JP2023064323A - Turbine bypass device and power generation plant - Google Patents

Turbine bypass device and power generation plant Download PDF

Info

Publication number
JP2023064323A
JP2023064323A JP2021174542A JP2021174542A JP2023064323A JP 2023064323 A JP2023064323 A JP 2023064323A JP 2021174542 A JP2021174542 A JP 2021174542A JP 2021174542 A JP2021174542 A JP 2021174542A JP 2023064323 A JP2023064323 A JP 2023064323A
Authority
JP
Japan
Prior art keywords
turbine bypass
steam
valve
condenser
pressure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2021174542A
Other languages
Japanese (ja)
Inventor
典沙 小暮
Tsukasa Kogure
英樹 藤島
Hideki Fujishima
一平 高橋
Ippei Takahashi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Plant Systems and Services Corp
Original Assignee
Toshiba Plant Systems and Services Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Plant Systems and Services Corp filed Critical Toshiba Plant Systems and Services Corp
Priority to JP2021174542A priority Critical patent/JP2023064323A/en
Publication of JP2023064323A publication Critical patent/JP2023064323A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E20/00Combustion technologies with mitigation potential
    • Y02E20/16Combined cycle power plant [CCPP], or combined cycle gas turbine [CCGT]

Landscapes

  • Control Of Turbines (AREA)

Abstract

To provide a turbine bypass device capable of continuing safer and efficient operation in a case where a steam control valve executes steam cut-off operation, and a power generation plant.SOLUTION: A turbine bypass device that adjusts the opening of a low-pressure turbine bypass control valve 19 to control steam flowing into a condenser 51, comprises: valve inflow allowable steam volume calculation means of calculating a valve inflow allowable steam volume in an operation state based on the pressure and temperature of steam flowing into the low-pressure turbine bypass control valve 19, and a condenser inflow allowable steam volume as a fixed value; and opening conversion means of obtaining the opening of the low-pressure turbine bypass control valve 19 corresponding to the valve inflow allowable steam volume to set the opening to an upper limit.SELECTED DRAWING: Figure 1

Description

本発明の実施形態は、タービンバイパス装置および発電プラントに関する。 Embodiments of the present invention relate to turbine bypass arrangements and power plants.

従来から、蒸気発生装置から発生された蒸気および蒸気配管と、蒸気によって駆動する蒸気タービンおよび蒸気制御弁と、蒸気タービンにて仕事を終えた排気蒸気を凝縮させて蒸気発生のための復水を生成する復水器および蒸気冷却付帯設備と、蒸気タービンの起動停止時や蒸気緊急遮断時に発生する余剰蒸気を蒸気タービン手前から復水器にバイパスさせて逃す蒸気配管およびタービンバイパス制御弁から構成される発電サイクルシステムが知られている。 Conventionally, steam generated from a steam generator and steam piping, a steam turbine driven by steam and a steam control valve, and condensing exhaust steam that has finished work in the steam turbine to condense water for steam generation. It consists of a condenser and steam cooling auxiliary equipment, and a steam pipe and turbine bypass control valve that bypasses the excess steam that is generated when the steam turbine starts and stops or when the steam is suddenly cut off from before the steam turbine to the condenser. power generation cycle systems are known.

図4は、高圧蒸気と再熱蒸気にて蒸気タービンを駆動させるコンベンショナル火力発電プラントにおける再熱復水タービンシステムの一例を示している。このシステムは、蒸気発生装置101、高圧/中圧タービン102、低圧タービン103、復水器104を具備している。図4では、図中矢印でコンベンショナル火力発電プラントの運転中における蒸気の流れを示している。なお、図4において、11は高温再熱蒸気圧力、12は高温再熱蒸気温度、18は高圧タービンバイパス制御弁、19は低圧タービンバイパス制御弁、21は高圧主蒸気圧力である。 FIG. 4 shows an example of a reheat condensate turbine system in a conventional thermal power plant that drives a steam turbine with high-pressure steam and reheat steam. The system comprises a steam generator 101 , a high/medium pressure turbine 102 , a low pressure turbine 103 and a condenser 104 . In FIG. 4, the arrows in the figure indicate the flow of steam during operation of the conventional thermal power plant. 4, 11 is the high-temperature reheat steam pressure, 12 is the high-temperature reheat steam temperature, 18 is the high-pressure turbine bypass control valve, 19 is the low-pressure turbine bypass control valve, and 21 is the high-pressure main steam pressure.

また、図5は、高圧蒸気と中圧蒸気と低圧蒸気にて蒸気タービンを駆動させるガスタービンと蒸気タービンとのコンバインドサイクル発電プラントにおける再熱復水タービンシステムの一例を示している。このシステムは、蒸気発生装置101、高圧/中圧タービン102、低圧タービン103、復水器104に加えて、ガスタービン105を具備している。図5では、図中矢印でコンバインドサイクル発電プラントの運転中における蒸気の流れを示している。なお、図5において、21は高圧主蒸気圧力、22は高圧主蒸気温度、29は高圧タービンバイパス制御弁、31は中圧主蒸気圧力、32は中圧主蒸気温度、39は中圧タービンバイパス制御弁、41は低圧主蒸気圧力、42は低圧主蒸気温度、49は低圧タービンバイパス制御弁である。 Also, FIG. 5 shows an example of a reheat condensate turbine system in a combined cycle power plant of a gas turbine and a steam turbine, in which the steam turbine is driven by high-pressure steam, intermediate-pressure steam and low-pressure steam. The system comprises a steam generator 101 , a high/medium pressure turbine 102 , a low pressure turbine 103 , a condenser 104 as well as a gas turbine 105 . In FIG. 5, the arrows in the figure indicate the flow of steam during operation of the combined cycle power plant. 5, 21 is the high pressure main steam pressure, 22 is the high pressure main steam temperature, 29 is the high pressure turbine bypass control valve, 31 is the intermediate pressure main steam pressure, 32 is the intermediate pressure main steam temperature, and 39 is the intermediate pressure turbine bypass. Control valves, 41 low-pressure main steam pressure, 42 low-pressure main steam temperature, and 49 low-pressure turbine bypass control valve.

