at the end of the hot water storage operation than at the start of the hot water storage operation. As the water temperature in the lower part of the hot water storage tank 108 rises, the incoming water temperature rises. When the incoming water temperature rises, the outlet refrigerant temperature of the water heat exchanger 106 rises, and the water-refrigerant heat exchange amount of the water heat exchanger 106 decreases. When the amount of water-refrigerant heat exchange in the water heat exchanger 106 decreases, the amount of refrigerant required by the refrigerant circuit decreases, resulting in surplus refrigerant in the refrigerant circuit.

本実施の形態の貯湯式給湯装置1は、貯湯運転として、第一貯湯運転と、第二貯湯運転とを実施可能である。第一貯湯運転は、入口側冷媒弁110及び出口側冷媒弁121が開かれ、空気熱交換器104の複数の冷媒通路111のすべてに冷媒が流れる運転である。第一貯湯運転の最中、制御手段130は、入口側冷媒弁110及び出口側冷媒弁121を開く。第一貯湯運転は、通常の貯湯運転に相当する。 The hot water storage type hot water supply apparatus 1 of the present embodiment can perform a first hot water storage operation and a second hot water storage operation as the hot water storage operation. The first hot water storage operation is an operation in which the inlet-side refrigerant valve 110 and the outlet-side refrigerant valve 121 are opened and refrigerant flows through all of the plurality of refrigerant passages 111 of the air heat exchanger 104 . During the first hot water storage operation, the control means 130 opens the inlet side refrigerant valve 110 and the outlet side refrigerant valve 121 . The first hot water storage operation corresponds to a normal hot water storage operation.

第二貯湯運転は、空気熱交換器104の冷媒密閉用通路120内に余剰冷媒が閉じ込められた状態で入口側冷媒弁110及び出口側冷媒弁121が閉じられ、空気熱交換器104の複数の冷媒通路111のうちの冷媒密閉用通路120以外の冷媒通路111に冷媒が流れる運転である。第一貯湯運転の最中、制御手段130は、入口側冷媒弁110及び出口側冷媒弁121を閉じておく。 In the second hot water storage operation, the inlet-side refrigerant valve 110 and the outlet-side refrigerant valve 121 are closed with excess refrigerant trapped in the refrigerant sealing passage 120 of the air heat exchanger 104, and the plurality of air heat exchangers 104 are closed. This is an operation in which the refrigerant flows through the refrigerant passages 111 other than the refrigerant sealing passage 120 among the refrigerant passages 111 . During the first hot water storage operation, the control means 130 closes the inlet-side refrigerant valve 110 and the outlet-side refrigerant valve 121 .

本実施の形態であれば、入水温度が高いときには、冷媒密閉用通路120内に余剰冷媒を閉じ込める第二貯湯運転を実施することで、冷媒回路を循環する冷媒の量を適切な量にすることが可能となる。それゆえ、余剰冷媒の影響による高圧側冷媒圧力の上昇を確実に抑制することができ、エネルギー効率の低下を抑制した貯湯運転が可能となる。また、既設機器である空気熱交換器104内の冷媒密閉用通路120に余剰冷媒を貯留するので、余剰冷媒を貯留するための貯留部を追加で設ける必要がない。このため、ヒートポンプユニット101内に設置する機器点数を削減でき、製造コストを抑制でき、貯湯式給湯装置1を低価格で提供できる。ヒートポンプユニット101のサイズが増大することがないので、ヒートポンプユニット101の設置場所の制約を受けにくい。 In the present embodiment, when the incoming water temperature is high, the amount of refrigerant circulating in the refrigerant circuit is adjusted to an appropriate amount by executing the second hot water storage operation in which the surplus refrigerant is confined in the refrigerant sealing passage 120. becomes possible. Therefore, it is possible to reliably suppress an increase in the pressure of the high-pressure side refrigerant due to the influence of the surplus refrigerant, and it is possible to perform hot water storage operation while suppressing a decrease in energy efficiency. Moreover, since the surplus refrigerant is stored in the refrigerant sealing passage 120 in the air heat exchanger 104, which is an existing device, there is no need to additionally provide a reservoir for storing the surplus refrigerant. Therefore, the number of devices installed in the heat pump unit 101 can be reduced, the manufacturing cost can be suppressed, and the hot water storage type hot water supply apparatus 1 can be provided at a low price. Since the size of the heat pump unit 101 does not increase, the installation location of the heat pump unit 101 is less restricted.

