JP2023061525A - holding device - Google Patents

holding device Download PDF

Info

Publication number
JP2023061525A
JP2023061525A JP2021171459A JP2021171459A JP2023061525A JP 2023061525 A JP2023061525 A JP 2023061525A JP 2021171459 A JP2021171459 A JP 2021171459A JP 2021171459 A JP2021171459 A JP 2021171459A JP 2023061525 A JP2023061525 A JP 2023061525A
Authority
JP
Japan
Prior art keywords
gas
porous body
flow path
gas flow
parallel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2021171459A
Other languages
Japanese (ja)
Other versions
JP7507735B2 (en
Inventor
保明 公門
Yasuaki Kimikado
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Niterra Co Ltd
Original Assignee
NGK Spark Plug Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NGK Spark Plug Co Ltd filed Critical NGK Spark Plug Co Ltd
Priority to JP2021171459A priority Critical patent/JP7507735B2/en
Publication of JP2023061525A publication Critical patent/JP2023061525A/en
Application granted granted Critical
Publication of JP7507735B2 publication Critical patent/JP7507735B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Container, Conveyance, Adherence, Positioning, Of Wafer (AREA)

Abstract

To provide a holding device in which the occurrence of abnormal discharge is reduced.SOLUTION: A holding device includes a plate-shaped member, a base member, and a bonding material. A gas flow channel inside the plate-shaped member 10 includes a plane parallel gas flow channel 60T extending parallel to a first surface S1, and a gas outflow channel 60V1 and a gas inflow channel 60V2 that connect a gas outflow hole 61 or a gas inflow hole 62 and the plane parallel gas flow channel 60T. Between the plane parallel gas flow channel and the first surface S1 or a second surface S2, a first electrode 51 including a first penetration hole 51H through which the gas outflow channel 60V1 is inserted with a predetermined distance D1 and a second electrode 52 including a second penetration hole 52H through which the gas inflow channel 60V2 is inserted with a predetermined distance D2 are provided. Inside the gas flow channel are provided a gas outflow-inflow channel porous body part 70V disposed inside any gas outflow channel, and a parallel flow channel porous body part 70T disposed inside the plane parallel gas flow channel so as to overlap the first penetration hole or the second penetration hole in a view in a normal direction of the first surface.SELECTED DRAWING: Figure 3

Description

本開示は、保持装置に関する。 The present disclosure relates to retention devices.

保持装置の一例として、下記特許文献1に記載の静電チャックが知られている。この静電チャックは、第1面及び第2面を有するプレートと、第1面近傍においてプレートに埋め込まれた第1電極と、第2面近傍においてプレートに埋め込まれた第2電極と、第1電極と第2電極とを接続する複数の導電体と、第1電極と第2電極との間のプレート内に配された第1ガス流路と、プレートの第2面から第1ガス流路に延びるガス流入路と、プレートの第1面から第1ガス流路に延びる複数のガス流出路と、を有する。基板やウェハ等のプラズマ処理を行う際には、プラズマ処理チャンバー等の内部に、プレートの第1面が上面、第2面が下面となる姿勢で静電チャックを配置し、第1面上に基板等を保持させる。そして、プレートの下方に配される金属製の冷却板に高周波電力を印加し、プラズマを発生させるとともに、基板等にバイアス電圧を生じさせる。また、プレート第1面側に保持された基板等の温度制御性を高めるため、ヘリウム等の熱伝導性ガスが、第2面側からプレート内のガス流路を介して第1面側に送られる。 As an example of the holding device, an electrostatic chuck described in Patent Document 1 below is known. This electrostatic chuck includes a plate having a first surface and a second surface, a first electrode embedded in the plate near the first surface, a second electrode embedded in the plate near the second surface, a first a plurality of electrical conductors connecting the electrode and the second electrode; a first gas flow path arranged in the plate between the first electrode and the second electrode; and a first gas flow path from the second surface of the plate. and a plurality of gas outlet channels extending from the first surface of the plate to the first gas channel. When performing plasma processing on a substrate, wafer, or the like, an electrostatic chuck is placed inside a plasma processing chamber or the like in such a posture that the first surface of the plate is the upper surface and the second surface is the lower surface. Hold the board, etc. Then, high-frequency power is applied to a metallic cooling plate arranged below the plate to generate plasma and a bias voltage to the substrate and the like. In addition, in order to improve the temperature controllability of the substrate held on the plate first surface side, a thermally conductive gas such as helium is sent from the second surface side to the first surface side through the gas flow path in the plate. be done.

国際公開第2020/185395号WO2020/185395

近年、処理の高速化等を図るため、プラズマ処理時に印加される高周波電力が高電圧化されている。この結果、冷却板と基板等との間の電位差が大きくなり、ガス流路内において意図しない異常放電(アーキング)が発生する可能性が高くなっている。異常放電が発生すると、基板等の処理品質が悪化して歩留りが低下するため、ガスの供給を妨げることなく流路内における異常放電の発生を低減する技術が求められる。一例として、ガス流路のうち、ガス流入孔やガス流出孔から基板等を保持する保持面に交差する方向に延びる部分(特許文献1のガス流入路やガス流出路に相当する部分)に、例えば絶縁性の多孔体を配置することにより、異常放電の発生を低減できることが知られている。また、保持面に平行に延びる部分(特許文献1の第1ガス流路に相当する部分)は、この上下に電極(特許文献1では第1電極及び第2電極)を配置することにより、異常放電対策が可能である。 In recent years, high-frequency power applied during plasma processing has been increased in order to speed up processing. As a result, the potential difference between the cooling plate and the substrate or the like increases, increasing the possibility of unintended abnormal electrical discharge (arcing) occurring in the gas flow path. If abnormal discharge occurs, the processing quality of substrates and the like deteriorates and the yield decreases. Therefore, there is a demand for a technique for reducing the occurrence of abnormal discharge in the flow path without interfering with gas supply. As an example, in a portion of the gas channel extending from the gas inflow hole and the gas outflow hole in a direction intersecting the holding surface for holding the substrate (the portion corresponding to the gas inflow channel and the gas outflow channel in Patent Document 1), For example, it is known that the occurrence of abnormal discharge can be reduced by arranging an insulating porous body. In addition, the portion extending parallel to the holding surface (the portion corresponding to the first gas flow path in Patent Document 1) is arranged with electrodes (first electrode and second electrode in Patent Document 1) above and below it, thereby Discharge countermeasures are possible.

しかしながら、保持面に平行に延びる部分の上下に配される電極は、絶縁性を確保し、ガス流路内における放電を回避する観点から、ガス流入路やガス流出路内の近傍には配置できない。このため、ガス流入路やガス流出路の近傍には、上下に配置される電極を有さない領域が生じてしまう。従来の方法では、この領域について、異常放電への対策を講じることができていなかった。 However, the electrodes arranged above and below the portion extending parallel to the holding surface cannot be arranged in the vicinity of the gas inflow path and the gas outflow path from the viewpoint of ensuring insulation and avoiding discharge in the gas flow path. . As a result, there are areas near the gas inflow path and the gas outflow path that do not have the electrodes arranged above and below. In the conventional method, measures against abnormal discharge could not be taken for this region.

本技術は、上記状況に鑑み、従来は難しかった領域での異常放電対策を可能とし、異常放電の発生が一層低減された保持装置を提供することを課題とする。 In view of the above situation, an object of the present technology is to provide a holding device that enables countermeasures against abnormal discharge in a conventionally difficult area and further reduces the occurrence of abnormal discharge.

本開示に係る保持装置は、対象物を保持する第1表面と、前記第1表面の反対側に位置する第2表面と、を有する絶縁性の板状部材を備え、前記板状部材の内部には、ガス流路であって、前記第1表面に平行に延びる面平行ガス流路と、前記面平行ガス流路の壁面に設けられた第1接続孔に接続されて、前記第1表面に設けられたガス流出孔と前記面平行ガス流路とを連通させるガス流出路と、前記面平行ガス流路の壁面に設けられた第2接続孔に接続されて、前記第2表面に設けられたガス流入孔と前記面平行ガス流路とを連通させるガス流入路と、を有するガス流路と、前記第1表面と前記面平行ガス流路との間に配された第1電極と、前記第2表面と前記面平行ガス流路との間に配された第2電極と、が設けられ、前記第1電極には、当該第1電極と前記ガス流出路の壁面との間に所定の間隔を空けて前記ガス流出路を挿通させる第1貫通孔が形成され、前記第2電極には、当該第2電極と前記ガス流入路の壁面との間に所定の間隔を空けて前記ガス流入路を挿通させる第2貫通孔が形成され、前記ガス流路の内部には、絶縁性の多孔体が配されており、前記多孔体は、前記ガス流出路又は前記ガス流入路の少なくとも一方の内部に配された流出入路内多孔体部と、前記第1表面の法線方向から視て前記第1貫通孔もしくは前記第2貫通孔に重畳するように、前記面平行ガス流路の内部に配された平行流路内多孔体部と、を備える、保持装置である。 A holding device according to the present disclosure includes an insulating plate-like member having a first surface for holding an object and a second surface located on the opposite side of the first surface, the inside of the plate-like member is connected to a plane-parallel gas channel extending parallel to the first surface and a first connection hole provided in a wall surface of the plane-parallel gas channel, the first surface a gas outflow passage that communicates between a gas outflow hole provided in the second surface and the plane-parallel gas flow passage; a gas flow channel that communicates between the gas flow hole and the plane-parallel gas flow channel; and a first electrode disposed between the first surface and the plane-parallel gas flow channel. , a second electrode disposed between the second surface and the plane-parallel gas flow path, and the first electrode includes a wall surface of the gas flow path between the first electrode and the wall surface of the gas flow path. A first through hole through which the gas outflow passage is inserted is formed at a predetermined interval, and the second electrode is provided with a predetermined interval between the second electrode and the wall surface of the gas inflow passage. A second through hole is formed through which the gas inflow path is inserted, and an insulating porous body is disposed inside the gas flow path, and the porous body is at least one of the gas outflow path and the gas inflow path. and the plane-parallel gas flow path so as to overlap the first through-hole or the second through-hole when viewed from the normal direction of the first surface. and an intra-parallel flow channel porous body portion arranged inside the holding device.