上述したシステムにおいて、蒸気タービンの非常停止時や負荷遮断時等のタービン負荷の急減により、蒸気制御弁が蒸気遮断操作を実行した場合、蒸気発生装置から蒸気タービン入口配管内に行き場を失った余剰蒸気が発生する。蒸気配管の最大許容圧力超過時緊急逃し弁として安全弁が設置されているが、作動後の修繕やサイクル外への蒸気の放出で不足した水質管理された水の補給を考慮すれば極力避けるべきであることから、急速に発生した余剰蒸気を減少させて蒸気配管の圧力上昇を抑制すべくタービンバイパス制御弁を開弁させて余剰蒸気を復水器に一気に逃す運用(タービンバイパス運転)が必要となる。 In the system described above, when the steam control valve executes a steam cutoff operation due to a sudden decrease in the turbine load during an emergency shutdown of the steam turbine or during load cutoff, the surplus that has no place to go from the steam generator to the steam turbine inlet pipe Steam is generated. A safety valve is installed as an emergency relief valve when the maximum allowable pressure of the steam pipe exceeds the maximum allowable pressure, but it should be avoided as much as possible considering repair after operation and replenishment of water with quality control that is insufficient due to steam release outside the cycle. Therefore, it is necessary to open the turbine bypass control valve to reduce the rapidly generated surplus steam and suppress the pressure rise in the steam pipe, allowing the surplus steam to escape to the condenser at once (turbine bypass operation). Become.

図6に、コンベンショナル火力発電プラントにおけるタービンバイパス運転の動作例、図7に、コンバインドサイクル発電プラントにおけるタービンバイパス運転の動作例を示す。なお、これらの図において、図中矢印でタービンバイパス運転中の蒸気の流れを示している。図6のコンベンショナル火力発電プラントでは、高圧タービンバイパス制御弁18、低圧タービンバイパス制御弁19が開かれて、蒸気が復水器104に導かれる。また、図7のコンバインドサイクル発電プラントでは、高圧タービンバイパス制御弁29、中圧タービンバイパス制御弁39、低圧タービンバイパス制御弁49が開かれて、蒸気が復水器104に導かれる。 FIG. 6 shows an operation example of turbine bypass operation in a conventional thermal power plant, and FIG. 7 shows an operation example of turbine bypass operation in a combined cycle power plant. In these figures, arrows indicate the flow of steam during turbine bypass operation. In the conventional thermal power plant of FIG. 6 , the high pressure turbine bypass control valve 18 and the low pressure turbine bypass control valve 19 are opened to guide steam to the condenser 104 . 7, the high pressure turbine bypass control valve 29, the intermediate pressure turbine bypass control valve 39, and the low pressure turbine bypass control valve 49 are opened to guide the steam to the condenser 104.

ここで、タービンバイパス制御の過渡的現象として、蒸気遮断発生直後は蒸気配管に蓄積された蒸気を一気に復水器に逃すことになるが、その時の蒸気状態によっては過大流入となる可能性がある。仮に、過大流入した蒸気が復水器の蒸気冷却能力を超えてしまうと、復水器内の温度、圧力が異常に上昇し、最悪の場合、蒸気タービン排気部に設置される圧力安全装置が作動することになる。 Here, as a transitional phenomenon of turbine bypass control, the steam accumulated in the steam pipe is released to the condenser at once immediately after the occurrence of steam cutoff, but depending on the steam state at that time, there is a possibility of excessive inflow. . If the excessive inflow of steam exceeds the steam cooling capacity of the condenser, the temperature and pressure inside the condenser will rise abnormally, and in the worst case, the pressure safety device installed at the steam turbine exhaust will fail. it will work.

更に、この圧力安全装置は、非再生式のラプチャーディスクを適用することが多く、作動(破断)した場合は、交換に多大な時間が必要となる事から、その間のプラント発電運転が不可能となってしまう。 Furthermore, this pressure safety device often applies a non-regenerative rupture disk, and if it operates (breaks), it will take a long time to replace it, so it is impossible to operate the plant during that time. turn into.

このため、タービンバイパス制御は、蒸気タービン入口蒸気配管の圧力上昇の抑制だけでなく、復水器に過大流入する蒸気量も配慮する必要がある。 Therefore, in turbine bypass control, it is necessary to consider not only the suppression of the pressure rise in the steam turbine inlet steam pipe, but also the amount of steam that excessively flows into the condenser.

過大流入の抑制手段は、タービンバイパス制御弁開度を抑制することであり、流量検出器を設置して流入蒸気量を計測して超過発生時に開度制御する方法や、蒸気発生装置側の操業状態や復水器器内状況等によりインターロックとして強制的に規定開度へ開度抑制させる方法などもある。 The means for suppressing excessive inflow is to suppress the opening of the turbine bypass control valve. There is also a method of forcibly suppressing the opening to a specified opening as an interlock depending on the state and conditions inside the condenser.

