JP2023060939A - ceramic structure - Google Patents

ceramic structure Download PDF

Info

Publication number
JP2023060939A
JP2023060939A JP2021170629A JP2021170629A JP2023060939A JP 2023060939 A JP2023060939 A JP 2023060939A JP 2021170629 A JP2021170629 A JP 2021170629A JP 2021170629 A JP2021170629 A JP 2021170629A JP 2023060939 A JP2023060939 A JP 2023060939A
Authority
JP
Japan
Prior art keywords
skeleton
ceramic structure
ceramic
porosity
strength
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2021170629A
Other languages
Japanese (ja)
Inventor
和浩 黒澤
Kazuhiro Kurosawa
寛幸 西山
Hiroyuki Nishiyama
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Niterra Co Ltd
Original Assignee
NGK Spark Plug Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NGK Spark Plug Co Ltd filed Critical NGK Spark Plug Co Ltd
Priority to JP2021170629A priority Critical patent/JP2023060939A/en
Publication of JP2023060939A publication Critical patent/JP2023060939A/en
Pending legal-status Critical Current

Links

Images

Abstract

To provide a ceramic structure capable of improving strength without increasing pressure loss.SOLUTION: A ceramic structure 10 has a ceramic skeleton 2 and communication pores, with a porosity of 60-97%. The skeleton is mainly composed of Al oxide, and contains one or more kinds of divalent elements selected from a group of Mg, Ca, Sr, Ba in 0.05-3.0 mass% in total.SELECTED DRAWING: Figure 2

Description

本発明は、例えばドラフト等の排気管、配管及びダクトのフィルタに好適に使用することができるセラミック構造体に関する。 TECHNICAL FIELD The present invention relates to a ceramic structure that can be suitably used, for example, as a filter for exhaust pipes such as drafts, pipes and ducts.

従来から、セラミック粉末を用いた多孔質焼結体が吸音材、触媒等の用途に使用されている(特許文献1)。一般に、このような多孔質焼結体は、無数の微細気孔を有する連通気孔を備えている。 BACKGROUND ART Conventionally, porous sintered bodies using ceramic powder have been used for applications such as sound absorbing materials and catalysts (Patent Document 1). In general, such porous sintered bodies are equipped with interconnected pores having countless fine pores.

特開2000-264753号公報JP-A-2000-264753

ところが、セラミックス多孔質体は強度が弱く、破損しやすいという問題がある。
一方で、セラミックス多孔質体の気孔率を小さくすれば強度は向上するが、セラミックス多孔質体を通過する流体の圧力損失が大きくなるので不適である。
そこで、本発明は、圧力損失を増大させずに強度を向上させることができるセラミック構造体を提供することを目的とする。
However, there is a problem that the ceramic porous body is weak in strength and easily broken.
On the other hand, if the porosity of the ceramic porous body is reduced, the strength is improved, but the pressure loss of the fluid passing through the ceramic porous body increases, which is not suitable.
SUMMARY OF THE INVENTION Accordingly, it is an object of the present invention to provide a ceramic structure capable of improving strength without increasing pressure loss.

上記課題を解決するため、本発明のセラミック構造体は、セラミックの骨格を有し、連通気孔を有する気孔率60~97%のセラミック構造体であって、前記骨格は、Al酸化物を主成分とし、Mg,Ca,Sr,Baの群から選ばれる1種以上の二価元素を合計で0.05~3.0質量%含むことを特徴とする。 In order to solve the above problems, the ceramic structure of the present invention has a ceramic skeleton and has a porosity of 60 to 97% with continuous pores, wherein the skeleton is mainly composed of Al oxide. and containing 0.05 to 3.0 mass % in total of one or more divalent elements selected from the group of Mg, Ca, Sr and Ba.

