JP2023060940A - ceramic structure - Google Patents

ceramic structure Download PDF

Info

Publication number
JP2023060940A
JP2023060940A JP2021170630A JP2021170630A JP2023060940A JP 2023060940 A JP2023060940 A JP 2023060940A JP 2021170630 A JP2021170630 A JP 2021170630A JP 2021170630 A JP2021170630 A JP 2021170630A JP 2023060940 A JP2023060940 A JP 2023060940A
Authority
JP
Japan
Prior art keywords
skeleton
ceramic structure
particles
particle size
peak
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2021170630A
Other languages
Japanese (ja)
Inventor
和浩 黒澤
Kazuhiro Kurosawa
寛幸 西山
Hiroyuki Nishiyama
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Niterra Co Ltd
Original Assignee
NGK Spark Plug Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NGK Spark Plug Co Ltd filed Critical NGK Spark Plug Co Ltd
Priority to JP2021170630A priority Critical patent/JP2023060940A/en
Publication of JP2023060940A publication Critical patent/JP2023060940A/en
Pending legal-status Critical Current

Links

Images

Abstract

To provide a ceramic structure capable of improving strength without increasing a pressure loss.SOLUTION: In a ceramic structure 10 having a skeleton 2 mainly composed of Al oxide and a communication pore whose porosity is 60-97%, when taking frequency distribution of a particle size of the skeleton 2, frequency FA of peak A having the largest frequency, and frequency FB of peak B having the next largest frequency satisfy 0.05≤FB/FA≤0.35.SELECTED DRAWING: Figure 3

Description

本発明は、例えばドラフト等の排気管、配管及びダクトのフィルタに好適に使用することができるセラミック構造体に関する。 TECHNICAL FIELD The present invention relates to a ceramic structure that can be suitably used, for example, as a filter for exhaust pipes such as drafts, pipes and ducts.

従来から、セラミック粉末を用いた多孔質焼結体が吸音材、触媒等の用途に使用されている(特許文献1)。一般に、このような多孔質焼結体は、無数の微細気孔を有する連通気孔を備えている。 BACKGROUND ART Conventionally, porous sintered bodies using ceramic powder have been used for applications such as sound absorbing materials and catalysts (Patent Document 1). In general, such porous sintered bodies are equipped with interconnected pores having countless fine pores.

特開2000-264753号公報JP-A-2000-264753

ところが、セラミックス多孔質体は強度が弱く、破損しやすいという問題がある。
一方で、セラミックス多孔質体の気孔率を小さくすれば強度は向上するが、セラミックス多孔質体を通過する流体の圧力損失が大きくなるので不適である。
そこで、本発明は、圧力損失を増大させずに強度を向上させることができるセラミック構造体を提供することを目的とする。
However, there is a problem that the ceramic porous body is weak in strength and easily broken.
On the other hand, if the porosity of the ceramic porous body is reduced, the strength is improved, but the pressure loss of the fluid passing through the ceramic porous body increases, which is not suitable.
SUMMARY OF THE INVENTION Accordingly, it is an object of the present invention to provide a ceramic structure capable of improving strength without increasing pressure loss.

上記課題を解決するため、本発明の第1の態様のセラミック構造体は、Al酸化物を主成分とする骨格を有し、連通気孔を有する気孔率60~97%のセラミック構造体であって、前記骨格の粒径の頻度分布を取ったとき、頻度の最も大きいピークAの頻度FAと、頻度が次に大きいピークBの頻度FBについて、0.05≦FB/FA≦0.35を満たすことを特徴とする。 In order to solve the above problems, a ceramic structure according to a first aspect of the present invention is a ceramic structure having a skeleton containing Al oxide as a main component and having open pores and a porosity of 60 to 97%. , when the frequency distribution of the particle size of the skeleton is taken, the frequency FA of peak A with the highest frequency and the frequency FB of peak B with the second highest frequency satisfy 0.05 ≤ FB / FA ≤ 0.35. It is characterized by

このセラミック構造体によれば、粒径の異なる粒子の数が適度に異なるので、骨格となるAl酸化物粒子として、大径粒子と小径粒子の混合スラリーとする際、又は大径粒子とコロイド粒子を混合してスラリーとする際、大径の粒子の間に小径の粒子が細密充填され、骨格の焼結が促進される。そして、その結果、気孔率を低減する必要がなく、圧力損失を増大させずに骨格の強度、ひいてはセラミック構造体の強度を向上させることができる。 According to this ceramic structure, since the number of particles with different particle diameters is appropriately different, as the Al oxide particles serving as the skeleton, when making a mixed slurry of large-diameter particles and small-diameter particles, or when forming a mixed slurry of large-diameter particles and small-diameter particles, When the is mixed to form a slurry, small-diameter particles are closely packed between large-diameter particles, promoting sintering of the skeleton. As a result, it is possible to improve the strength of the skeleton, and thus the strength of the ceramic structure, without reducing the porosity and increasing the pressure loss.