本実施の形態において、制御手段130は、第二貯湯運転を実施する場合、タンク下部温度センサ115により検知された加熱前温度に応じて、入口側冷媒弁110及び出口側冷媒弁121を動作させる。貯湯タンク108の下部から流出した水が水熱交換器106に流入するので、貯湯運転を開始する前にタンク下部温度センサ115が検知した加熱前温度は、貯湯運転を開始した後の入水温度におおむね等しいと推測することができる。すなわち、第二貯湯運転を開始する前に、タンク下部温度センサ115により、入水温度を予測できる。このため、第二貯湯運転を実施する場合に、タンク下部温度センサ115により検知された加熱前温度に応じて入口側冷媒弁110及び出口側冷媒弁121を動作させることで、第二貯湯運転をより適切に実施することが可能となる。 In the present embodiment, when performing the second hot water storage operation, the control means 130 operates the inlet side refrigerant valve 110 and the outlet side refrigerant valve 121 according to the pre-heating temperature detected by the tank lower portion temperature sensor 115. . Since the water flowing out from the lower part of the hot water storage tank 108 flows into the water heat exchanger 106, the temperature before heating detected by the tank lower part temperature sensor 115 before starting the hot water storage operation is equal to the incoming water temperature after the hot water storage operation is started. It can be assumed that they are approximately equal. That is, before starting the second hot water storage operation, the temperature of the incoming water can be predicted by the tank bottom temperature sensor 115 . Therefore, when performing the second hot water storage operation, the inlet side refrigerant valve 110 and the outlet side refrigerant valve 121 are operated according to the pre-heating temperature detected by the tank bottom temperature sensor 115, thereby performing the second hot water storage operation. It becomes possible to implement it more appropriately.

本実施の形態において、制御手段130は、加熱前温度が基準に対して低い場合に第一貯湯運転を実施し、加熱前温度が基準に対して高い場合に第二貯湯運転を実施する。これにより、第一貯湯運転と第二貯湯運転を適切に使い分けることが可能となる。制御手段130は、貯湯運転を開始する前に、タンク下部温度センサ115により検知された加熱前温度に応じて、第一貯湯運転を実施するか第二貯湯運転を実施するかを判断してもよい。 In the present embodiment, control means 130 performs the first hot water storage operation when the preheating temperature is lower than the reference, and performs the second hot water storage operation when the preheating temperature is higher than the reference. This makes it possible to properly use the first hot water storage operation and the second hot water storage operation. Before starting the hot water storage operation, the control means 130 determines whether to perform the first hot water storage operation or the second hot water storage operation according to the pre-heating temperature detected by the tank bottom temperature sensor 115. good.

本実施の形態において、制御手段130は、第二貯湯運転を実施する前に、圧縮機107を作動させることで冷媒を水熱交換器106から空気熱交換器104の冷媒密閉用通路120内に移動させる余剰冷媒密閉動作を実施する。余剰冷媒密閉動作のときの圧縮機107の動作速度は、貯湯運転のときの圧縮機107の動作速度よりも低い速度でもよい。余剰冷媒密閉動作のとき、制御手段130は、減圧器105の開度を全開にしてもよい。余剰冷媒密閉動作のとき、制御手段130は、水熱交換器106内の液冷媒が冷媒密閉用通路120内に移動した後、入口側冷媒弁110及び出口側冷媒弁121を閉じることで、冷媒密閉用通路120内に液冷媒を閉じ込めてもよい。第二貯湯運転を実施する前に余剰冷媒密閉動作を実施することで、余剰冷媒を冷媒密閉用通路120内に確実に閉じ込めることが可能となる。 In the present embodiment, the control means 130 operates the compressor 107 before performing the second hot water storage operation to move the refrigerant from the water heat exchanger 106 into the refrigerant sealing passage 120 of the air heat exchanger 104. Carry out the surplus refrigerant sealing operation to be moved. The operating speed of the compressor 107 during the surplus refrigerant sealing operation may be lower than the operating speed of the compressor 107 during the hot water storage operation. During the excessive refrigerant sealing operation, the control means 130 may fully open the pressure reducer 105 . During the surplus refrigerant sealing operation, after the liquid refrigerant in the water heat exchanger 106 moves into the refrigerant sealing passage 120, the control means 130 closes the inlet side refrigerant valve 110 and the outlet side refrigerant valve 121 to Liquid refrigerant may be confined within the sealing passage 120 . By performing the surplus refrigerant sealing operation before performing the second hot water storage operation, it is possible to reliably confine the surplus refrigerant in the refrigerant sealing passage 120 .

