JP2023048942A - Grinding device - Google Patents

Grinding device Download PDF

Info

Publication number
JP2023048942A
JP2023048942A JP2021158546A JP2021158546A JP2023048942A JP 2023048942 A JP2023048942 A JP 2023048942A JP 2021158546 A JP2021158546 A JP 2021158546A JP 2021158546 A JP2021158546 A JP 2021158546A JP 2023048942 A JP2023048942 A JP 2023048942A
Authority
JP
Japan
Prior art keywords
grinding
axis
override
automatic cutting
rotating device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2021158546A
Other languages
Japanese (ja)
Inventor
岳見 浅井
Takemi Asai
良明 永峯
Yoshiaki Nagamine
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Seiki Kogyo Co Ltd
Original Assignee
Mitsui Seiki Kogyo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Seiki Kogyo Co Ltd filed Critical Mitsui Seiki Kogyo Co Ltd
Priority to JP2021158546A priority Critical patent/JP2023048942A/en
Publication of JP2023048942A publication Critical patent/JP2023048942A/en
Pending legal-status Critical Current

Links

Images

Abstract

To provide a technique for realizing a function for mitigating excessive cutting when changing override commands, in a grinding device and a control method thereof.SOLUTION: When operating an override switch, a function is prepared for automatically conducting an operation in which a grindstone rotary device is fed once in a radial direction at a linear axis in a direction of distancing from a grinding object in applying override so as to gradually return to original coordinates, thus the switch shall not be applied as it is to a control device. In addition, a mechanism is comprised for automatically determining whether an exterior side is ground or an interior side is ground in order to move the grindstone rotary device, by combining operation of a previous automatic cutting device and a type of command in a rotational direction of circular interpolation.SELECTED DRAWING: Figure 8

Description

本発明は、研削装置(及びその制御方法)に関し、特に、ジグ研削盤などの砥石をつけた砥石回転装置を切込装置と称す直線軸で半径方向に送ったり固定したりでき、さらにそれらの装置ごと別の回転装置で回すことで円の内面ないし外面の研削を行うことができる研削装置で、さらにこの別の回転装置ごとX-Y-Z三軸の座標空間を送り装置で同時制御するとこができる研削装置(及びその制御方法)に関する。 The present invention relates to a grinding apparatus (and its control method), and more particularly to a grinding wheel rotating apparatus with a grinding wheel, such as a jig grinder, which can be radially advanced and fixed on a linear axis called an incision apparatus, and which can be A grinding device that can grind the inner or outer surface of a circle by rotating it with a separate rotating device.In addition, the coordinate space of the X-Y-Z three axes can be controlled simultaneously by a feeding device for each rotating device. Apparatus (and its control method).

ジグ研削盤による加工対象物(以下、「ワーク」と称する)の研削は、例えばいわゆるシングルコラム方式の機械においては、テーブル上に載置されたワークを滑台により前後(Y軸方向)、左右(X軸方向)に移動させつつ、砥石とそれを回転させるための高周波モータが下端に取り付けられた、いわゆるクイルを上下動(Z軸方向)させることにより実現される。なお、いわゆるダブルコラム方式(門形機)のジグ研削盤の場合は、ワークはX軸方向のみに移動させ、Y軸方向については、砥石側(主軸本体)を移動させる。X軸やY軸やZ軸などという軸方向の命名は機械の製作者によって入れ替え可能であることは言うまでもない。 Grinding of an object to be processed (hereinafter referred to as a "workpiece") by a jig grinder is performed by, for example, a so-called single-column type machine. This is realized by vertically moving (in the Z-axis direction) a so-called quill having a grindstone and a high-frequency motor for rotating it attached to the lower end thereof while moving (in the X-axis direction). In the case of a so-called double-column type jig grinder (gantry machine), the workpiece is moved only in the X-axis direction, and the grindstone side (spindle main body) is moved in the Y-axis direction. It goes without saying that the naming of the axes, such as the X-axis, the Y-axis, and the Z-axis, can be interchanged by the manufacturer of the machine.