また、本発明の第2の態様のセラミック構造体は、Al酸化物を主成分とする骨格を有し、連通気孔を有する気孔率60~97%のセラミック構造体であって、前記骨格の粒径の頻度分布を取ったとき、粒径の最も大きいピークCのピーク粒径PCと、粒径が次に大きいピークDのピーク粒径PDについて、PC≦10μmかつ、5≦PC/PDを満たすことを特徴とする。 In addition, a ceramic structure according to a second aspect of the present invention is a ceramic structure having a skeleton containing Al oxide as a main component and having a porosity of 60 to 97% and having continuous pores, wherein grains of the skeleton are When the frequency distribution of the diameters is taken, the peak particle size PC of the peak C having the largest particle size and the peak particle size PD of the peak D having the next largest particle size satisfy PC ≤ 10 μm and 5 ≤ PC / PD. It is characterized by

このセラミック構造体によれば、最も大径の粒子も10μm以下の微細粒であるので、骨格となるAl酸化物粒子を上述のようにスラリーにする際、粒子が細密充填され、骨格の焼結が促進される。そして、その結果、気孔率を低減する必要がなく、圧力損失を増大させずに骨格の強度、ひいてはセラミック構造体の強度を向上させることができる。
また、粒径が次に大きい粒子との粒径の差が大きくなるので、骨格となるAl酸化物粒子を上述のようにスラリーにする際、大径の粒子の間に小径の粒子が細密充填され、骨格の焼結が促進される。そして、その結果、気孔率を低減する必要がなく、圧力損失を増大させずに骨格の強度、ひいてはセラミック構造体の強度を向上させることができる。
According to this ceramic structure, since even the largest particles are fine particles of 10 μm or less, when the Al oxide particles that form the skeleton are made into a slurry as described above, the particles are closely packed and the skeleton is sintered. is promoted. As a result, it is possible to improve the strength of the skeleton, and thus the strength of the ceramic structure, without reducing the porosity and increasing the pressure loss.
In addition, since the difference in particle size between particles with the next largest particle size becomes large, when the Al oxide particles that form the skeleton are slurried as described above, small-diameter particles are densely packed between large-diameter particles. and promotes sintering of the skeleton. As a result, it is possible to improve the strength of the skeleton, and thus the strength of the ceramic structure, without reducing the porosity and increasing the pressure loss.

本発明のセラミック構造体において、前記骨格の断面を見たとき、前記骨格内の気孔率が10%以下であってもよい。
このセラミック構造体によれば、骨格の強度がさらに向上する。
In the ceramic structure of the present invention, when the cross section of the skeleton is viewed, the porosity in the skeleton may be 10% or less.
According to this ceramic structure, the strength of the skeleton is further improved.

本発明のセラミック構造体において、前記骨格は、前記Al酸化物を除く他の元素を総量で3.0質量%以下含んでもよい。
このセラミック構造体によれば、他の元素の含有量の合計が3.0質量以下であるので、骨格のAl酸化物の異常粒の成長を抑制し、骨格の強度低下、ひいてはセラミック構造体の強度低下を抑制できる。
In the ceramic structure of the present invention, the skeleton may contain other elements other than the Al oxide in a total amount of 3.0% by mass or less.
According to this ceramic structure, since the total content of other elements is 3.0 mass or less, the growth of abnormal grains of Al oxide in the framework is suppressed, the strength of the framework is reduced, and the ceramic structure is improved. A decrease in strength can be suppressed.

この発明によれば、圧力損失を増大させずに強度を向上させることができるセラミック構造体が得られる。 According to the present invention, it is possible to obtain a ceramic structure whose strength can be improved without increasing pressure loss.

