JP2023058935A - Illumination system - Google Patents

Illumination system Download PDF

Info

Publication number
JP2023058935A
JP2023058935A JP2021168741A JP2021168741A JP2023058935A JP 2023058935 A JP2023058935 A JP 2023058935A JP 2021168741 A JP2021168741 A JP 2021168741A JP 2021168741 A JP2021168741 A JP 2021168741A JP 2023058935 A JP2023058935 A JP 2023058935A
Authority
JP
Japan
Prior art keywords
power
power supply
lighting system
lighting
voltage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2021168741A
Other languages
Japanese (ja)
Inventor
友香 門馬
Yuka Momma
裕之 松本
Hiroyuki Matsumoto
瑛子 牧野
Eiko Makino
正二 羽田
Shoji Haneda
文夫 村
Fumio Mura
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
ANP CO Ltd
Dc Power Vil
Dc Power Vil Corp
Iwasaki Denki KK
Original Assignee
ANP CO Ltd
Dc Power Vil
Dc Power Vil Corp
Iwasaki Denki KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ANP CO Ltd, Dc Power Vil, Dc Power Vil Corp, Iwasaki Denki KK filed Critical ANP CO Ltd
Priority to JP2021168741A priority Critical patent/JP2023058935A/en
Publication of JP2023058935A publication Critical patent/JP2023058935A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B20/00Energy efficient lighting technologies, e.g. halogen lamps or gas discharge lamps
    • Y02B20/72Energy efficient lighting technologies, e.g. halogen lamps or gas discharge lamps in street lighting

Abstract

To provide an illumination system for supplying DC power to a plurality of luminaires, the illumination system being capable of performing lighting control of the luminaires depending on variations in supply voltage.SOLUTION: An illumination system 1 comprises: a DC power supply unit for supplying DC power; DC power supply lines 3A, 3B connected to its output end; and a plurality of luminaires 4A to 4C connected in parallel to the lines. The luminaire 4A includes: an LED row in which a plurality of LEDs are connected; and a control circuit for performing lighting control of the LED row depending on variations in supply voltage from the DC power supply unit to the LED row. The DC power supply unit is a combination of AC-DC conversion units 2A, 2B for converting AC power to DC power and renewable energy power supplies 5, 6. When supply voltage of the power supplies 5, 6 has been varied, lighting control of the LED row is performed depending on the variation. In changeover of a supply source of power between the renewable energy power supplies 5, 6 and the AC-DC conversion units 2A, 2B, the changeover is performed smoothly without interruption of supply power.SELECTED DRAWING: Figure 1

Description

本発明は複数の照明器具に直流電力を供給する照明システムに関し、特に、照明器具に調光機能を備えたものに関する。 TECHNICAL FIELD The present invention relates to a lighting system for supplying DC power to a plurality of lighting fixtures, and more particularly to lighting fixtures having a dimming function.

気候変動に関する政府間パネルでは、2050年までに温室効果ガス(CO)の排出量を実質ゼロにする目標を立てており、この目標に従って、様々な技術開発がなされている。社会インフラを支える道路・公共施設等の照明においては、従来、低消費電力、長寿命等の利点から、発光ダイオード(LED)が多用されているが、更なる技術開発が求められている。 The Intergovernmental Panel on Climate Change has set a goal of reducing greenhouse gas (CO 2 ) emissions to virtually zero by 2050, and various technological developments are being made in accordance with this goal. Light-emitting diodes (LEDs) have hitherto been widely used for the lighting of roads and public facilities that support social infrastructure due to their advantages such as low power consumption and long life, but further technical development is required.

LEDのような半導体発光素子は直流電力によって発光することから、街路灯、トンネル照明、天井照明等における複数の照明器具への電力供給システムを、従来の交流電力の供給システムから直流電力の供給システム(以下、直流給電システムと呼ぶ。)へ切り替えることの検討が進められている(特許文献1参照)。つまり、共通の直流電源部を設けて、その直流電源部で商用交流電力を直流電力に変換し、変換された直流電力を正極および負極の給電線を介して、複数の照明器具に供給するシステムである。 Since semiconductor light-emitting elements such as LEDs emit light using DC power, the power supply system for multiple lighting fixtures such as street lights, tunnel lighting, and ceiling lighting can be replaced with a DC power supply system from the conventional AC power supply system. (hereinafter referred to as a DC power supply system) is being studied (see Patent Document 1). In other words, a system in which a common DC power supply unit is provided, commercial AC power is converted into DC power by the DC power supply unit, and the converted DC power is supplied to a plurality of lighting fixtures via positive and negative power supply lines. is.

直流給電システムの方が、再生可能エネルギーとの相性がよく、例えば、太陽光発電や風力発電を電源に用いる場合に、発電された直流電力から交流電力への変換が不要になり、変換時の電力損失が生じないことが期待される。同様に、停電時のバックアップ用に蓄電池を用いる場合も、蓄電池の直流電力をそのまま供給できるという期待もある。
また、従来の交流電力の供給システムでは、停電時に交流電力から蓄電池の直流電力へ切り替えるために、交流電源との断絶を検知してから、蓄電池に接続するという制御が必要になり、照明器具が一時的に消灯してしまう。これに対して、直流給電システムでは、蓄電池との常時接続が可能になって、停電時の一時的な消灯の回避を期待できる。
DC power supply systems are more compatible with renewable energy. No power loss is expected. Similarly, when a storage battery is used for backup during a power outage, there is also an expectation that the DC power of the storage battery can be supplied as it is.
In addition, in the conventional AC power supply system, in order to switch from AC power to DC power in the storage battery during a power failure, it is necessary to detect the disconnection from the AC power supply and then connect to the storage battery. It turns off temporarily. On the other hand, in the DC power supply system, constant connection with the storage battery is possible, and it can be expected to avoid temporary turning off during power failure.

一方、LEDはその特性上、印加する直流電圧や温度の僅かな変動に対して、流れる電流が大きく変動してしまうため、一般的には、LED電流を一定にする定電流回路を設けて、照明器具の光の品質低下やLEDの破損などを回避している。例えば、特許文献1の照明システムは、直流電源部、これに接続される正極側および負極側の直流給電線、および、直流給電線に並列に接続された複数の照明器具を備え、照明器具には、高速でオンオフを繰り返すスイッチング素子の動作によって、LED電流を一定にする定電流回路が設けられている。 On the other hand, due to the characteristics of LEDs, the flowing current fluctuates greatly in response to slight fluctuations in the applied DC voltage or temperature. It avoids deterioration of the light quality of lighting fixtures and breakage of LEDs. For example, the lighting system of Patent Document 1 includes a DC power supply unit, a positive electrode side and a negative electrode side DC power supply line connected thereto, and a plurality of lighting fixtures connected in parallel to the DC power supply line. is provided with a constant current circuit that keeps the LED current constant by operating a switching element that repeats on and off at high speed.

特開2011-77009号公報JP 2011-77009 A

発明者らは、直流給電システムが本来、電圧変動の許容幅が大きいという特徴をもっていることに着目し、直流電源部から照明器具への供給電圧が変化した際に、その変化に応じて照明器具を調光できれば、例えば周辺環境(日光量など)の変化に照明器具の照度を連動させるといった再生可能エネルギーの有効利用が可能な照明システムを実現できると考え、鋭意開発に取り組んできた。しかしながら、特許文献1の定電流回路は、LEDに直列接続された電流検出抵抗からLED電流値を検出し、この電流値が所定の大きさになるようにスイッチング素子のデューティーを調整するため、直流電源部からの供給電圧を増減させても、LED電流が一定に制御されるだけで、複数のLEDの照度をその供給電圧に応じて変化させることはできなかった。 The inventors paid attention to the fact that the DC power supply system is originally characterized by a large allowable range of voltage fluctuations, and when the voltage supplied from the DC power supply to the lighting equipment changes, the lighting equipment changes according to the change. We have been working hard to develop a lighting system that can make effective use of renewable energy, such as by linking the illuminance of lighting fixtures to changes in the surrounding environment (such as the amount of sunlight) if we can control the brightness of the lights. However, the constant current circuit of Patent Document 1 detects the LED current value from a current detection resistor connected in series with the LED, and adjusts the duty of the switching element so that this current value becomes a predetermined value. Even if the supply voltage from the power supply is increased or decreased, the LED current is only controlled to be constant, and the illuminance of the plurality of LEDs cannot be changed according to the supply voltage.

本発明の目的は、複数の照明器具に直流電力を供給する照明システムにおいて、供給電圧の変化に応じて照明器具を調光可能な照明システムを提供することにある。 SUMMARY OF THE INVENTION It is an object of the present invention to provide a lighting system that supplies DC power to a plurality of lighting fixtures, in which the lighting fixtures can be dimmed according to changes in the supply voltage.