また、更に詳細には、大別して次の二通りの研削がある。一つは、主軸に対して砥石の回転軸(砥石軸)を偏心させる(切り込ませる)ことにより、砥石を砥石軸について回転させつつ主軸の連続回転により砥石を旋回させ、すなわち砥石を遊星回転させ、また同時に、クイルを上下動させることにより、砥石を螺旋状に旋回させ、内壁の均等研削による真円の穴ぐり加工を行う研削である。この場合、基本的に、砥石外径の大きさと砥石軸の偏心の程度(切り込み量(例えば最大50mm)に応じて、穴の径が決定されることとなる。他の一つは、曲率が一定でない非真円の穴ぐり加工や曲率が一定でない端部の加工を行う研削である。この場合は、いわゆるチョッピング加工を行う。詳細には、砥石軸は偏心させないか、又は主軸回転中心と砥石の外周とが一致するように砥石の半径相当分だけ砥石を上述の切り込みとは逆方向(マイナス方向)偏心させておき、まず、ワークの加工位置(研削点)までの移動は、X,Y軸送りにより行う。その後、正味切り込み加工分だけ自動で砥石を偏心させ、すなわち自動切り込みを行いつつチョッピング加工を行う。このとき、曲率が一定でないワークの加工面に砥石により切り込む際に、ワークが当接する加工点における法線が、砥石の切り込み方向と常に一致するように、主軸の角度制御(割り出し)を行う。特許文献1は、かかるジグ研削盤の主要構成を開示している。但し、特許文献1は砥石を上下させる構成は省略している。ここでは、直線の往復運動をチョッピングと呼んでいるのであって一般的なチョッピング加工で使われる往復速度の遅い・速いについて制限を設けた定義はしない。 In more detail, there are roughly two types of grinding as follows. One is to eccentrically (cut into) the rotation axis of the grindstone (grindstone shaft) with respect to the main spindle so that the grindstone rotates about the grindstone axis and the grindstone is turned by the continuous rotation of the main spindle, that is, the grindstone rotates in a planetary fashion. At the same time, by moving the quill up and down, the grindstone is helically turned, and the inner wall is evenly ground to achieve perfect circle boring. In this case, the diameter of the hole is basically determined according to the size of the outer diameter of the grindstone and the degree of eccentricity of the grindstone shaft (the depth of cut (for example, maximum 50 mm)). It is a grinding process that performs uneven non-perfect circle drilling and processing of edges with uneven curvature.In this case, so-called chopping processing is performed.Specifically, the grinding wheel shaft is not eccentric, or the center of rotation of the main shaft The grindstone is eccentric in the opposite direction (negative direction) to the above-described cut by an amount corresponding to the radius of the grindstone so that the outer circumference of the grindstone coincides with the outer circumference of the grindstone. Perform by Y-axis feeding.After that, the grindstone is automatically eccentric by the amount of net cutting processing, that is, chopping is performed while performing automatic cutting.At this time, when cutting into the processing surface of the workpiece with an uneven curvature with the grindstone, the workpiece The angle control (indexing) of the spindle is performed so that the normal line at the processing point where the contact is always aligned with the cutting direction of the grindstone.Patent Document 1 discloses the main configuration of such a jig grinder.However, , Patent Document 1 omits the configuration for moving the grinding wheel up and down.Here, the rectilinear reciprocating motion is called chopping, and restrictions are set on the reciprocating speed used in general chopping processing. do not define

特開2006-102891号公報JP 2006-102891 A

上述したジグ研削盤では、CNCの機能の選択や制御ソフトの作り方によって、例えば、オーバライドスイッチを動作させた直後やオシレーション範囲・速度・中心位置の設定変更させた直後はその後よりも先の面に近づくことがある。そこで,チョッピングおよびオシレーション研削中におけるオーバライドスイッチを含むオシレーション範囲・速度・中心位置の設定変更の際に一瞬だけ砥石の往復範囲の端と研削面の先の面を引き離す指令を重畳させ、しかる後にオーバライドスイッチや前述の設定変更を適用し、往復回数とともに徐々に通常の位置に戻すことにより、往復の範囲の向こう側にある面に砥石が衝突することを防止するソフトウェアまたは機械装置の開発が望まれており、本発明者らは、かかる要望に答える研削装置やその制御方法を特願2018-160030及び特願2019-107534として出願している。 In the jig grinder described above, depending on the selection of CNC functions and the creation of control software, for example, immediately after operating the override switch or immediately after changing the settings of the oscillation range, speed, and center position, the surface may come close to Therefore, when changing the setting of the oscillation range, speed, and center position including the override switch during chopping and oscillation grinding, a command to separate the edge of the reciprocating range of the grinding wheel and the front surface of the grinding surface is superimposed for a moment. Development of software or mechanical devices that later apply an override switch or the aforementioned setting changes to gradually return to normal position with number of strokes, thereby preventing the grinding wheel from striking the surface beyond the range of strokes. Therefore, the present inventors have filed Japanese Patent Application No. 2018-160030 and Japanese Patent Application No. 2019-107534 for a grinding apparatus and a control method thereof that meet such a demand.