本発明の第1の態様の実施形態に係るセラミック構造体の模式図である。1 is a schematic diagram of a ceramic structure according to an embodiment of the first aspect of the present invention; FIG. 本発明の第1の態様の実施形態に係るセラミック構造体の模式断面図である。1 is a schematic cross-sectional view of a ceramic structure according to an embodiment of the first aspect of the present invention; FIG. 本発明の第1の態様の実施形態に係るセラミック構造体の骨格の粒径の頻度分布を示す模式図である。FIG. 2 is a schematic diagram showing the frequency distribution of grain sizes of the skeleton of the ceramic structure according to the embodiment of the first aspect of the present invention; インターセプト法による骨格の粒径の測定方法を示す模式図である。FIG. 4 is a schematic diagram showing a method for measuring the grain size of a skeleton by an intercept method. 本発明の第2の態様の実施形態に係るセラミック構造体の骨格の粒径の頻度分布を示す模式図である。FIG. 5 is a schematic diagram showing the frequency distribution of grain sizes of the skeleton of the ceramic structure according to the embodiment of the second aspect of the present invention;

まず、本発明の第1の態様の実施形態について、図面を参照しながら詳細に説明する。図1は、本発明の第1の態様の実施形態に係るセラミック構造体10の模式図、図2は、セラミック構造体10の模式断面図、図3はセラミック構造体10の骨格の粒径の頻度分布を示す模式図である。 First, an embodiment of the first aspect of the present invention will be described in detail with reference to the drawings. FIG. 1 is a schematic diagram of a ceramic structure 10 according to an embodiment of the first aspect of the present invention, FIG. 2 is a schematic cross-sectional view of the ceramic structure 10, and FIG. It is a schematic diagram which shows frequency distribution.

図1に示すように、セラミック構造体10は、骨格2を有し、骨格2の隙間Vが空隙である連通気孔を有する。
セラミック構造体10は、例えばドラフト等の排気管、配管及びダクトのフィルタに好適に使用することができる。特に、大きな応力が付加される用途、高温流体や薬品が流れる用途に好適に使用できる。流体は、隙間Vを流れていく。
As shown in FIG. 1, the ceramic structure 10 has a skeleton 2 and has communicating pores in which gaps V in the skeleton 2 are voids.
The ceramic structure 10 can be suitably used, for example, as filters for exhaust pipes such as drafts, pipes and ducts. In particular, it can be suitably used in applications where large stress is applied, and where high-temperature fluids and chemicals flow. The fluid flows through the gap V.

セラミック構造体10(骨格2)は、例えば連通気孔を有するウレタンスポンジを鋳型とし、このスポンジをセラミック粒子及び有機溶媒等を含むスラリーに含浸させた後に乾燥し、さらに焼成してスポンジを焼失させて製造するテンプレート法により、製造することができる。スポンジが焼失することにより、スポンジの連通気孔と略同一形状の連通気孔を有する、3次元網目構造をなす多孔質セラミックとなる。 The ceramic structure 10 (skeleton 2) is formed by using, for example, a urethane sponge having continuous pores as a mold, impregnating the sponge with a slurry containing ceramic particles, an organic solvent, etc., drying it, and then baking it to burn off the sponge. It can be manufactured by a manufacturing template method. By burning off the sponge, it becomes a porous ceramic having a three-dimensional network structure with communicating pores having substantially the same shape as the communicating pores of the sponge.

セラミック構造体10の気孔率は60~97%であり、80~95%であるとさらに好ましい。
セラミック構造体10の気孔率が60%未満であると、圧力損失が大きくなって流体の流れが不十分となる。セラミック構造体10の気孔率が97%を超えるものは製造が困難であると共に、骨格2が細くなってセラミック構造体10の強度が低下する。
セラミック構造体10の気孔率は、所定寸法(例えば30mm×30mm×30mmであるが、セラミック構造体10がこれより小さい場合はより小さい大きさ)の部位を切り出して質量を測定して密度を算出し、気孔率を算出する。より詳細にはセラミック構造体10(骨格2)の組成分析により理論密度を算出し、算出した理論密度と測定した密度とに基づき気孔率を算出する。
The porosity of the ceramic structure 10 is 60-97%, more preferably 80-95%.
If the porosity of the ceramic structure 10 is less than 60%, the pressure loss increases and the fluid flow becomes insufficient. If the porosity of the ceramic structure 10 exceeds 97%, it is difficult to manufacture the ceramic structure 10, and the skeleton 2 becomes thin, which reduces the strength of the ceramic structure 10.
The porosity of the ceramic structure 10 is calculated by cutting out a part of a predetermined size (for example, 30 mm×30 mm×30 mm, but if the ceramic structure 10 is smaller than this, the size is smaller), measuring the mass, and calculating the density. and calculate the porosity. More specifically, the theoretical density is calculated by composition analysis of the ceramic structure 10 (skeleton 2), and the porosity is calculated based on the calculated theoretical density and the measured density.