発明者らは、直流電源部からの供給電圧の変化に応じて半導体発光素子を調光する制御回路の開発に成功し、本発明の完成に至った。すなわち、本発明に係る照明システムは、
直流電力を供給する直流電源部と、
前記直流電源部の出力端に接続される直流給電線と、
前記直流給電線に並列に接続される複数の照明器具と、を備え、
前記照明器具は、
複数の半導体発光素子を接続した発光素子列と、
前記直流電源部から前記発光素子列への供給電圧の変化に応じて当該発光素子列を調光する制御回路と、を有することを特徴とする。
ここで、前記直流電源部は、交流電力を直流電力に変換する交直変換部、再生可能エネルギー電源、もしくは、蓄電池、または、これらの組合せを有することが好ましい。
The inventors have succeeded in developing a control circuit for dimming a semiconductor light-emitting element according to changes in the voltage supplied from a DC power supply unit, and have completed the present invention. That is, the lighting system according to the present invention is
a DC power supply unit that supplies DC power;
a DC power supply line connected to the output terminal of the DC power supply;
A plurality of lighting fixtures connected in parallel to the DC power supply line,
The lighting fixture is
a light emitting element array in which a plurality of semiconductor light emitting elements are connected;
and a control circuit for dimming the light emitting element array according to a change in the voltage supplied from the DC power supply to the light emitting element array.
Here, it is preferable that the DC power supply unit has an AC/DC conversion unit that converts AC power into DC power, a renewable energy power supply, a storage battery, or a combination thereof.

上記の構成の照明システムを用いれば、直流電源部(例えば、交直変換部、再生可能エネルギー電源、蓄電池など)からの供給電圧が変化した場合に、その変化に応じて制御回路が発光素子列を調光することができる。さらに、直流電源部が、交直変換部、再生可能エネルギー電源および蓄電池のうちの少なくとも2種類の電源によって構成されていて、それぞれの供給電圧の変化に伴って直流電力の供給元を順番に切り替えたい場合に、直流であるから、つまり、単純に供給電圧が高い電源が優先的に供給元になるから、供給電力が途切れることなく供給元がスムーズに切り替わる。よって、直流電源部の切り替えを制御する機構を必要としない。そして、引き続き、切り替わった直流電源部の供給電圧に応じて、制御回路が発光素子列を調光することができる。
このように直流電源部の供給電圧が変化した際に、その変化に応じて照明器具が調光されるので、例えば周辺環境(日光量など)の変化に連動して照明器具の照度を変えるといった調光制御が可能になる。
When the lighting system having the above configuration is used, when the supply voltage from the DC power supply section (for example, AC/DC conversion section, renewable energy power supply, storage battery, etc.) changes, the control circuit controls the light emitting element array according to the change. Dimmable. Furthermore, the DC power supply unit is composed of at least two types of power sources of the AC/DC conversion unit, the renewable energy power supply, and the storage battery, and it is desired to switch the DC power supply sources in order according to changes in the respective supply voltages. In this case, since the power supply is direct current, that is, the power supply with the higher supply voltage is preferentially the supply source, the supply source is switched smoothly without interruption of the supply power. Therefore, a mechanism for controlling switching of the DC power supply is not required. Subsequently, the control circuit can dim the light-emitting element array according to the switched supply voltage of the DC power supply unit.
When the supply voltage of the DC power supply changes in this way, the lighting equipment is dimmed according to the change. Dimming control becomes possible.

また、前記直流電源部は、少なくとも、交流電力を直流電力に変換する交直変換部と再生可能エネルギー電源とを有し、前記再生可能エネルギー電源の供給電圧が前記交直変換部の供給電圧よりも高いことが好ましい。 Further, the DC power supply unit includes at least an AC/DC conversion unit that converts AC power to DC power and a renewable energy power supply, and the supply voltage of the renewable energy power supply is higher than the supply voltage of the AC/DC conversion unit. is preferred.

再生可能エネルギー電源(太陽光発電、風力発電など)は、周辺環境(日光量や風速など)の変化によって、供給可能な電圧が変化するという特性がある。上記の構成によれば、交直変換部からの供給電圧によって所定の照度を確保しつつ、再生可能エネルギー電源(太陽光発電、風力発電など)の供給電圧が交直変換部の供給電圧よりも高くなる期間は、環境負荷の低い再生可能エネルギーが優先的に供給される。よって、商用交流電力の消費を抑制することができ、環境負荷の低減および電力料金の負担軽減などのメリットがある。
加えて、太陽光発電の供給電圧が交直変換部の供給電圧よりも高い(日光量が多い)期間に、その日光量に応じた照明器具の調光が可能になる。例えば昼間の日光が強い時間帯は、照明器具の照度を上げ(または下げ)たり、夕方の日光が弱い時間帯は、照明器具の照度を下げ(または上げ)たりするなど、再生可能エネルギーの有効利用を図ることができる。
Renewable energy power sources (photovoltaic power generation, wind power generation, etc.) have the characteristic that the voltage that can be supplied changes according to changes in the surrounding environment (the amount of sunlight, wind speed, etc.). According to the above configuration, the voltage supplied from the AC/DC conversion unit ensures a predetermined illuminance while the supply voltage of the renewable energy power source (solar power generation, wind power generation, etc.) is higher than the supply voltage of the AC/DC conversion unit. Renewable energy with low environmental impact will be preferentially supplied during this period. Therefore, it is possible to suppress the consumption of commercial AC power, and there are merits such as a reduction in the environmental load and a reduction in the burden of power charges.
In addition, during a period in which the supply voltage of the photovoltaic power generation is higher than the supply voltage of the AC/DC converter (the amount of sunlight is large), it is possible to adjust the brightness of the lighting fixture according to the amount of sunlight. For example, when the sunlight is strong in the daytime, the brightness of the lighting equipment is increased (or decreased), and when the sunlight is weak in the evening, the brightness of the lighting equipment is decreased (or increased). can be used.

また、前記直流電源部は、少なくとも、交流電力を直流電力に変換する交直変換部と蓄電池とを有し、前記蓄電池はダイオードを介して直流電力を前記直流給電線に供給し、前記蓄電池の供給電圧が前記交直変換部の供給電圧よりも低いことが好ましい。 In addition, the DC power supply unit includes at least an AC/DC conversion unit that converts AC power into DC power and a storage battery, and the storage battery supplies DC power to the DC power supply line via a diode, and the storage battery supplies the DC power to the DC power supply line. It is preferable that the voltage is lower than the supply voltage of the AC/DC converter.

上記の構成によれば、交直変換部が一定以上の供給電圧を維持している期間は、その供給電圧が蓄電池の供給電圧よりも高いため、蓄電池は直流電力を供給しない。停電等で交直変換部が供給電圧を維持できなくなり、その供給電圧が蓄電池の供給電圧よりも低くなると、蓄電池からの直流電力の供給が開始される。従って、交流電力の停電等の際に、照明器具が消灯することなく、点灯を継続することができる。 According to the above configuration, while the AC/DC converter maintains the supply voltage above a certain level, the supply voltage is higher than the supply voltage of the storage battery, so the storage battery does not supply DC power. When the AC/DC converter cannot maintain the supply voltage due to a power failure or the like, and the supply voltage becomes lower than the supply voltage of the storage battery, the supply of DC power from the storage battery is started. Therefore, lighting can be continued without extinguishing the lighting equipment in the event of a power failure of the AC power or the like.

また、前記直流電源部は、少なくとも、交流電力を直流電力に変換する交直変換部を有し、前記交直変換部は、当該交直変換部の供給電圧を変更する電圧可変部を有することが好ましい。さらに、前記電圧可変部は、外部からの調光信号を受信し、当該調光信号に応じて前記交直変換部の供給電圧を変更するように構成されることが好ましい。 Further, it is preferable that the DC power supply section has at least an AC/DC conversion section that converts AC power into DC power, and that the AC/DC conversion section has a voltage variable section that changes the supply voltage of the AC/DC conversion section. Further, it is preferable that the voltage variable section is configured to receive a dimming signal from the outside and change the supply voltage of the AC/DC converting section according to the dimming signal.

上記の構成によれば、直流電源部である交直変換部に電圧可変部を設けたので、交直変換部の供給電圧を積極的に変更することができ、照明器具を所望の照度で点灯させることができる。また、外部からの調光信号によって供給電圧を変更するように電圧可変部を構成すれば、調光の遠隔操作や、センサ等の検出値に応じた自動調光を実現することができる。 According to the above configuration, since the voltage variable section is provided in the AC/DC conversion section, which is the DC power supply section, the supply voltage of the AC/DC conversion section can be positively changed, and the lighting fixture can be lit at a desired illuminance. can be done. Further, if the voltage variable section is configured so as to change the supply voltage according to a dimming signal from the outside, it is possible to realize remote control of dimming and automatic dimming according to the detected value of a sensor or the like.

