JP2023056916A - internal combustion engine - Google Patents

internal combustion engine Download PDF

Info

Publication number
JP2023056916A
JP2023056916A JP2021166414A JP2021166414A JP2023056916A JP 2023056916 A JP2023056916 A JP 2023056916A JP 2021166414 A JP2021166414 A JP 2021166414A JP 2021166414 A JP2021166414 A JP 2021166414A JP 2023056916 A JP2023056916 A JP 2023056916A
Authority
JP
Japan
Prior art keywords
catalyst
exhaust
internal combustion
combustion engine
turbine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2021166414A
Other languages
Japanese (ja)
Other versions
JP7374571B2 (en
Inventor
洋之 藤川
Hiroyuki Fujikawa
翔平 山下
Shohei Yamashita
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daihatsu Motor Co Ltd
Original Assignee
Daihatsu Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daihatsu Motor Co Ltd filed Critical Daihatsu Motor Co Ltd
Priority to JP2021166414A priority Critical patent/JP7374571B2/en
Publication of JP2023056916A publication Critical patent/JP2023056916A/en
Application granted granted Critical
Publication of JP7374571B2 publication Critical patent/JP7374571B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Landscapes

  • Supercharger (AREA)
  • Exhaust Gas After Treatment (AREA)

Abstract

To enable great supercharging of intake air of an exhaust turbo supercharger attached to an internal combustion engine and keep a high purification effect for harmful substances in exhaust by a three-way catalyst.SOLUTION: In an internal combustion engine accompanied by an exhaust turbo supercharger 2, there are provided, in an exhaust channel through which exhaust discharged from a cylinder passes, a catalyst 1 for exhaust purification, a turbine of the supercharger 2 disposed downstream of the catalyst 1, and a return flow channel 3 which is connected to the downstream of the turbine and guides the exhaust passing through the turbine to a portion adjacent to the catalyst 1.SELECTED DRAWING: Figure 5

Description

本発明は、排気ターボ過給機が付帯した内燃機関に関する。 The present invention relates to an internal combustion engine with an exhaust turbocharger.

内燃機関の気筒から排出される排気ガスの持つエネルギを利用して排気タービン(タービンホイール)を回転させ、その回転をコンプレッサのインペラ(コンプレッサホイール)に伝達し、吸入空気を加圧圧縮(過給)して気筒へと送り込む排気ターボ過給機が公知である。 The energy of the exhaust gas discharged from the cylinders of the internal combustion engine is used to rotate the exhaust turbine (turbine wheel), and the rotation is transmitted to the compressor impeller (compressor wheel) to pressurize and compress the intake air (supercharging). ) to feed the exhaust gas into the cylinder.

また、内燃機関の排気通路と吸気通路とをEGR(Exhaust Gas Recirculation)通路を介して接続し、排気ガスの一部をEGR通路経由で吸気通路に還流させて吸入空気に混交する外部EGR装置も広く採用されている。EGRにより、気筒内での燃焼温度を低下させて有害物質NOxの排出量を削減しつつ、ポンピングロスの低減を図ることができる(以上、下記特許文献を参照)。 There is also an external EGR device that connects an exhaust passage and an intake passage of an internal combustion engine via an EGR (Exhaust Gas Recirculation) passage, recirculates a part of the exhaust gas to the intake passage via the EGR passage, and mixes it with the intake air. Widely adopted. By using EGR, the combustion temperature in the cylinder can be lowered to reduce the emission amount of NOx , which is a harmful substance, and at the same time, it is possible to reduce the pumping loss (see the following patent documents).

特開2013-155686号公報JP 2013-155686 A

吸気に占めるEGRガスの割合であるEGR率を飛躍的に高め(例えば、30%超)、または空燃比を理論空燃比よりも大きく(例えば、空燃比λ≧2)リーン化して、燃料消費量を削減しようとする場合、気筒から排出されるガスの温度が顕著に低温化する。排気ガスの温度が350℃以下となることもある。 The EGR rate, which is the ratio of EGR gas in the intake air, is dramatically increased (eg, over 30%), or the air-fuel ratio is made leaner than the theoretical air-fuel ratio (eg, air-fuel ratio λ≧2) to reduce fuel consumption. is reduced, the temperature of the gas discharged from the cylinder is significantly lowered. The temperature of the exhaust gas may be 350° C. or less.