特開昭54-077803号公報JP-A-54-077803 特開昭63-277805号公報JP-A-63-277805 特開平11-270305号公報JP-A-11-270305 特開昭2013-064372号公報JP-A-2013-064372

復水器に過大流入する蒸気量に配慮したタービンバイパス制御弁開度を抑制するための手段として、例えば、流量検出器を設置した場合は、流量検出器の追設による費用や設置のための配管長スペースが必要となる等のハード面の制約がある。また、インターロックとして強制的に規定開度への開度抑制を行う場合は、想定状態による開度設定であったり時限的な逃し動作であったりするため、実際にバイパスさせる蒸気によっては過不足が発生することがある。 As a means to suppress the turbine bypass control valve opening considering the excessive amount of steam flowing into the condenser, for example, if a flow rate detector is installed, the cost and installation for additional flow rate detector There are hardware restrictions such as the need for space for the length of piping. In addition, when forcibly suppressing the opening to the specified opening as an interlock, the opening is set according to the assumed state or it is a time-limited release operation, so depending on the steam that is actually bypassed, there may be excess or deficiency. may occur.

このため、簡易な方法で最適な復水器への流入可能最大蒸気量を可変管理して制限することが課題となる。また、蒸気流入中の復水器は、開度制限動作が働いたとしても、流入初期時においては復水器器内の状態が蒸気冷却最大能力点に近づく可能性がある。このため、蒸気を受け入れる復水器も蒸気冷却性能を改善する必要がある。 Therefore, it is a problem to variably control and limit the optimum maximum amount of steam that can flow into the condenser by a simple method. In addition, even if the opening limit operation works for the condenser during the inflow of steam, the condition inside the condenser may approach the maximum steam cooling capacity point at the initial time of the inflow. Therefore, the condenser that receives the steam also needs to improve the steam cooling performance.

本発明は、上記した従来の事情に対処してなされたもので、その目的は、蒸気制御弁が蒸気遮断操作を実行した場合などにおいて、より安全に、かつ、効率的に運転を継続することのできるタービンバイパス装置および発電プラントを提供することにある。 SUMMARY OF THE INVENTION The present invention was made in response to the above-described conventional circumstances, and its object is to continue operation more safely and efficiently when a steam control valve performs a steam cutoff operation. To provide a turbine bypass device and a power plant capable of

実施形態のタービンバイパス装置は、タービンバイパス制御弁の開度を調節して復水器へ流入する蒸気を制御するタービンバイパス装置であって、前記タービンバイパス制御弁へ流入する蒸気の圧力及び温度と、固定値とした復水器流入許容蒸気量とから、操業状態の弁流入許容蒸気容積量を演算する弁流入許容蒸気容積量演算手段と、前記弁流入許容蒸気容積量に対応する、前記タービンバイパス制御弁の開度を求めて上限開度とする開度変換手段とを具備したことを特徴とする。 A turbine bypass device according to an embodiment is a turbine bypass device that controls steam flowing into a condenser by adjusting an opening degree of a turbine bypass control valve, wherein the pressure and temperature of the steam flowing into the turbine bypass control valve are controlled. a valve inflow allowable steam volume calculating means for calculating a valve inflow allowable steam volume in an operating state from the condenser inflow allowable steam volume as a fixed value; and the turbine corresponding to the valve inflow allowable steam volume. and opening converting means for obtaining the opening of the bypass control valve and setting the opening to the upper limit.

本発明によれば、蒸気制御弁が蒸気遮断操作を実行した場合などにおいて、より安全に、かつ、効率的に運転を継続することのできるタービンバイパス装置および発電プラントを提供することことができる。 According to the present invention, it is possible to provide a turbine bypass device and a power plant that can continue to operate more safely and efficiently when a steam control valve performs a steam cutoff operation.

第1実施形態の概略構成を示す図。The figure which shows the schematic structure of 1st Embodiment. 第2実施形態の概略構成を示す図。The figure which shows schematic structure of 2nd Embodiment. 第3実施形態の概略構成を示す図。The figure which shows schematic structure of 3rd Embodiment. コンベンショナル火力発電プラントの構成例を示す図。The figure which shows the structural example of a conventional thermal power plant. コンバインドサイクル発電プラントの構成例を示す図。The figure which shows the structural example of a combined cycle power plant. コンベンショナル火力発電プラントにおけるタービンバイパス運転の動作例を示す図。FIG. 4 is a diagram showing an operation example of turbine bypass operation in a conventional thermal power plant; コンバインドサイクル発電プラントにおけるタービンバイパス運転の動作例を示す図。FIG. 4 is a diagram showing an operation example of turbine bypass operation in a combined cycle power plant;

以下、実施形態に係るタービンバイパス装置および発電プラントについて、図面を参照して説明する。 Hereinafter, a turbine bypass device and a power plant according to embodiments will be described with reference to the drawings.

本実施形態において、復水器への流入可能最大蒸気量は、実際にタービンバイパス制御弁を通過して復水器に流入する蒸気量により管理する。その蒸気量は、蒸気条件によって異なるタービンバイパス制御弁の通過蒸気量(CV値)より算出する。 In this embodiment, the maximum amount of steam that can flow into the condenser is controlled by the amount of steam that actually flows into the condenser through the turbine bypass control valve. The amount of steam is calculated from the amount of steam passing through the turbine bypass control valve (CV value), which varies depending on the steam conditions.