また、前記直流電源部は、少なくとも、交流電力を直流電力に変換する交直変換部を有し、前記交直変換部は、6相以上の相数の整流回路を有することが好ましい。
上記の構成によれば、交直変換部からの直流電力に含まれる高調波が、従来のスイッチング電源の照明システムよりも少なくなり、電磁ノイズの発生が抑制されて信頼性の高い照明システムを提供することができる。
In addition, it is preferable that the DC power supply section has at least an AC/DC conversion section that converts AC power into DC power, and that the AC/DC conversion section has a rectifier circuit having six or more phases.
According to the above configuration, harmonics contained in the DC power from the AC/DC converter are less than in a lighting system using a conventional switching power supply, and the generation of electromagnetic noise is suppressed to provide a highly reliable lighting system. be able to.

また、前記発光素子列は、当該発光素子列を構成する複数の半導体発光素子のうちの少なくとも1つの半導体発光素子をバイパスするバイパス路を有し、当該バイパス路上に半導体スイッチ素子が設けられ、
前記制御回路は、前記発光素子列に印加される前記供給電圧の大きさに応じて前記半導体スイッチ素子の開度を変えるように構成されていることが好ましい。
Further, the light-emitting element array has a bypass path that bypasses at least one semiconductor light-emitting element among a plurality of semiconductor light-emitting elements that constitute the light-emitting element array, and a semiconductor switch element is provided on the bypass path,
Preferably, the control circuit is configured to change the degree of opening of the semiconductor switch element according to the magnitude of the supply voltage applied to the light emitting element array.

上記の構成において、例えば、直流電源部の供給電圧が最大である場合にバイパス路の半導体スイッチ素子の開度が全開になるように設定されているとする。全ての電流が発光素子列を流れるため、発光素子列は最大(調光率100%)の明るさになる。そして、供給電圧が低下した場合、制御回路はその低下に伴って、半導体スイッチ素子の開度を全開から閉じる方向に変更するので、その閉度に応じてバイパスする電流量が増えていき、そのバイパス路が設けられている半導体発光素子の照度が低下する。このようにして、供給電圧に応じた発光素子列の調光が実行される。
上記に限られず、例えば、供給電圧が最大である場合に半導体スイッチ素子の開度を全閉にして、バイパス路を流れる電流量が最大(発光素子列に流れる電流が最小)になるようにしてもよい。発光素子列はもっとも暗くなる。そして、制御回路は、供給電圧の低下に伴って、半導体スイッチ素子の開度を全閉から開ける方向に変更して、その開度に応じてバイパスする電流量が減っていき、バイパス路が設けられている半導体発光素子を流れる電流が増えていくので、照度が上昇する。
In the above configuration, for example, it is assumed that the opening degree of the semiconductor switch element of the bypass path is set to be fully open when the supply voltage of the DC power supply is maximum. Since all the current flows through the light emitting element array, the light emitting element array has the maximum brightness (dimming rate 100%). When the supply voltage drops, the control circuit changes the degree of opening of the semiconductor switch element from fully open to closed as the supply voltage drops. The illuminance of the semiconductor light emitting device provided with the bypass is reduced. In this way, dimming of the light emitting element array is performed according to the supply voltage.
Not limited to the above, for example, when the supply voltage is maximum, the semiconductor switch element is fully closed so that the amount of current flowing through the bypass is maximized (the current flowing through the light emitting element array is minimized). good too. The light emitting element array becomes the darkest. As the supply voltage decreases, the control circuit changes the opening of the semiconductor switch element from fully closed to open. Since the current flowing through the semiconductor light-emitting element is increased, the illuminance is increased.

また、前記直流電源部は、少なくとも、交流電力を直流電力に変換する交直変換部を有し、前記交直変換部は、前記直流給電線の両端に設けられていることが好ましい。この構成のように、交直変換部を直流給電線の両端に設けることで、一方の交直変換部に断線などのトラブルが生じても、もう一方の交直変換部からの電力供給によって照明器具が完全に消灯してしまうことを回避できる。 In addition, it is preferable that the DC power supply unit has at least an AC/DC conversion unit that converts AC power into DC power, and the AC/DC conversion units are provided at both ends of the DC power supply line. As in this configuration, the AC/DC converters are provided at both ends of the DC power supply line, so even if one of the AC/DC converters experiences a problem such as a disconnection, the lighting fixture will still be able to operate completely by supplying power from the other AC/DC converter. It is possible to avoid turning off the light immediately.

また、前記直流電源部は、少なくとも、蓄電池と、当該蓄電池の劣化状況を検出するバッテリーチェッカーとを備えることが好ましい。この構成によれば、遠隔で蓄電池の劣化状況を確認することができる。 Moreover, it is preferable that the DC power supply unit includes at least a storage battery and a battery checker that detects the deterioration state of the storage battery. According to this configuration, it is possible to remotely check the state of deterioration of the storage battery.

また、本発明に係る照明システムは、さらに、正極および負極の前記直流給電線と接地点と間を結ぶ抵抗中点アース回路を備えることが好ましい。この構成によれば、通電時に抵抗中点アース回路が安全回路として作用して、直流給電線の絶縁抵抗の劣化を検出することができる。 Preferably, the lighting system according to the present invention further comprises a resistance midpoint grounding circuit connecting between the positive and negative DC power supply lines and a grounding point. According to this configuration, the resistance midpoint grounding circuit acts as a safety circuit when energized, and deterioration of the insulation resistance of the DC power supply line can be detected.

また、本発明に係る照明システムは、さらに、前記照明器具の正極および負極の端子間を結ぶアーク抑止回路を備えることが好ましい。この構成によれば、スイッチ解放時にアーク抑止回路が安全回路として作用して、アーク発生を防止し、断線を回避することができる。 Preferably, the lighting system according to the present invention further comprises an arc suppression circuit connecting the positive and negative terminals of the lighting fixture. According to this configuration, when the switch is released, the arc suppression circuit acts as a safety circuit to prevent arcing and disconnection.

また、本発明に係る照明システムは、トンネル照明用であり、前記直流給電線がトンネルに沿って配設され、前記複数の照明器具が前記トンネルに沿って間隔を空けて配置されていることが好ましい。
ここで、前記トンネル照明用の照明システムは、さらに、トンネル外部に設けられた照度センサを備え、前記直流電源部は、少なくとも、交流電力を直流電力に変換する交直変換部を有し、前記交直変換部は、前記照度センサで測定された照度に応じて供給電圧を変更する電圧可変部を有することが好ましい。
Further, the lighting system according to the present invention is for tunnel lighting, wherein the DC power supply line is arranged along the tunnel, and the plurality of lighting fixtures are arranged at intervals along the tunnel. preferable.
Here, the lighting system for tunnel lighting further includes an illuminance sensor provided outside the tunnel, the DC power supply unit has at least an AC/DC conversion unit that converts AC power into DC power, and the AC/DC It is preferable that the conversion unit has a voltage variable unit that changes the supply voltage according to the illuminance measured by the illuminance sensor.

上記の構成によれば、トンネル照明において、トンネル外部の照度(日光量)が変化した際、照度センサの検出値に応じて交直変換部の供給電圧が変更され、これに連動して、照明器具が調光されるので、例えばトンネル外部が明るいときはトンネル内も明るくし、トンネル外部が暗いときはトンネル内も暗くするといったトンネル照明の調光制御を実現することができる。この構成では、照度センサの検出値に応じた調光信号を、多数の照明器具に向けて個別に送信する必要がなく、交直変換部における供給電圧の変更のみで調光することができるので、トンネル照明の調光制御の構成をシンプルかつ安価に実現することができる。 According to the above configuration, in the tunnel lighting, when the illuminance (amount of sunlight) outside the tunnel changes, the supply voltage of the AC/DC converter is changed according to the detection value of the illuminance sensor. is dimmed, it is possible to realize dimming control of tunnel lighting such that, for example, when the outside of the tunnel is bright, the inside of the tunnel is also brightened, and when the outside of the tunnel is dark, the inside of the tunnel is also darkened. With this configuration, there is no need to individually transmit dimming signals corresponding to the detection values of the illuminance sensors to a large number of lighting fixtures, and dimming can be performed only by changing the supply voltage in the AC/DC converter. The structure of dimming control for tunnel lighting can be realized simply and inexpensively.