骨格2は、Al酸化物を主成分とし、Al酸化物粒子を焼結して形成されるセラミック焼結体であり、後述する粒径分布を有する。主成分とは50質量%を超えることをいう。また、実質的に骨格2は、Al酸化物からなっていてもよい。
また、骨格2は、Al酸化物を除く他の元素を総量で3.0質量%以下含んでもよい。他の元素の含有量の合計が3.0質量%を超えると、骨格2のAl酸化物の異常粒の成長が促進され、骨格2の強度が低下し、ひいてはセラミック構造体10の強度が低下する場合がある。
他の元素としては、例えばMg,Ca,Sr,Baの群から選ばれる1種以上の二価元素が挙げられる。
骨格2に含まれる他の元素の総量はICP(Inductively Coupled Plasma:誘導結合プラズマ)で測定できる。
The skeleton 2 is a ceramic sintered body that contains Al oxide as a main component, is formed by sintering Al oxide particles, and has a particle size distribution described later. A main component means more than 50 mass %. Further, the skeleton 2 may substantially consist of Al oxide.
Further, the skeleton 2 may contain other elements other than Al oxide in a total amount of 3.0% by mass or less. If the total content of other elements exceeds 3.0% by mass, the growth of abnormal grains of Al oxide in the skeleton 2 is promoted, the strength of the skeleton 2 is reduced, and the strength of the ceramic structure 10 is reduced. sometimes.
Other elements include, for example, one or more divalent elements selected from the group of Mg, Ca, Sr and Ba.
The total amount of other elements contained in the skeleton 2 can be measured by ICP (Inductively Coupled Plasma).

また、図2に示すように、骨格2の断面を見たとき、骨格2内の気孔率が10%以下であると、骨格2の強度がさらに向上するので好ましい。
骨格2内の気孔率は、骨格2の断面SEMの反射電子像の100×100μmの視野ARにて、マトリクス(骨格2のAl酸化物)と、それよりも暗い部位を区別できるような設定で像を二値化する。そして、視野における暗部の面積比を求めて気孔率とする。マトリクスよりも暗い部位は、骨格2の空隙Gとみなせるからである。
Further, as shown in FIG. 2, when the cross section of the skeleton 2 is viewed, the porosity in the skeleton 2 is preferably 10% or less, since the strength of the skeleton 2 is further improved.
The porosity in the skeleton 2 is set so that the matrix (Al oxide of the skeleton 2) and darker regions can be distinguished in a 100×100 μm field of view AR of a backscattered electron image of a cross-sectional SEM of the skeleton 2. Binarize the image. Then, the area ratio of the dark portion in the field of view is calculated and taken as the porosity. This is because portions darker than the matrix can be regarded as voids G of the skeleton 2 .

次に、図3を参照し、本発明の第1の態様の特徴部分について説明する。
図3に示すように、骨格2の粒径の頻度分布を取ったとき、頻度の最も大きいピークAの頻度FAと、頻度が次に大きいピークBの頻度FBについて、0.05≦FB/FA≦0.35を満たす。
Next, with reference to FIG. 3, the characterizing portion of the first aspect of the present invention will be described.
As shown in FIG. 3, when the frequency distribution of the particle size of the skeleton 2 is taken, the frequency FA of the peak A with the highest frequency and the frequency FB of the peak B with the second highest frequency are 0.05≦FB/FA. ≦0.35 is satisfied.

FB/FAは、最も頻度が大きい(所定の粒径の数が多い)粒子と、次に頻度が大きい(所定の粒径の数が多い)粒子との個数の差(比)であり、この比が大きいほど、粒径の異なる粒子の数に差があることを示す。
そして、0.05≦FB/FA≦0.35であれば、粒径の異なる粒子の数が適度に異なるので、骨格2となるAl酸化物粒子として、大径粒子と小径粒子の混合スラリーとする際、又は大径粒子とコロイド粒子を混合してスラリーとする際、大径の粒子の間に小径の粒子が細密充填され、骨格2の焼結が促進される。そして、その結果、骨格2の強度、ひいてはセラミック構造体10の強度が向上する。
FB/FA is the difference (ratio) between the number of particles with the highest frequency (large number of predetermined particle sizes) and the number of particles with the next highest frequency (large number of predetermined particle sizes). A higher ratio indicates a greater difference in the number of particles with different particle sizes.
If 0.05 ≤ FB/FA ≤ 0.35, the number of particles with different particle sizes is moderately different, so that the mixed slurry of large-diameter particles and small-diameter particles is used as the Al oxide particles that form the skeleton 2. When the large-diameter particles and the colloidal particles are mixed to form a slurry, the small-diameter particles are closely packed between the large-diameter particles, and the sintering of the skeleton 2 is promoted. As a result, the strength of the skeleton 2 and, in turn, the strength of the ceramic structure 10 are improved.