タービンバイパス制御弁の通過蒸気量(CV値)は、弁を通過する蒸気量が一定であっても流入する蒸気条件(圧力・温度)により容積量は変化するため、蒸気状態に合わせた制限を変化させれば過不足のない最適な制限が可能となる。これを実現するために、復水器への流入可能最大蒸気量を固定した上で、蒸気条件を常時監視して常にCV値を補正計算し、制限開度を可変させる。これにより、過渡的現象の発生初期時における高圧・高温状態の蒸気条件は低開度で制限され、逃し動作により蒸気条件が改善されると共に制限が緩和されることで流入状況に見合った最適な管理が可能となり、サイクル外への放出により不足した水質管理された水の補給を低減させることが可能となる。 The amount of steam passing through the turbine bypass control valve (CV value) varies depending on the conditions (pressure and temperature) of the inflowing steam even if the amount of steam passing through the valve is constant. If it is varied, it is possible to achieve an optimum restriction that is neither too much nor too little. In order to achieve this, the maximum amount of steam that can flow into the condenser is fixed, the steam conditions are constantly monitored, the CV value is constantly corrected, and the limit opening is varied. As a result, the high-pressure and high-temperature steam conditions at the beginning of the occurrence of transient phenomena are restricted by a low opening, and the relief operation improves the steam conditions and relaxes the restriction, resulting in the optimal condition for the inflow situation. Management becomes possible, and it becomes possible to reduce replenishment of insufficient quality-controlled water due to discharge outside the cycle.

また、復水器への蒸気流入初期時における蒸気冷却性能の改善は、蒸気冷却付帯設備の改善操作により、復水器冷却水量、復水器冷却水温度、復水器器内圧力を改善させることで解決可能である。これを、復水器器内の状態異常検知にて行うのではなく、開度制限動作に近付いた時点で先行的に行うことで流入状況に見合った最適な蒸気冷却性能を準備することが可能となる。 In addition, the improvement of steam cooling performance at the initial stage of steam inflow into the condenser will improve the condenser cooling water volume, condenser cooling water temperature, and condenser internal pressure by improving the steam cooling incidental equipment. can be solved by It is possible to prepare the optimum steam cooling performance that matches the inflow situation by doing this ahead of time when the opening limit operation is approached, instead of doing it by detecting an abnormal state in the condenser. becomes.

(第1実施形態)
先ず、図1を参照して第1実施形態について説明する。図1に示す例は、コンベンショナル火力発電プラントの低圧タービンバイパス制御弁19へ適用した場合を示しており、前述した図6と対応する部分には、同一の符号が付してある。図1に示すように、実施形態に係る発電プラントでは、低圧タービンバイパス制御弁19において、この低圧タービンバイパス制御弁19に流入する蒸気の状態値(弁流入蒸気圧力1、弁流入蒸気温度2の測定値)および復水器流入許容蒸気量(固定値)4から、弁流入許容容積量(CV値)演算器5で弁流入許容容積量を常に演算し、通常の圧力PID制御により求められた余剰蒸気逃し制御量8にて設定された開度指令に対して、演算したCV値に相当する上限開度を上限開度制限器9にて設定し、復水器104へ流入する蒸気量を制限する。
(First embodiment)
First, a first embodiment will be described with reference to FIG. The example shown in FIG. 1 shows a case of application to a low-pressure turbine bypass control valve 19 of a conventional thermal power plant, and parts corresponding to those in FIG. 6 described above are denoted by the same reference numerals. As shown in FIG. 1, in the power plant according to the embodiment, in the low-pressure turbine bypass control valve 19, the state values of the steam flowing into the low-pressure turbine bypass control valve 19 (valve inflow steam pressure 1, valve inflow steam temperature 2) Measured value) and condenser inflow allowable steam amount (fixed value) 4, the valve inflow allowable volume amount (CV value) calculator 5 always calculates the valve inflow allowable volume amount, and it is obtained by normal pressure PID control. With respect to the opening command set by the excess steam release control amount 8, the upper limit opening corresponding to the calculated CV value is set by the upper limit opening limiter 9, and the amount of steam flowing into the condenser 104 is Restrict.

図1に示すコンベンショナル火力発電プラントでは、蒸気発生装置101より発生した高圧タービン供給蒸気の余剰量は、高圧タービンバイパス制御弁18にて、減温・減圧バイパスされ蒸気発生装置101に戻る。蒸気発生装置101にて再び過熱化したこの蒸気は、低圧タービンバイパス制御弁19により、同じく余剰量を復水器104へ逃すカスケード動作を行う。 In the conventional thermal power plant shown in FIG. 1 , the surplus amount of high-pressure turbine supply steam generated by the steam generator 101 is bypassed by the high-pressure turbine bypass control valve 18 to reduce the temperature and pressure, and returns to the steam generator 101 . This steam, which has been superheated again by the steam generator 101 , performs a cascade operation in which the excess amount is similarly released to the condenser 104 by the low-pressure turbine bypass control valve 19 .

弁流入蒸気圧力1および弁流入蒸気温度2には、状態値として、高温再熱蒸気圧力11、高温再熱蒸気温度12を適用する。これらにより弁流入蒸気過熱度3を求め、これと固定値である復水器流入許容蒸気量4を用いて弁流入許容容積量(CV値)演算器5により実際に流れ込む蒸気容積量を演算させる。その演算結果を、CV値・開度変換器6によりCV値から開度に変換し、通常制御量として設定される高温再熱蒸気圧力11を制御量とするPID制御である余剰蒸気逃し制御量8の上限開度制限器9に設定する。インターロックで別開度の制限が必要な場合は、信号切替器7により切替を行う。また、下限開度制限器90により必要に応じて0%またはインターロック強制開度を設定する。 The high-temperature reheat steam pressure 11 and the high-temperature reheat steam temperature 12 are applied as state values to the valve inflow steam pressure 1 and the valve inflow steam temperature 2 . From these, the valve inflow steam superheat degree 3 is obtained, and using this and the condenser inflow allowable steam amount 4 which is a fixed value, the valve inflow allowable volume (CV value) calculator 5 calculates the actual inflow steam volume. . The calculation result is converted from the CV value to the opening degree by the CV value/opening degree converter 6, and the excess steam release control amount that is PID control with the high temperature reheat steam pressure 11 set as the normal control amount as the control amount. 8 is set to the upper limit opening limiter 9. If it is necessary to limit the degree of opening by interlocking, switching is performed by the signal switching device 7 . Also, the lower limit opening limiter 90 sets 0% or interlock forced opening as required.