本発明の一実施形態に係るトンネル照明システムの全体構成を示す図。1 is a diagram showing the overall configuration of a tunnel lighting system according to one embodiment of the present invention; FIG. 前記照明システムの交直変換器の一例を示す図。The figure which shows an example of the AC/DC converter of the said lighting system. 前記照明システムの供給電圧と調光率の関係の一例を示す図。The figure which shows an example of the relationship between the supply voltage of the said lighting system, and a dimming rate. 前記調光制御によるトンネル内の照度の変化の一例を示す図。The figure which shows an example of the change of the illuminance in a tunnel by the said light control. 前記照明システムの照明器具の第1例を示す図。The figure which shows the 1st example of the lighting fixture of the said lighting system. 前記照明器具の動作を説明するための図。The figure for demonstrating operation|movement of the said lighting fixture. 前記照明システムの照明器具の第2例を示す図。The figure which shows the 2nd example of the lighting fixture of the said lighting system. 前記照明システムの照明器具の第3例を示す図。The figure which shows the 3rd example of the lighting fixture of the said lighting system. 前記照明システムの抵抗中点アース回路の一例を示す図。The figure which shows an example of the resistance midpoint grounding circuit of the said lighting system.

図を用いて本発明にトンネル照明システムの実施形態を具体的に説明する。 An embodiment of a tunnel lighting system according to the present invention will be specifically described with reference to the drawings.

図1は、トンネル照明システムの全体構成を表す概略図である。この照明システム1は、直流電力の主電源として照明システムの両端に設けられた交直変換器2A,2Bと、交直変換器2A,2Bの正極の出力端間を結ぶ正極の直流給電線3Aと、その負極の出力端間を結ぶ負極の直流給電線3Bと、直流給電線3A,3Bに並列に接続された複数のLED照明器具4A~4Cと、第1補助電源としての太陽光発電機5と、第2補助電源としての風力発電機6と、非常用電源としての蓄電池7と、安全回路である抵抗中点アース回路8と、を含んでいる。 FIG. 1 is a schematic diagram showing the overall configuration of the tunnel lighting system. The lighting system 1 includes AC/DC converters 2A and 2B provided at both ends of the lighting system as a main power supply for DC power, a positive DC power supply line 3A connecting the positive output terminals of the AC/DC converters 2A and 2B, A negative DC power supply line 3B connecting between the negative output ends thereof, a plurality of LED lighting fixtures 4A to 4C connected in parallel to the DC power supply lines 3A and 3B, and a solar power generator 5 as a first auxiliary power supply. , a wind power generator 6 as a second auxiliary power supply, a storage battery 7 as an emergency power supply, and a resistance midpoint grounding circuit 8 as a safety circuit.

一対の直流給電線3A,3Bは、トンネルに沿って配設され、交直変換器2A,2Bは、トンネルの出入口付近に設置されており、いずれか一方の交直変換器が使用不能になっても、もう一方の交直変換器からの電力供給が継続されるので、トンネル内が完全に消灯してしまうことを回避できる。また、交直変換器2A,2Bは、トンネル外部の照度センサ9と信号線で接続され、照度センサ9が検出するトンネル外部の照度信号を取得する。図2(A)に交直変換器2Aの具体例として、センタータップ式の整流回路の回路構成を示す。交直変換器2Aは、交流電源からの交流電圧を電力変換するトランスTと、当該トランスTの二次コイルの両端にそれぞれアノードが接続されたダイオードD1,D2と、電圧可変部として機能する負荷時タップ切替器21とを有する。2つの整流素子D1,D2のカソードは接続されて正極の出力端を形成し、正極の直流給電線3Aに接続される。また、トランスTの二次コイルの中点は負極の出力端を形成し、負極の直流給電線3Bに接続される。反対側の交直変換器2Bも交直変換器2Aと同じ構成であり、これらは、交流電力を直流電力に変換し、正極の直流給電線3Aを介して、LED照明器具4A~4Cの正極端子に印加電圧(正極電位)を与える。負荷時タップ切替器21は、照度センサ9からの照度信号に応じてトランスTの巻数比を変更する装置であり、トンネル外部の照度に応じて、直流電力の供給電圧を変更するために用いられる。 A pair of DC power supply lines 3A, 3B are arranged along the tunnel, and the AC/DC converters 2A, 2B are installed near the entrance of the tunnel. Since the power supply from the other AC/DC converter is continued, it is possible to avoid completely turning off the lights in the tunnel. Further, the AC/DC converters 2A and 2B are connected to the illuminance sensor 9 outside the tunnel by a signal line, and acquire the illuminance signal outside the tunnel detected by the illuminance sensor 9 . FIG. 2A shows the circuit configuration of a center-tap rectifier circuit as a specific example of the AC/DC converter 2A. The AC/DC converter 2A includes a transformer T that converts an AC voltage from an AC power supply, diodes D1 and D2 whose anodes are connected to both ends of a secondary coil of the transformer T, and a load variable section that functions as a voltage variable section. and a tap changer 21 . The cathodes of the two rectifying elements D1 and D2 are connected to form a positive output terminal, which is connected to the positive DC power supply line 3A. The middle point of the secondary coil of the transformer T forms a negative output end and is connected to the negative DC power supply line 3B. The AC/DC converter 2B on the opposite side also has the same configuration as the AC/DC converter 2A. An applied voltage (positive electrode potential) is applied. The on-load tap changer 21 is a device that changes the turns ratio of the transformer T according to the illumination signal from the illumination sensor 9, and is used to change the DC power supply voltage according to the illumination outside the tunnel. .

なお、図2では単相の交直変換部を例示したが、三相交流を6相以上の相数の整流回路を用いて交直変換すれば、高調波がさらに少なくなり、ノイズを生じ難い直流電力を供給できる。例えば12相整流回路や24相整流回路を用いるとよい。 Although FIG. 2 illustrates a single-phase AC/DC converter, if a rectifier circuit with six or more phases is used to convert a three-phase AC, harmonics will be further reduced, and noise will be less likely to occur. can supply For example, a 12-phase rectifier circuit or a 24-phase rectifier circuit may be used.

図2(B)に示す変形例の交直変換器2Cでは、トランスTの二次コイルの両端が分岐していて、追加のダイオードD3,D4を経由して、それらの分岐線同士が接続され、別系統の正極の直流給電線3Cに直流電力を出力する。そして、2本の正極の直流給電線3A,3Cをトンネルに沿って配設し、照明器具の正極端子を両方の直流給電線3A,3Cに接続しておけば、どちらか一方の直流給電線の断線による照明器具の消灯を回避することができる。 In the AC/DC converter 2C of the modification shown in FIG. 2B, both ends of the secondary coil of the transformer T are branched, and the branch lines are connected via additional diodes D3 and D4, DC power is output to the positive DC power supply line 3C of another system. Then, if two positive DC power supply lines 3A and 3C are arranged along the tunnel and the positive terminal of the lighting equipment is connected to both DC power supply lines 3A and 3C, either DC power supply line It is possible to avoid turning off the lighting equipment due to disconnection of the wiring.

次に、複数のLED照明器具4A~4Cはトンネルに沿って間隔を空けて配設され、それぞれの正極端子は、逆流防止用のダイオードD5~D7を介して正極の直流給電線3Aに接続される。負極端子は負極の直流給電線3Bに接続される。照明器具4Aの具体例は、図5~図8を用いて後で述べる。 Next, a plurality of LED lighting fixtures 4A to 4C are arranged at intervals along the tunnel, and the positive terminal of each is connected to the positive DC power supply line 3A via the diodes D5 to D7 for preventing backflow. be. The negative terminal is connected to the negative DC feeder 3B. A specific example of the lighting device 4A will be described later with reference to FIGS. 5 to 8. FIG.

次に、太陽光発電機5および風力発電機6は、どちらも正極の出力端がダイオードD8,D9を介して正極の直流給電線3Aに接続され、発電機5,6の出力が直流給電線3Aの電圧に達したら、これらの再生可能エネルギーが直流給電線3Aに供給されるようになっている。 Next, the photovoltaic power generator 5 and the wind power generator 6 both have their positive output ends connected to the positive DC power supply line 3A via diodes D8 and D9, and the outputs of the generators 5 and 6 are connected to the DC power supply line. Once the voltage of 3A is reached, these renewable energies are supplied to the DC feeder 3A.

蓄電池7は、正極の出力端がダイオードD10のアノードに接続され、このダイオードD10のカソードが直流給電線3Aに接続される。加えて、ダイオードD10の極性とは反対向きのダイオードD11とスイッチ素子SW1と抵抗R1からなる直列接続が、ダイオードD10に並列に接続される。スイッチ素子SW1は、蓄電池7の電圧が規定値(充電開始電圧)より低下した場合にオンし、直流給電線3Aの電圧によって充電が開始される。また、スイッチ素子SW1は、充電によって蓄電池7の電圧が別の規定値(充電停止電圧)に達したらオフし、充電を停止する。これらの充電の開始・停止は自動的に実行される。また、蓄電池7はバッテリーチェッカー71を有し、蓄電池の電圧値や劣化状態を示す情報を遠隔操作で確認するために用いられる。 The positive output end of the storage battery 7 is connected to the anode of a diode D10, and the cathode of the diode D10 is connected to the DC power supply line 3A. In addition, a series connection consisting of a diode D11 opposite in polarity to the diode D10, a switch element SW1 and a resistor R1 is connected in parallel to the diode D10. The switch element SW1 is turned on when the voltage of the storage battery 7 drops below a specified value (charging start voltage), and charging is started by the voltage of the DC power supply line 3A. Further, the switch element SW1 is turned off to stop charging when the voltage of the storage battery 7 reaches another specified value (charging stop voltage) due to charging. These charging start/stops are automatically executed. The storage battery 7 also has a battery checker 71, which is used to remotely check information indicating the voltage value and deterioration state of the storage battery.