本開示によれば、異常放電の発生が低減された保持装置を提供できる。 According to the present disclosure, it is possible to provide a holding device with reduced occurrence of abnormal discharge.

図1は、実施形態に係る保持装置の一部を破断して概略構成を模式的に示した斜視図である。FIG. 1 is a perspective view schematically showing a schematic configuration with a part of the holding device according to the embodiment cut away. 図2は、板状部材の内部構造の概要を模式的に示した断面図である。FIG. 2 is a cross-sectional view schematically showing the outline of the internal structure of the plate member. 図3は、図2の一部を拡大して示した断面図である。3 is a cross-sectional view showing an enlarged part of FIG. 2. FIG. 図4は、参考例に係る板状部材の多孔体配設領域近傍を拡大して示した断面図である。FIG. 4 is a cross-sectional view showing an enlarged vicinity of a porous body arrangement region of a plate member according to a reference example. 図5は、他の実施形態に係る板状部材の多孔体配設部分を拡大して示した断面図である。FIG. 5 is a cross-sectional view showing an enlarged portion of a plate-shaped member where a porous body is provided according to another embodiment.

[本開示の実施形態の説明]
最初に本開示の実施態様を列記する。
<1> 本開示の保持装置は、対象物を保持する第1表面と、前記第1表面の反対側に位置する第2表面と、を有する絶縁性の板状部材を備え、前記板状部材の内部には、ガス流路であって、前記第1表面に平行に延びる面平行ガス流路と、前記面平行ガス流路の壁面に設けられた第1接続孔に接続されて、前記第1表面に設けられたガス流出孔と前記面平行ガス流路とを連通させるガス流出路と、前記面平行ガス流路の壁面に設けられた第2接続孔に接続されて、前記第2表面に設けられたガス流入孔と前記面平行ガス流路とを連通させるガス流入路と、を有するガス流路と、前記第1表面と前記面平行ガス流路との間に配された第1電極と、前記第2表面と前記面平行ガス流路との間に配された第2電極と、が設けられ、前記第1電極には、当該第1電極と前記ガス流出路の壁面との間に所定の間隔を空けて前記ガス流出路を挿通させる第1貫通孔が形成され、前記第2電極には、当該第2電極と前記ガス流入路の壁面との間に所定の間隔を空けて前記ガス流入路を挿通させる第2貫通孔が形成され、前記ガス流路の内部には、絶縁性の多孔体が配されており、前記多孔体は、前記ガス流出路又は前記ガス流入路の少なくとも一方の内部に配された流出入路内多孔体部と、前記第1表面の法線方向から視て前記第1貫通孔もしくは前記第2貫通孔に重畳するように、前記面平行ガス流路の内部に配された平行流路内多孔体部と、を備える。
[Description of Embodiments of the Present Disclosure]
First, the embodiments of the present disclosure are listed.
<1> A holding device of the present disclosure includes an insulating plate-like member having a first surface for holding an object and a second surface located on the opposite side of the first surface, the plate-like member is connected to a plane-parallel gas channel extending parallel to the first surface and a first connecting hole provided on a wall surface of the plane-parallel gas channel, the first a gas outflow passage connecting a gas outflow hole provided on one surface and the plane-parallel gas flow passage; a gas flow path that communicates between a gas flow hole provided in the surface and the plane-parallel gas flow path; and a first gas flow path arranged between the first surface and the plane-parallel gas flow path an electrode and a second electrode disposed between the second surface and the plane-parallel gas flow path; A first through hole through which the gas outflow path is inserted is formed with a predetermined gap therebetween, and the second electrode has a predetermined gap between the second electrode and the wall surface of the gas inflow path. a second through hole through which the gas inflow path is inserted is formed in the gas flow path, and an insulating porous body is disposed inside the gas flow path, and the porous body is the gas outflow path or the gas inflow path. and the plane-parallel gas so as to overlap the first through hole or the second through hole when viewed from the normal direction of the first surface. and an intra-parallel flow path porous body portion arranged inside the flow path.

<2> 上記<1>の保持装置において、前記面平行ガス流路には、前記多孔体が配されない空領域が設けられている。 <2> In the holding device of <1> above, the plane-parallel gas flow path is provided with an empty region where the porous body is not disposed.

<3> 上記<1>又は<2>の保持装置において、前記第1接続孔と前記第2接続孔は、前記第1表面の法線方向から視て、互いに重畳しない位置に設けられている。 <3> In the holding device of <1> or <2> above, the first connection hole and the second connection hole are provided at positions that do not overlap each other when viewed from the normal direction of the first surface. .

<4> 上記<1>から上記<3>の何れかに記載の保持装置において、前記多孔体は、前記第1表面の法線方向から視て前記第1貫通孔に重畳するように、前記ガス流出路の内部から前記面平行ガス流路の内部に至る領域に配された第1多孔体と、前記第1表面の法線方向から視て前記第2貫通孔の全体に重畳するように、前記ガス流入路の内部から前記面平行ガス流路の内部に至る領域に配された第2多孔体と、を含む。 <4> In the holding device according to any one of <1> to <3> above, the porous body overlaps the first through hole when viewed from the normal direction of the first surface. A first porous body arranged in a region extending from the inside of the gas outflow channel to the inside of the plane-parallel gas channel, and the second through hole so as to overlap the entirety of the second through hole when viewed from the normal direction of the first surface. and a second porous body arranged in a region extending from the inside of the gas inlet channel to the inside of the plane-parallel gas channel.

<5> 上記<1>から上記<3>の何れかに記載の保持装置において、前記平行流路内多孔体部は、前記流出入路内多孔体部に連なる前記多孔体の一部が、前記第1接続孔もしくは前記第2接続孔から前記面平行ガス流路の内部に突出することによって形成されている。 <5> In the holding device according to any one of <1> to <3> above, the parallel flow path inner porous body portion includes a portion of the porous body that is continuous with the inflow/outflow path inner porous body portion, It is formed by protruding from the first connection hole or the second connection hole into the plane-parallel gas flow path.

[本開示の実施形態の詳細]
本開示の保持装置の具体例を、以下に図面を参照しつつ説明する。本開示はこれらの例示に限定されるものではなく、特許請求の範囲によって示され、特許請求の範囲と均等の意味及び範囲内でのすべての変更が含まれることが意図される。なお、各図面の一部には、直交座標系XYZのX軸、Y軸及びZ軸を示しており、各軸方向が各図において同一方向となるように描かれている。以下の説明では、図1における紙面手前上側で図2から図5における上側を上側とし、各図面において、複数の同一部材については、一の部材に符号を付して他の部材の符号を省略することがある。また、各図面における部材の相対的な大きさや配置は必ずしも正確ではなく、説明の便宜を考慮して一部の部材の縮尺等を変更しているものがある。以下の説明において、「平行」「直交」は必ずしも厳密にこのような位置関係にあることを要さず、本開示の要旨を逸脱しない限りにおいて、「略平行」「略直交」であることを含むものとする。
[Details of the embodiment of the present disclosure]
A specific example of the holding device of the present disclosure will be described below with reference to the drawings. The present disclosure is not limited to these examples, but is indicated by the scope of the claims, and is intended to include all modifications within the meaning and scope of equivalents of the scope of the claims. Part of each drawing shows the X-axis, Y-axis, and Z-axis of an orthogonal coordinate system XYZ, and the directions of the axes are drawn in the same direction in each drawing. In the following description, the upper side of the paper surface in FIG. 1 is the upper side of the paper surface, and the upper side of FIGS. 2 to 5 is the upper side. I have something to do. In addition, the relative size and arrangement of members in each drawing are not necessarily accurate, and some members have been changed in scale for convenience of explanation. In the following description, "parallel" and "perpendicular" do not necessarily have such a positional relationship, and "substantially parallel" and "substantially orthogonal" are used as long as they do not deviate from the gist of the present disclosure. shall include

<実施形態の詳細>
以下、本実施形態に係る保持装置100を、図1から図4を参照しつつ説明する。保持装置100は、対象物(例えば、半導体ウェハW)を所定の処理温度(例えば、50℃~400℃)に加熱しながら、静電引力によって吸着し保持する静電チャックである。静電チャックは、例えば減圧されたチャンバー内でプラズマを用いてエッチング等の処理を行うプロセスにおいて、ウェハWを載置するテーブルとして使用される。
<Details of embodiment>
A holding device 100 according to the present embodiment will be described below with reference to FIGS. 1 to 4. FIG. The holding device 100 is an electrostatic chuck that attracts and holds an object (eg, semiconductor wafer W) by electrostatic attraction while heating the object (eg, semiconductor wafer W) to a predetermined processing temperature (eg, 50° C. to 400° C.). An electrostatic chuck is used as a table on which a wafer W is placed in a process such as etching using plasma in a decompressed chamber.