この時の、制御の状態を図1の右上部分に概略チャートとして模式的に示す。この概略チャートにおいて、点線で示すのがCV値・開度変換器6の出力である可能上限開度であり、実線で示すのが余剰蒸気逃し制御量8の出力である弁開度である。ここに示されるように、プラントの負荷によって変化する蒸気の性状により制御弁を通過する許容蒸気容積量が変化するため、その値を上限開度としている。また、常に復水器104に流入可能な許容蒸気容積量を上限開度として監視しながら、PID制御を継続し、上限を超えている時間のみ流入制限として開度制限を行う。つまり、必要な時間のみ制限し、できる限り連続制御を継続する。 The state of control at this time is schematically shown in the upper right portion of FIG. 1 as a schematic chart. In this schematic chart, the dotted line indicates the maximum possible opening, which is the output of the CV value/opening converter 6, and the solid line indicates the valve opening, which is the output of the excess steam release control amount 8. As shown here, the permissible volume of steam passing through the control valve changes depending on the properties of the steam, which varies depending on the load of the plant. In addition, the PID control is continued while always monitoring the allowable steam capacity amount that can flow into the condenser 104 as the upper limit opening, and the opening is restricted as the inflow restriction only during the time when the upper limit is exceeded. In other words, limit only the necessary time and continue continuous control as much as possible.

また、本実施形態は、図7の動作例に示すコンバインドサイクル発電プラントにおける、蒸気発生装置101より発生した高圧タービン供給蒸気の余剰量を減温・減圧バイパスして復水器104に逃す高圧タービンバイパス制御弁29、蒸気発生装置101より発生した中圧タービン供給蒸気の余剰量を減温・減圧バイパスして復水器104に逃す中圧タービンバイパス制御弁39、蒸気発生装置101より発生した低圧タービン供給蒸気の余剰量を減温・減圧バイパスして復水器104に逃す低圧タービンバイパス制御弁49においても、図1の弁流入蒸気圧力1および弁流入蒸気温度2に、それぞれ高圧主蒸気圧力21、高圧主蒸気温度22、中圧主蒸気圧力31、中圧主蒸気温度32、低圧主蒸気圧力41、低圧主蒸気温度42を適用し、3つのタービンバイパス制御弁の流入可能蒸気量の合計値が、復水器流入可能蒸気量を下回る設定を各々のタービンバイパス制御弁に与えることで適用することができる。 Further, in the present embodiment, the high-pressure turbine in the combined cycle power plant shown in the operation example of FIG. A bypass control valve 29, an intermediate-pressure turbine bypass control valve 39 that bypasses the surplus amount of the intermediate-pressure turbine supply steam generated from the steam generator 101 to the condenser 104 by reducing the temperature and reducing the pressure, and the low pressure generated from the steam generator 101. In the low-pressure turbine bypass control valve 49, which bypasses the excess steam supplied to the turbine and releases it to the condenser 104, the valve inflow steam pressure 1 and the valve inflow steam temperature 2 in FIG. 21, high pressure main steam temperature 22, medium pressure main steam pressure 31, medium pressure main steam temperature 32, low pressure main steam pressure 41, low pressure main steam temperature 42 are applied, and the total amount of steam that can flow into the three turbine bypass control valves It can be applied by giving each turbine bypass control valve a setting where the value is below the amount of steam that can flow into the condenser.

以上のように第1実施形態によれば、タービンバイパス制御弁の流入蒸気条件にて常にCV値を補正計算し、制限開度を可変させることができる。これにより、過渡的現象の初期時における高圧・高温状態時は低開度で制限され、蒸気条件が改善されると共に制限が緩和され、従来のPID演算結果に制御を移行させることができる。 As described above, according to the first embodiment, the CV value can always be corrected and calculated according to the inflow steam condition of the turbine bypass control valve, and the opening limit can be varied. As a result, the high-pressure and high-temperature state at the initial stage of the transient phenomenon is restricted to a low opening, the steam conditions are improved, the restriction is relaxed, and the control can be transferred to the conventional PID calculation result.

(第2実施形態)
次に、図2を参照して第2実施形態について説明する。復水器104は、冷却性能を保つため、付帯設備の冷却塔にて冷却塔ファン62により冷却した復水器冷却水を復水器循環ポンプ63にて循環させ熱交換を行っている。第2実施形態では、上述した第1実施形態における、可能上限開度と余剰蒸気逃し制御量が近づいた時に、冷却塔ファン62や復水器循環ポンプ63の出力増加や予備機を増台運転させることで先行的に復水器104の冷却性能を向上させる。
(Second embodiment)
Next, a second embodiment will be described with reference to FIG. In order to maintain the cooling performance of the condenser 104, the condenser cooling water cooled by the cooling tower fan 62 in the cooling tower of the incidental equipment is circulated by the condenser circulation pump 63 to perform heat exchange. In the second embodiment, when the possible upper limit opening and the excess steam release control amount in the above-described first embodiment approach, the output of the cooling tower fan 62 and the condenser circulation pump 63 is increased, and the number of standby units is increased. By increasing the temperature, the cooling performance of the condenser 104 is improved in advance.