なお、本実施形態の照明システム1において直流電源は、主電源(交直変換器3A,3B)と、補助電源(太陽光発電機5および風力発電機6)と、非常用電源(蓄電池7)とを含むが、主電源のみ、または補助電源のみであってもよいし、主電源と補助電源の組合せ、主電源と非常用電源の組合せ、または、補助電源と非常用電源の組合せでもよい。 In addition, in the lighting system 1 of the present embodiment, the DC power supply includes the main power supply (AC/DC converters 3A and 3B), the auxiliary power supply (solar power generator 5 and wind power generator 6), and the emergency power supply (storage battery 7). However, it may be only the main power supply, only the auxiliary power supply, a combination of the main power supply and the auxiliary power supply, a combination of the main power supply and the emergency power supply, or a combination of the auxiliary power supply and the emergency power supply.

照明器具4A~4Cは同じ構成の照明器具であり、照明器具4Aは、光源として複数のLEDを含む。これらのLEDは、複数のLEDのグループであるLED列を形成し、そのようなLED列を複数個持っている。 The lighting fixtures 4A to 4C are lighting fixtures having the same configuration, and the lighting fixture 4A includes a plurality of LEDs as a light source. These LEDs form an LED string, which is a group of LEDs, and there are multiple such LED strings.

また、照明器具4Aは、直流給電線3Aからの供給電圧に応じて複数のLED列を調光する制御回路を有する。制御回路の具体例は、図5~図8を用いて後で述べる。ここでは、複数のLED列を供給電圧に応じて調光可能な照明器具4A~4Cを利用したトンネル照明システム1の特徴点について説明する。 The lighting fixture 4A also has a control circuit for dimming the plurality of LED rows according to the voltage supplied from the DC power supply line 3A. A specific example of the control circuit will be described later with reference to FIGS. Here, the features of the tunnel lighting system 1 using the lighting fixtures 4A to 4C that are capable of dimming a plurality of LED rows in accordance with the supply voltage will be described.

図3に、照明システム1の供給電圧(V)と調光率(%)の関係がリニアなケースを例示する。この例では、主電源の交直変換器2Aの供給電圧V1の範囲を225~300Vとし、補助電源の太陽光発電機5(または風力発電機6)の供給電圧V2(またはV3)の範囲を300~380Vとし、非常用電源の蓄電池7の供給電圧V4の範囲を100~190Vとしている。すなわち、調光率の全範囲(5%~100%)に対応する供給電圧の範囲(100~380V)が複数に区分され、異なる種類の直流電源がそれぞれの区分における電力供給を担うようになっている。 FIG. 3 illustrates a case where the relationship between the supply voltage (V) of the lighting system 1 and the dimming rate (%) is linear. In this example, the range of the supply voltage V1 of the AC/DC converter 2A of the main power supply is 225 to 300 V, and the range of the supply voltage V2 (or V3) of the solar power generator 5 (or the wind power generator 6) of the auxiliary power supply is 300 V. 380V, and the range of the supply voltage V4 of the storage battery 7 of the emergency power supply is 100 to 190V. That is, the range of supply voltage (100 to 380V) corresponding to the entire range of dimming rate (5% to 100%) is divided into multiple categories, and different types of DC power sources are responsible for power supply in each category. ing.

図3では、太陽光発電機5の供給電圧V2が交直変換器2Aの供給電圧V1よりも高く設定されている。 In FIG. 3, the supply voltage V2 of the solar power generator 5 is set higher than the supply voltage V1 of the AC/DC converter 2A.

太陽光発電機5は、日光量の変化によって供給可能な電圧が変化しやすいが、時間帯や気象情報に基づく供給電圧の予測も可能である。ここでは、V1<V2の設定によって、太陽光発電機5の供給電圧V2が交直変換器2Aの供給電圧V1(225~300V)よりも高くなる期間に太陽光発電という再生可能エネルギーが優先的に供給されるようにした。同時に、太陽光発電機5が300V以上の供給電圧V2を維持できない期間は、主電源である交直変換部からの供給電圧V1によって所定の照度が確保されるようにした。なお、太陽光発電機5から交直変換器2Aへの供給元の切り替えは、直流給電システムがベースになっているから、単純に供給電圧が高い電源が優先的に供給元になるのであり、供給電力が途切れることなくスムーズに実行される。 The voltage that can be supplied to the photovoltaic power generator 5 tends to change due to changes in the amount of sunlight, but it is also possible to predict the supply voltage based on the time of day and weather information. Here, by setting V1<V2, the renewable energy of photovoltaic power generation is prioritized during the period when the supply voltage V2 of the photovoltaic power generator 5 is higher than the supply voltage V1 (225 to 300 V) of the AC/DC converter 2A. made to be supplied. At the same time, during the period when the photovoltaic power generator 5 cannot maintain the supply voltage V2 of 300 V or more, a predetermined illuminance is ensured by the supply voltage V1 from the AC/DC conversion unit, which is the main power supply. Since the switching of the supply source from the photovoltaic power generator 5 to the AC/DC converter 2A is based on the DC power supply system, the power source with the higher supply voltage simply becomes the supply source preferentially. Runs smoothly without power interruptions.

図4に、照明システム1の調光制御によるトンネル内の照度の変化の一例を示す。上のグラフは、一日の供給電圧の変化であり、太陽光発電機5の供給電圧V2と交直変換器2Aの供給電圧V1とを示す。ここでは、供給電圧V1を一定にしている。照明システム1によれば、日中(8時から16時)は太陽光発電機5の供給電圧V2の変化に応じて照明器具が調光されることで、下のグラフに示すようにトンネル外部の日光量の変化とほぼ同じように、トンネル内の照度が変化するようになる。トンネル外部が明るいときはトンネル内も明るくし、トンネル外部が暗いときはトンネル内も暗くするといった調光制御によって、トンネルを利用する運転者に優しいトンネル内の照度管理を実現できる。 FIG. 4 shows an example of changes in illuminance inside the tunnel due to dimming control of the lighting system 1 . The upper graph shows changes in the supply voltage for one day, showing the supply voltage V2 of the photovoltaic power generator 5 and the supply voltage V1 of the AC/DC converter 2A. Here, the supply voltage V1 is kept constant. According to the lighting system 1, during the daytime (from 8:00 to 16:00), the lighting fixtures are dimmed according to changes in the supply voltage V2 of the solar power generator 5, so that the outside of the tunnel is illuminated as shown in the graph below. The illuminance in the tunnel will change in much the same way as the amount of sunlight in the tunnel changes. Lighting control that makes the inside of the tunnel brighter when the outside of the tunnel is bright, and darkens the inside of the tunnel when the outside of the tunnel is dark makes it possible to manage the illumination in the tunnel in a way that is friendly to drivers using the tunnel.

図3は、照明システム1が、交直変換器2Aの供給電圧V1の範囲(225~300V)においても、照明器具を調光制御できることを示している。つまり、トンネル外部の照度(日光量)の変化を照度センサ9が検出し、その照度信号に基づいて交直変換器2A,2Bの負荷時タップ切換器21が動作して、交直変換器2A,2Bの供給電圧V1が変更される。従って、照明器具4A~4Cの制御回路は、太陽光発電機5の供給電圧V2の変化時と同様に、交直変換器2A,2Bの供給電圧V1の変化に連動した調光を実行することができる。交直変換器2A,2Bにおいて供給電圧V1が一括して調整されるので、照度センサの照度信号を多数の照明器具に向けて個別に送信する必要がなくなり、トンネル照明の調光制御の構成がシンプルになる。 FIG. 3 shows that the lighting system 1 can control the dimming of lighting fixtures even in the range of the supply voltage V1 of the AC/DC converter 2A (225-300V). That is, the illuminance sensor 9 detects changes in the illuminance (amount of sunlight) outside the tunnel, and based on the illuminance signal, the on-load tap changers 21 of the AC/DC converters 2A and 2B operate to operate the AC/DC converters 2A and 2B. is changed. Therefore, the control circuits of the lighting fixtures 4A to 4C can perform dimming in conjunction with changes in the supply voltage V1 of the AC/DC converters 2A and 2B in the same manner as when the supply voltage V2 of the solar power generator 5 changes. can. Since the supply voltage V1 is adjusted collectively in the AC/DC converters 2A and 2B, there is no need to individually transmit the illuminance signal of the illuminance sensor to a large number of lighting fixtures, and the structure of dimming control for tunnel lighting is simple. become.