図1は、保持装置100の概略構成を模式的に示した図である。保持装置100は、円板状の板状部材10と、同じく円板状のベース部材20と、を備える。ベース部材20の径は板状部材10よりも大きく、例えば板状部材10が直径300mm×厚み3mmの円板状をなす場合、ベース部材20は直径340mm×厚み20mmの円板状とすることができる。なお、板状部材10及びベース部材20は何れも、概ね円板状をなすものであり、これらに、位置合わせを行うための凹凸等が設けられていてもよい。板状部材10とベース部材20は、上下方向(Z軸方向)に配列され、接合材30によって接合されている。板状部材10の上側の第1表面S1が、ウェハWを吸着し保持する吸着面とされ、板状部材10の下側の第2表面S2が、接合材30を介してベース部材20と接合される。板状部材10の上側の第1表面S1は、ウェハWを載置するための凸部を含む、凹凸面としてもよい。 FIG. 1 is a diagram schematically showing a schematic configuration of a holding device 100. As shown in FIG. The holding device 100 includes a disk-shaped plate-shaped member 10 and a similarly disk-shaped base member 20 . The diameter of the base member 20 is larger than that of the plate-like member 10. For example, when the plate-like member 10 has a disc shape of 300 mm in diameter and 3 mm in thickness, the base member 20 can be in the shape of a disc of 340 mm in diameter and 20 mm in thickness. can. Both the plate-like member 10 and the base member 20 are generally disk-shaped, and may be provided with unevenness or the like for alignment. The plate-shaped member 10 and the base member 20 are arranged in the vertical direction (Z-axis direction) and are joined by the joining material 30 . A first surface S1 on the upper side of the plate member 10 serves as an attraction surface for attracting and holding the wafer W, and a second surface S2 on the lower side of the plate member 10 is bonded to the base member 20 via the bonding material 30. be done. The first surface S1 on the upper side of the plate member 10 may be an uneven surface including protrusions for placing the wafer W thereon.

板状部材10は、図2に示すように、その第1表面S1及び第2表面S2が上下方向(Z軸方向)に略直交するように配される。板状部材10は絶縁性の基板であって、例えば、窒化アルミニウム(AlN)やアルミナ(Al)を主成分とするセラミックスにより形成されている。なお、ここでいう主成分とは、含有割合(重量割合)の最も多い成分を意味する。 As shown in FIG. 2, the plate member 10 is arranged such that its first surface S1 and second surface S2 are substantially perpendicular to the vertical direction (Z-axis direction). The plate-like member 10 is an insulating substrate, and is made of, for example, ceramics containing aluminum nitride (AlN) or alumina (Al 2 O 3 ) as a main component. In addition, the main component here means the component with the highest content ratio (weight ratio).

図1及び図2に示すように、板状部材10の第1表面S1には、複数のガス流出孔61が設けられ、第2表面S2には、ガス流入孔62が設けられている。そして、板状部材10の内部には、ガス流出孔61及びガス流入孔62との間を流体が移動可能に連通させるガス流路60が形成されている。第1表面S1の外周縁部は、内周部分に比べて僅かに上方に突出するように形成されており、第1表面S1にウェハWが吸着保持されると、図2に示すように、ウェハWと第1表面S1との間にギャップGが形成されるようになっている。 As shown in FIGS. 1 and 2, a plurality of gas outflow holes 61 are provided in the first surface S1 of the plate member 10, and gas inflow holes 62 are provided in the second surface S2. A gas passage 60 is formed inside the plate-like member 10 so as to allow the fluid to communicate between the gas outlet hole 61 and the gas inlet hole 62 . The outer peripheral edge of the first surface S1 is formed to protrude slightly higher than the inner peripheral portion. A gap G is formed between the wafer W and the first surface S1.

板状部材10のガス流路60には、ヘリウムガス等の熱伝導性ガスが流される。後述するベース部材20のガス注入路23からガス流入孔62に注入されたガスは、ガス流路60を通ってガス流出孔61から流出し、板状部材10とウェハWと間のギャップGに充填される。これにより、第1表面S1の温度がウェハWに伝わり易くなり、ウェハWの温度制御性が向上する。ガス流路60を含む板状部材10の内部の構成については、後述する。 A thermally conductive gas such as helium gas is caused to flow through the gas flow path 60 of the plate member 10 . The gas injected into the gas inflow hole 62 from the gas injection path 23 of the base member 20 (to be described later) flows through the gas flow path 60 and out of the gas outflow hole 61, and flows into the gap G between the plate member 10 and the wafer W. be filled. Thereby, the temperature of the first surface S1 is easily transmitted to the wafer W, and the temperature controllability of the wafer W is improved. The internal configuration of the plate member 10 including the gas flow paths 60 will be described later.

接合材30には、例えばシリコーン系の有機接合剤、無機接合剤や、Al系の金属接着剤を含むボンディングシート等を用いることができる。接合材30は、板状部材10及びベース部材20の双方に対して高い接着力を有していることに加え、高い耐熱性と熱伝導性を有していることが好ましい。接合材30において、板状部材10に形成されたガス流入孔62に対向し、後述するベース部材20に形成されたガス注入路23に連なる位置には、穴が設けられている。これにより、ガス注入路23に注入された気体は、接合材30の内部の穴を通ってガス流路60へと流通可能とされている。 As the bonding material 30, for example, a silicone-based organic bonding agent, an inorganic bonding agent, or a bonding sheet containing an Al-based metal adhesive can be used. The bonding material 30 preferably has high adhesive strength to both the plate-shaped member 10 and the base member 20, and also has high heat resistance and thermal conductivity. A hole is provided in the bonding material 30 at a position facing the gas inlet hole 62 formed in the plate member 10 and communicating with the gas injection passage 23 formed in the base member 20 described later. This allows the gas injected into the gas injection path 23 to flow through the hole inside the bonding material 30 to the gas flow path 60 .

ベース部材20は、図1に示すように、接合材30によって板状部材10の下側すなわち第2表面S2側に接合される。ベース部材20は導電性の基材であって、例えばアルミニウム、アルミニウム合金や、金属とセラミックスの複合体(Al-SiC)、又はセラミックス(SiC)を主成分として構成できる。ウェハWのプラズマ処理を行う際には、ベース部材20に高周波電力を印加することにより、ウェハWにバイアス電圧を生じさせる。ベース部材20は、既述したように板状部材10より大径な円板状をなし、この上に板状部材10の全体が載置される。 The base member 20 is joined to the lower side of the plate member 10, ie, the second surface S2 side, with a joining material 30, as shown in FIG. The base member 20 is a conductive base material, and can be composed mainly of, for example, aluminum, an aluminum alloy, a composite of metal and ceramics (Al--SiC), or ceramics (SiC). When plasma processing the wafer W, a bias voltage is generated on the wafer W by applying high-frequency power to the base member 20 . As described above, the base member 20 has a disc shape with a diameter larger than that of the plate-like member 10, and the entire plate-like member 10 is placed thereon.

図1に示すように、ベース部材20の内部には、冷媒路21が形成されている。冷媒路21に水やフッ素系不活性液体等の冷媒が流されることで、プラズマ熱の冷却が行われる。冷媒路21を冷媒が流れると、ベース部材20が冷却され、接合材30を介した熱伝導によって板状部材10が冷却され、さらに板状部材10の第1表面S1に保持されたウェハWが冷却される。冷媒の流れを調整することにより、ウェハWの温度を制御できる。 As shown in FIG. 1, a coolant passage 21 is formed inside the base member 20 . Plasma heat is cooled by flowing a coolant such as water or fluorine-based inert liquid through the coolant path 21 . When the coolant flows through the coolant path 21, the base member 20 is cooled, the plate member 10 is cooled by heat conduction via the bonding material 30, and the wafer W held on the first surface S1 of the plate member 10 is cooled. Cooled. The temperature of the wafer W can be controlled by adjusting the coolant flow.

図1に示すように、ベース部材20の内部にはまた、内部を流体が移動可能に形成されたガス注入路23が設けられている。ガス注入路23は、ベース部材20の下面に開口するとともに、接合材30の穴を経て板状部材10のガス流路60に連通されており、このガス注入路23からガス流路60に熱伝導性ガスが注入される。 As shown in FIG. 1, the inside of the base member 20 is also provided with a gas injection passage 23 through which a fluid can move. The gas injection path 23 is open to the lower surface of the base member 20 and communicates with the gas flow path 60 of the plate member 10 through the hole in the bonding material 30 . A conductive gas is injected.