0.05>FB/FAであると、2つの粒径の異なる粒子の数の差が大きくなり過ぎ、大径の粒子の間に小径の粒子が細密充填される効果が低減し、セラミック構造体10の強度が十分に向上しない。
0.35<FB/FAであると、2つの粒径の異なる粒子の数の差が小さく、大径の粒子の間に小径の粒子が細密充填される効果がやはり低減し、セラミック構造体10の強度が十分に向上しない。
If 0.05>FB/FA, the difference in the number of particles with two different particle sizes becomes too large, reducing the effect of close-packing of small-diameter particles between large-diameter particles, resulting in a ceramic structure. 10 strength is not sufficiently improved.
When 0.35<FB/FA, the difference in the number of particles with different diameters is small, and the effect of close-packing small-diameter particles between large-diameter particles is also reduced, and the ceramic structure 10 strength is not sufficiently improved.

骨格2の粒径は骨格2の断面におけるAl酸化物粒子の平均粒径である。図4は、骨格2の平均粒径の算出方法を示す説明図である。まず、骨格2の断面を鏡面研磨し、SEM(走査型電子顕微鏡)で撮影することによって、30μm×30μmの正方形の断面画像を取得した(SEM画像とも呼ぶ)。ここで、加速電圧は15kVに設定され、倍率は、3000倍に設定された。
図4(A)は、SEM画像で観察されるAl酸化物粒子の様子を示す模式図である。このようなSEM画像を用いた下記のインターセプト法によって、200個の粒子について平均粒径を算出した。1つの30μm×30μmの断面画像につき、下記の対角線DG1,DG2でカウントされる粒子が200個未満であれば、別の断面画像をさらに用意し、合計で200個の粒子をカウントする。
The grain size of skeleton 2 is the average grain size of Al oxide particles in the cross section of skeleton 2 . FIG. 4 is an explanatory diagram showing a method of calculating the average particle size of the skeleton 2. FIG. First, a cross-section of the skeleton 2 was mirror-polished and photographed with a SEM (scanning electron microscope) to obtain a square cross-sectional image of 30 μm×30 μm (also referred to as an SEM image). Here, the acceleration voltage was set to 15 kV and the magnification was set to 3000 times.
FIG. 4A is a schematic diagram showing the state of Al oxide particles observed in an SEM image. The average particle size of 200 particles was calculated by the following intercept method using such SEM images. If less than 200 particles are counted on the following diagonal lines DG1 and DG2 per cross-sectional image of 30 μm×30 μm, another cross-sectional image is further prepared to count a total of 200 particles.

インターセプト法では、まず、30μm×30μmの正方形の2つの対角線DG1,DG2(図4(A))の少なくとも一方と交差するAl酸化物粒子を選択した。そして、選択された個々の粒子CG(図4(B))について、その最大径Dmaxを求めてこれを長径D1とした。最大径Dmaxは、その粒子CGの外径をあらゆる方向で測定したときの最大値である。そして、この長径D1の中点を通り長径D1と直交する直線上における粒子CGの外径を短径D2とした。また、長径D1と短径D2の平均値(D1+D2)/2を、対象粒子CGのみなし粒径Da(i)とした。ここで、「(i)」は、i番目の粒子CGの値であることを意味している。
平均粒径Daveは、対角線DG1,DG2の少なくとも一方と交差するn個の粒子CGのみなし粒径Da(i)の平均値である。この平均値を、平均粒径として採用した。
In the intercept method, first, Al oxide particles that intersect at least one of two diagonal lines DG1 and DG2 (FIG. 4A) of a 30 μm×30 μm square were selected. Then, the maximum diameter Dmax of each of the selected particles CG (FIG. 4B) was determined and defined as the major diameter D1. The maximum diameter Dmax is the maximum value of the outer diameters of the particles CG measured in all directions. The outer diameter of the particle CG on a straight line passing through the middle point of the major diameter D1 and orthogonal to the major diameter D1 was defined as the minor diameter D2. Further, the average value (D1+D2)/2 of the major diameter D1 and the minor diameter D2 was defined as the assumed particle diameter Da(i) of the target particles CG. Here, "(i)" means the value of the i-th particle CG.
The average particle diameter Dave is the average value of the assumed particle diameters Da(i) of the n particles CG intersecting at least one of the diagonal lines DG1 and DG2. This average value was adopted as the average particle size.