制御手段130は、余剰冷媒密閉動作において、加熱前温度に応じて、空気熱交換器104の冷媒密閉用通路120内に閉じ込める冷媒の量を調整してもよい。例えば、制御手段130は、加熱前温度が高いほど、余剰冷媒密閉動作において冷媒密閉用通路120内に閉じ込める冷媒の量を多くしてもよい。入水温度が高いほど、余剰冷媒が多く発生する。このため、加熱前温度が高いほど、冷媒密閉用通路120内に閉じ込める冷媒の量を多くすることで、第二貯湯運転のときに冷媒回路を循環する冷媒の量をより適切な量にすることが可能となる。 In the surplus refrigerant sealing operation, the control means 130 may adjust the amount of refrigerant confined in the refrigerant sealing passage 120 of the air heat exchanger 104 according to the pre-heating temperature. For example, the control means 130 may increase the amount of refrigerant confined in the refrigerant sealing passage 120 in the excess refrigerant sealing operation as the pre-heating temperature increases. The higher the incoming water temperature, the more excess refrigerant is generated. Therefore, the higher the temperature before heating, the more the amount of refrigerant confined in the refrigerant sealing passage 120, thereby making the amount of refrigerant circulating in the refrigerant circuit during the second hot water storage operation more appropriate. becomes possible.

前述したように、図示の例では、冷媒密閉用通路120の数が一つである。本開示では、冷媒密閉用通路120の数が2以上であってもよい。すなわち、Nが2以上の整数であり、MがNよりも大きい整数であるとしたときに、空気熱交換器104がM個の冷媒通路111を有し、そのM個の冷媒通路111のうちのN個の冷媒通路111が冷媒密閉用通路120となるように構成してもよい。冷媒密閉用通路120の数が2以上であれば、冷媒密閉用通路120の数が一つの場合よりも多い量の余剰冷媒を冷媒密閉用通路120に閉じ込めることが可能となる。空気熱交換器104がN個の冷媒密閉用通路120を有する場合、N個の冷媒密閉用通路120に対応して、N個の入口側冷媒弁110と、N個の出口側冷媒弁121を設けてもよい。そのようにすることで、冷媒密閉用通路120の数を容易に増やすことが可能となる。 As described above, in the illustrated example, the number of refrigerant sealing passages 120 is one. In the present disclosure, the number of refrigerant sealing passages 120 may be two or more. That is, when N is an integer of 2 or more and M is an integer larger than N, the air heat exchanger 104 has M refrigerant passages 111, and among the M refrigerant passages 111 , the N refrigerant passages 111 may serve as the passages 120 for sealing the refrigerant. When the number of refrigerant sealing passages 120 is two or more, it is possible to confine a larger amount of surplus refrigerant in the refrigerant sealing passages 120 than when the number of refrigerant sealing passages 120 is one. When the air heat exchanger 104 has N refrigerant-sealing passages 120, N inlet-side refrigerant valves 110 and N outlet-side refrigerant valves 121 are provided corresponding to the N refrigerant-sealing passages 120. may be provided. By doing so, it is possible to easily increase the number of the refrigerant sealing passages 120 .

冷媒回路に充填される冷媒の量が異なる複数の機種の貯湯式給湯装置1が生産される場合がある。冷媒回路に充填される冷媒の量が多い機種ほど、入水温度が高いときに発生する余剰冷媒の量も多くなる。本開示によれば、冷媒密閉用通路120の数を増やすことで、冷媒回路に充填される冷媒の量が多い機種、すなわち、余剰冷媒の量が多い機種にも、適切に対応することが可能となる。 A plurality of models of hot water storage type hot water supply apparatuses 1 with different amounts of refrigerant filled in the refrigerant circuit may be produced. The larger the amount of refrigerant charged in the refrigerant circuit of the model, the larger the amount of surplus refrigerant generated when the temperature of incoming water is high. According to the present disclosure, by increasing the number of the refrigerant sealing passages 120, it is possible to appropriately cope with a model with a large amount of refrigerant filled in the refrigerant circuit, that is, a model with a large amount of surplus refrigerant. becomes.

制御手段130の演算部117は、タンク下部温度センサ115により検知された加熱前温度に応じて、余剰冷媒密閉動作のときの入口側冷媒弁110の弁開度及び出口側冷媒弁121の弁開度を演算してもよい。制御手段130の弁制御部116は、演算部117により演算された弁開度の情報を入口側冷媒弁110及び出口側冷媒弁121に伝達することで、入口側冷媒弁110及び出口側冷媒弁121の動作を制御してもよい。 The calculation unit 117 of the control means 130 determines the valve opening degree of the inlet side refrigerant valve 110 and the valve opening of the outlet side refrigerant valve 121 at the time of the surplus refrigerant sealing operation according to the pre-heating temperature detected by the tank bottom temperature sensor 115. You can calculate degrees. The valve control unit 116 of the control unit 130 transmits information on the valve opening degree calculated by the calculation unit 117 to the inlet-side refrigerant valve 110 and the outlet-side refrigerant valve 121, thereby controlling the inlet-side refrigerant valve 110 and the outlet-side refrigerant valve. 121 may be controlled.