排気ターボ過給機のタービンに供給される排気ガスが有する熱エネルギの量が少ないと、過給機の効率が低下して吸気を過給する仕事が減少してしまう。その上、タービンを通過する過程で熱エネルギが持ち去られてさらに低温化した排気が三元触媒に流入することで、触媒の温度降下が起こり、排気に含まれる有害物質HC、CO、NOxの酸化/還元反応が阻害される懸念も生じる。 If the amount of heat energy contained in the exhaust gas supplied to the turbine of the exhaust turbocharger is small, the efficiency of the turbocharger will decrease and the work of supercharging the intake air will decrease. In addition, the heat energy is taken away in the process of passing through the turbine, and the temperature of the exhaust gas, which is further cooled, flows into the three-way catalyst, which causes the temperature of the catalyst to drop, and the harmful substances HC, CO, and NOx contained in the exhaust gas are reduced. There is also concern that the oxidation/reduction reaction will be inhibited.

本発明は、排気ターボ過給機が十分に吸気の過給の仕事を行い得るようにし、かつ三元触媒による排気中の有害物質の浄化能率を高く保つことを所期の目的としている。 SUMMARY OF THE INVENTION It is an object of the present invention to enable an exhaust turbocharger to sufficiently perform the work of supercharging intake air, and to maintain a high purification efficiency of harmful substances in exhaust gas by a three-way catalyst.

本発明では、排気ターボ過給機が付帯する内燃機関にあって、気筒から排出される排気が流通する排気通路上に、排気浄化用の触媒と、この触媒の下流に配した過給機のタービンと、タービンの下流に接続しタービンを通過した排気を触媒に近接する箇所に導く復流路とを設けることとした。 In the present invention, in an internal combustion engine with an exhaust turbosupercharger, a catalyst for purifying exhaust gas and a supercharger disposed downstream of the catalyst are provided in an exhaust passage through which exhaust gas discharged from a cylinder flows. A turbine and a return path connected to the downstream of the turbine and guiding the exhaust that has passed through the turbine to a location close to the catalyst are provided.

前記触媒及び前記タービンは、当該内燃機関の側面において、隣接させて配列することが好ましい。 Preferably, the catalyst and the turbine are arranged side by side on the side of the internal combustion engine.

前記復流路は、前記触媒の内を貫くように配設することが好ましい。 It is preferable that the return channel is arranged so as to penetrate through the inside of the catalyst.

本発明によれば、内燃機関に付帯する排気ターボ過給機が十分に吸気の過給の仕事を行い得、また三元触媒による排気中の有害物質の浄化能率を高く保つことができる。 According to the present invention, the exhaust gas turbocharger attached to the internal combustion engine can sufficiently perform the task of supercharging the intake air, and the three-way catalyst can maintain a high purification efficiency of harmful substances in the exhaust gas.

本発明の一実施形態の内燃機関の側面図。1 is a side view of an internal combustion engine according to one embodiment of the present invention; FIG. 同実施形態の内燃機関の排気ターボ過給機及び触媒ケースの外観を示す斜視図。FIG. 2 is a perspective view showing the appearance of the exhaust turbosupercharger and the catalyst case of the internal combustion engine of the same embodiment; 同実施形態の内燃機関の排気ターボ過給機及び触媒ケースの外観を示す正面図。FIG. 2 is a front view showing the appearance of the exhaust turbosupercharger and the catalyst case of the internal combustion engine of the same embodiment; 同実施形態の内燃機関の触媒ケースのA-A線断面図。FIG. 2 is a sectional view taken along the line AA of the catalyst case of the internal combustion engine of the same embodiment; 同実施形態の内燃機関の触媒ケースのB-B線断面図。FIG. 2 is a cross-sectional view taken along line BB of the catalyst case of the internal combustion engine of the same embodiment;

本発明の一実施形態を、図面を参照して説明する。本実施形態の内燃機関0は、複数の気筒(例えば、三気筒)を有する4ストロークレシプロエンジンである。図1は、本実施形態の内燃機関0を側方から見た状態を示している。内燃機関0の各気筒は、図1中の左右方向に沿って並立しており、内燃機関0の出力軸であるクランクシャフトは、図1中の左右方向に沿って伸長している。 One embodiment of the present invention will be described with reference to the drawings. The internal combustion engine 0 of this embodiment is a four-stroke reciprocating engine having a plurality of cylinders (for example, three cylinders). FIG. 1 shows a side view of an internal combustion engine 0 of this embodiment. The cylinders of the internal combustion engine 0 are arranged side by side along the left-right direction in FIG. 1, and the crankshaft, which is the output shaft of the internal combustion engine 0, extends along the left-right direction in FIG.