続いて、板状部材10内部の構成について、図2及び図3を参照しつつ説明する。
既述したように、板状部材10の内部には、ガス流出孔61とガス流入孔62とを連通させるガス流路60が形成されている。図2等に示すように、本実施形態に係るガス流路60は、面平行ガス流路60Tと、複数のガス流出路60V1と、ガス流入路60V2と、を含む。面平行ガス流路60Tは、水平方向すなわち第1表面S1に平行に延びるトンネル状のガス流路部分である。ガス流出路60V1は、上下方向すなわち第1表面S1に垂直に延びて、面平行ガス流路60Tの上側の壁面に設けられた第1接続孔63に接続され、複数のガス流出孔61と面平行ガス流路60Tとを連通させるガス流路部分である。ガス流入路60V2は、上下方向すなわち第1表面S1に垂直に延びて、面平行ガス流路60Tの下側の壁面に設けられた第2接続孔64に接続され、ガス流入孔62と面平行ガス流路60Tとを連通させるガス流路部分である。本実施形態において、第1接続孔63と第2接続孔64は、第1表面S1の法線方向から視て、互いに重畳しない位置に設けられている。ガス流出孔61やガス流入孔62の形状、並びに、ガス流路60の断面形状は限定されるものではないが、本実施形態では、何れも略円形に形成されている場合について例示する。
Next, the configuration inside the plate member 10 will be described with reference to FIGS. 2 and 3. FIG.
As described above, inside the plate member 10, the gas flow path 60 is formed to allow the gas outflow hole 61 and the gas inflow hole 62 to communicate with each other. As shown in FIG. 2 and the like, the gas channel 60 according to this embodiment includes a plane-parallel gas channel 60T, a plurality of gas outflow channels 60V1, and a gas inflow channel 60V2. The plane-parallel gas flow channel 60T is a tunnel-shaped gas flow channel portion extending in the horizontal direction, that is, parallel to the first surface S1. The gas outflow path 60V1 extends vertically, that is, perpendicular to the first surface S1, and is connected to a first connection hole 63 provided in the upper wall surface of the plane-parallel gas flow path 60T. It is a gas channel portion that communicates with the parallel gas channel 60T. The gas inflow path 60V2 extends in the vertical direction, that is, perpendicular to the first surface S1, is connected to a second connection hole 64 provided in the lower wall surface of the plane-parallel gas flow path 60T, and is plane-parallel to the gas inflow hole 62. It is a gas channel portion that communicates with the gas channel 60T. In the present embodiment, the first connection hole 63 and the second connection hole 64 are provided at positions that do not overlap each other when viewed from the normal direction of the first surface S1. Although the shapes of the gas outflow hole 61 and the gas inflow hole 62 and the cross-sectional shape of the gas flow path 60 are not limited, the present embodiment exemplifies the case where they are all formed in a substantially circular shape.

図2に示すように、板状部材10の内部において、面平行ガス流路60Tの上方すなわち第1表面S1側には、第1電極51が配され、面平行ガス流路60Tの下方すなわち第2表面S2側には、第2電極52が配されている。これにより、面平行ガス流路60Tは、第1電極51と第2電極52によって、上下から挟まれている。第1電極51及び第2電極52は、例えば、タングステンやモリブデン等を含む導電性材料によって形成されている。本実施形態では、第1電極51が、第1表面S1に略平行な平面状をなし、ウェハW等を第1表面S1上に吸着するための静電引力を発現するチャック電極として機能する場合について例示する。この場合、第1電極51は、端子等を介して電源に接続され、必要に応じて第1電極51に給電が行われることで、ウェハWが第1表面S1上に吸着保持される。本実施形態ではまた、第2電極52も、第1表面S1に略平行な平面状をなすものとする。 As shown in FIG. 2, inside the plate member 10, the first electrode 51 is arranged above the plane-parallel gas flow passage 60T, that is, on the first surface S1 side, and below the plane-parallel gas flow passage 60T, that is, on the first surface S1 side. A second electrode 52 is arranged on the second surface S2 side. Thus, the plane-parallel gas flow path 60T is sandwiched between the first electrode 51 and the second electrode 52 from above and below. The first electrode 51 and the second electrode 52 are made of a conductive material containing tungsten, molybdenum, or the like, for example. In the present embodiment, the first electrode 51 has a planar shape substantially parallel to the first surface S1 and functions as a chuck electrode that develops electrostatic attraction for attracting the wafer W or the like onto the first surface S1. For example. In this case, the first electrode 51 is connected to a power supply via a terminal or the like, and power is supplied to the first electrode 51 as necessary, thereby attracting and holding the wafer W on the first surface S1. In this embodiment, the second electrode 52 is also assumed to have a planar shape substantially parallel to the first surface S1.

図2及び図3に示すように、平面状をなす第1電極51には、この下方に位置する面平行ガス流路60Tの第1接続孔63の真上となる位置に、第1接続孔63より一回り大きな第1貫通孔51Hが設けられており、この第1貫通孔51Hの中央部に、ガス流出路60V1が挿通される。図3に示すように、第1貫通孔51Hの孔縁は、ガス流出路60V1の壁面から所定の間隔D1だけ離れている。換言すれば、第1電極51は、ガス流出路60V1の壁面から所定の間隔D1を空けるように設けられている。同様に、図2及び図3に示すように、平面状をなす第2電極52には、この上方に位置する面平行ガス流路60Tの第2接続孔64の真下となる位置に、第2接続孔64より一回り大きな第2貫通孔52Hが設けられており、この第2貫通孔52Hの中央部に、ガス流入路60V2が挿通される。すなわち、図3に示すように、第2電極52は、ガス流入路60V2の壁面から所定の間隔D2を空けるように設けられている。導電性材料からなる第1電極51及び第2電極52が、ガス流出路60V1やガス流入路60V2内に露出したり近接したりすると、高周波電力が印加されたときの放電対象となるため、第1電極51や第2電極52と、ガス流出路60V1やガス流入路60V2の壁面との間は、一定間隔だけ離れている必要があるからである。間隔D1と間隔D2は、互いに同じ大きさであっても異なっていてもよく、第1電極51、第2電極52や、板状部材10の形成材料、想定されるプラズマ処理条件等に応じて設定できる。 As shown in FIGS. 2 and 3, the planar first electrode 51 has a first connection hole at a position directly above the first connection hole 63 of the plane-parallel gas flow path 60T located below. A first through hole 51H that is one size larger than 63 is provided, and the gas outflow path 60V1 is inserted through the center of the first through hole 51H. As shown in FIG. 3, the hole edge of the first through hole 51H is separated from the wall surface of the gas outflow path 60V1 by a predetermined distance D1. In other words, the first electrode 51 is provided with a predetermined distance D1 from the wall surface of the gas outflow path 60V1. Similarly, as shown in FIGS. 2 and 3, the planar second electrode 52 is provided with a second electrode 52 at a position directly below the second connection hole 64 of the plane-parallel gas flow path 60T located above. A second through hole 52H that is slightly larger than the connection hole 64 is provided, and the gas inflow path 60V2 is inserted through the center of the second through hole 52H. That is, as shown in FIG. 3, the second electrode 52 is provided with a predetermined distance D2 from the wall surface of the gas inflow passage 60V2. If the first electrode 51 and the second electrode 52 made of a conductive material are exposed or close to the gas outflow path 60V1 or the gas inflow path 60V2, they become objects of discharge when high-frequency power is applied. This is because the first electrode 51 or the second electrode 52 and the walls of the gas outflow path 60V1 or the gas inflow path 60V2 need to be separated by a constant distance. The distance D1 and the distance D2 may be the same size or different from each other, depending on the forming material of the first electrode 51, the second electrode 52, the plate member 10, the assumed plasma processing conditions, and the like. Can be set.

図2に示すように、板状部材10に形成されたガス流路60の内部には、多孔体70が配されている。多孔体70は、ガス流路60内を熱伝導性ガス等の流体が流通可能としつつ、上下方向に直線的に延びる大きな空隙がなくなるように形成されている。図3に示すように、本実施形態に係る保持装置100には、多孔体70として、ガス流出路60V1の内部から面平行ガス流路60Tの内部に至る領域に配された第1多孔体71と、ガス流入路60V2の内部から面平行ガス流路60Tの内部に至る領域に配された第2多孔体72と、が配されている。 As shown in FIG. 2 , a porous body 70 is arranged inside the gas flow path 60 formed in the plate member 10 . The porous body 70 is formed so as to allow a fluid such as a thermally conductive gas to flow through the inside of the gas flow path 60 and eliminate large voids that extend linearly in the vertical direction. As shown in FIG. 3, in the holding device 100 according to the present embodiment, a first porous body 71 is arranged as the porous body 70 in the region extending from the inside of the gas outlet channel 60V1 to the inside of the plane-parallel gas channel 60T. and a second porous body 72 arranged in a region extending from the inside of the gas inflow passage 60V2 to the inside of the plane-parallel gas passage 60T.

図3に示すように、多孔体70は、流出入路内多孔体部70Vと、平行流路内多孔体部71Tを有する。具体的には、第1多孔体71及び第2多孔体72はそれぞれ、ガス流出路60V1もしくはガス流入路60V2の内部に位置する流出入路内多孔体部71V,72Vと、面平行ガス流路60T内に位置する平行流路内多孔体部71T,72Tと、を有している。本実施形態では、流出入路内多孔体部70Vと、平行流路内多孔体部70Tは、各多孔体70において一体的に形成されている。より詳しくは、第1多孔体71では、流出入路内多孔体部71Vから連なる部分が、第1接続孔63から面平行ガス流路60Tの内部に突出することによって、平行流路内多孔体部71Tが形成されている。同様に、第2多孔体72では、流出入路内多孔体部72Vから連なる部分が、第2接続孔64から面平行ガス流路60Tの内部に突出することによって、平行流路内多孔体部72Tが形成されている。図3に示すように、平行流路内多孔体部71T,72Tは、第1表面S1の法線方向から視て、第1電極51の第1貫通孔51Hもしくは第2電極52の第2貫通孔52Hの全面に重畳するように形成されている。また、図3に示すように、本実施形態では、面平行ガス流路60Tのうち、第1表面S1の法線方向から視て第1貫通孔51H及び第2貫通孔52Hに重畳しない位置には、多孔体70が配されていない空領域ERが残されている。 As shown in FIG. 3, the porous body 70 has an inflow/outflow channel internal porous body portion 70V and a parallel channel internal porous body portion 71T. Specifically, the first porous body 71 and the second porous body 72 respectively include the inflow/inflow path inner porous body portions 71V and 72V located inside the gas outflow path 60V1 or the gas inflow path 60V2, and the plane-parallel gas flow paths. It has parallel flow channel inner porous body portions 71T and 72T located within 60T. In the present embodiment, the inflow/outflow path internal porous body portion 70V and the parallel flow path internal porous body portion 70T are integrally formed in each porous body 70 . More specifically, in the first porous body 71, a portion continuing from the inflow/outflow channel internal porous body portion 71V protrudes from the first connection hole 63 into the plane-parallel gas channel 60T, thereby forming a parallel channel internal porous body. A portion 71T is formed. Similarly, in the second porous body 72, a portion continuing from the inflow/outflow channel internal porous body portion 72V protrudes from the second connection hole 64 into the plane-parallel gas channel 60T, thereby forming a parallel channel internal porous body portion. 72T is formed. As shown in FIG. 3, the intra-parallel flow path porous body portions 71T and 72T are arranged in the first through hole 51H of the first electrode 51 or the second through hole 52 of the second electrode 52 when viewed from the normal direction of the first surface S1. It is formed so as to overlap the entire surface of the hole 52H. In addition, as shown in FIG. 3, in the present embodiment, in the plane-parallel gas flow path 60T, when viewed from the normal direction of the first surface S1, a , an empty region ER in which the porous body 70 is not arranged is left.