次に、図5を参照し、本発明の第2の態様の実施形態について説明する。なお、本発明の第2の態様の実施形態は、骨格2の粒径の頻度分布が異なること以外は、第1の態様の実施形態と同様であるので、同一部分の説明(例えば図1,図2)を省略する。
図5に示すように、骨格2の粒径の頻度分布を取ったとき、骨格2の粒径の頻度分布を取ったとき、粒径の最も大きいピークCのピーク粒径PCと、粒径が次に大きいピークDのピーク粒径PDについて、PC≦10μmかつ、5≦PC/PDを満たす。
PC/PDは、最も大径の粒子と、粒径が次に大きい粒子との粒径の差(比)であり、この比が大きいほど、2つの粒子間で粒径に差があることを示す。
An embodiment of the second aspect of the invention will now be described with reference to FIG. The embodiment of the second aspect of the present invention is the same as the embodiment of the first aspect except that the frequency distribution of the particle size of the skeleton 2 is different. 2) are omitted.
As shown in FIG. 5, when taking the frequency distribution of the particle size of the skeleton 2, when taking the frequency distribution of the particle size of the skeleton 2, the peak particle size PC of the peak C with the largest particle size and the particle size of The peak particle size PD of the next largest peak D satisfies PC≦10 μm and 5≦PC/PD.
PC/PD is the difference (ratio) in particle size between the largest particle and the next largest particle, the higher the ratio, the greater the difference in particle size between the two particles. show.

そして、PC≦10μmであれば、最も大径の粒子も10μm以下の微細粒であるので、骨格2となるAl酸化物粒子を上述のようにしてスラリーにする際、粒子が細密充填され、骨格2の焼結が促進される。そして、その結果、骨格2の強度、ひいてはセラミック構造体10の強度が向上する。
また、5≦PC/PDであれば、最も大径の粒子と、粒径が次に大きい粒子との粒径の差が大きくなるので、骨格2となるスラリーにする際、最も大径の粒子の間に粒径が次に大きい粒子が細密充填され、骨格2の焼結が促進され、同様にセラミック構造体10の強度が向上する。
なお、PC/PDの上限は特に制限されないが、例えば50である。
If PC ≤ 10 µm, the largest particle is also a fine particle of 10 µm or less. Sintering of 2 is promoted. As a result, the strength of the skeleton 2 and, in turn, the strength of the ceramic structure 10 are improved.
Also, if 5 ≤ PC/PD, the difference in particle size between the largest particle and the second largest particle becomes large, so when making the slurry for the skeleton 2, the largest particle The particles having the next largest particle size are closely packed between the two, which promotes sintering of the framework 2 and likewise improves the strength of the ceramic structure 10 .
Although the upper limit of PC/PD is not particularly limited, it is 50, for example.

PC>10μmであると、最も大径の粒子の粒径が大きくなり過ぎ、スラリーにする際に粒子が細密充填される効果が低減し、セラミック構造体10の強度が十分に向上しない。
5>PC/PDであると、最も大径の粒子と、粒径が次に大きい粒子との粒径の差が小さく、大径の粒子の間に小径の粒子が細密充填される効果がやはり低減し、セラミック構造体10の強度が十分に向上しない。
If PC>10 μm, the particle size of the largest particle becomes too large, and the effect of closely packing the particles during slurrying is reduced, and the strength of the ceramic structure 10 is not sufficiently improved.
When 5>PC/PD, the difference in particle size between the largest particle and the particle with the next largest particle size is small, and the effect of close packing of small particles between the large particles is also obtained. and the strength of the ceramic structure 10 is not sufficiently improved.

本発明は上記実施形態に限定されず、本発明の思想と範囲に含まれる様々な変形及び均等物に及ぶことはいうまでもない。
セラミック構造体の形状は限定されず、多角柱や多角筒、楕円、不定形であってもよい。
It goes without saying that the present invention is not limited to the above-described embodiments, but extends to various modifications and equivalents within the spirit and scope of the present invention.
The shape of the ceramic structure is not limited, and may be a polygonal column, a polygonal cylinder, an ellipse, or an irregular shape.