このように、太陽光発電機5から交直変換器2Aに供給元が切り替わった後も、引き続き供給電圧の変化に応じた照明器具4A~4Cの調光が行われるので、225~380Vの広い供給電圧の範囲における連続的な調光制御が可能になる。ここでは、分かり易く、日光量の変化に応じたトンネル内の照度調整について述べたが、本発明の照明システムは、日光量以外の条件に基づく調光制御にも適用できる。 In this way, even after the supply source is switched from the solar power generator 5 to the AC/DC converter 2A, the lighting fixtures 4A to 4C continue to be dimmed according to changes in the supply voltage, so a wide supply of 225 to 380V is possible. Continuous dimming control over a range of voltages is possible. Here, for the sake of clarity, the illuminance adjustment in the tunnel according to changes in the amount of sunlight has been described, but the lighting system of the present invention can also be applied to dimming control based on conditions other than the amount of sunlight.

また、図3では、蓄電池6の供給電圧V4が交直変換器2Aの供給電圧V1よりも低く設定されている。 Further, in FIG. 3, the supply voltage V4 of the storage battery 6 is set lower than the supply voltage V1 of the AC/DC converter 2A.

交直変換器2Aが一定以上の供給電圧V1を維持している期間は、その供給電圧V1が蓄電池7の供給電圧V4よりも高いため、蓄電池7は直流電力を供給しない。停電等で外部からの交流電力の供給が停止した場合は、点灯したまま交直変換器2Aの供給電圧V1が190Vまで徐々に低下して、非常用電源の蓄電池7による電力供給が開始される。そして、蓄電池7の保持電力量の範囲で、点灯が継続される。また、蓄電池7の供給電圧V4が徐々に低下するにつれて、その供給電圧V4の変化に応じた照明器具4A~4Cの調光が行われる。つまり、調光率の下限(5%)まで照度が低下し、供給電圧V4が100V以下になるタイミングで消灯する。 Since the supply voltage V1 is higher than the supply voltage V4 of the storage battery 7 while the AC/DC converter 2A maintains the supply voltage V1 above a certain level, the storage battery 7 does not supply DC power. When the supply of AC power from the outside is stopped due to a power failure or the like, the supply voltage V1 of the AC/DC converter 2A is gradually lowered to 190 V while the light is on, and the power supply by the storage battery 7 of the emergency power supply is started. The lighting continues within the range of the amount of electric power held by the storage battery 7 . Further, as the supply voltage V4 of the storage battery 7 gradually decreases, the lighting fixtures 4A to 4C are dimmed according to the change in the supply voltage V4. That is, the light is turned off at the timing when the illuminance decreases to the lower limit (5%) of the dimming rate and the supply voltage V4 becomes 100 V or less.

以下、LED照明器具4Aの具体例を図5~図8を用いて説明する。 Specific examples of the LED lighting device 4A will be described below with reference to FIGS. 5 to 8. FIG.

図5の照明器具41は、複数のLEDからなるLED列51~53を有する。図5に示すように、照明器具41の正極端子に1つ目のLED列51のアノードが接続し、LED列51のカソードが分岐して、分岐の一方が2つ目のLED列51のアノードに接続し、分岐の他方が電界効果トランジスタ(FET1)のドレインに接続する。FET1のソースはさらに分岐して、分岐の一方がダイオードD12のカソードに接続し、分岐の他方が3つ目のLED列53のアノードに接続する。ダイオードD12のアノードと2つ目のLED列51のカソードが合流し、FET2のドレインに接続する。そして、3つ目のLED列53のアノードとFET2のソースが交流し、定電流制御回路(CC制御回路)60を介して、照明器具41の負極端子に接続する。 A lighting fixture 41 in FIG. 5 has LED rows 51 to 53 each composed of a plurality of LEDs. As shown in FIG. 5, the anode of the first LED row 51 is connected to the positive terminal of the lighting fixture 41, the cathode of the LED row 51 branches, and one of the branches is the anode of the second LED row 51. , and the other branch is connected to the drain of a field effect transistor (FET1). The source of FET1 is further branched, with one branch connected to the cathode of diode D12 and the other branch connected to the anode of the third LED string 53 . The anode of the diode D12 and the cathode of the second LED row 51 merge and are connected to the drain of the FET2. Then, the anode of the third LED row 53 and the source of the FET 2 are alternately connected to the negative terminal of the lighting fixture 41 via the constant current control circuit (CC control circuit) 60 .

図5の照明器具41は、FET1,2のオンまたはオフによって、複数のLED列51~53の接続状態が直列から並列に切り替わる。このことを図6(A),(B)を用いて説明する。図6では5つのLED列51~55の接続状態が直列から並列に切り替わる様子を示す。例えば供給電圧が最大の380Vである場合、CC制御回路60は、供給電圧を検知して、FET1~4をオフにするゲート電圧を発するようにFET制御回路61を動作させる。これによって、すべてのFET1~4がオフを維持し、図6(A)に示すように、5つのLED列51~55の直列接続回路が形成される。つまり、正極端子からの電流は、LED列51→LED列52→ダイオードD12→LED列53→ダイオードD13→LED列54→ダイオードD14→LED列55の順に流れる。CC制御回路60が、電流を一定に制御するため、照明器具41は調光率100%で点灯する。 In the lighting fixture 41 of FIG. 5, the connection state of the plurality of LED arrays 51 to 53 is switched from series to parallel depending on whether FETs 1 and 2 are turned on or off. This will be described with reference to FIGS. 6(A) and 6(B). FIG. 6 shows how the connection state of the five LED arrays 51 to 55 is switched from serial to parallel. For example, if the supply voltage is a maximum of 380V, CC control circuit 60 senses the supply voltage and operates FET control circuit 61 to generate a gate voltage that turns off FETs 1-4. As a result, all the FETs 1-4 are kept off, and a series connection circuit of five LED strings 51-55 is formed as shown in FIG. 6(A). That is, the current from the positive terminal flows in the order of LED row 51→LED row 52→diode D12→LED row 53→diode D13→LED row 54→diode D14→LED row 55. FIG. Since the CC control circuit 60 controls the current to be constant, the lighting fixture 41 lights at a dimming rate of 100%.

次に、供給電圧が閾値まで低下した場合、CC制御回路60は、FET1~4がオンにするゲート電圧を発するようにFET制御回路61を動作させる。これによって、すべてのFET1~4がオンになり、図6(B)に示すように、LED列51を除く4つのLED列52~55が、LED列52と54の直列接続と、LED列53と55の直列接続とを形成し、2つの直列接続の並列接続である並列接続回路が形成される。つまり、LED列51からの電流は分岐して、電流の半分はLED列52→FET2→LED列54→FET4の順に流れ、電流の残りの半分はFET1→LED列53→FET3→LED列55の順に流れて、その後、合流する。CC制御回路60は、並列接続回路に切り換わった後も、複数のLED列の全体で電流が一定になるように制御するため、個々のLED列に流れる電流は半分になり、照明器具41は調光率50%で点灯する。 Then, when the supply voltage drops to the threshold, CC control circuit 60 causes FET control circuit 61 to generate a gate voltage that turns on FETs 1-4. As a result, all of the FETs 1 to 4 are turned on, and as shown in FIG. and a series connection of 55, forming a parallel connection circuit which is a parallel connection of two series connections. That is, the current from the LED string 51 branches, half of the current flows in the order of LED string 52→FET2→LED string 54→FET4, and the remaining half of the current flows through FET1→LED string 53→FET3→LED string 55. They flow in order and then merge. Since the CC control circuit 60 controls the current to be constant throughout the plurality of LED rows even after switching to the parallel connection circuit, the current flowing through each LED row is halved, and the lighting fixture 41 Lights at a dimming rate of 50%.

このようにして、照明器具41は、供給電圧に応じて複数のLED列51~53の接続状態を直列から並列に切り換えることで、調光を行う。 In this manner, the lighting fixture 41 performs dimming by switching the connection state of the plurality of LED rows 51 to 53 from series to parallel according to the supply voltage.

図5において、アーク抑止回路70の具体例を説明する。アーク抑止回路70は、複数のLED列51~53による接続回路の両端を結ぶように接続されており、抵抗R2とダイオードD17の並列接続部と、これに直列接続されたコンデンサC2とを有する回路構成である。アーク抑止回路70を設けることで、スイッチ解放時のアーク発生が抑止され、断線などを回避することができる。 A specific example of the arc suppression circuit 70 will be described with reference to FIG. The arc suppression circuit 70 is connected so as to connect both ends of the connection circuit of the plurality of LED rows 51 to 53, and has a parallel connection portion of a resistor R2 and a diode D17, and a capacitor C2 connected in series therewith. Configuration. By providing the arc suppression circuit 70, arc generation at the time of switch release can be suppressed, and wire breakage can be avoided.