内燃機関0の各気筒で燃料を燃焼させることにより発生する排気ガスは、シリンダヘッドに開設した排気ポートを介して内燃機関0外に排出される。各気筒に連通する排気ポートは、図1の手前側に開口する。それら排気ポートもまた、図1中の左右方向に沿って並ぶ。 Exhaust gas generated by burning fuel in each cylinder of the internal combustion engine 0 is discharged outside the internal combustion engine 0 through an exhaust port opened in the cylinder head. An exhaust port communicating with each cylinder opens on the front side in FIG. These exhaust ports are also arranged along the left-right direction in FIG.

各排気ポートには、集合管である排気マニホルドを接続しており、各気筒から排出される排気ガスを当該排気マニホルドにおいて合流させる。排気マニホルドの出口は、排気浄化用の三元触媒を包有する触媒ケース11の入口12に接続している。即ち、排気マニホルドを流通した排気ガスが、当該入口12から触媒ケース11内に流入する。補足として、排気マニホルドが図示されていないのは、図1の触媒ケース11の奥側に排気マニホルドが存在し、これが触媒ケース11により隠されているからである。 An exhaust manifold, which is a collecting pipe, is connected to each exhaust port, and the exhaust gas discharged from each cylinder is joined at the exhaust manifold. An outlet of the exhaust manifold is connected to an inlet 12 of a catalyst case 11 containing a three-way catalyst for exhaust purification. That is, the exhaust gas that has flowed through the exhaust manifold flows into the catalyst case 11 through the inlet 12 . As a supplement, the reason why the exhaust manifold is not shown is that the exhaust manifold exists on the far side of the catalyst case 11 in FIG. 1 and is hidden by the catalyst case 11 .

図2ないし図5に示すように、触媒ケース11は、内燃機関0の各気筒及びその吸気ポートが並ぶ方向、換言すればクランクシャフトの伸長方向に対し平行または略平行に延伸した筒状体である。触媒ケース11の入口12は、当該触媒ケース11の一端側、図1、図4及び図5中の右端側に位置する。触媒ケース11の入口12は、触媒ケース11の延伸方向に対し直交または略直交する方向に突出して、排気マニホルドの出口に連接する。 As shown in FIGS. 2 to 5, the catalyst case 11 is a cylindrical body that extends parallel or substantially parallel to the direction in which the cylinders of the internal combustion engine 0 and their intake ports are arranged, in other words, the extension direction of the crankshaft. be. The inlet 12 of the catalyst case 11 is positioned on one end side of the catalyst case 11, i.e., on the right end side in FIGS. An inlet 12 of the catalyst case 11 protrudes in a direction perpendicular or substantially perpendicular to the extending direction of the catalyst case 11 and connects to an outlet of the exhaust manifold.

触媒ケース11内に実装される排気浄化用の三元触媒は、既知のそれと同様、例えば白金、パラジウム、ロジウム等の貴金属を、アルミナ等のコーティングを施すセラミック製の担体13に担持させてなるものである。担体13は、触媒ケース11の延伸方向に対し平行または略平行な方向に沿って拡張する。その内部には、同方向に沿ってこれを貫通する無数の小孔が形成されていて、排気ガスを流通させることができる。 The three-way catalyst for purifying exhaust gas mounted in the catalyst case 11 is made by carrying precious metals such as platinum, palladium, and rhodium on a ceramic carrier 13 coated with alumina or the like, similar to known ones. is. The carrier 13 expands along a direction parallel or substantially parallel to the extending direction of the catalyst case 11 . Inside, there are formed a large number of small holes penetrating along the same direction to allow the exhaust gas to flow.

本実施形態にあって、触媒1の担体13の中心部には、触媒ケース11の延伸方向に対し平行または略平行な方向に沿って当該担体13を貫く大径の軸孔を穿ってある。即ち、担体13が、いわばドーナツまたはバウムクーヘンのような形状をなしている。この軸孔には、後述する復流路3を配設する。 In this embodiment, at the center of the carrier 13 of the catalyst 1 , a large-diameter axial hole is drilled through the carrier 13 along a direction parallel or substantially parallel to the extending direction of the catalyst case 11 . That is, the carrier 13 is shaped like a doughnut or Baumkuchen. A return flow path 3, which will be described later, is provided in this shaft hole.