演算部117は、タンク下部温度センサ115により検知された加熱前温度に応じて、水熱交換器106の水-冷媒熱交換量を算出してもよい。演算部117は、入水温度が上昇する前の状態である定常状態のときの水熱交換器106の水-冷媒熱交換量と、入水温度が上昇したときの水熱交換器106の水-冷媒熱交換量との比を算出してもよい。当該比を「熱交換量比」と称する。演算部117は、定常状態のときに水熱交換器106内に存在する冷媒量と、熱交換量比とから、冷媒密閉用通路120に閉じ込める冷媒の量である、必要密閉冷媒量を演算してもよい。余剰冷媒密閉動作において、弁制御部116は、その演算された必要密閉冷媒量に相当する量の冷媒を冷媒密閉用通路120に閉じ込めるように、開度を制御するための信号を入口側冷媒弁110及び出口側冷媒弁121に伝達する。制御手段130は、圧縮機107の動作速度に応じて、水熱交換器106から冷媒密閉用通路120への液冷媒の移動速度あるいは質量流量を推測できる。余剰冷媒密閉動作において、制御手段130は、入口側冷媒弁110を開いて出口側冷媒弁121を閉じた状態で、圧縮機107を作動させ、水熱交換器106からの液冷媒を冷媒密閉用通路120に流入させてもよい。制御手段130は、液冷媒の移動速度あるいは質量流量に応じて、冷媒密閉用通路120に流入する冷媒量を演算し、冷媒密閉用通路120に流入した冷媒量が必要密閉冷媒量に達したときに、入口側冷媒弁110を閉じて、余剰冷媒密閉動作を終了してもよい。 The calculation unit 117 may calculate the water-refrigerant heat exchange amount of the water heat exchanger 106 according to the pre-heating temperature detected by the tank bottom temperature sensor 115 . The calculation unit 117 calculates the water-refrigerant heat exchange amount of the water heat exchanger 106 in the steady state, which is the state before the incoming water temperature rises, and the water-refrigerant heat exchange amount of the water heat exchanger 106 when the incoming water temperature rises. A ratio to the amount of heat exchange may be calculated. The ratio is called "heat exchange amount ratio". The calculation unit 117 calculates the required sealed refrigerant amount, which is the amount of refrigerant confined in the refrigerant sealing passage 120, from the amount of refrigerant existing in the water heat exchanger 106 in the steady state and the heat exchange amount ratio. may In the surplus refrigerant sealing operation, the valve control unit 116 sends a signal for controlling the degree of opening of the inlet side refrigerant valve so that the amount of refrigerant corresponding to the calculated required amount of refrigerant to be sealed is confined in the refrigerant sealing passage 120. 110 and outlet side refrigerant valve 121 . The control means 130 can estimate the moving speed or mass flow rate of the liquid refrigerant from the water heat exchanger 106 to the refrigerant sealing passage 120 according to the operating speed of the compressor 107 . In the surplus refrigerant sealing operation, the control means 130 operates the compressor 107 with the inlet side refrigerant valve 110 open and the outlet side refrigerant valve 121 closed, and the liquid refrigerant from the water heat exchanger 106 is used for refrigerant sealing. It may flow into passageway 120 . The control means 130 calculates the amount of refrigerant flowing into the refrigerant sealing passage 120 according to the movement speed or mass flow rate of the liquid refrigerant, and when the amount of refrigerant flowing into the refrigerant sealing passage 120 reaches the required amount of refrigerant to be sealed. Then, the inlet side refrigerant valve 110 may be closed to end the surplus refrigerant sealing operation.

図3は、実施の形態1による貯湯式給湯装置1が実施する余剰冷媒密閉動作に関するフローチャートである。図3のステップS1で、制御手段130は、入水温度が上昇する前の状態である定常状態のときの水熱交換器106の水-冷媒熱交換量を演算する。例えば、制御手段130は、圧縮機吐出温度と、入水温度と、高圧側冷媒圧力と、冷媒流量とに基づいて、定常状態のときの水熱交換器106の水-冷媒熱交換量を演算してもよい。 FIG. 3 is a flowchart relating to the surplus refrigerant sealing operation performed by the hot water storage type hot water supply apparatus 1 according to the first embodiment. In step S1 of FIG. 3, the control means 130 calculates the water-refrigerant heat exchange amount of the water heat exchanger 106 in the steady state, which is the state before the incoming water temperature rises. For example, the control means 130 calculates the water-refrigerant heat exchange amount of the water heat exchanger 106 in the steady state based on the compressor discharge temperature, the inlet water temperature, the high-pressure side refrigerant pressure, and the refrigerant flow rate. may