このセラミック構造体によれば、骨格が二価元素を含むことで、骨格のAl酸化物の粒界強度が向上し、セラミック構造体としての強度も向上する。その結果、気孔率を低減する必要がなく、圧力損失を増大させずに強度を向上させることができる。 According to this ceramic structure, since the skeleton contains a divalent element, the grain boundary strength of the Al oxide in the skeleton is improved, and the strength of the ceramic structure is also improved. As a result, there is no need to reduce porosity, and strength can be improved without increasing pressure loss.

本発明のセラミック構造体において、前記骨格の断面を見たとき、前記二価元素の領域の平均アスペクト比が3以上であってもよい。
このセラミック構造体によれば、アスペクト比が3以上の粒子が粒内に存在することで、ク
ラックの進展が抑制されるため、骨格のAl酸化物の粒界強度がさらに向上する。
In the ceramic structure of the present invention, an average aspect ratio of the divalent element region may be 3 or more when the cross section of the skeleton is viewed.
According to this ceramic structure, since the grains having an aspect ratio of 3 or more are present in the grains, the progress of cracks is suppressed, so that the grain boundary strength of the skeleton Al oxide is further improved.

本発明のセラミック構造体において、前記二価元素がアルミネート相を形成してなっていてもよい。
このセラミック構造体によれば、骨格2のAl酸化物の粒界強度がさらに向上する。
In the ceramic structure of the present invention, the divalent element may form an aluminate phase.
According to this ceramic structure, the grain boundary strength of the Al oxide of the framework 2 is further improved.

本発明のセラミック構造体において、前記骨格の断面を見たとき、前記骨格内の気孔率が10%以下であってもよい。
このセラミック構造体によれば、骨格の強度がさらに向上する。
In the ceramic structure of the present invention, when the cross section of the skeleton is viewed, the porosity in the skeleton may be 10% or less.
According to this ceramic structure, the strength of the skeleton is further improved.

本発明のセラミック構造体において、前記骨格の表面を見たとき、前記二価元素の領域の平均アスペクト比が3以上であってもよい。
このセラミック構造体によれば、骨格2のAl酸化物の粒界強度がさらに向上する。
In the ceramic structure of the present invention, the average aspect ratio of the divalent element region may be 3 or more when the surface of the skeleton is viewed.
According to this ceramic structure, the grain boundary strength of the Al oxide of the framework 2 is further improved.

この発明によれば、圧力損失を増大させずに強度を向上させることができるセラミック構造体が得られる。 According to the present invention, it is possible to obtain a ceramic structure whose strength can be improved without increasing pressure loss.

本発明の実施形態に係るセラミック構造体の模式図である。1 is a schematic diagram of a ceramic structure according to an embodiment of the present invention; FIG. 本発明の実施形態に係るセラミック構造体の模式断面図である。1 is a schematic cross-sectional view of a ceramic structure according to an embodiment of the invention; FIG. 実際のセラミック構造体の断面のEDS像を示す図である。It is a figure which shows the EDS image of the cross section of an actual ceramic structure.

以下に、本発明を、図面を参照しながら詳細に説明する。図1は、本発明の実施形態に係るセラミック構造体10の模式図、図2は、セラミック構造体10の模式断面図である。 Below, the present invention will be described in detail with reference to the drawings. FIG. 1 is a schematic diagram of a ceramic structure 10 according to an embodiment of the present invention, and FIG. 2 is a schematic cross-sectional view of the ceramic structure 10. As shown in FIG.

図1に示すように、セラミック構造体10は、骨格2と二価元素とを有し、骨格2の隙間Vが空隙である連通気孔を有する。
セラミック構造体10は、例えばドラフト等の排気管、配管及びダクトのフィルタに好適に使用することができる。特に、大きな応力が付加される用途、高温流体や薬品が流れる用途に好適に使用できる。流体は、隙間Vを流れていく。
As shown in FIG. 1, a ceramic structure 10 has a skeleton 2 and a divalent element, and has interconnecting pores in which gaps V in the skeleton 2 are voids.
The ceramic structure 10 can be suitably used, for example, as filters for exhaust pipes such as drafts, pipes and ducts. In particular, it can be suitably used in applications where large stress is applied, and where high-temperature fluids and chemicals flow. The fluid flows through the gap V.