上記したような本実施形態に係る保持装置100は、公知の方法によって作製したベース部材20に、別途作製した板状部材10を、接合材30を介して図1等に示すように接合することで、製造できる。多孔体70が配された板状部材10の作製方法は、特に限定されるものではなく、種々の公知の方法を適宜に採用できる。例えば、公知の方法によって第1電極51、第2電極52を含む電極及びガス流路60を設けたセラミック基板を作製した後、適度な粘度を有する流体状の多孔体前駆物質を、ガス流出孔61もしくはガス流入孔62からガス流出路60V1もしくはガス流入路60V2に注入する。第1接続孔63もしくは第2接続孔64から面平行ガス流路60T内に所定量はみ出すように多孔体前駆物質を注入した後、加熱等によって多孔体前駆物質を硬化させれば、上記した態様で第1多孔体71や第2多孔体72をガス流路60内に配することができる。或いは、複数枚のグリーンシートのそれぞれに、ガス流路60を構成する溝や穴を形成し、多孔体前駆物質もしくは多孔体70を適当な位置に配置した状態で積層し焼成等して、板状部材10を作製してもよい。或いは、セラミック基板を複数個に分割したブロック体を作製し、各ブロック体においてガス流路60を構成する溝や穴の適当な位置に予め作製した多孔体70を配置した後に、ブロック体同士を接合することにより、板状部材10を作製してもよい。 The holding device 100 according to the present embodiment as described above is formed by joining the separately produced plate-like member 10 to the base member 20 produced by a known method via the joining material 30 as shown in FIG. 1 and the like. and can be manufactured. The method of manufacturing the plate-like member 10 having the porous bodies 70 disposed thereon is not particularly limited, and various known methods can be appropriately adopted. For example, after manufacturing a ceramic substrate provided with electrodes including the first electrode 51 and the second electrode 52 and gas flow paths 60 by a known method, a fluid porous body precursor having an appropriate viscosity is added to the gas outlet holes. 61 or the gas inflow hole 62 into the gas outflow path 60V1 or the gas inflow path 60V2. After injecting the porous body precursor so that a predetermined amount protrudes into the plane-parallel gas flow path 60T from the first connection hole 63 or the second connection hole 64, the porous body precursor is cured by heating or the like, thereby achieving the above-described mode. , the first porous body 71 and the second porous body 72 can be arranged in the gas flow path 60 . Alternatively, a plurality of green sheets are each formed with grooves and holes that constitute the gas flow paths 60, and the porous body precursor or the porous body 70 is arranged in an appropriate position and stacked and fired to form a plate. A shaped member 10 may be fabricated. Alternatively, block bodies are produced by dividing a ceramic substrate into a plurality of pieces, and after arranging prefabricated porous bodies 70 in suitable positions of grooves and holes constituting gas flow paths 60 in each block body, the block bodies are joined together. The plate member 10 may be produced by joining.

以上記載したような保持装置100は、例えば半導体製造装置の一部として使用される。保持装置100を半導体製造装置のチャンバー内に設置し、板状部材10の第1表面S1上にウェハWを載置する。チャック電極として機能する第1電極51への給電が行われると、静電引力が生じて第1表面S1にウェハWが吸着される。また、チャンバー内に原料ガスが導入され、ベース部材20に高周波電力が印加されると、プラズマが発生しウェハWにバイアス電圧が生じて処理が行われる。 The holding apparatus 100 as described above is used, for example, as part of a semiconductor manufacturing apparatus. The holding device 100 is installed in the chamber of the semiconductor manufacturing apparatus, and the wafer W is placed on the first surface S1 of the plate member 10 . When power is supplied to the first electrode 51 functioning as a chuck electrode, electrostatic attraction is generated and the wafer W is attracted to the first surface S1. Further, when the raw material gas is introduced into the chamber and high-frequency power is applied to the base member 20, plasma is generated and a bias voltage is generated on the wafer W to perform processing.

ウェハWを処理する際、ベース部材20の冷媒路21に冷媒が流されると、ウェハWは板状部材10を介して冷却される。このようにウェハWの温度が調整されるにあたり、ベース部材20のガス注入路23から板状部材10のガス流路60に注入された熱伝導性ガスが、第1表面S1のガス流出孔61から流出して第1表面S1とウェハWとの間に形成されたギャップGに充填されることで、ウェハWの温度が高い精度で制御される。 When the wafer W is processed, the wafer W is cooled through the plate-shaped member 10 when the coolant flows through the coolant passage 21 of the base member 20 . When the temperature of the wafer W is adjusted in this way, the thermally conductive gas injected from the gas injection passage 23 of the base member 20 into the gas passage 60 of the plate-like member 10 flows into the gas outflow holes 61 of the first surface S1. and fills the gap G formed between the first surface S1 and the wafer W, thereby controlling the temperature of the wafer W with high accuracy.

ウェハWを処理する際は、上記したようにベース部材20に高周波電力が印加されるため、ウェハWとベース部材20との間に位置する板状部材10のガス流路60内において、異常放電が生じる可能性がある。特に近年は、処理の高速化等を図るためにプラズマ処理時に印加される高周波電力が高電圧化され、ウェハWとベース部材20との間の電位差が大きくなって、ガス流路60内において異常放電が生じる可能性が高くなっている。 When the wafer W is processed, high-frequency power is applied to the base member 20 as described above. may occur. Particularly in recent years, high-frequency power applied during plasma processing has been increased in voltage in order to speed up processing, etc., and the potential difference between the wafer W and the base member 20 has increased, causing abnormalities in the gas flow path 60. Discharge is likely to occur.

図4は、参考例に係る板状部材110のガス流路60を含む内部構造の概要を模式的に示した断面である。参考例に係る板状部材110では、ガス流路60内に配された第1多孔体171及び第2多孔体172が平行流路内多孔体部分を有していない点において、本実施形態に係る板状部材10と相違している。その他の構成は、板状部材10と基本的に同じであるため、板状部材10に係る構成と同じ符号を付して説明を省略する。 FIG. 4 is a cross section schematically showing the outline of the internal structure including the gas flow path 60 of the plate member 110 according to the reference example. In the plate-shaped member 110 according to the reference example, the first porous body 171 and the second porous body 172 arranged in the gas flow path 60 do not have a parallel flow path inner porous body portion. It is different from the plate member 10 concerned. Since other configurations are basically the same as those of the plate-like member 10, the same reference numerals as those of the plate-like member 10 are used, and description thereof is omitted.

図4に示す板状部材110では、ガス流路60のうちガス流出路60V1及びガス流入路60V2の内部に、第1多孔体171もしくは第2多孔体172が配されている。よって、ガス流出路60V1及びガス流入路60V2における異常放電の発生が低減される。また、面平行ガス流路60Tの大部分が、この上下に配された第1電極51と第2電極52の間に挟まれており、これらの電極で挟まれた領域における異常放電の発生が低減される。また、しかしながら、ガス流出路60V1やガス流入路60V2における異常放電を回避するために、第1電極51はガス流出路60V1壁面から間隔D1を、第2電極52はガス流入路60V2壁面から間隔D2を、それぞれ空けて形成されている。このため、面平行ガス流路60Tのうちガス流出路60V1やガス流入路60V2との接続部分近傍において、上下を電極に挟まれておらず内部に多孔体も配されていない領域LR(図4において網掛けで示す領域)が存在する。この領域LRについては放電対策が不十分であり、異常放電が生じ易くなってしまっている。 In the plate member 110 shown in FIG. 4, the first porous body 171 or the second porous body 172 is arranged inside the gas outflow path 60V1 and the gas inflow path 60V2 of the gas flow path 60. As shown in FIG. Therefore, the occurrence of abnormal discharge in the gas outflow path 60V1 and the gas inflow path 60V2 is reduced. In addition, most of the plane-parallel gas flow path 60T is sandwiched between the first electrode 51 and the second electrode 52 arranged above and below, and abnormal discharge does not occur in the area sandwiched between these electrodes. reduced. However, in order to avoid abnormal discharge in the gas outflow path 60V1 and the gas inflow path 60V2, the first electrode 51 is spaced from the wall surface of the gas outflow path 60V1 by a distance D1, and the second electrode 52 is spaced from the gas inflow path 60V2 wall surface by a distance D2. are spaced apart from each other. Therefore, a region LR (see FIG. 4 There is a shaded area in . Discharge countermeasures are insufficient in this region LR, and abnormal discharge is likely to occur.