上述した送り装置は、例えば2軸例えば(X-Y)平面内で円弧補間を行いながら別の回転装置を使って、切込装置を法線方向、外側または内側、に向けるように加工することで、切込装置の送りの範囲を超える大きさの加工も可能である。また、円弧補間の速度はオーバライドスイッチにより作業者が自由にする倍率を変えられるとするものが多い。
しかしながら、円弧補間の速度を変更してしまうとサーボ系の次数およびフィードフォワード制御の有無に応じた偏差を生じるとともに、遠心力などにより切込過ぎを生じる可能性がある。また、オーバライドスイッチの操作直後に、特に急激な変化時に切込過ぎを感じる可能性がある。
ここで、例えば、サーボだけでも典型的な工作機械用のサーボ制御系での半径の減少ΔRは、速度ループ・電流ループの応答が十分に高速で補間後直線型加減速を使用する場合なら、以下の数式(2)のように近似される。

Figure 2023048942000002
The above-described feeding device is processed so as to face the cutting device in the normal direction, outward or inward, using another rotating device while performing circular interpolation in the (XY) plane, for example, two axes, Processing of sizes exceeding the range of feed of the cutting device is also possible. In addition, there are many cases in which the speed of circular interpolation can be freely changed by the operator by means of an override switch.
However, if the speed of circular interpolation is changed, a deviation may occur depending on the order of the servo system and the presence or absence of feedforward control, and overcutting may occur due to centrifugal force or the like. Also, immediately after the override switch is operated, there is a possibility that the operator may feel that the steering wheel is being cut too much, especially during sudden changes.
Here, for example, the radius decrease ΔR in a servo control system for a typical machine tool, even if only the servo is used, is given by It is approximated as shown in Equation (2) below.
Figure 2023048942000002

本発明の目的は、研削装置及びその制御方法において、オーバライド指令変更時の切込過ぎ緩和機能を実現する技術を提供することにある。 SUMMARY OF THE INVENTION It is an object of the present invention to provide a technique for realizing a function of reducing excessive cutting when an override command is changed in a grinding apparatus and a control method thereof.

本発明者は、オーバライド指令変更時の切込過ぎ緩和機能を実現する研削装置及びその制御方法の構成について、鋭意研究した結果、オーバライドスイッチの操作時にそれをそのまま制御装置に適用するのではなく、一旦 砥石回転装置を切込装置で研削対象から遠い方向に送りオーバライドを適用させることを想到した。または、オーバライドスイッチの操作時にそれをそのまま制御装置に適用するのではなく一旦 砥石回転装置を直線軸で半径方向に研削対象から遠い方向に送りオーバライドを適用させ徐々に元の座標に戻すという操作を自動で行う機能を用意することを想到した。 As a result of intensive research on the configuration of the grinding apparatus and its control method that realizes the overcutting mitigation function when the override command is changed, the present inventor found that instead of applying it to the control device as it is when the override switch is operated, Once I came up with the idea of applying a feed override to the grinding wheel rotating device in the direction far from the grinding object with the cutting device. Alternatively, when the override switch is operated, instead of applying it to the control device as it is, feed the grinding wheel rotating device once in a direction away from the grinding object in the radial direction on the linear axis, apply the override, and gradually return to the original coordinates. I came up with the idea of providing an automatic function.

さらに、外側を研削している時と内側を研削している時では逃がす方向を変えることができるようにすれば好適であることも見出した。 Furthermore, it was found that it would be preferable if the direction of release can be changed when grinding the outer side and when grinding the inner side.