セラミック構造体10(骨格2)は、例えば連通気孔を有するウレタンスポンジを鋳型とし、このスポンジをセラミック粒子及び有機溶媒等を含むスラリーに含浸させた後に乾燥し、さらに焼成してスポンジを焼失させて製造するテンプレート法により、製造することができる。スポンジが焼失することにより、スポンジの連通気孔と略同一形状の連通気孔を有する、3次元網目構造をなす多孔質セラミックとなる。 The ceramic structure 10 (skeleton 2) is formed by using, for example, a urethane sponge having continuous pores as a mold, impregnating the sponge with a slurry containing ceramic particles, an organic solvent, etc., drying it, and then baking it to burn off the sponge. It can be manufactured by a manufacturing template method. By burning off the sponge, it becomes a porous ceramic having a three-dimensional network structure with communicating pores having substantially the same shape as the communicating pores of the sponge.

セラミック構造体10の気孔率は60~97%であり、80~95%であるとさらに好ましい。
セラミック構造体10の気孔率が60%未満であると、圧力損失が大きくなって流体の流れが不十分となる。セラミック構造体10の気孔率が97%を超えるものは製造が困難であると共に、骨格2が細くなってセラミック構造体10の強度が低下する。
セラミック構造体10の気孔率は、所定寸法(例えば30mm×30mm×30mmであるが、セラミック構造体10がこれより小さい場合はより小さい大きさ)の部位を切り出して質量を測定して密度を算出し、気孔率を算出する。より詳細にはセラミック構造体10(骨格2)の組成分析により理論密度を算出し、算出した理論密度と測定した密度とに基づき気孔率を算出する。
The porosity of the ceramic structure 10 is 60-97%, more preferably 80-95%.
If the porosity of the ceramic structure 10 is less than 60%, the pressure loss increases and the fluid flow becomes insufficient. If the porosity of the ceramic structure 10 exceeds 97%, it is difficult to manufacture the ceramic structure 10, and the skeleton 2 becomes thin, which reduces the strength of the ceramic structure 10.
The porosity of the ceramic structure 10 is calculated by cutting out a part of a predetermined size (for example, 30 mm×30 mm×30 mm, but if the ceramic structure 10 is smaller than this, the size is smaller), measuring the mass, and calculating the density. and calculate the porosity. More specifically, the theoretical density is calculated by composition analysis of the ceramic structure 10 (skeleton 2), and the porosity is calculated based on the calculated theoretical density and the measured density.

骨格2は、Al酸化物を主成分とし、Mg,Ca,Sr,Baの群から選ばれる1種以上の二価元素を合計で0.05~3.0質量%含む。主成分とは50質量%を超えることをいう。また、実質的に骨格2は、Al酸化物と二価元素4からなっていてもよい。
ここで、図1に示すように、二価元素は、領域4として骨格2の表面に多数存在している。また、図2に示すように、二価元素は、領域4として骨格2の断面にも多数存在している。
The skeleton 2 is mainly composed of Al oxide and contains 0.05 to 3.0 mass % in total of one or more divalent elements selected from the group of Mg, Ca, Sr and Ba. A main component means more than 50 mass %. Further, the framework 2 may substantially consist of Al oxide and a divalent element 4 .
Here, as shown in FIG. 1, many divalent elements are present on the surface of the skeleton 2 as regions 4 . In addition, as shown in FIG. 2, a large number of divalent elements are also present in the cross section of the skeleton 2 as regions 4 .

このように、骨格2が二価元素を含むことで、骨格2のAl酸化物の粒界強度が向上し、セラミック構造体10としての強度も向上する。二価元素の含有量が0.05質量%未満であると、強度が向上しない。二価元素の含有量が3.0質量%を超えると、骨格2のAl酸化物の異常粒の成長が促進され、強度が低下する。
骨格2に含まれる二価元素の合計含有量はICP(Inductively Coupled Plasma:誘導結合プラズマ)で測定できる。
Since the skeleton 2 contains a divalent element in this way, the grain boundary strength of the Al oxide of the skeleton 2 is improved, and the strength of the ceramic structure 10 is also improved. If the content of divalent elements is less than 0.05% by mass, the strength is not improved. When the content of the divalent element exceeds 3.0% by mass, the growth of abnormal grains of Al oxide in the skeleton 2 is promoted, and the strength is lowered.
The total content of divalent elements contained in the skeleton 2 can be measured by ICP (Inductively Coupled Plasma).