図4中に矢印で表しているように、排気マニホルドから触媒ケース11に流入した排気ガスは、触媒1の担体13内を流通する。このとき、排気が含有する有害物質HC、CO、NOxの酸化/還元反応が促進され、有害物質が無害物質に変化する、つまりは排気が浄化される。 As indicated by arrows in FIG. 4 , the exhaust gas that has flowed into the catalyst case 11 from the exhaust manifold flows through the carrier 13 of the catalyst 1 . At this time, the oxidation/reduction reaction of the harmful substances HC, CO, and NOx contained in the exhaust gas is accelerated, and the harmful substances change into harmless substances, that is, the exhaust gas is purified.

触媒ケース11の他端側、図1、図4及び図5中の左端側には、排気ターボ過給機2のタービンを連結している。触媒1を通過した排気ガスは、直接的にこのタービンに流入する。 The turbine of the exhaust turbosupercharger 2 is connected to the other end side of the catalyst case 11, which is the left end side in FIGS. After passing through the catalyst 1, the exhaust gas flows directly into this turbine.

排気ターボ過給機2は、排気ガスの持つエネルギを利用してタービンを回転させ、その回転をコンプレッサのインペラに伝達し、コンプレッサにより吸気通路を流れる吸入空気を加圧圧縮、即ち過給して気筒へと送り込む、この分野では周知のものである。 The exhaust turbocharger 2 uses the energy of the exhaust gas to rotate the turbine, transmits the rotation to the impeller of the compressor, and pressurizes and compresses the intake air flowing through the intake passage by the compressor, that is, supercharges it. It is well known in the art to feed into the cylinder.

しかして、図5中に矢印で表しているように、排気ターボ過給機2のタービンを通過した排気ガスは、触媒1の担体13内を貫くように配管した復流路3に流入し、この復流路3に沿って、ちょうど触媒1を流れるときとは逆方向に流れる。復流路3の配管の外周には、触媒1の担体13が当接ないし極近接している。最終的に、排気ガスは、復流路3の出口からマフラに向かい、外部に排出される。 5, the exhaust gas that has passed through the turbine of the exhaust turbosupercharger 2 flows into the return passage 3 piped through the carrier 13 of the catalyst 1, Along this return flow path 3, the catalyst 1 flows in the opposite direction. The carrier 13 of the catalyst 1 is in contact with or very close to the outer circumference of the pipe of the return flow path 3 . Finally, the exhaust gas is directed from the outlet of the return passage 3 to the muffler and discharged to the outside.

本実施形態では、排気ターボ過給機2が付帯する内燃機関0にあって、気筒から排出される排気が流通する排気通路上に、排気浄化用の触媒1と、この触媒1の下流に配した過給機2のタービンと、タービンの下流に接続しタービンを通過した排気を触媒1に近接する箇所に導く復流路3とを設けた。 In this embodiment, in an internal combustion engine 0 with an exhaust turbosupercharger 2, a catalyst 1 for purifying exhaust gas and a A turbine of the supercharger 2 and a return passage 3 connected downstream of the turbine and guiding the exhaust that has passed through the turbine to a location close to the catalyst 1 are provided.

排気浄化用の触媒1を排気マニホルドの下流かつ排気ターボ過給機2の上流に配置すれば、極低温のガスが触媒1に流入することを回避できる。ひいては、触媒1の温度降下を抑制し、触媒1の活性を維持して、排気中の有害物質の浄化能率を高く保つことができる。内燃機関0の冷間始動時等、触媒1の温度が低いときにも、その昇温を早めることができる。 If the catalyst 1 for purifying exhaust gas is arranged downstream of the exhaust manifold and upstream of the exhaust turbocharger 2, it is possible to prevent extremely low temperature gas from flowing into the catalyst 1. As a result, the temperature drop of the catalyst 1 can be suppressed, the activity of the catalyst 1 can be maintained, and the purification efficiency of harmful substances in the exhaust gas can be kept high. Even when the temperature of the catalyst 1 is low, such as when the internal combustion engine 0 is cold-started, the temperature rise can be accelerated.