さらに、前述の装置を動かすために外側を研削しているか内側を研削しているかの判断を直前の自動切込装置の動作と円弧補間の回転方向の指令の種類を組み合わせて自動で判断する仕組みを備えるようにしても良い。 Furthermore, in order to operate the above-mentioned device, it is possible to automatically judge whether the outer side is being ground or the inner side is being ground by combining the operation of the previous automatic cutting device and the type of command for the rotation direction of circular interpolation. may be provided.

尚、逃がしでは自動切込装置の動作履歴をさかのぼる方向へ向かって送るのが好適である。 Incidentally, in the escape, it is preferable to send the operation history of the automatic cutting device in a retroactive direction.

本発明によれば、研削装置及びその制御方法において、オーバライド指令変更時の切込過ぎ緩和機能を実現することができる。 According to the present invention, in a grinding apparatus and a control method thereof, it is possible to realize a function of reducing excessive cutting when an override command is changed.

本発明が適用される研削装置の一例としてのジグ研削盤を示す斜視図である。1 is a perspective view showing a jig grinder as an example of a grinding apparatus to which the present invention is applied; FIG. 図1に示した研削装置(ジグ研削盤)を各軸の移動又は旋回方向と共に説明するための図である。It is a figure for demonstrating the grinding device (jig grinder) shown in FIG. 1 with the movement or rotation direction of each axis|shaft. 図1に示した研削装置(ジグ研削盤)におけるU軸送り装置と砥石軸周辺の拡大図である。2 is an enlarged view of a U-axis feeder and a grindstone shaft in the grinding device (jig grinder) shown in FIG. 1; FIG. 図1に示した研削装置(ジグ研削盤)における回転する砥石によるワークの加工と、U軸、Z軸それぞれの軸移動の関係を示す図である。2 is a diagram showing the relationship between machining of a workpiece by a rotating grindstone in the grinding apparatus (jig grinder) shown in FIG. 1 and axial movement of each of the U-axis and Z-axis; FIG. 図1に示した研削装置(ジグ研削盤)の制御系の概略を示すブロック図である。2 is a block diagram showing an outline of a control system of the grinding device (jig grinding machine) shown in FIG. 1; FIG. 本発明の第1の実施形態の研削装置及びその制御方法において、オーバライド指令、実回転速度、自動切込位置の関係を示すグラフである。4 is a graph showing the relationship between an override command, an actual rotational speed, and an automatic cutting position in the grinding apparatus and its control method of the first embodiment of the present invention; 本発明の第1の実施形態の研削装置における加工プロセス開始から終了までの制御処理のフローチャートである。4 is a flow chart of control processing from the start to the end of a machining process in the grinding apparatus of the first embodiment of the present invention; 図1に示した研削装置(ジグ研削盤)の円弧補間の制御系の概略を示す機能ブロック図である。2 is a functional block diagram showing an outline of a control system for circular interpolation of the grinding device (jig grinding machine) shown in FIG. 1; FIG. 一般的な円弧補間の制御系の概略を示す機能ブロック図である。1 is a functional block diagram showing an outline of a control system for general circular interpolation; FIG.