図2に示す骨格2の断面を見たとき、二価元素の領域4の平均アスペクト比が3以上であると、アスペクト比が高い粒子が粒内に存在することで、クラックの進展が抑制されるため、骨格2のAl酸化物の粒界強度がさらに向上する。
ここで、平均アスペクト比は、次のようにして求める。まず、図2に示すように、骨格2の断面のEDS(エネルギー分散型X線分析)像における300×300μmの視野ARにおいて、二価元素の組成を示す領域4を判別し、領域4が5個以上ある視野ARを得る。そして、その視野AR内の二価元素の各領域4の輪郭に基づいて長辺と短辺を画像解析ソフトウェア(例えば、画像解析・画像計測・画像処理ソフトウェアWinROOF)で取得し、アスペクト比を算出する。各領域4のアスペクト比を平均して平均アスペクト比とする。
Looking at the cross section of the skeleton 2 shown in FIG. 2, when the average aspect ratio of the divalent element region 4 is 3 or more, the presence of grains with a high aspect ratio in the grains suppresses the progress of cracks. Therefore, the grain boundary strength of the Al oxide of the skeleton 2 is further improved.
Here, the average aspect ratio is obtained as follows. First, as shown in FIG. 2, in a 300×300 μm field of view AR in the EDS (energy dispersive X-ray spectroscopy) image of the cross section of the skeleton 2, the region 4 indicating the composition of the divalent element is discriminated. At least one field of view AR is obtained. Then, based on the contour of each region 4 of the divalent element in the field of view AR, the long side and short side are obtained by image analysis software (for example, image analysis/image measurement/image processing software WinROOF), and the aspect ratio is calculated. do. An average aspect ratio is obtained by averaging the aspect ratios of the regions 4 .

なお、例えば図2の視野ARの右上には、二価元素の領域4の一部が含まれるが、このように視野ARの境界で分断される二価元素の領域4はアスペクト比の算出に含めない。たとえば、図2では、視野AR内に完全に含まれる5個の領域4についてのみ、それぞれアスペクト比を算出する。 For example, the upper right portion of the field of view AR in FIG. 2 includes a part of the region 4 of the divalent element. exclude. For example, in FIG. 2, the aspect ratios are calculated only for five areas 4 that are completely included in the field of view AR.

二価元素がアルミネート相を形成してなると、骨格2のAl酸化物の粒界強度がさらに向上する。
二価元素がアルミネート相を形成しているか否かは、骨格2を粉砕した粉末のXRD(X線回折:例えばリガク社の製品名Smart Lab)にてアルミネート相のピークを検出したか否かで判別できる。
アルミネート相は、BaO・6Al2O3(バリウムヘキサアルミネート)、BaAl2Si28(セルシアン)、BaAl12O19 等を挙げることができる。
When the divalent element forms an aluminate phase, the grain boundary strength of the Al oxide of the skeleton 2 is further improved.
Whether or not the divalent element forms an aluminate phase is determined by detecting the peak of the aluminate phase by XRD (X-ray diffraction: for example, Rigaku's product name Smart Lab) of the powder obtained by pulverizing the skeleton 2. It can be determined by
The aluminate phase includes BaO.6Al 2 O 3 (barium hexaaluminate), BaAl 2 Si 28 (celsian), BaAl 12 O 19 and the like.