加えて、触媒1及びタービンを通過した排気を流通させる復流路3を、触媒1に近接ないし隣接する箇所に配管している。タービンから流下した排気ガスといえども、その温度が外気温並の冷温(常温)となることはなく、依然としてある程度以上の高温を有している。これを触媒1の近傍に流すことにより、触媒1の保温を図り、触媒1を通過してタービンに流入する排気ガスが触媒1に奪われる熱量を減少させて、過給機2の効率の低下を抑止し、以て吸気を過給する仕事を増大させることができる。 In addition, a return passage 3 for circulating exhaust gas that has passed through the catalyst 1 and the turbine is piped at a location close to or adjacent to the catalyst 1 . Even the exhaust gas that has flowed down from the turbine does not reach a temperature as cold as the outside air temperature (normal temperature), and still has a certain level of high temperature. By flowing this in the vicinity of the catalyst 1, the catalyst 1 is kept warm, the amount of heat taken by the catalyst 1 from the exhaust gas flowing into the turbine through the catalyst 1 is reduced, and the efficiency of the turbocharger 2 is reduced. can be suppressed, thereby increasing the work of supercharging the intake air.

本実施形態では、内燃機関0の側面において、触媒1及びタービンを隣接させて配列している。触媒ケース11の直上流に排気マニホルドを直結し、触媒ケース11の直下流にタービンを直結することで、タービンに流入する前の排気ガスが有する熱エネルギが逃げる量を低減でき、過給機2による過給の仕事をより増強できる。のみならず、排気通路をコンパクト化でき、不要な部材を排除することにも繋がる。 In this embodiment, the catalyst 1 and the turbine are arranged side by side on the side of the internal combustion engine 0 . By directly connecting the exhaust manifold directly upstream of the catalyst case 11 and directly connecting the turbine directly downstream of the catalyst case 11, the amount of heat energy that the exhaust gas has before flowing into the turbine escapes can be reduced. You can further strengthen the work of supercharging by. In addition, the exhaust passage can be made compact, leading to elimination of unnecessary members.

触媒ケース11及び復流路3はそれぞれ、各気筒の排気ポートの並ぶ方向に対し平行または略平行に延伸している。触媒ケース11及び復流路3は、排気マニホルドや、内燃機関0のシリンダヘッド及び/またはシリンダブロックの上部の側面に近接している。内燃機関0の運転中の排気マニホルド、シリンダヘッド、シリンダブロックは当然ながら高温であり、触媒ケース11をそれらに近づけることで、触媒1がそれらから受熱することになり、触媒1の保温効果がより一層高まる。 The catalyst case 11 and the return path 3 each extend parallel or substantially parallel to the direction in which the exhaust ports of the cylinders are arranged. The catalyst case 11 and the return channel 3 are close to the exhaust manifold and the upper side surface of the cylinder head and/or cylinder block of the internal combustion engine 0 . The temperature of the exhaust manifold, cylinder head, and cylinder block during operation of the internal combustion engine 0 is naturally high. Get even higher.

総じて、吸気のEGR率を高め、または空燃比をリーン化したリーンバーンを実行したとしても、過給機2が十分に吸気の過給の仕事を行い得、触媒1による排気中の有害物質の浄化能率も高く保つことが可能になる。 In general, even if the EGR rate of the intake air is increased or the air-fuel ratio is made leaner to perform lean burn, the supercharger 2 can sufficiently perform the work of supercharging the intake air, and the catalyst 1 can reduce the harmful substances in the exhaust gas. It is possible to keep the purification efficiency high.

なお、本発明は以上に詳述した実施形態に限られるものではない。例えば、上記実施形態では、触媒1の担体13が円筒状をなし、その内を復流路3が貫いていたが、触媒と復流路との内外を逆にしてもよい。即ち、触媒の外周に隣接または近接させて円環状の復流路を設けるようにしてもよい。何れにせよ、復流路を流れる排気ガスが有している残存熱により、触媒を保温することが、本発明の骨子である。 The present invention is not limited to the embodiments detailed above. For example, in the above-described embodiment, the carrier 13 of the catalyst 1 has a cylindrical shape, and the return channel 3 runs through it, but the inside and outside of the catalyst and the return channel may be reversed. That is, an annular return flow path may be provided adjacent to or close to the outer circumference of the catalyst. In any case, the gist of the present invention is to keep the catalyst warm by the residual heat of the exhaust gas flowing in the return passage.

その他、各部の具体的な構成は、本発明の趣旨を逸脱しない範囲で種々変形が可能である。 In addition, the specific configuration of each part can be modified in various ways without departing from the gist of the present invention.

本発明は、車両等に搭載される内燃機関に適用することができる。 INDUSTRIAL APPLICABILITY The present invention can be applied to an internal combustion engine mounted on a vehicle or the like.