ステップS1からステップS2に進み、制御手段130は、タンク下部温度センサ115により検知された加熱前温度を基準温度と比較する。基準温度の値は、例えば、30℃から50℃の範囲内の値でもよい。加熱前温度が基準温度以下である場合には、第二貯湯運転ではなく第一貯湯運転を実施するので、余剰冷媒密閉動作を実施する必要がない。加熱前温度が基準温度以下である場合には、制御手段130は、ステップS2の処理を再び実行する。加熱前温度が基準温度よりも高い場合には、ステップS2からステップS3に進む。 Proceeding from step S1 to step S2, the control means 130 compares the pre-heating temperature detected by the tank bottom temperature sensor 115 with the reference temperature. The reference temperature value may be, for example, a value within the range of 30°C to 50°C. When the pre-heating temperature is equal to or lower than the reference temperature, the first hot water storage operation is performed instead of the second hot water storage operation, so there is no need to perform the surplus refrigerant sealing operation. If the pre-heating temperature is equal to or lower than the reference temperature, the control means 130 executes the process of step S2 again. When the temperature before heating is higher than the reference temperature, the process proceeds from step S2 to step S3.

ステップS3で、制御手段130は、貯湯運転を実施する要求があるかどうかを判断する。例えば、貯湯タンク108内の蓄熱量を検知するための貯湯温度センサ(図示省略)により検知された蓄熱量が、給湯負荷に備えて設定された所定熱量以下になると、貯湯運転を実施する要求が出される。貯湯運転を実施する要求が出されていない場合には、制御手段130は、ステップS3からステップS2に戻り、ステップS2の処理を再び実行する。 At step S3, the control means 130 determines whether or not there is a request to perform the hot water storage operation. For example, when the amount of stored heat detected by a stored hot water temperature sensor (not shown) for detecting the amount of stored heat in the hot water storage tank 108 falls below a predetermined amount of heat set in preparation for the hot water supply load, a request to perform the hot water storage operation is issued. served. If a request to perform the hot water storage operation has not been issued, the control means 130 returns from step S3 to step S2 and executes the process of step S2 again.

ステップS3で貯湯運転を実施する要求がある場合には、制御手段130は、ステップS4に進み、第二貯湯運転の実施に先立って、余剰冷媒密閉動作を実施する。ステップS4の余剰冷媒密閉動作において、制御手段130は、前述したように、演算部117は、定常状態のときに水熱交換器106内に存在する冷媒量と、熱交換量比とから、必要密閉冷媒量を演算し、圧縮機107の動作速度に応じた液冷媒の移動速度あるいは質量流量に応じて、冷媒密閉用通路120に流入する冷媒量を演算し、入口側冷媒弁110の開度及び出口側冷媒弁121の開度を調整することで、冷媒密閉用通路120に閉じ込める冷媒の量を調整してもよい。余剰冷媒密閉動作の終了後、制御手段130は、第二貯湯運転を実施する。 If there is a request to perform the hot water storage operation in step S3, the control means 130 proceeds to step S4 and performs the surplus refrigerant sealing operation prior to performing the second hot water storage operation. In the surplus refrigerant sealing operation in step S4, as described above, the control unit 130 causes the calculation unit 117 to determine the necessary The amount of refrigerant to be sealed is calculated, and the amount of refrigerant flowing into the refrigerant sealing passage 120 is calculated according to the moving speed or mass flow rate of the liquid refrigerant corresponding to the operating speed of the compressor 107, and the opening degree of the inlet side refrigerant valve 110 is calculated. The amount of refrigerant confined in the refrigerant sealing passage 120 may be adjusted by adjusting the opening degree of the outlet-side refrigerant valve 121 . After the surplus refrigerant sealing operation is finished, the control means 130 performs the second hot water storage operation.