また、図2に示すように、骨格2の断面を見たとき、骨格2内の気孔率が10%以下であると、骨格2の強度がさらに向上するので好ましい。
骨格2内の気孔率は、骨格2の断面SEMの反射電子像の100×100μmの視野にて、マトリクス(骨格2のAl酸化物)と、それよりも暗い部位を区別できるような設定で像を二値化する。そして、視野における暗部の面積比を求めて気孔率とする。マトリクスよりも暗い部位は、骨格2の空隙Gとみなせるからである。
Further, as shown in FIG. 2, when the cross section of the skeleton 2 is viewed, the porosity in the skeleton 2 is preferably 10% or less, since the strength of the skeleton 2 is further improved.
The porosity in the skeleton 2 was determined by setting the matrix (Al oxide of the skeleton 2) and the darker part in a field of view of 100 × 100 µm in the backscattered electron image of the cross-sectional SEM of the skeleton 2. is binarized. Then, the area ratio of the dark portion in the field of view is calculated and taken as the porosity. This is because portions darker than the matrix can be regarded as voids G of the skeleton 2 .

さらに、図1に示す骨格2の表面を見たとき、二価元素の領域4の平均アスペクト比が3以上であると、骨格2のAl酸化物の粒界強度がさらに向上する。
骨格2の表面における二価元素の領域4の平均アスペクト比の算出は、骨格2の表面のEDS像における300×300μmの視野ARにおいて、骨格2の断面における平均アスペクト比の算出と同様に行う。
Furthermore, when viewing the surface of the framework 2 shown in FIG. 1, if the average aspect ratio of the divalent element regions 4 is 3 or more, the grain boundary strength of the Al oxide of the framework 2 is further improved.
The calculation of the average aspect ratio of the divalent element region 4 on the surface of the skeleton 2 is performed in the same manner as the calculation of the average aspect ratio of the cross section of the skeleton 2 in the 300×300 μm field of view AR in the EDS image of the surface of the skeleton 2 .

なお、図3に示す実際のセラミック構造体10の断面のEDS像では、二価元素の領域4の内部にも骨格2の空隙Gが存在していることがわかる。 In addition, in the EDS image of the cross section of the actual ceramic structure 10 shown in FIG.

本発明は上記実施形態に限定されず、本発明の思想と範囲に含まれる様々な変形及び均等物に及ぶことはいうまでもない。
セラミック構造体の形状は限定されず、多角柱や多角筒、楕円、不定形であってもよい。
It goes without saying that the present invention is not limited to the above-described embodiments, but extends to various modifications and equivalents within the spirit and scope of the present invention.
The shape of the ceramic structure is not limited, and may be a polygonal column, a polygonal cylinder, an ellipse, or an irregular shape.

以下、実施例を挙げて本発明をさらに詳細に説明するが、本発明はこれらに限定されるものではない。 EXAMPLES The present invention will be described in more detail below with reference to Examples, but the present invention is not limited to these.

連通気孔を有するウレタンスポンジを鋳型とし、このスポンジを、セラミック粒子(アルミナ)、表1に示す二価の元素を含む粒子やコロイド粒子、錯体及び有機溶媒を含むスラリーに含浸させた後に焼成し、スポンジを焼失させた。これにより、連通気孔を有する所定の気孔率の酸化物セラミックからなるセラミック構造体10を製造した。セラミック構造体10の寸法は、30×30×7mm厚の直方体とした。
なお、セラミック構造体10の気孔率は、ウレタンスポンジを変えてそれぞれ表1に示す値に調整した。また、断面のアスペクト比および表面のアスペクト比は、焼成条件(焼成温度、所定の温度に保持する時間等)を各サンプルごとに変更することで調整した。また、前記焼成条件を変更することでアルミネート相の形成有無も調整して製造した。
A urethane sponge having continuous pores is used as a mold, and this sponge is impregnated with a slurry containing ceramic particles (alumina), particles or colloidal particles containing a divalent element shown in Table 1, a complex and an organic solvent, and then baked. Burned out the sponge. As a result, a ceramic structure 10 made of an oxide ceramic having a predetermined porosity and having continuous pores was manufactured. The dimensions of the ceramic structure 10 were a rectangular parallelepiped with a thickness of 30×30×7 mm.
The porosity of the ceramic structure 10 was adjusted to the values shown in Table 1 by changing the urethane sponge. Moreover, the aspect ratio of the cross section and the aspect ratio of the surface were adjusted by changing the firing conditions (the firing temperature, the time for holding at a predetermined temperature, etc.) for each sample. In addition, the presence or absence of the aluminate phase was adjusted by changing the firing conditions.