0…内燃機関
1…触媒
2…排気ターボ過給機
3…復流路
0... Internal combustion engine 1... Catalyst 2... Exhaust turbocharger 3... Return path

Claims (3)

排気ターボ過給機が付帯する内燃機関であって、
気筒から排出される排気が流通する排気通路上に、排気浄化用の触媒と、この触媒の下流に配した過給機のタービンと、タービンの下流に接続しタービンを通過した排気を触媒に近接する箇所に導く復流路とを設けた内燃機関。
An internal combustion engine accompanied by an exhaust turbocharger,
A catalyst for purifying exhaust gas, a turbine of a supercharger arranged downstream of the catalyst, and a turbine connected downstream of the turbine in an exhaust passage through which exhaust gas discharged from a cylinder flows are placed near the catalyst. An internal combustion engine provided with a return path leading to a point where the
当該内燃機関の側面において、前記触媒及び前記タービンを隣接させて配列している請求項1記載の内燃機関。 2. The internal combustion engine of claim 1, wherein said catalyst and said turbine are arranged adjacently on a side of said internal combustion engine. 前記復流路が前記触媒の内を貫いている請求項1または2記載の内燃機関。 3. The internal combustion engine according to claim 1, wherein said return passage runs through said catalyst.
JP2021166414A 2021-10-08 2021-10-08 internal combustion engine Active JP7374571B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2021166414A JP7374571B2 (en) 2021-10-08 2021-10-08 internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2021166414A JP7374571B2 (en) 2021-10-08 2021-10-08 internal combustion engine

Publications (2)

Publication Number Publication Date
JP2023056916A true JP2023056916A (en) 2023-04-20
JP7374571B2 JP7374571B2 (en) 2023-11-07

Family

ID=86005045

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2021166414A Active JP7374571B2 (en) 2021-10-08 2021-10-08 internal combustion engine

Country Status (1)

Country Link
JP (1) JP7374571B2 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11294148A (en) * 1998-04-10 1999-10-26 Fuji Heavy Ind Ltd Exhaust emission control method
JP2016148280A (en) * 2015-02-12 2016-08-18 スズキ株式会社 Internal combustion engine with turbocharger
JP2018028294A (en) * 2016-08-18 2018-02-22 スズキ株式会社 Exhaust device of engine

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11294148A (en) * 1998-04-10 1999-10-26 Fuji Heavy Ind Ltd Exhaust emission control method
JP2016148280A (en) * 2015-02-12 2016-08-18 スズキ株式会社 Internal combustion engine with turbocharger
JP2018028294A (en) * 2016-08-18 2018-02-22 スズキ株式会社 Exhaust device of engine

Also Published As

Publication number Publication date
JP7374571B2 (en) 2023-11-07

Similar Documents

Publication Publication Date Title
KR101826571B1 (en) Engine system
US8250857B2 (en) Exhaust aftertreatment system
KR101787333B1 (en) Exhaust system and method for selective catalytic reduction
US20120096852A1 (en) Engine with a charging system
US7490466B2 (en) Exhaust gas recirculation and selective catalytic reduction system
US20110232279A1 (en) Internal Combustion Engine Having Compressor With First And Second Tributary Inlets
RU2474701C2 (en) Processing waste gases upstream of turbosupercharger
KR102082534B1 (en) Compact exhaust gas treatment system and method of operating the same
US7591131B2 (en) Low pressure EGR system having full range capability
US11015553B2 (en) Exhaust gas recirculation and control with twin scroll turbines
JP4363395B2 (en) Exhaust gas purification device for internal combustion engine
US20110289914A1 (en) Upstream egr restriction
JP2013160224A (en) Turbo supercharging type large-sized two-stroke diesel engine with exhaust gas emission control function
CN107559073A (en) Emission control for internal combustion engine
JP2015190467A (en) Emission control in rich burn natural gas engines
CN106257005A (en) For the method running gas engine
US20130000297A1 (en) Emissions reduction system
WO2011090025A1 (en) Internal combustion engine for ship
CN110735728B (en) Intake oxygen content control system suitable for engine lean-burn NOx trapping technology
JP2023056916A (en) internal combustion engine
CA3179023A1 (en) Systems and methods for treated exhaust gas recirculation in internal combustion engines
US20100300073A1 (en) PASSIVE NOx AND PM AFTERTREATMENT FOR DIESEL ENGINE
US9695779B2 (en) Exhaust gas mixing system
EP2746563B1 (en) An exhaust gas recirculation mixer
US20170248062A1 (en) Power System with First and Second Exhaust Manifolds

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20230209

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20230830

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230905

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20231010

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20231024

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20231024

R150 Certificate of patent or registration of utility model

Ref document number: 7374571

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150