本開示において、加熱前温度検知手段は、タンク下部温度センサ115に限定されない。本開示では、水熱交換器106に流入する水の通路に加熱前温度検知手段が配置されてもよい。例えば、水熱交換器106の入水口の近くに配置した入水温度センサを加熱前温度検知手段として用いてもよい。水路125が接続された貯湯タンク108の流出口から、水熱交換器106の入水口までの距離が長い場合には、水路125から周囲へ熱が散逸することで、タンク下部温度センサ115の検知温度と、実際の入水温度との差が大きい場合がある。そのような場合に、水熱交換器106の入水口の近くに配置した入水温度センサを加熱前温度検知手段として用いることで、第二貯湯運転及び余剰冷媒密閉動作を、より適切に実施できる。 In the present disclosure, the pre-heating temperature detection means is not limited to the tank bottom temperature sensor 115 . In the present disclosure, a pre-heating temperature sensing means may be placed in the passage of water entering the water heat exchanger 106 . For example, an inlet water temperature sensor arranged near the water inlet of the water heat exchanger 106 may be used as the pre-heating temperature detection means. When the distance from the outlet of the hot water storage tank 108 to which the water channel 125 is connected to the water inlet of the water heat exchanger 106 is long, heat is dissipated from the water channel 125 to the surroundings, causing the tank bottom temperature sensor 115 to detect the temperature. There may be a large difference between the temperature and the actual incoming water temperature. In such a case, by using an incoming water temperature sensor arranged near the water inlet of the water heat exchanger 106 as pre-heating temperature detection means, the second hot water storage operation and the surplus refrigerant sealing operation can be performed more appropriately.

本開示において、制御手段は、以下のように構成されてもよい。制御手段の各機能は、処理回路により達成されてもよい。制御手段の処理回路は、少なくとも1つのプロセッサと少なくとも1つのメモリとを備えてもよい。処理回路が少なくとも1つのプロセッサと少なくとも1つのメモリとを備える場合、制御手段の各機能は、ソフトウェア、ファームウェア、またはソフトウェアとファームウェアとの組み合わせにより達成されてもよい。ソフトウェア及びファームウェアの少なくとも一方は、プログラムとして記述されてもよい。ソフトウェア及びファームウェアの少なくとも一方は、少なくとも1つのメモリに格納されてもよい。少なくとも1つのプロセッサは、少なくとも1つのメモリに記憶されたプログラムを読み出して実行することにより、制御手段の各機能を達成してもよい。少なくとも1つのメモリは、不揮発性または揮発性の半導体メモリ、磁気ディスク等を含んでもよい。 In the present disclosure, the control means may be configured as follows. Each function of the control means may be accomplished by a processing circuit. The processing circuitry of the control means may comprise at least one processor and at least one memory. When the processing circuit comprises at least one processor and at least one memory, each function of the control means may be achieved by software, firmware or a combination of software and firmware. At least one of software and firmware may be written as a program. Software and/or firmware may be stored in the at least one memory. At least one processor may accomplish each function of the control means by reading and executing a program stored in at least one memory. The at least one memory may include non-volatile or volatile semiconductor memory, magnetic disks, or the like.

制御手段の処理回路は、少なくとも1つの専用のハードウェアを備えてもよい。処理回路が少なくとも1つの専用のハードウェアを備える場合、処理回路は、例えば、単一回路、複合回路、プログラム化したプロセッサ、並列プログラム化したプロセッサ、ASIC(Application Specific Integrated Circuit)、FPGA(Field-Programmable Gate Array)、またはこれらを組み合わせたものでもよい。制御手段の各部の機能がそれぞれ処理回路で達成されても良い。また、制御手段の各部の機能がまとめて処理回路で達成されても良い。制御手段の各機能について、一部を専用のハードウェアで達成し、他の一部をソフトウェアまたはファームウェアで達成してもよい。処理回路は、ハードウェア、ソフトウェア、ファームウェア、またはこれらの組み合わせによって、制御手段の各機能を達成しても良い。 The processing circuitry of the control means may comprise at least one piece of dedicated hardware. If the processing circuit comprises at least one piece of dedicated hardware, the processing circuit may be, for example, a single circuit, a composite circuit, a programmed processor, a parallel programmed processor, an ASIC (Application Specific Integrated Circuit), an FPGA (Field- Programmable Gate Array), or a combination thereof. The functions of each part of the control means may be accomplished respectively by processing circuitry. Also, the functions of each section of the control means may be collectively achieved by a processing circuit. For each function of the control means, a part may be achieved by dedicated hardware and another part may be achieved by software or firmware. The processing circuitry may accomplish each function of the control means by means of hardware, software, firmware, or a combination thereof.

単一の制御手段により動作が制御される構成に限定されるものではなく、複数の制御手段が連携することで動作を制御する構成にしてもよい。 The configuration is not limited to a configuration in which the operation is controlled by a single control means, and may be a configuration in which a plurality of control means cooperate to control the operation.