以下、実施例を挙げて本発明をさらに詳細に説明するが、本発明はこれらに限定されるものではない。 EXAMPLES The present invention will be described in more detail below with reference to Examples, but the present invention is not limited to these.

連通気孔を有するウレタンスポンジを鋳型とし、このスポンジを、セラミック粒子(アルミナ)、表1に示す二価の元素を含む粒子やコロイド粒子、錯体及び有機溶媒を含むスラリーに含浸させた後に焼成し、スポンジを焼失させた。これにより、連通気孔を有する所定の気孔率の酸化物セラミックからなるセラミック構造体10を製造した。セラミック構造体10の寸法は、30×30×7mm厚の直方体とした。
なお、セラミック構造体10の気孔率は、ウレタンスポンジを変えてそれぞれ表1に示す値に調整した。また、FB/FA、PC/PDの調整は原料粒子の粒径を変更することにより行い、骨格の気孔率は焼成条件を変更して、各サンプルを製造した。
A urethane sponge having continuous pores is used as a mold, and this sponge is impregnated with a slurry containing ceramic particles (alumina), particles or colloidal particles containing a divalent element shown in Table 1, a complex and an organic solvent, and then baked. Burned out the sponge. As a result, a ceramic structure 10 made of an oxide ceramic having a predetermined porosity and having continuous pores was manufactured. The dimensions of the ceramic structure 10 were a rectangular parallelepiped with a thickness of 30×30×7 mm.
The porosity of the ceramic structure 10 was adjusted to the values shown in Table 1 by changing the urethane sponge. In addition, FB/FA and PC/PD were adjusted by changing the particle size of the raw material particles, and the porosity of the skeleton was changed by changing the firing conditions to produce each sample.

セラミック構造体10及び骨格2の気孔率を上述の方法で測定した。
骨格の粒径の頻度分布を上述の方法で求めた。
二価元素がアルミネート相を形成しているか否かを上述の方法で測定した。
The porosities of the ceramic structure 10 and skeleton 2 were measured by the method described above.
The frequency distribution of the particle size of the framework was determined by the method described above.
Whether or not the divalent element forms an aluminate phase was determined by the method described above.

セラミック構造体10の圧縮強度は、オートグラフ(島津製作所製の AGX-X)により厚み方向に圧縮させ、破壊したときの強度を測定した。圧縮強度が0.5MPaを超えれば強度が高いといえる。
セラミック構造体10の圧力損失は、循環恒温液槽へ室温のエアーを一定の流量(5~25 L/min の範囲内)で流したときの圧力損失として測定した。圧力損失が3.5Pa未満であれば圧力損失が少ないといえる。
The compressive strength of the ceramic structure 10 was measured by compressing it in the thickness direction with an autograph (AGX-X manufactured by Shimadzu Corporation) and breaking it. If the compressive strength exceeds 0.5 MPa, it can be said that the strength is high.
The pressure loss of the ceramic structure 10 was measured as the pressure loss when room temperature air was allowed to flow at a constant flow rate (within the range of 5 to 25 L/min) into the circulating constant temperature liquid bath. If the pressure loss is less than 3.5 Pa, it can be said that the pressure loss is small.

得られた結果を表1に示す。 Table 1 shows the results obtained.

Figure 2023060940000002
Figure 2023060940000002

表1から明らかなように、セラミック構造体の気孔率が60%以上、0.05≦FB/FA≦0.35を満たす各実施例の場合、圧力損失を増大させずに強度を向上させることができた。
また、セラミック構造体の気孔率が60%以上、PC≦10μmかつ、5≦PC/PDを満たす各実施例の場合も、圧力損失を増大させずに強度を向上させることができた。
特に、骨格内の気孔率が10%以下である実施例17~21の場合、他の条件が同等の実施例15に比べて強度がさらに向上した。
As is clear from Table 1, in each example where the porosity of the ceramic structure is 60% or more and 0.05≦FB/FA≦0.35, the strength is improved without increasing the pressure loss. was made.
Further, in each example in which the ceramic structure had a porosity of 60% or more, PC≦10 μm, and 5≦PC/PD, the strength could be improved without increasing the pressure loss.
In particular, in Examples 17 to 21, in which the porosity in the skeleton was 10% or less, the strength was further improved compared to Example 15, in which other conditions were the same.