セラミック構造体10及び骨格2の気孔率を上述の方法で測定した。
骨格2の断面及び表面の二価元素のアスペクト比を上述の方法で測定した。
二価元素がアルミネート相を形成しているか否かを上述の方法で測定した。
The porosities of the ceramic structure 10 and skeleton 2 were measured by the method described above.
The aspect ratios of the divalent elements in the cross section and surface of the skeleton 2 were measured by the method described above.
Whether or not the divalent element forms an aluminate phase was determined by the method described above.

セラミック構造体10の圧縮強度は、オートグラフ(島津製作所製の AGX-X)により厚み方向に圧縮させ、破壊したときの強度を測定した。圧縮強度が0.5MPaを超えれば強度が高いといえる。
セラミック構造体10の圧力損失は、循環恒温液槽へ室温のエアーを一定の流量(5~25 L/min の範囲内)で流したときの圧力損失として測定した。圧力損失が3.0Pa以下であれば圧力損失が少ないといえる。
The compressive strength of the ceramic structure 10 was measured by compressing it in the thickness direction with an autograph (AGX-X manufactured by Shimadzu Corporation) and breaking it. If the compressive strength exceeds 0.5 MPa, it can be said that the strength is high.
The pressure loss of the ceramic structure 10 was measured as the pressure loss when room temperature air was allowed to flow at a constant flow rate (within the range of 5 to 25 L/min) into the circulating constant temperature liquid bath. If the pressure loss is 3.0 Pa or less, it can be said that the pressure loss is small.

得られた結果を表1に示す。 Table 1 shows the results obtained.

Figure 2023060939000002
Figure 2023060939000002

表1から明らかなように、セラミック構造体の気孔率が60%以上、二価元素を合計で0.05~3.0質量%含む各実施例の場合、圧力損失を増大させずに強度を向上させることができた。
特に、骨格断面の二価元素の平均アスペクト比が3以上である実施例13~20の場合、気孔率及び二価元素の組成が同等の実施例2に比べて強度がさらに向上した。
二価元素がアルミネート相を形成した実施例16~20の場合、気孔率、二価元素の組成及び断面の平均アスペクト比が同等の実施例13に比べて強度がさらに向上した。
骨格内の気孔率が10%以下である実施例18~20の場合、他の条件が同等の実施例16に比べて強度がさらに向上した。
As is clear from Table 1, in each example in which the porosity of the ceramic structure is 60% or more and the total amount of divalent elements is 0.05 to 3.0% by mass, the strength is increased without increasing the pressure loss. I was able to improve.
In particular, in Examples 13 to 20 in which the average aspect ratio of divalent elements in the cross section of the skeleton was 3 or more, the strength was further improved compared to Example 2 in which the porosity and the composition of divalent elements were the same.
In Examples 16 to 20 in which the divalent element formed an aluminate phase, the strength was further improved compared to Example 13 in which the porosity, the composition of the divalent element and the average aspect ratio of the cross section were the same.
In Examples 18 to 20, in which the porosity in the skeleton was 10% or less, the strength was further improved compared to Example 16, in which other conditions were equivalent.

一方、セラミック構造体の気孔率が60%未満の比較例1の場合、各実施例に比べて圧力損失が増大した。
二価元素の合計含有量が0.05質量%未満の比較例2の場合、各実施例に比べて強度が低下した。
On the other hand, in the case of Comparative Example 1 in which the porosity of the ceramic structure is less than 60%, the pressure loss increased compared to each example.
In Comparative Example 2, in which the total content of divalent elements is less than 0.05% by mass, the strength was lower than that of each example.