まず、本発明の理解を容易にするために、本発明が適用される研削装置について図面を参照して説明する。図1は、本発明が適用される研削装置の一例を示す斜視図、図2は、その研削装置を各軸の移動又は旋回方向と共に説明するための図であり、ヘッドに対してU軸送り装置をZ軸直線移動とZ軸周り旋回(C軸と呼称)に旋回させられる。U軸送り装置は砥石軸をU軸方向に直線移動できる。各軸は複数の平行軸を組み合わせたものでも良い。図3は、その研削装置(ジグ研削盤)におけるU軸送り装置と砥石軸周辺の拡大図、図4は、その研削装置(ジグ研削盤)における回転する砥石によるワークの加工と、U軸、Z軸それぞれの軸移動の関係を示す図である。本発明が適用される研削装置(ジグ研削盤)10は、図1に示すように、ベッド12上にテーブル送り装置36およびテーブル30がレール16を介してY軸方向(前後方向)へ移動可能に支持されている。コラム14はベッド12に固定されているが、送り装置36との間にはレール16に沿った方向に相対運動を与えることができる。ベッド12の後部には図示しない送り装置36移動用モータが配設され、このモータにより図示しないボールネジ等を介してテーブル送り装置36がレール16に沿って前後移動されるようになっている。コラム14にはヘッド18がW軸方向に移動可能(昇降可能)に支持され、そのヘッド18の先端には砥石軸20が設けられており、砥石軸20の先端には、砥石100(図3参照)が取付けられる。コラム14の上部には図示しないヘッド昇降用モータが配設され、このモータにより図示しないボールネジ等を介してヘッド18が昇降されるようになっている。ヘッド18の内部や後部には砥石軸回転用モータ(図5の302のうちCモータ)が配設され、このモータにより砥石軸20が回転されるようになっている。ヘッド昇降用モータには、図示しない計測手段を構成するエンコーダが付設される。このほかの砥石軸を除く直線軸および回転軸には図示しない場合にもエンコーダおよびモータを備え送り量ないし回転量が算出・制御できるようになっている。このエンコーダから出力されるデータによりヘッド18の昇降量、及び後述するワーク(図4参照)に対する切り込み量が算出される。W軸方向に平行にZ軸が設けられており、W軸のヘッドの動き、C軸回転およびU軸直線運動を妨げることなくZ軸運動を与えることができる。 First, in order to facilitate understanding of the present invention, a grinding apparatus to which the present invention is applied will be described with reference to the drawings. FIG. 1 is a perspective view showing an example of a grinding apparatus to which the present invention is applied, and FIG. 2 is a diagram for explaining the grinding apparatus together with the movement or turning direction of each axis. The device can be pivoted in the Z-axis translation and pivoting around the Z-axis (referred to as the C-axis). The U-axis feeder can linearly move the grindstone shaft in the U-axis direction. Each axis may be a combination of multiple parallel axes. FIG. 3 is an enlarged view of the U-axis feeding device and the grinding wheel shaft in the grinding device (jig grinder), and FIG. It is a figure which shows the relationship of the axial movement of each Z-axis. As shown in FIG. 1, in a grinding apparatus (jig grinding machine) 10 to which the present invention is applied, a table feeding device 36 and a table 30 are movable on a bed 12 in the Y-axis direction (back and forth direction) via rails 16. supported by The column 14 is fixed to the bed 12 but is capable of relative motion along the rails 16 with the feeder 36 . A motor (not shown) for moving the feeder 36 is provided at the rear of the bed 12, and this motor moves the table feeder 36 back and forth along the rail 16 via a ball screw (not shown) or the like. A head 18 is supported on the column 14 so as to be movable (up and down) in the W-axis direction. ) are installed. A head lifting motor (not shown) is provided above the column 14, and the head 18 is lifted/lowered by this motor via a ball screw or the like (not shown). A grindstone shaft rotating motor (motor C of 302 in FIG. 5) is disposed inside or behind the head 18, and the grindstone shaft 20 is rotated by this motor. An encoder constituting measuring means (not shown) is attached to the head lifting motor. Other linear axes and rotary axes, excluding the grindstone axis, are provided with encoders and motors, even if they are not shown, so that the amount of feed or the amount of rotation can be calculated and controlled. The amount of elevation of the head 18 and the amount of cutting into a work (see FIG. 4), which will be described later, are calculated based on the data output from the encoder. A Z-axis is provided parallel to the W-axis direction, and Z-axis motion can be provided without interfering with W-axis head motion, C-axis rotation, and U-axis linear motion.