図4に示す板状部材110に対し、図3に示す本実施形態に係る板状部材10では、面平行ガス流路60Tのうち第1電極51と第2電極52によって上下方向に挟まれていない部分に、第1多孔体71の平行流路内部分71T、第2多孔体72の平行流路内部分72Tが配されている。これにより、図4の領域LRに相当する領域においても、ウェハWを処理する際の異常放電の発生が低減される。 In contrast to the plate-like member 110 shown in FIG. 4, in the plate-like member 10 according to the present embodiment shown in FIG. A parallel flow path inner portion 71T of the first porous body 71 and a parallel flow path inner portion 72T of the second porous body 72 are arranged in the portion where there is no parallel flow path. As a result, even in the area corresponding to the area LR in FIG. 4, the occurrence of abnormal discharge during processing of the wafer W is reduced.

(本実施形態の効果)
以上記載したように、本実施形態に係る保持装置100は、対象物(ウェハ)Wを保持する第1表面S1と、前記第1表面S1の反対側に位置する第2表面S2と、を有する絶縁性の板状部材10を備え、前記板状部材10の内部には、ガス流路60であって、前記第1表面S1に平行に延びる面平行ガス流路60Tと、前記面平行ガス流路60Tの壁面に設けられた第1接続孔63に接続されて、前記第1表面S1に設けられたガス流出孔61と前記面平行ガス流路60Tとを連通させるガス流出路60V1と、前記面平行ガス流路60Tの壁面に設けられた第2接続孔64に接続されて、前記第2表面S2に設けられたガス流入孔62と前記面平行ガス流路60Tとを連通させるガス流入路60V2と、を有するガス流路60と、前記第1表面S1と前記面平行ガス流路60Tとの間に配された第1電極51と、前記第2表面S2と前記面平行ガス流路60Tとの間に配された第2電極52と、が設けられ、前記第1電極51には、当該第1電極51と前記ガス流出路60V1の壁面との間に所定の間隔D1を空けて前記ガス流出路60V1を挿通させる第1貫通孔51Hが形成され、前記第2電極52には、当該第2電極52と前記ガス流入路60V2の壁面との間に所定の間隔D2を空けて前記ガス流入路60V2を挿通させる第2貫通孔52Hが形成され、前記ガス流路60の内部には、絶縁性の多孔体70が配されており、前記多孔体70は、前記ガス流出路60V1又は前記ガス流入路60V2の少なくとも一方の内部に配された流出入路内多孔体部70Vと、前記第1表面S1の法線方向から視て前記第1貫通孔51Hもしくは前記第2貫通孔52Hに重畳するように、前記面平行ガス流路60Tの内部に配された平行流路内多孔体部70Tと、を備える。
(Effect of this embodiment)
As described above, the holding device 100 according to the present embodiment has the first surface S1 for holding the object (wafer) W and the second surface S2 located on the opposite side of the first surface S1. An insulating plate-like member 10 is provided, and inside the plate-like member 10, there are a gas flow channel 60, which is a plane-parallel gas flow channel 60T extending parallel to the first surface S1, and the plane-parallel gas flow a gas outflow path 60V1 connected to a first connection hole 63 provided in the wall surface of the path 60T to allow communication between the gas outflow hole 61 provided in the first surface S1 and the plane-parallel gas flow path 60T; A gas inflow passage that is connected to a second connection hole 64 provided in the wall surface of the plane-parallel gas passage 60T and communicates the gas inflow hole 62 provided in the second surface S2 with the plane-parallel gas passage 60T. 60V2, a first electrode 51 disposed between the first surface S1 and the plane-parallel gas flow channel 60T, the second surface S2 and the plane-parallel gas flow channel 60T. and a second electrode 52 disposed between the first electrode 51 and the wall surface of the gas outflow path 60V1 with a predetermined gap D1 between the first electrode 51 and the wall surface of the gas outlet passage 60V1. A first through hole 51H through which the gas outflow path 60V1 is inserted is formed. A second through hole 52H through which the inflow path 60V2 is inserted is formed, and an insulating porous body 70 is disposed inside the gas flow path 60. The porous body 70 is the gas outflow path 60V1 or the The inflow/outflow path inner porous body portion 70V disposed inside at least one of the gas inflow paths 60V2 overlaps the first through hole 51H or the second through hole 52H when viewed from the normal direction of the first surface S1. and an intra-parallel flow path porous body portion 70T disposed inside the plane-parallel gas flow path 60T.

上記構成によれば、流出入路内多孔体部70Vにより、ガス流出路60V1又はガス流入路60V2の内部における異常放電の発生が低減される。そして、平行流路内多孔体部70Tにより、面平行ガス流路60Tのうち、電極の絶縁性を確保するために上下に電極を配することができない領域LRにおいても異常放電の発生が低減される。これにより、面平行ガス流路60Tについて、第1接続孔63や第2接続孔64の近傍には内部に多孔体70が配され、その他の領域には上下に第1電極51及び第2電極52が配されて、面平行ガス流路60Tの全域に亘って異常放電の発生を低減できる。この結果、板状部材10の内部に形成されたガス流路60全体について異常放電対策が可能となり、異常放電の発生が低減された保持装置100を提供できる。上記において平行流路内多孔体部70Tは、第1表面S1の法線方向から視て、第1貫通孔51Hもしくは第2貫通孔52Hの全域に重畳するように配されていることが好ましい。
なお、ガス流路は、板状部材の内部に複数の面平行ガス流路を設け、第1表面に交差する方向に延びる複数のガス流路(ガス流出路及びガス流入路を含む)によって、複数の面平行ガス流路を介してガス流入孔とガス流出孔を連通するように構成してもよい。
According to the above configuration, the occurrence of abnormal discharge inside the gas outflow path 60V1 or the gas inflow path 60V2 is reduced by the inflow/outflow path inner porous body portion 70V. Occurrence of abnormal discharge is reduced by the parallel flow path inner porous body portion 70T even in the region LR in which the electrodes cannot be arranged above and below in order to ensure the insulation of the electrodes in the plane-parallel gas flow path 60T. be. As a result, in the plane-parallel gas flow path 60T, the porous body 70 is arranged inside in the vicinity of the first connection hole 63 and the second connection hole 64, and the first electrode 51 and the second electrode are arranged vertically in other regions. 52 are arranged to reduce the occurrence of abnormal discharge over the entire plane-parallel gas flow path 60T. As a result, it is possible to take measures against abnormal discharge for the entire gas flow path 60 formed inside the plate member 10, and it is possible to provide the holding device 100 in which the occurrence of abnormal discharge is reduced. In the above description, it is preferable that the parallel flow path internal porous body portion 70T is arranged so as to overlap the entire area of the first through hole 51H or the second through hole 52H when viewed from the normal direction of the first surface S1.
In addition, the gas channels are provided with a plurality of plane-parallel gas channels inside the plate-like member, and the plurality of gas channels (including the gas outlet channel and the gas inlet channel) extending in a direction intersecting the first surface, The gas inflow hole and the gas outflow hole may be configured to communicate with each other via a plurality of plane-parallel gas flow paths.

また、本実施形態に係る保持装置100において、前記面平行ガス流路60Tには、前記多孔体70が配されない空領域ERが設けられている。 Further, in the holding device 100 according to the present embodiment, the plane-parallel gas flow path 60T is provided with an empty region ER in which the porous body 70 is not arranged.

ガス流路60の内部の全域に多孔体70を配すれば、異常放電の発生を抑えられる反面、ガス流量の低下が避けられない。上記構成によれば、面平行ガス流路60Tのうち、上下に電極を配置することが困難な領域LRには多孔体70を配しながら、第1電極51及び第2電極52を配置することによって異常放電対策が可能な領域には多孔体70が配されないように形成できる。この結果、ガス流量の低下をできるだけ小さく抑えながら、異常放電の発生を低減できる。 Disposing the porous body 70 over the entire interior of the gas flow path 60 can suppress the occurrence of abnormal discharge, but inevitably reduces the flow rate of the gas. According to the above configuration, the first electrode 51 and the second electrode 52 are arranged while the porous body 70 is arranged in the region LR where it is difficult to arrange the electrodes vertically in the plane-parallel gas flow passage 60T. Therefore, the porous body 70 can be formed so as not to be arranged in a region where measures against abnormal discharge are possible. As a result, it is possible to reduce the occurrence of abnormal discharge while minimizing the decrease in gas flow rate.

また、本実施形態に係る保持装置100において、前記第1接続孔63と前記第2接続孔64は、前記第1表面S1の法線方向から視て、互いに重畳しない位置に設けられている。 Further, in the holding device 100 according to the present embodiment, the first connection hole 63 and the second connection hole 64 are provided at positions that do not overlap each other when viewed from the normal direction of the first surface S1.

プラズマ処理時には、第2表面S2から第1表面S1に向かう方向、すなわち概ね第1表面S1の法線方向に沿って高周波電力が印加される。ガス流路60は、多孔体70が内部に配されていたとしても板状部材10の他の部分より空孔率が高いため、上記法線方向に沿って並ぶように形成されたガス流路60、特に第1表面S1側から第2表面S2側に直線的に貫通するように板状部材10の内部に形成されたガス流路60では、異常放電が発生する可能性が高くなる。上記構成によれば、第1表面S1の法線方向から視て、第1接続孔63と第2接続孔64とが互いにシフトした位置に形成されており、ガス流出路60V1とガス流入路60V2が上下方向に並ぶことはない。よって、これらが上下方向に重畳する位置に形成されている場合と比較して、ガス流出路60V1やガス流入路60V2の内部で異常放電が発生する可能性が低減される。 During plasma processing, high-frequency power is applied in a direction from the second surface S2 toward the first surface S1, that is, generally along the normal direction of the first surface S1. Since the gas flow path 60 has a higher porosity than other portions of the plate-like member 10 even if the porous body 70 is arranged inside, the gas flow path 60 is formed so as to line up along the normal direction. 60, especially in the gas flow path 60 formed inside the plate member 10 so as to linearly penetrate from the side of the first surface S1 to the side of the second surface S2, there is a high possibility that abnormal discharge will occur. According to the above configuration, the first connection hole 63 and the second connection hole 64 are formed at mutually shifted positions when viewed from the normal direction of the first surface S1, and the gas outflow path 60V1 and the gas inflow path 60V2 are formed at mutually shifted positions. are not aligned vertically. Therefore, the possibility of abnormal discharge occurring inside the gas outflow path 60V1 and the gas inflow path 60V2 is reduced compared to the case where these are formed at positions overlapping each other in the vertical direction.