2 骨格
4 二価元素の領域
10 セラミック構造体
2 skeleton 4 region of divalent element 10 ceramic structure

Claims (5)

セラミックの骨格を有し、連通気孔を有する気孔率60~97%のセラミック構造体であって、
前記骨格は、Al酸化物を主成分とし、Mg,Ca,Sr,Baの群から選ばれる1種以上の二価元素を合計で0.05~3.0質量%含むことを特徴とするセラミック構造体。
A ceramic structure having a ceramic skeleton and a porosity of 60 to 97% with continuous pores,
A ceramic characterized in that the skeleton contains Al oxide as a main component and contains 0.05 to 3.0% by mass in total of one or more divalent elements selected from the group of Mg, Ca, Sr, and Ba. Structure.
前記骨格の断面を見たとき、前記二価元素の領域の平均アスペクト比が3以上である請求項1に記載のセラミック構造体。 2. The ceramic structure according to claim 1, wherein an average aspect ratio of said divalent element region is 3 or more when viewed in cross section of said skeleton. 前記二価元素がアルミネート相を形成してなる請求項1又は2に記載のセラミック構造体。 3. The ceramic structure according to claim 1, wherein said divalent element forms an aluminate phase. 前記骨格の断面を見たとき、前記骨格内の気孔率が10%以下である請求項1~3のいずれか一項に記載のセラミック構造体。 4. The ceramic structure according to claim 1, wherein the skeleton has a porosity of 10% or less when viewed in cross section. 前記骨格の表面を見たとき、前記二価元素の領域の平均アスペクト比が3以上である請求項1~4のいずれか一項に記載のセラミック構造体。 5. The ceramic structure according to any one of claims 1 to 4, wherein the divalent element region has an average aspect ratio of 3 or more when the surface of the skeleton is viewed.
JP2021170629A 2021-10-19 2021-10-19 ceramic structure Pending JP2023060939A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2021170629A JP2023060939A (en) 2021-10-19 2021-10-19 ceramic structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2021170629A JP2023060939A (en) 2021-10-19 2021-10-19 ceramic structure

Publications (1)

Publication Number Publication Date
JP2023060939A true JP2023060939A (en) 2023-05-01

Family

ID=86239421

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2021170629A Pending JP2023060939A (en) 2021-10-19 2021-10-19 ceramic structure

Country Status (1)

Country Link
JP (1) JP2023060939A (en)

Similar Documents

Publication Publication Date Title
JP6125869B2 (en) Porous material, honeycomb structure, and method for producing porous material
US9273582B2 (en) Honeycomb structure and manufacturing method of the same
JP6285225B2 (en) Honeycomb structure
US10442739B2 (en) Porous plate-shaped filler
EP3070067B1 (en) Method for manufacturing plugged honeycomb structure, and plugged honeycomb structure
EP2668990B1 (en) Honeycomb structure
WO2018230611A1 (en) Exhaust gas purification filter
EP2671857A1 (en) Silicon carbide material, honeycomb structure and electric-heating type catalyst carrier
JP6407887B2 (en) Porous material and heat insulating film
JP2018158886A (en) Ceramic structures
CN107159316B (en) Honeycomb structure
JP2010024128A (en) Composite ceramic body
JP6324563B2 (en) Method for producing porous material
JP2023060939A (en) ceramic structure
JP2023060940A (en) ceramic structure
US7569201B2 (en) Method of manufacturing honeycomb structure and silicon carbide particle for manufacturing the same
JP2007261849A (en) Manufacturing method of sheet-like dense cordierite sintered body
Scheithauer et al. Development of planar and cylindrical refractories with graded microstructure
JP2022170754A (en) Ceramic porous body
JP6577866B2 (en) Monolith type separation membrane structure and manufacturing method thereof
JP2022100558A (en) Honeycomb filter
JP2006255639A (en) Method for manufacturing ceramic filter
WO2015080254A1 (en) Honeycomb structure and gas treatment device provided with same