また、図7に示す例のように、正極および負極の直流給電線3A、3Bに、複数の照明器具42~44の直列接続回路を接続してもよい。ただし、CC制御回路60は、最終段の照明器具44にのみ設ける。各々の照明器具42~44において、FET制御回路61~63によるLED列の直列接続から並列接続への切り換えが実行される。 Also, as in the example shown in FIG. 7, a series connection circuit of a plurality of lighting fixtures 42 to 44 may be connected to the positive and negative DC power supply lines 3A and 3B. However, the CC control circuit 60 is provided only in the final lighting fixture 44 . In each of the lighting fixtures 42-44, FET control circuits 61-63 switch the LED strings from series connection to parallel connection.

図8の照明器具45では、複数のLED列51~54が直列に接続されており、2つ目と4つ目のLED列52,54にはバイパス路が設けられる。LED列52のバイパス路にはFET1が接続され、LED列54のバイパス路にはFET2が接続される。ここで、図5の照明器具41との大きな違いは、FET1,FET2が、ゲート電圧に応じて、ドレイン-ソース間の開度(または閉度)を連続的に調整可能なことである。つまり、バイパス路の電流量がFETの開度(または閉度)の大小で調製される。照明器具45において、CC制御回路80は、供給電圧を検知して、その供給電圧に応じた開度になるようにFET1,2のゲート電圧を発するようにFET制御回路81を動作させる。また、CC制御回路80は、複数のLED列51~54の全体で電流が一定になるように制御するため、FET制御回路81によるFETの開度調整が実行されると、バイパス電流の分だけがLED列52,54の照度が低下する。このようにして、供給電圧に応じて、LED列51~54の全体での照度が連続的に変更される。 In the lighting fixture 45 of FIG. 8, a plurality of LED rows 51 to 54 are connected in series, and the second and fourth LED rows 52 and 54 are provided with bypass paths. FET1 is connected to the bypass of the LED row 52, and FET2 is connected to the bypass of the LED row . Here, the major difference from the lighting fixture 41 of FIG. 5 is that FET1 and FET2 can continuously adjust the opening (or closing) between the drain and the source according to the gate voltage. In other words, the amount of current in the bypass is adjusted by the degree of opening (or closing) of the FET. In the luminaire 45, the CC control circuit 80 detects the supply voltage and operates the FET control circuit 81 to generate the gate voltages of the FETs 1 and 2 so that the opening degree corresponds to the supply voltage. In addition, since the CC control circuit 80 controls the current to be constant throughout the plurality of LED rows 51 to 54, when the FET control circuit 81 adjusts the opening of the FET, the bypass current decreases the illuminance of the LED arrays 52 and 54. In this manner, the illuminance of the LED arrays 51 to 54 as a whole is continuously changed according to the supply voltage.

最後に、図9を用いて、抵抗中点アース回路8の具体例を説明する。抵抗中点アース回路8は、正極および負極の直流給電線3A、3Bと接地点との間に設けられる。直流給電線3A、3Bは非接地状態の直流回路であるため、直流給電線3A、3Bと接地点との間の絶縁抵抗の低下を検出する回路として、抵抗中点アース回路8が機能する。 Finally, with reference to FIG. 9, a specific example of the resistor midpoint grounding circuit 8 will be described. A resistance midpoint grounding circuit 8 is provided between the positive and negative DC power supply lines 3A, 3B and a ground point. Since the DC power supply lines 3A and 3B are non-grounded DC circuits, the resistance midpoint grounding circuit 8 functions as a circuit for detecting a drop in insulation resistance between the DC power supply lines 3A and 3B and the ground point.

抵抗中点アース回路8は、等しい抵抗値の抵抗器R3,R4からなる直列接続回路と、互いに逆向きの極性で接続されたフォトカプラ81,82の並列接続回路とを有し、抵抗器R3,R4の直列接続回路は、正極および負極の直流給電線3A、3B間に接続される。また、フォトカプラ81,82の並列接続回路は、抵抗器R,Rの接続点と接地点とを結ぶ電路に接続されている。フォトカプラ81の受光素子の一方の端子はVCCに接続され、他方の端子には発光ダイオード83が接続され、接地点から抵抗器R,Rの接続点に向けて電流が流れた場合にフォトカプラ81の発光および受光作用が生じて、発光ダイオード83が点灯する。同様に、フォトカプラ82の受光素子の一方の端子はVCCに接続され、他方の端子には別の発光ダイオード84が接続され、抵抗器R,Rの接続点から接地点に向けて電流が流れた場合にフォトカプラ82の発光および受光作用が生じて、発光ダイオード84が点灯する。 The resistance midpoint grounding circuit 8 has a series connection circuit made up of resistors R3 and R4 with equal resistance values, and a parallel connection circuit made up of photocouplers 81 and 82 connected in opposite polarities. , R4 are connected between the positive and negative DC power supply lines 3A and 3B. A parallel connection circuit of the photocouplers 81 and 82 is connected to an electric path connecting the connection point of the resistors R and R and the ground point. One terminal of the light receiving element of the photocoupler 81 is connected to VCC, and the other terminal is connected to the light emitting diode 83. When a current flows from the ground point to the connection point of the resistors R, R, the photocoupler Light emitting and light receiving actions of 81 occur, and light emitting diode 83 lights up. Similarly, one terminal of the light receiving element of the photocoupler 82 is connected to VCC, the other terminal is connected to another light emitting diode 84, and current flows from the connection point of the resistors R, R to the ground point. When the photocoupler 82 emits light and receives light, the light emitting diode 84 lights up.

このような構成の抵抗中点アース回路8において、正極の直流給電線3Aの絶縁抵抗の抵抗値が低下すると、フォトカプラ81の発光素子に微弱な電流が流れるので、その微弱な電流を受光素子が捉えて、発光ダイオード83が点灯する。これにより、正極の直流給電線3Aの絶縁抵抗の低下が発光ダイオード83の発光で表示される。同様に、負極の直流給電線3Bの絶縁抵抗の抵抗値が低下すると、反対側のフォトカプラ82の発光素子に微弱な電流が流れるので、その微弱な電流を受光素子が捉えて、発光ダイオード84が点灯する。これにより、負極の直流給電線3Bの絶縁抵抗の低下が発光ダイオード84の発光で表示される。 In the resistance midpoint grounding circuit 8 configured as described above, when the resistance value of the insulation resistance of the positive DC power supply line 3A decreases, a weak current flows through the light emitting element of the photocoupler 81. captures and the light-emitting diode 83 lights up. As a result, the decrease in the insulation resistance of the positive DC power supply line 3A is indicated by the light emission of the light emitting diode 83. FIG. Similarly, when the resistance value of the insulation resistance of the negative DC power supply line 3B decreases, a weak current flows through the light emitting element of the photocoupler 82 on the opposite side. lights up. As a result, the light emission of the light emitting diode 84 indicates the decrease in the insulation resistance of the negative DC power supply line 3B.

1 トンネル照明システム
2A,2B 直流給電線
3A,3B 交直変換器
4A~4C LED照明器具
5 太陽光発電機
6 風力光発電機
7 蓄電池
8 抵抗中点アース回路
9 照度センサ
21 負荷時タップ切換器
41~45 LED照明器具
51~57 LED列
60,80 CC制御回路
61~63,81 FET制御回路
70 アーク抑止回路
1 Tunnel lighting system 2A, 2B DC power supply lines 3A, 3B AC/DC converters 4A to 4C LED lighting equipment 5 Solar power generator 6 Wind power generator 7 Storage battery 8 Resistance midpoint ground circuit 9 Illuminance sensor 21 Load tap changer 41 ~ 45 LED lighting fixtures 51 ~ 57 LED rows 60, 80 CC control circuits 61 ~ 63, 81 FET control circuit 70 arc suppression circuit

Claims (14)