図2に示すように第2実施形態では、可能上限開度61と余剰蒸気逃し制御量8の偏差を検出するコンパレータを設置し、制御量が可能上限開度に近づいたことを管理する。すなわち、偏差設定器10に、余剰蒸気逃し制御量8の出力である弁開度と、CV値・開度変換器6の出力である可能上限開度61が入力され、これらの偏差が算出される。そして、これらの偏差が、閾値を超過して減少した場合は、冷却性能安定化信号66を補機制御装置65に与え、補機制御装置65は冷却塔ファン62や、復水器循環ポンプ63の、予備機増台やインバータ等による出力増加による冷却性能向上操作を行う。 As shown in FIG. 2, in the second embodiment, a comparator is installed to detect the deviation between the possible upper limit opening 61 and the excess steam release control amount 8, and to manage the approach of the control amount to the possible upper limit opening. That is, the valve opening, which is the output of the excess steam release control amount 8, and the possible upper limit opening 61, which is the output of the CV value/opening converter 6, are input to the deviation setter 10, and the deviation between them is calculated. be. Then, when these deviations exceed the threshold value and decrease, a cooling performance stabilization signal 66 is given to the accessory control device 65, and the accessory control device 65 controls the cooling tower fan 62 and the condenser circulation pump 63. In addition, the cooling performance will be improved by increasing the number of spare units and increasing the output of inverters.

第2実施形態では、可能上限開度61と余剰蒸気逃し制御量が近づいたということは、より多くの蒸気が復水器104へ流入し、その冷却性能が悪化する懸念があるため、冷却塔ファン62の出力増加や予備機の増台運転にて、復水器冷却水温度を低減し冷却性能の安定化を図ることができる。また、復水器循環ポンプ63の出力増加や予備機の増台運転にて、復水器冷却水量を増加し冷却性能の安定化を図ることができる。 In the second embodiment, when the possible upper limit opening degree 61 and the excess steam release control amount are close, there is a concern that more steam will flow into the condenser 104 and its cooling performance will deteriorate. By increasing the output of the fan 62 or increasing the number of standby units, the temperature of the condenser cooling water can be reduced and the cooling performance can be stabilized. Further, by increasing the output of the condenser circulation pump 63 or increasing the number of standby units, the amount of cooling water in the condenser can be increased and the cooling performance can be stabilized.

(第3実施形態)
次に、図3を参照して第3実施形態について説明する。復水器104は、冷却性能を保つため、復水器真空ポンプ64にて真空引きを行っている。第3実施形態では、上述した第1実施形態における、可能上限開度と余剰蒸気逃し制御量が近づいた時に、復水器真空ポンプ64の出力増加や予備機を増台運転させることで先行的に復水器104の冷却性能を向上させる。
(Third embodiment)
Next, a third embodiment will be described with reference to FIG. The condenser 104 is evacuated by a condenser vacuum pump 64 in order to maintain cooling performance. In the third embodiment, when the maximum possible opening degree and the excess steam release control amount in the above-described first embodiment are approaching, the output of the condenser vacuum pump 64 is increased and the number of standby units is increased to proactively In addition, the cooling performance of the condenser 104 is improved.

図3に示すように第3実施形態では、可能上限開度61と余剰蒸気逃し制御量8の偏差を検出するコンパレータを設置し、制御量が可能上限開度に近づいたことを管理する。すなわち、偏差設定器10に、余剰蒸気逃し制御量8の出力である弁開度と、CV値・開度変換器6の出力である可能上限開度61が入力され、これらの偏差が算出される。そして、これらの偏差が、閾値を超過して減少した場合は、冷却性能安定化信号66を補機制御装置65に与え、補機制御装置65は復水器真空ポンプ64の、予備機増台やインバータ等による出力増加による冷却性能向上操作を行う。 As shown in FIG. 3, in the third embodiment, a comparator is installed to detect the deviation between the possible upper limit opening 61 and the excess steam release control amount 8, and to manage the approach of the control amount to the possible upper limit opening. That is, the valve opening, which is the output of the excess steam release control amount 8, and the possible upper limit opening 61, which is the output of the CV value/opening converter 6, are input to the deviation setter 10, and the deviation between them is calculated. be. Then, when these deviations exceed the threshold value and decrease, the cooling performance stabilization signal 66 is given to the auxiliary equipment control device 65, and the auxiliary equipment control device 65 increases the number of standby equipment of the condenser vacuum pump 64. The cooling performance is improved by increasing the output of the inverter, etc.

第3実施形態では、可能上限開度61と余剰蒸気逃し制御量が近づいたということは、より多くの蒸気が復水器104へ流入し、その冷却性能が悪化する懸念があるため、復水器真空ポンプ64の出力増加や予備機の増台運転にて、復水器104の真空度を保ち、冷却性能の安定化を図ることができる。 In the third embodiment, the fact that the possible upper limit opening degree 61 and the excess steam release control amount are close to each other means that more steam flows into the condenser 104, and there is a concern that the cooling performance thereof will deteriorate. By increasing the output of the condenser vacuum pump 64 or increasing the number of standby machines, the degree of vacuum in the condenser 104 can be maintained, and the cooling performance can be stabilized.