一方、0.05≦FB/FA≦0.35、又は5≦PC/PDを満たさない比較例2の場合、各実施例に比べて強度が低下した。
セラミック構造体の気孔率が60%未満の比較例2の場合、各実施例に比べて圧力損失が増大した。
On the other hand, in the case of Comparative Example 2, which does not satisfy 0.05≤FB/FA≤0.35 or 5≤PC/PD, the strength is lower than that of each example.
In Comparative Example 2, in which the porosity of the ceramic structure was less than 60%, the pressure loss increased compared to each example.

2 骨格
10 セラミック構造体
2 skeleton 10 ceramic structure

Claims (4)

Al酸化物を主成分とする骨格を有し、連通気孔を有する気孔率60~97%のセラミック構造体であって、
前記骨格の粒径の頻度分布を取ったとき、頻度の最も大きいピークAの頻度FAと、頻度が次に大きいピークBの頻度FBについて、0.05≦FB/FA≦0.35を満たすことを特徴とするセラミック構造体。
A ceramic structure having a skeleton mainly composed of Al oxide and having a porosity of 60 to 97% and having continuous pores,
When the frequency distribution of the particle size of the skeleton is taken, the frequency FA of peak A with the highest frequency and the frequency FB of peak B with the next highest frequency satisfy 0.05 ≤ FB / FA ≤ 0.35. A ceramic structure characterized by:
Al酸化物を主成分とする骨格を有し、連通気孔を有する気孔率60~97%のセラミック構造体であって、
前記骨格の粒径の頻度分布を取ったとき、粒径の最も大きいピークCのピーク粒径PCと、粒径が次に大きいピークDのピーク粒径PDについて、PC≦10μmかつ、5≦PC/PDを満たすことを特徴とするセラミック構造体。
A ceramic structure having a skeleton mainly composed of Al oxide and having a porosity of 60 to 97% and having continuous pores,
When the frequency distribution of the particle size of the skeleton is taken, the peak particle size PC of the peak C having the largest particle size and the peak particle size PD of the peak D having the next largest particle size are PC ≤ 10 μm and 5 ≤ PC A ceramic structure characterized by satisfying /PD.
前記骨格の断面を見たとき、前記骨格内の気孔率が10%以下である請求項1又は2に記載のセラミック構造体。 3. The ceramic structure according to claim 1, wherein the cross section of the skeleton has a porosity of 10% or less in the skeleton. 前記骨格は、前記Al酸化物を除く他の元素を総量で3.0質量%以下含む請求項1~3のいずれか一項に記載のセラミック構造体。 4. The ceramic structure according to any one of claims 1 to 3, wherein the skeleton contains 3.0% by mass or less of elements other than the Al oxide in total.
JP2021170630A 2021-10-19 2021-10-19 ceramic structure Pending JP2023060940A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2021170630A JP2023060940A (en) 2021-10-19 2021-10-19 ceramic structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2021170630A JP2023060940A (en) 2021-10-19 2021-10-19 ceramic structure

Publications (1)

Publication Number Publication Date
JP2023060940A true JP2023060940A (en) 2023-05-01

Family

ID=86239422

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2021170630A Pending JP2023060940A (en) 2021-10-19 2021-10-19 ceramic structure

Country Status (1)

Country Link
JP (1) JP2023060940A (en)

Similar Documents

Publication Publication Date Title
US8894916B2 (en) Method for producing aluminum-titanate-based ceramic honeycomb structure
US9273582B2 (en) Honeycomb structure and manufacturing method of the same
WO2018230611A1 (en) Exhaust gas purification filter
US20190330115A1 (en) Alumina porous body and method for manufacturing same
EP2957548B1 (en) Honeycomb structure
US9273575B2 (en) Porous material, honeycomb structure, and method of manufacturing porous material
EP2130809A1 (en) Method for manufacturing ceramic honeycomb structure
JP2018158886A (en) Ceramic structures
JP6407887B2 (en) Porous material and heat insulating film
US10442739B2 (en) Porous plate-shaped filler
JP2023060940A (en) ceramic structure
CN108883356A (en) High porosity ceramic honeycomb and manufacturing method
DE102017009872A1 (en) Porous material, honeycomb structure and process for producing a porous material
JP2023060939A (en) ceramic structure
US7569201B2 (en) Method of manufacturing honeycomb structure and silicon carbide particle for manufacturing the same
WO2020008561A1 (en) Porous material and heat insulation material
US20240034685A1 (en) Silicon carbide ceramic honeycomb structure and its production method
JP2023095288A (en) Powder material and use thereof
US10518197B2 (en) Monolithic separation membrane structure and method of manufacture thereof
JP2008056528A (en) Slurry for plug stuffing and method for manufacturing plug-stuffed honeycomb