1 貯湯式給湯装置、 101 ヒートポンプユニット、 102 貯湯ユニット、 103 室外ファン、 104 空気熱交換器、 105 減圧器、 106 水熱交換器、 107 圧縮機、 108 貯湯タンク、 109 液ヘッダー、 110 入口側冷媒弁、 111 冷媒通路、 112 分岐弁、 113 給湯温度調整用混合弁、 114 減圧弁、 115 タンク下部温度センサ、 116 弁制御部、 117 演算部、 118 循環ポンプ、 119 ガスヘッダー、 120 冷媒密閉用通路、 121 出口側冷媒弁、 122 冷媒管、 123 冷媒管、 124 給水管、 125 水路、 126 水路、 127 給水管、 128 給湯管、 130 制御手段 1 hot water storage type hot water supply device 101 heat pump unit 102 hot water storage unit 103 outdoor fan 104 air heat exchanger 105 pressure reducer 106 water heat exchanger 107 compressor 108 hot water storage tank 109 liquid header 110 inlet side refrigerant Valve 111 Refrigerant passage 112 Branch valve 113 Mixing valve for hot water supply temperature adjustment 114 Pressure reducing valve 115 Tank lower part temperature sensor 116 Valve control unit 117 Operation unit 118 Circulation pump 119 Gas header 120 Refrigerant sealing passage , 121 outlet-side refrigerant valve, 122 refrigerant pipe, 123 refrigerant pipe, 124 water supply pipe, 125 water channel, 126 water channel, 127 water supply pipe, 128 hot water supply pipe, 130 control means

Claims (7)

貯湯タンクと、
冷媒を圧縮する圧縮機と、
水と、前記圧縮機により圧縮された前記冷媒との間で熱を交換する水熱交換器と、
前記水熱交換器を通過した前記冷媒を減圧する減圧器と、
複数の冷媒通路を有し、空気と、前記減圧器により減圧された前記冷媒との間で熱を交換する空気熱交換器と、
前記空気熱交換器の前記複数の冷媒通路のうちの一部の冷媒通路の入口側に設けられた入口側冷媒弁と、
前記一部の冷媒通路の出口側に設けられた出口側冷媒弁と、
前記貯湯タンクから流出した水を前記水熱交換器に流入させ、前記水熱交換器により加熱された湯を前記貯湯タンクに流入させる貯湯運転を実施する制御手段と、
を備え、
前記入口側冷媒弁及び前記出口側冷媒弁が開かれ、前記空気熱交換器の前記複数の冷媒通路に前記冷媒が流れる第一貯湯運転と、
前記空気熱交換器の前記一部の冷媒通路内に前記冷媒が閉じ込められた状態で前記入口側冷媒弁及び前記出口側冷媒弁が閉じられ、前記空気熱交換器の前記複数の冷媒通路のうちの前記一部の冷媒通路以外の冷媒通路に前記冷媒が流れる第二貯湯運転と、
を実施可能である貯湯式給湯装置。
a water storage tank;
a compressor that compresses a refrigerant;
a water heat exchanger that exchanges heat between water and the refrigerant compressed by the compressor;
a decompressor that decompresses the refrigerant that has passed through the water heat exchanger;
an air heat exchanger that has a plurality of refrigerant passages and exchanges heat between air and the refrigerant decompressed by the decompressor;
an inlet-side refrigerant valve provided on an inlet side of some of the plurality of refrigerant passages of the air heat exchanger;
an outlet-side refrigerant valve provided on the outlet side of the part of the refrigerant passage;
a control means for performing a hot water storage operation in which the water flowing out of the hot water storage tank flows into the water heat exchanger and the hot water heated by the water heat exchanger flows into the hot water storage tank;
with
a first hot water storage operation in which the inlet-side refrigerant valve and the outlet-side refrigerant valve are opened and the refrigerant flows through the plurality of refrigerant passages of the air heat exchanger;
The inlet-side refrigerant valve and the outlet-side refrigerant valve are closed with the refrigerant confined in the part of the refrigerant passage of the air heat exchanger, and one of the plurality of refrigerant passages of the air heat exchanger is a second hot water storage operation in which the refrigerant flows through refrigerant passages other than the part of the refrigerant passages of
A hot water storage type hot water supply device capable of implementing
前記水熱交換器により加熱される前の水温である加熱前温度を検知する加熱前温度検知手段を備え、
前記制御手段は、前記加熱前温度に応じて、前記入口側冷媒弁及び前記出口側冷媒弁を動作させる請求項1に記載の貯湯式給湯装置。
Pre-heating temperature detection means for detecting a pre-heating temperature, which is the water temperature before being heated by the water heat exchanger,
2. The hot water storage type hot water supply apparatus according to claim 1, wherein said control means operates said inlet side refrigerant valve and said outlet side refrigerant valve according to said pre-heating temperature.
前記水熱交換器により加熱される前の水温である加熱前温度を検知する加熱前温度検知手段を備え、
前記加熱前温度が基準に対して低い場合に前記第一貯湯運転を実施し、前記加熱前温度が前記基準に対して高い場合に前記第二貯湯運転を実施する請求項1または請求項2に記載の貯湯式給湯装置。
Pre-heating temperature detection means for detecting a pre-heating temperature, which is the water temperature before being heated by the water heat exchanger,
The first hot water storage operation is performed when the pre-heating temperature is lower than the reference, and the second hot water storage operation is performed when the pre-heating temperature is higher than the reference. The hot water storage type hot water supply device described.
前記制御手段は、前記第二貯湯運転を実施する前に、前記圧縮機を作動させることで前記冷媒を前記水熱交換器から前記空気熱交換器の前記一部の冷媒通路内に移動させる余剰冷媒密閉動作を実施する請求項1から請求項3のいずれか一項に記載の貯湯式給湯装置。 The control means moves the refrigerant from the water heat exchanger into the portion of the refrigerant passage of the air heat exchanger by operating the compressor before performing the second hot water storage operation. The hot water storage type hot water supply apparatus according to any one of claims 1 to 3, wherein a refrigerant sealing operation is performed. 前記水熱交換器により加熱される前の水温である加熱前温度を検知する加熱前温度検知手段を備え、
前記制御手段は、前記余剰冷媒密閉動作において、前記加熱前温度に応じて、前記空気熱交換器の前記一部の冷媒通路内に閉じ込める前記冷媒の量を調整する請求項4に記載の貯湯式給湯装置。
Pre-heating temperature detection means for detecting a pre-heating temperature, which is the water temperature before being heated by the water heat exchanger,
5. The hot water storage type according to claim 4, wherein in the surplus refrigerant sealing operation, the control means adjusts the amount of the refrigerant confined in the part of the refrigerant passage of the air heat exchanger according to the pre-heating temperature. water heater.
前記空気熱交換器の前記一部の冷媒通路の数が2以上である請求項1から請求項5のいずれか一項に記載の貯湯式給湯装置。 The hot water storage type hot water supply apparatus according to any one of claims 1 to 5, wherein the number of refrigerant passages in the part of the air heat exchanger is two or more. 前記水熱交換器に流入する水の通路に前記加熱前温度検知手段が配置されている請求項2、請求項3、請求項5のいずれか一項に記載の貯湯式給湯装置。 6. The hot water storage type hot water supply apparatus according to any one of claims 2, 3 and 5, wherein the pre-heating temperature detecting means is arranged in a passage of water flowing into the water heat exchanger.
JP2021175310A 2021-10-27 2021-10-27 Hot water storage type hot water supply device Pending JP2023064884A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2021175310A JP2023064884A (en) 2021-10-27 2021-10-27 Hot water storage type hot water supply device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2021175310A JP2023064884A (en) 2021-10-27 2021-10-27 Hot water storage type hot water supply device