直流電力を供給する直流電源部と、
前記直流電源部の出力端に接続される直流給電線と、
前記直流給電線に並列に接続される複数の照明器具と、を備え、
前記照明器具は、
複数の半導体発光素子を接続した発光素子列と、
前記直流電源部から前記発光素子列への供給電圧の変化に応じて当該発光素子列を調光する制御回路と、を有することを特徴とする照明システム。
a DC power supply unit that supplies DC power;
a DC power supply line connected to the output terminal of the DC power supply;
A plurality of lighting fixtures connected in parallel to the DC power supply line,
The lighting fixture is
a light emitting element array in which a plurality of semiconductor light emitting elements are connected;
and a control circuit for dimming the light emitting element array according to a change in the voltage supplied from the DC power supply to the light emitting element array.
請求項1記載の照明システムにおいて、
前記直流電源部は、交流電力を直流電力に変換する交直変換部、再生可能エネルギー電源、もしくは、蓄電池、または、これらの組合せを有することを特徴とする照明システム。
The lighting system of claim 1, wherein
The lighting system, wherein the DC power supply unit includes an AC/DC conversion unit that converts AC power to DC power, a renewable energy power source, a storage battery, or a combination thereof.
請求項1または2記載の照明システムにおいて、
前記直流電源部は、少なくとも、交流電力を直流電力に変換する交直変換部と再生可能エネルギー電源とを有し、前記再生可能エネルギー電源の供給電圧が前記交直変換部の供給電圧よりも高いことを特徴とする照明システム。
3. The lighting system according to claim 1 or 2,
The DC power supply unit has at least an AC/DC conversion unit that converts AC power into DC power and a renewable energy power supply, and the supply voltage of the renewable energy power supply is higher than the supply voltage of the AC/DC conversion unit. A lighting system characterized by:
請求項1から3のいずれかに記載の照明システムにおいて、
前記直流電源部は、少なくとも、交流電力を直流電力に変換する交直変換部と蓄電池とを有し、前記蓄電池はダイオードを介して直流電力を前記直流給電線に供給し、前記蓄電池の供給電圧が前記交直変換部の供給電圧よりも低いことを特徴とする照明システム。
4. A lighting system according to any one of claims 1 to 3,
The DC power supply unit includes at least an AC/DC converter that converts AC power into DC power and a storage battery. The storage battery supplies DC power to the DC power supply line via a diode, and the storage battery supplies voltage A lighting system, wherein the voltage is lower than the supply voltage of the AC/DC converter.
請求項1から4のいずれかに記載の照明システムにおいて、
前記直流電源部は、少なくとも、交流電力を直流電力に変換する交直変換部を有し、前記交直変換部は、当該交直変換部の供給電圧を変更する電圧可変部を有することを特徴とする照明システム。
5. The lighting system according to any one of claims 1 to 4,
The illumination, wherein the DC power supply unit has at least an AC/DC conversion unit that converts AC power into DC power, and the AC/DC conversion unit has a voltage variable unit that changes a supply voltage of the AC/DC conversion unit. system.
請求項5記載の照明システムにおいて、
前記電圧可変部は、外部からの調光信号を受信し、当該調光信号に応じて前記交直変換部の供給電圧を変更するように構成されることを特徴とする照明システム。
6. The lighting system of claim 5, wherein
The lighting system, wherein the voltage variable section receives a dimming signal from the outside and changes the supply voltage of the AC/DC converting section according to the dimming signal.
請求項1から6のいずれかに記載の照明システムにおいて、
前記直流電源部は、少なくとも、交流電力を直流電力に変換する交直変換部を有し、前記交直変換部は、6相以上の相数の整流回路を有することを特徴とする照明システム。
7. A lighting system according to any one of claims 1 to 6,
The lighting system, wherein the DC power supply unit includes at least an AC/DC conversion unit that converts AC power into DC power, and the AC/DC conversion unit includes a rectifier circuit having six or more phases.
請求項1から7のいずれかに記載の照明システムにおいて、
前記発光素子列は、当該発光素子列を構成する複数の半導体発光素子のうちの少なくとも1つの半導体発光素子をバイパスするバイパス路を有し、当該バイパス路上に半導体スイッチ素子が設けられ、
前記制御回路は、前記発光素子列に印加される前記供給電圧の大きさに応じて前記半導体スイッチ素子の開度を調整するように構成されていることを特徴とする照明システム。
8. A lighting system according to any one of claims 1 to 7,
the light-emitting element array has a bypass path that bypasses at least one semiconductor light-emitting element among a plurality of semiconductor light-emitting elements constituting the light-emitting element array, and a semiconductor switch element is provided on the bypass path;
The lighting system according to claim 1, wherein the control circuit is configured to adjust the opening degree of the semiconductor switch element according to the magnitude of the supply voltage applied to the light emitting element array.
請求項1から8のいずれかに記載の照明システムにおいて、
前記直流電源部は、少なくとも、交流電力を直流電力に変換する交直変換部を有し、前記交直変換部は、前記直流給電線の両端に設けられていることを特徴とする照明システム。
9. A lighting system according to any one of claims 1 to 8,
The lighting system, wherein the DC power supply unit has at least an AC/DC conversion unit that converts AC power into DC power, and the AC/DC conversion units are provided at both ends of the DC power supply line.
請求項1から9のいずれかに記載の照明システムにおいて、
前記直流電源部は、少なくとも、蓄電池と、当該蓄電池の劣化状況を検出するバッテリーチェッカーとを備えることを特徴とする照明システム。
10. A lighting system according to any one of claims 1 to 9,
The lighting system, wherein the DC power supply unit includes at least a storage battery and a battery checker that detects a deterioration state of the storage battery.
請求項1から10のいずれかに記載の照明システムにおいて、
正極および負極の前記直流給電線と接地点と間を結ぶ抵抗中点アース回路を備えることを特徴とする照明システム。
11. A lighting system according to any one of claims 1 to 10,
1. A lighting system, comprising: a resistance midpoint grounding circuit connecting between said positive and negative DC power supply lines and a grounding point.
請求項1から11のいずれかに記載の照明システムにおいて、
前記照明器具の正極および負極の端子間を結ぶアーク抑止回路を備えることを特徴とする照明システム。
12. A lighting system according to any one of claims 1 to 11,
A lighting system comprising an arc suppression circuit connected between positive and negative terminals of the lighting fixture.
請求項1から12のいずれかに記載の照明システムは、トンネル照明用であり、前記直流給電線がトンネルに沿って配設され、前記複数の照明器具が前記トンネルに沿って間隔を空けて配置されていることを特徴とする照明システム。 13. The lighting system according to any one of claims 1 to 12, for tunnel lighting, wherein the DC feed line is arranged along a tunnel and the plurality of lighting fixtures are spaced along the tunnel. A lighting system characterized by: 請求項13記載のトンネル照明用の照明システムは、さらに、トンネル外部に設けられた照度センサを備え、前記直流電源部は、少なくとも、交流電力を直流電力に変換する交直変換部を有し、前記交直変換部は、前記照度センサで測定された照度に応じて供給電圧を変更する電圧可変部を有することを特徴とする照明システム。 The lighting system for tunnel lighting according to claim 13, further comprising an illuminance sensor provided outside the tunnel, wherein the DC power supply includes at least an AC/DC converter for converting AC power into DC power, The lighting system, wherein the AC/DC conversion unit has a voltage variable unit that changes the supply voltage according to the illuminance measured by the illuminance sensor.
JP2021168741A 2021-10-14 2021-10-14 Illumination system Pending JP2023058935A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2021168741A JP2023058935A (en) 2021-10-14 2021-10-14 Illumination system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2021168741A JP2023058935A (en) 2021-10-14 2021-10-14 Illumination system

Publications (1)

Publication Number Publication Date
JP2023058935A true JP2023058935A (en) 2023-04-26

Family

ID=86095616

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2021168741A Pending JP2023058935A (en) 2021-10-14 2021-10-14 Illumination system

Country Status (1)

Country Link
JP (1) JP2023058935A (en)

Similar Documents

Publication Publication Date Title
JP5679197B2 (en) Fluorescent lamp type LED lighting device
US10631375B2 (en) Emergency lighting system
US9101011B2 (en) Lighting system including power conversion using a control signal based on illuminance information from a solar power generator
JP2009117036A (en) Constant current generator for airfield lamp
MX2012008154A (en) System for managing and controlling photovoltaic panels.
Attia et al. Design of decentralized street LED light dimming system
CN111133838B (en) LED illumination system and method thereof
JP2011142026A (en) Lighting system of tunnel
JP2020087892A (en) Load controller
CN103857127A (en) Dimmable LED with constant voltage and additional constant current driving circuit
JP2023058935A (en) Illumination system
JP5624268B2 (en) Lighting device, lighting fixture
CN108882430A (en) Has the LED lamp of automatic dimming function
JP2014534588A (en) Automatic switching dual power supply light
JP2020107432A (en) Electric power unit, load drive system, and illumination system
JP6072991B1 (en) Converter between solar panel, source and load
JP5116641B2 (en) Constant current generator switching system for ship traffic signals
JP2024032527A (en) lighting system
CN201032106Y (en) DC LED road lamp lighting system
CN106068045A (en) Electric supply installation for LED
JP5579042B2 (en) Lighting device
JP5665639B2 (en) Power supply
JP2007110881A (en) Led illumination lighting equipment
CN116094134A (en) Emergency lighting power supply method for logistics warehouse
Pinto et al. LED lamp with a compact emergency lighting system

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20231020