また、本実施形態に係る保持装置100において、前記多孔体70は、前記第1表面S1の法線方向から視て前記第1貫通孔51Hに重畳するように、前記ガス流出路60V1の内部から前記面平行ガス流路60Tの内部に至る領域に配された第1多孔体71と、前記第1表面S1の法線方向から視て前記第2貫通孔52Hの全体に重畳するように、前記ガス流入路60V2の内部から前記面平行ガス流路60Tの内部に至る領域に配された第2多孔体72と、を含む。 Further, in the holding device 100 according to the present embodiment, the porous body 70 is arranged from the inside of the gas outflow path 60V1 so as to overlap the first through hole 51H when viewed from the normal direction of the first surface S1. The first porous body 71 disposed in the region extending to the inside of the plane-parallel gas flow path 60T and the second through-hole 52H are overlapped as viewed from the normal direction of the first surface S1. and a second porous body 72 arranged in a region extending from the inside of the gas inlet channel 60V2 to the inside of the plane-parallel gas channel 60T.

上記構成によれば、ガス流出路60V1から面平行ガス流路60Tの第1接続孔63近傍には第1多孔体が、ガス流入路60V2から面平行ガス流路60Tの第2接続孔64近傍には第2多孔体72が、それぞれ配される。よって、何れか一方のみに多孔体70が配されている構成と比較して、異常放電の発生が一層低減される。 According to the above configuration, the first porous body extends from the gas outflow path 60V1 to the plane-parallel gas flow path 60T in the vicinity of the first connection hole 63, and from the gas inflow path 60V2 to the plane-parallel gas flow path 60T in the vicinity of the second connection hole 64. A second porous body 72 is arranged in each of the . Therefore, the occurrence of abnormal discharge is further reduced as compared with a configuration in which only one of the porous bodies 70 is provided.

また、本実施形態に係る保持装置100において、前記平行流路内多孔体部71T,72Tは、前記流出入路内多孔体部71V,72Vに連なる前記多孔体70の一部が、前記第1接続孔63もしくは前記第2接続孔64から前記面平行ガス流路60Tの内部に突出することによって形成されている。 In addition, in the holding device 100 according to the present embodiment, the parallel flow path inner porous body portions 71T and 72T are configured such that a part of the porous body 70 connected to the inflow/outflow path inner porous body portions 71V and 72V is the first It is formed by protruding from the connection hole 63 or the second connection hole 64 into the plane-parallel gas flow path 60T.

上記構成によれば、流出入路内多孔体部71V,72Vと平行流路内多孔体部71T,72Tとが一体的に形成され、多孔体71,72が屈曲部を有する形状となる。よって、多孔体71,72がガス流路60内で変位し難くなり、安定的に異常放電抑制効果を得ながら、擦れ等によるパーティクルの発生を低減できる。また、例えば、多孔体70を形成するための流体状の前駆物質を、ガス流出路60V1やガス流入路60V2から面平行ガス流路60T内にはみ出すように注入して硬化等させることにより、流出入路内多孔体部71V,72Vと平行流路内多孔体部71T,72Tを容易に形成してガス流路60内に配置可能となる。 According to the above configuration, the inflow/inflow channel internal porous body portions 71V and 72V and the parallel channel internal porous body portions 71T and 72T are integrally formed, and the porous bodies 71 and 72 have a shape having a bent portion. Therefore, the porous bodies 71 and 72 are less likely to be displaced within the gas flow path 60, and the generation of particles due to friction or the like can be reduced while stably obtaining the effect of suppressing abnormal discharge. Further, for example, a fluid precursor for forming the porous body 70 is injected from the gas outflow path 60V1 or the gas inflow path 60V2 so as to protrude into the plane-parallel gas flow path 60T, and hardened. It is possible to easily form the in-incoming porous body portions 71V and 72V and the in-parallel flow channel porous body portions 71T and 72T and arrange them in the gas flow channel 60 .

<他の実施形態>
(1)上記実施形態では、流出入路内多孔体部と平行流路内多孔体部とが一体的に形成されている例について示したが、これに限定されない。例えば図5に示す板状部材210のように、第1多孔体271の流出入路内多孔体部271Vと平行流路内多孔体部271Tが、別体として、ガス流路60内に配されていても構わない。
<Other embodiments>
(1) In the above embodiment, an example in which the inflow/outflow path internal porous body portion and the parallel flow path internal porous body portion are integrally formed has been described, but the present invention is not limited to this. For example, like the plate-like member 210 shown in FIG. It doesn't matter if

(2)上記実施形態において、板状部材10の内部には、第1電極51、第2電極52とは別に、発熱抵抗体からなり、端子等を介して電源に接続されるヒータ電極が設けられていてもよい。必要に応じてヒータ電極への給電が行われることにより、板状部材10が加熱され、板状部材10の第1表面S1に保持されたウェハWが加熱される。ヒータ電極への給電を調整することにより、ウェハWの温度を制御できる。また、上記実施形態では、第1電極51がチャック電極として機能している場合について例示したが、これに限定されない。チャック電極は、第1電極51とは別に設けられていてもよい。 (2) In the above embodiment, a heater electrode made of a heating resistor and connected to a power source via a terminal or the like is provided inside the plate member 10 in addition to the first electrode 51 and the second electrode 52 . may have been By supplying power to the heater electrode as necessary, the plate-like member 10 is heated, and the wafer W held on the first surface S1 of the plate-like member 10 is heated. The temperature of the wafer W can be controlled by adjusting the power supply to the heater electrode. Further, in the above embodiment, the case where the first electrode 51 functions as a chuck electrode was exemplified, but the present invention is not limited to this. The chuck electrode may be provided separately from the first electrode 51 .

(3)第1電極と第2電極は、他の電極や端子と電気的に接続されていてもよく、接続されていなくてもよい。両電極への給電等が行われなくても、静電容量が大きくなることで面平行ガス流路内における異常放電を低減できる。また、第1電極と第2電極は、互いに電気的に接続されていても、接続されていなくてもよい。両電極を電気的に接続すれば、間に配される面平行ガス流路内における電位差が小さくなり異常放電の発生を一層低減できる。 (3) The first electrode and the second electrode may or may not be electrically connected to other electrodes or terminals. Even if electric power is not supplied to both electrodes, abnormal discharge in the plane-parallel gas flow path can be reduced by increasing the capacitance. Also, the first electrode and the second electrode may or may not be electrically connected to each other. By electrically connecting both electrodes, the potential difference in the plane-parallel gas flow path disposed between them is reduced, and the occurrence of abnormal discharge can be further reduced.

(4)上記実施形態では、複数のガス流出路60V1と、ガス流入路60V2のすべてに、多孔体70が配設されている例について示したが、これに限定されない。複数のガス流出入路の一部に、本開示に沿った多孔体を配するだけでも、このような多孔体を有しない保持装置と比較して、ガス流路内における異常放電の発生を低減できる。 (4) In the above embodiment, the example in which the porous bodies 70 are arranged in all of the plurality of gas outflow paths 60V1 and the gas inflow paths 60V2 is shown, but the present invention is not limited to this. Even by arranging a porous body according to the present disclosure in a part of a plurality of gas inflow and outflow paths, the occurrence of abnormal discharge in the gas flow path is reduced compared to a holding device without such a porous body. can.

(5)ベース部材は、その内部にガス注入路が形成されているものに限定されない。例えば、板状部材10の第2表面S2に、ガス流入孔62から外周に延びる溝が形成され、この溝から熱伝導性ガスが注入されて、ガス流路60内に導入されるように構成されていてもよい。また、ベース部材は、その内部に冷媒路が形成されているものに限定されない。ベース部材は、熱伝導性の高い材料で形成されているもの、放冷フィン等の何らかの冷却機構を備えているもの、が好ましい。 (5) The base member is not limited to one in which the gas injection path is formed. For example, a groove extending from the gas inlet hole 62 to the outer periphery is formed on the second surface S2 of the plate-like member 10, and the heat-conducting gas is injected from this groove and introduced into the gas flow path 60. may have been Also, the base member is not limited to one in which the refrigerant passage is formed. It is preferable that the base member is made of a material with high thermal conductivity, or has some kind of cooling mechanism such as cooling fins.

(6)上記実施形態の保持装置における各部材を形成する材料は、あくまで例示であり、各部材が他の材料により形成されてもよい。また、上記実施形態における保持装置等の製造方法は、あくまで一例であって、種々に変更可能である。 (6) The material forming each member in the holding device of the above embodiment is merely an example, and each member may be formed of another material. Moreover, the manufacturing method of the holding device and the like in the above embodiment is merely an example, and various modifications are possible.