Publications (1)

Publication Number Publication Date
JP2023064884A true JP2023064884A (en) 2023-05-12

Family

ID=86282045

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2021175310A Pending JP2023064884A (en) 2021-10-27 2021-10-27 Hot water storage type hot water supply device

Country Status (1)

Country Link
JP (1) JP2023064884A (en)

Similar Documents

Publication Publication Date Title
KR100859245B1 (en) Heat pump hot water supply floor heating apparatus
KR101222331B1 (en) Heat-pump hot water apparatus
AU2014399713B2 (en) Heating and hot water supply system
KR100640137B1 (en) Heat pumped water heating and heating apparaturs
JP4485406B2 (en) Hot water storage water heater
JP5171868B2 (en) Hot water storage water heater
KR20190058237A (en) Hot water and supercooling heat pump system using a thermal stratification type hot water tank
JP6515859B2 (en) Hot water storage system
KR101888315B1 (en) Hot water preheating and supercooling heat pump system using a thermal stratification type hot water tank
JP2010133641A (en) Water heater
JP4933177B2 (en) Water heater
JP5746104B2 (en) Hot water heating system
JP2006234314A (en) Heat pump water heater
JP2023064884A (en) Hot water storage type hot water supply device
JP4277836B2 (en) Heat pump water heater
EP3540324B1 (en) Heating medium circulation system
CN109916758A (en) A kind of temperature control device for quick-cooling, heating shock-testing
JP3869801B2 (en) Heat pump water heater / heater
JP2015117856A (en) Hot water storage water heater
JP2012180962A (en) Water heater system having hot water storage tank with auxiliary heat source
JP4148909B2 (en) Heat pump water heater / heater
JP3733119B2 (en) Heat pump water heater / heater
JP5617946B2 (en) Hot water storage water heater
KR101335278B1 (en) Dual cycle heat pump system
JPH0145538B2 (en)