以上、本発明のいくつかの実施形態を説明したが、これらの実施形態は、例として提示したものであり、発明の範囲を限定することは意図していない。これら新規な実施形態は、その他の様々な形態で実施されることが可能であり、発明の要旨を逸脱しない範囲で、種々の省略、置き換え、変更を行うことができる。これら実施形態やその変形は、発明の範囲や要旨に含まれるとともに、特許請求の範囲に記載された発明とその均等の範囲に含まれる。 Although several embodiments of the invention have been described above, these embodiments are presented by way of example and are not intended to limit the scope of the invention. These novel embodiments can be implemented in various other forms, and various omissions, replacements, and modifications can be made without departing from the scope of the invention. These embodiments and modifications thereof are included in the scope and gist of the invention, and are included in the scope of the invention described in the claims and equivalents thereof.

1……弁流入蒸気圧力、2……弁流入蒸気温度、3……弁流入蒸気過熱度、4……復水器流入許容蒸気量(固定値)、5……弁流入許容容積量演算器、6……CV値・開度変換器、7……信号切替器、8……余剰蒸気逃し制御量、9……上限開度制限器、10……偏差設定器、11……高温再熱蒸気圧力、12……高温再熱蒸気温度、18……高圧タービンバイパス制御弁、19……低圧タービンバイパス制御弁、21……高圧主蒸気圧力、22……高圧主蒸気温度、29……高圧タービンバイパス制御弁、31……中圧主蒸気圧力、32……中圧主蒸気温度、39……中圧タービンバイパス制御弁、41……低圧主蒸気圧力、42……低圧主蒸気温度、49……低圧タービンバイパス制御弁、62……冷却塔ファン、63……復水器循環ポンプ、64……復水器真空ポンプ、65……補機制御装置、66……冷却性能安定化信号、90……下限開度制限器、101……蒸気発生装置、102……高圧/中圧タービン、103……低圧タービン、104……復水器、105……ガスタービン。 1...Valve inflow steam pressure, 2...Valve inflow steam temperature, 3...Valve inflow steam superheat, 4...Condenser inflow allowable steam amount (fixed value), 5...Valve inflow allowable volume calculator , 6 CV value/opening converter, 7 signal selector, 8 excess steam release control amount, 9 upper limit opening limiter, 10 deviation setter, 11 high temperature reheat Steam pressure 12 High temperature reheat steam temperature 18 High pressure turbine bypass control valve 19 Low pressure turbine bypass control valve 21 High pressure main steam pressure 22 High pressure main steam temperature 29 High pressure Turbine bypass control valve 31 Intermediate pressure main steam pressure 32 Intermediate pressure main steam temperature 39 Intermediate pressure turbine bypass control valve 41 Low pressure main steam pressure 42 Low pressure main steam temperature 49 ... Low-pressure turbine bypass control valve, 62 ... Cooling tower fan, 63 ... Condenser circulation pump, 64 ... Condenser vacuum pump, 65 ... Auxiliary machine control device, 66 ... Cooling performance stabilization signal, 90...Lower limit opening limiter, 101...Steam generator, 102...High pressure/intermediate pressure turbine, 103...Low pressure turbine, 104...Condenser, 105...Gas turbine.

Claims (8)