(7)本開示は、上記実施形態で例示した静電チャックに限らず、セラミック基材の表面上に対象物を保持する他の保持装置(例えば、加熱装置等)にも同様に適用可能である。 (7) The present disclosure is not limited to the electrostatic chuck exemplified in the above embodiment, and can be similarly applied to other holding devices (for example, heating devices, etc.) that hold an object on the surface of a ceramic substrate. be.

100…保持装置
10,110,210…板状部材
20…ベース部材
21…冷媒路
23…ガス注入路
30…接合材
51…第1電極
51H…第1貫通孔
52…第2電極
52H…第2貫通孔
60…ガス流路
60T…面平行ガス流路
60V1…ガス流出路
60V2…ガス流出路
61…ガス流出孔
62…ガス流入孔
63…第1接続孔
64…第2接続孔
70…多孔体
71,171,271…第1多孔体
72,172…第2多孔体
70T,71T,72T,271T…平行流路内多孔体部
70V,71V,72V,171V,271V…流出入路内多孔体部
S1…第1表面
S2…第2表面
G…ギャップ
D1…(第1電極とガス流出路壁面との)間隔
D2…(第2電極とガス流入路壁面との)間隔
ER…空領域
LR…(上下が電極で挟まれておらず多孔体も配されていない)領域
W…ウェハ(対象物)
DESCRIPTION OF SYMBOLS 100... Holding|maintenance apparatus 10, 110, 210... Plate-shaped member 20... Base member 21... Coolant path 23... Gas injection path 30... Joining material 51... First electrode 51H... First through-hole 52... Second electrode 52H... Second Through hole 60 Gas channel 60T Plane parallel gas channel 60V1 Gas outflow channel 60V2 Gas outflow channel 61 Gas outflow hole 62 Gas inflow hole 63 First connection hole 64 Second connection hole 70 Porous body 71, 171, 271... First porous bodies 72, 172... Second porous bodies 70T, 71T, 72T, 271T... Porous body parts in parallel flow paths 70V, 71V, 72V, 171V, 271V... Porous body parts in inflow and outflow paths S1 First surface S2 Second surface G Gap D1 Spacing (between the first electrode and the wall surface of the gas outflow channel) D2 Spacing (between the second electrode and the wall surface of the gas inflow channel) ER Empty region LR ( Region W: Wafer (target)

Claims (5)

対象物を保持する第1表面と、前記第1表面の反対側に位置する第2表面と、を有する絶縁性の板状部材を備え、
前記板状部材の内部には、
ガス流路であって、
前記第1表面に平行に延びる面平行ガス流路と、
前記面平行ガス流路の壁面に設けられた第1接続孔に接続されて、前記第1表面に設けられたガス流出孔と前記面平行ガス流路とを連通させるガス流出路と、
前記面平行ガス流路の壁面に設けられた第2接続孔に接続されて、前記第2表面に設けられたガス流入孔と前記面平行ガス流路とを連通させるガス流入路と、を有するガス流路と、
前記第1表面と前記面平行ガス流路との間に配された第1電極と、
前記第2表面と前記面平行ガス流路との間に配された第2電極と、が設けられ、
前記第1電極には、当該第1電極と前記ガス流出路の壁面との間に所定の間隔を空けて前記ガス流出路を挿通させる第1貫通孔が形成され、
前記第2電極には、当該第2電極と前記ガス流入路の壁面との間に所定の間隔を空けて前記ガス流入路を挿通させる第2貫通孔が形成され、
前記ガス流路の内部には、絶縁性の多孔体が配されており、
前記多孔体は、
前記ガス流出路又は前記ガス流入路の少なくとも一方の内部に配された流出入路内多孔体部と、
前記第1表面の法線方向から視て前記第1貫通孔もしくは前記第2貫通孔に重畳するように、前記面平行ガス流路の内部に配された平行流路内多孔体部と、を備える、保持装置。
An insulating plate-shaped member having a first surface for holding an object and a second surface located on the opposite side of the first surface,
Inside the plate member,
a gas flow path,
a plane-parallel gas flow path extending parallel to the first surface;
a gas outflow path that is connected to a first connection hole provided in a wall surface of the plane-parallel gas flow path so as to allow communication between the gas outflow hole provided on the first surface and the plane-parallel gas flow path;
a gas inflow path connected to a second connection hole provided in a wall surface of the plane-parallel gas flow path to allow communication between the gas inflow hole provided in the second surface and the plane-parallel gas flow path. a gas flow path;
a first electrode disposed between the first surface and the plane-parallel gas flow path;
a second electrode interposed between the second surface and the plane-parallel gas flow path;
The first electrode is formed with a first through hole through which the gas outflow path is inserted with a predetermined gap between the first electrode and the wall surface of the gas outflow path,
The second electrode is formed with a second through hole through which the gas inflow path is inserted with a predetermined gap between the second electrode and the wall surface of the gas inflow path,
An insulating porous body is arranged inside the gas channel,
The porous body is
an inflow/outflow channel internal porous body portion disposed inside at least one of the gas outflow channel and the gas inflow channel;
an intra-parallel flow path porous body portion arranged inside the plane-parallel gas flow path so as to overlap with the first through-hole or the second through-hole when viewed from the normal direction of the first surface; holding device.
前記面平行ガス流路には、前記多孔体が配されない空領域が設けられている、請求項1に記載の保持装置。 2. The holding device according to claim 1, wherein said plane-parallel gas flow path is provided with an empty region where said porous body is not disposed. 前記第1接続孔と前記第2接続孔は、前記第1表面の法線方向から視て、互いに重畳しない位置に設けられている、請求項1又は請求項2に記載の保持装置。 The holding device according to claim 1 or 2, wherein said first connection hole and said second connection hole are provided at positions not overlapping with each other when viewed from the normal direction of said first surface. 前記多孔体は、
前記第1表面の法線方向から視て前記第1貫通孔に重畳するように、前記ガス流出路の内部から前記面平行ガス流路の内部に至る領域に配された第1多孔体と、
前記第1表面の法線方向から視て前記第2貫通孔の全体に重畳するように、前記ガス流入路の内部から前記面平行ガス流路の内部に至る領域に配された第2多孔体と、を含む、請求項1から請求項3の何れか一項に記載の保持装置。
The porous body is
a first porous body arranged in a region extending from the inside of the gas outlet channel to the inside of the plane-parallel gas channel so as to overlap with the first through hole when viewed from the normal direction of the first surface;
A second porous body arranged in a region extending from the inside of the gas inlet channel to the inside of the plane-parallel gas channel so as to overlap the entire second through hole when viewed from the normal direction of the first surface. 4. A retaining device according to any one of claims 1 to 3, comprising:
前記平行流路内多孔体部は、前記流出入路内多孔体部に連なる前記多孔体の一部が、前記第1接続孔もしくは前記第2接続孔から前記面平行ガス流路の内部に突出することによって形成されている、請求項1から請求項4の何れか一項に記載の保持装置。 A part of the porous body connected to the inflow/outflow path internal porous body portion protrudes from the first connection hole or the second connection hole into the plane-parallel gas flow path. 5. A retaining device according to any one of the preceding claims, formed by:
JP2021171459A 2021-10-20 2021-10-20 Retaining device Active JP7507735B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2021171459A JP7507735B2 (en) 2021-10-20 2021-10-20 Retaining device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2021171459A JP7507735B2 (en) 2021-10-20 2021-10-20 Retaining device

Publications (2)

Publication Number Publication Date
JP2023061525A true JP2023061525A (en) 2023-05-02
JP7507735B2 JP7507735B2 (en) 2024-06-28

Family

ID=86249779

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2021171459A Active JP7507735B2 (en) 2021-10-20 2021-10-20 Retaining device

Country Status (1)

Country Link
JP (1) JP7507735B2 (en)

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4413667B2 (en) 2004-03-19 2010-02-10 日本特殊陶業株式会社 Electrostatic chuck
US20200286717A1 (en) 2019-03-08 2020-09-10 Applied Materials, Inc. Electrostatic chuck for high bias radio frequency (rf) power application in a plasma processing chamber
JPWO2022202147A1 (en) 2021-03-25 2022-09-29

Also Published As

Publication number Publication date
JP7507735B2 (en) 2024-06-28

Similar Documents

Publication Publication Date Title
US10354904B2 (en) Electrostatic chuck
JP6865145B2 (en) Holding device
TWI688038B (en) Locally heated multi-zone substrate support
JP6634315B2 (en) Holding device and method of manufacturing holding device
JP6077301B2 (en) Electrostatic chuck
JP6196095B2 (en) Electrostatic chuck
JP3374033B2 (en) Vacuum processing equipment
WO2023068099A1 (en) Holding device
JP6524098B2 (en) Electrostatic chuck, chamber and method of manufacturing electrostatic chuck
JP2015035448A (en) Electrostatic chuck
JP4218899B2 (en) Substrate holder provided with electrostatic chuck and method for manufacturing the same
JP2018101711A (en) Electrostatic chuck
JP2018006768A (en) Electrostatic chuck
JP2023061525A (en) holding device
TWI787463B (en) holding device
JP2015035446A (en) Electrostatic chuck
JP7319158B2 (en) holding device
JP7283872B2 (en) holding device
US20210082731A1 (en) Substrate fixing device and electrostatic chuck
JP7507812B2 (en) Retaining device
JP2019062175A (en) Holding device
CN112204724A (en) Method for manufacturing holding device and holding device
JP7409536B1 (en) Electrostatic chuck and its manufacturing method
JP7240145B2 (en) electrostatic chuck
JP7448060B1 (en) electrostatic chuck

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20240228

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20240228

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20240606

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20240618