タービンバイパス制御弁の開度を調節して復水器へ流入する蒸気を制御するタービンバイパス装置であって、
前記タービンバイパス制御弁へ流入する蒸気の圧力及び温度と、固定値とした復水器流入許容蒸気量とから、操業状態の弁流入許容蒸気容積量を演算する弁流入許容蒸気容積量演算手段と、
前記弁流入許容蒸気容積量に対応する、前記タービンバイパス制御弁の開度を求めて上限開度とする開度変換手段と
を具備したことを特徴とするタービンバイパス装置。
A turbine bypass device that controls steam flowing into a condenser by adjusting the opening of a turbine bypass control valve,
a valve inflow allowable steam volume calculation means for calculating an allowable valve inflow steam volume in an operating state from the pressure and temperature of the steam flowing into the turbine bypass control valve and a fixed value of the condenser inflow allowable steam volume; ,
A turbine bypass apparatus, comprising: opening conversion means for obtaining an opening of said turbine bypass control valve corresponding to said valve inflow allowable steam volume and setting it as an upper limit opening.
請求項1記載のタービンバイパス装置であって、
蒸気圧力から余剰蒸気逃し制御量が目標値となるよう制御するための前記タービンバイパス制御弁の弁開度を算出する制御部を具備し、
前記制御部によって算出された弁開度に対し、前記開度変換手段による前記上限開度を設定し、前記復水器への蒸気の過剰流入を抑止する、
ことを特徴とするタービンバイパス装置。
A turbine bypass device according to claim 1, wherein
a control unit that calculates the valve opening degree of the turbine bypass control valve for controlling the excess steam release control amount from the steam pressure so that it becomes a target value;
setting the upper limit opening degree by the opening degree conversion means for the valve opening degree calculated by the control unit, and suppressing excessive inflow of steam into the condenser;
A turbine bypass device characterized by:
請求項2に記載のタービンバイパス装置であって、
前記上限開度と、前記制御部によって算出された弁開度との偏差を算出し、当該偏差が、閾値を超過して少なくなった際に、冷却塔ファンの出力増加又は予備機を増台運転する
ことを特徴とするタービンバイパス装置。
A turbine bypass device according to claim 2,
Calculate the deviation between the upper limit opening and the valve opening calculated by the control unit, and increase the output of the cooling tower fan or increase the number of standby units when the deviation becomes smaller than the threshold value A turbine bypass device characterized by operating.
請求項2に記載のタービンバイパス装置であって、
前記上限開度と、前記制御部によって算出された弁開度との偏差を算出し、当該偏差が、閾値を超過して少なくなった際に、復水器循環ポンプの出力増加又は予備機を増台運転する
ことを特徴とするタービンバイパス装置。
A turbine bypass device according to claim 2,
Calculate the deviation between the upper limit opening and the valve opening calculated by the control unit, and when the deviation becomes smaller than the threshold value, increase the output of the condenser circulation pump or turn on the standby machine A turbine bypass device characterized by increased operation.
請求項2に記載のタービンバイパス装置であって、
前記上限開度と、前記制御部によって算出された弁開度との偏差を算出し、当該偏差が、閾値を超過して少なくなった際に、復水器真空ポンプの出力増加又は予備機を増台運転する
ことを特徴とするタービンバイパス装置。
A turbine bypass device according to claim 2,
Calculate the deviation between the upper limit opening degree and the valve opening degree calculated by the control unit, and when the deviation becomes smaller than the threshold value, increase the output of the condenser vacuum pump or turn on the standby machine A turbine bypass device characterized by increased operation.
請求項1乃至5の何れか1項に記載のタービンバイパス装置であって、
前記タービンバイパス制御弁が、コンベンショナル火力発電プラントの低圧タービンバイパス制御弁であることを特徴とするタービンバイパス装置。
The turbine bypass device according to any one of claims 1 to 5,
A turbine bypass system, wherein the turbine bypass control valve is a low-pressure turbine bypass control valve for a conventional thermal power plant.
請求項1乃至5の何れか1項に記載のタービンバイパス装置であって、
前記タービンバイパス制御弁が、コンバインドサイクル発電プラントの、高圧、中圧、低圧タービンバイパス制御弁であることを特徴とするタービンバイパス装置。
The turbine bypass device according to any one of claims 1 to 5,
A turbine bypass system, wherein said turbine bypass control valves are high pressure, intermediate pressure and low pressure turbine bypass control valves of a combined cycle power plant.
タービンバイパス制御弁及び当該タービンバイパス制御弁からの蒸気が流入する復水器を具備した発電プラントであって、
請求項1乃至請求項7の何れか1項に記載されたタービンバイパス装置を有することを特徴とする発電プラント。
A power plant comprising a turbine bypass control valve and a condenser into which steam from the turbine bypass control valve flows,
A power plant comprising the turbine bypass device according to any one of claims 1 to 7.
JP2021174542A 2021-10-26 2021-10-26 Turbine bypass device and power generation plant Pending JP2023064323A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2021174542A JP2023064323A (en) 2021-10-26 2021-10-26 Turbine bypass device and power generation plant

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2021174542A JP2023064323A (en) 2021-10-26 2021-10-26 Turbine bypass device and power generation plant

Publications (1)

Publication Number Publication Date
JP2023064323A true JP2023064323A (en) 2023-05-11

Family

ID=86271644

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2021174542A Pending JP2023064323A (en) 2021-10-26 2021-10-26 Turbine bypass device and power generation plant

Country Status (1)

Country Link
JP (1) JP2023064323A (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007177665A (en) * 2005-12-27 2007-07-12 Hitachi Ltd Steam turbine plant
JP2018501425A (en) * 2014-11-24 2018-01-18 ポスコ エナジー カンパニー リミテッド Turbine power generation system provided with emergency operation means and emergency operation method thereof

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007177665A (en) * 2005-12-27 2007-07-12 Hitachi Ltd Steam turbine plant
JP2018501425A (en) * 2014-11-24 2018-01-18 ポスコ エナジー カンパニー リミテッド Turbine power generation system provided with emergency operation means and emergency operation method thereof

Similar Documents

Publication Publication Date Title
US8733104B2 (en) Single loop attemperation control
US20100281877A1 (en) Single shaft combined cycle power plant start-up method an single shaft combined cycle power plant
JP2006183666A (en) Control method for steam turbine thrust pressure
US20120183413A1 (en) Reactor Feedwater Pump Control System
KR20130115281A (en) Method for operating a combined gas and steam turbine system, gas and steam turbine system for carrying out said method, and corresponding control device
CN112127960B (en) Steam turbine bypass control method based on full-automatic load shedding working condition
US6810675B2 (en) Method for operating a combined-cycle power station
WO2019163438A1 (en) Control device for steam governing valve of power generation plant, and method for controlling steam governing valve of power generation plant
JP2023064323A (en) Turbine bypass device and power generation plant
JP4937822B2 (en) Condenser vacuum degree control system and power plant including the system
JP5524923B2 (en) Low pressure turbine bypass control device and power plant
KR20100133427A (en) Steam turbine system for a power plant
JP2013148347A (en) Water supply control device, and water supply control method
JP2008002337A (en) Steam turbine control device and steam turbine control method
JP4560481B2 (en) Steam turbine plant
JP4162371B2 (en) Start-up control method for single-shaft combined power plant
JP2005214047A (en) Combined cycle power generation plant and method of operating the same
WO2021020207A1 (en) Power plant control device, power plant, and power plant control method
JPH0330687B2 (en)
JP5306000B2 (en) Water supply control device and water supply control method
JP2019522752A (en) Dynamic interaction of turbine control valves.
JP2019105260A (en) Plant control device and power plant
JP2003254011A (en) Operating method for multi-shaft type combined cycle power generating plant
JP2004169621A (en) Controller of extraction condensing turbine
JP2006312882A (en) Steam turbine power generation plant and its operation method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20211026

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20221213

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20230208

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20230725