先に述べた通り、ベッド12上にはレール16を介してY軸送り装置36が載っている。このY軸送り装置36はレール16の方向に沿ってY軸方向に前後直線運動できるように構成されている。このY軸送り装置36の上に更に図示しないレールを介してテーブル30が支持されている。このテーブル30はY軸送り装置36に対して左右方向(X軸方向)に直線運動できるように構成されている。その上面には図示しないワークが着脱可能に設置固定されるようになっている。当然ながらベッド12にはY軸送り装置36を移動する用のモータが配設され、このモータにより図示しないボールネジ等を介してY軸送り装置36がレール16に沿って移動されるようになっている。テーブル30についても同様に図示しないモータおよびボールネジ等を介してY軸送り装置36上を動くようになっている。そして、上記砥石軸回転用モータにより砥石軸20が回転された状態で、上記ヘッド昇降用モータによりヘッド18(砥石軸20)が下降されて、砥石軸20の先端に取り付けられた砥石100がテーブル30上のワークの面に接触させられる。テーブル30は上述の2つのモータでX-Y方向に自由に可動させられる。これにより、ワークの表面が砥石100にて研削されるようになっている。尚、研削装置10は、各種の操作用スイッチ類またはそれに類する入力機器を備え、動作中にその状態を操作者の操作で変更できるように構成され、また砥石100とワークとの接触検知手段としての図示しないAE(アコースティックエミッション)センサをワーク側に備えている。そして、AEセンサによりワークと砥石100との接触を検知したら、操作者にそれを表示するか、スキップ信号により砥石100の送りを止めることができるように構成されている。 As previously mentioned, the Y-axis feeder 36 rests on the bed 12 via the rails 16 . The Y-axis feeder 36 is configured so as to be able to linearly move back and forth in the Y-axis direction along the direction of the rail 16 . The table 30 is supported on the Y-axis feeder 36 via rails (not shown). The table 30 is configured to be linearly movable in the horizontal direction (X-axis direction) with respect to the Y-axis feeder 36 . A workpiece (not shown) is detachably installed and fixed on the upper surface thereof. Of course, the bed 12 is provided with a motor for moving the Y-axis feeder 36, and this motor moves the Y-axis feeder 36 along the rail 16 via a ball screw or the like (not shown). there is Similarly, the table 30 is moved on the Y-axis feeder 36 via a motor and ball screws (not shown). Then, while the grindstone shaft 20 is being rotated by the grindstone shaft rotation motor, the head 18 (grindstone shaft 20) is lowered by the head elevation motor, and the grindstone 100 attached to the tip of the grindstone shaft 20 is placed on the table. 30 is brought into contact with the surface of the workpiece. The table 30 is freely movable in the XY directions by the two motors mentioned above. Thereby, the surface of the work is ground by the grindstone 100 . The grinding apparatus 10 is equipped with various operation switches or similar input devices, and is configured so that its state can be changed by the operator's operation during operation. AE (acoustic emission) sensor (not shown) is provided on the work side. When the AE sensor detects the contact between the workpiece and the grindstone 100, it is configured to be displayed to the operator or to stop the feed of the grindstone 100 by a skip signal.

図1に示す工作機械(研削装置)10は、以上に述べたように、少なくともX-Y-Zの三軸の同時制御ができるCNC制御の工作機械(研削装置)であり、更に、砥石軸20という回転軸と軸方向が平行な駆動軸(回転軸[C軸]又は直線駆動軸)を有している。即ち、工作機械(研削装置)10は、ヘッド18の下部にU軸送り装置40を有しており、このU軸送り装置40は、砥石軸20と、その上部の円盤体27を含む直線送り機構であり、砥石軸20とその上部の円盤体27を、その時のC軸の角度位置に応じて所定のストロークの範囲内で直線移動させる装置であり、この直線移動方向をU軸(方向)と定義している。即ち、図1に示す工作機械(研削装置)10では、ヘッド18は、Z軸方向に直線移動(上下移動)できる。Z軸との区別のため、W軸送り装置と呼称する。また、ヘッド18に対して、U軸送り装置40をZ軸直線移動とZ軸周り旋回(C軸と呼称する)に旋回させることができる。U軸送り装置40は、砥石軸20をU軸方向に直線移動させることができる。図2及び図3を参照して、工作機械(研削装置)10の駆動軸制御を更に具体的に述べれば、工作機械(研削装置)10では、U軸の直線送り機構はC軸の回転側に載っている。砥石軸(U軸)の送り指令によって、U軸送り装置40をU軸の方向に沿って直線移動させることができる。C軸の回転指令によって砥石軸20の中心ごと回転する。更に、このC軸装置は、Z軸装置で鉛直方向に直線移動させることができる。 The machine tool (grinding machine) 10 shown in FIG. It has a drive shaft (rotational axis [C-axis] or linear drive shaft) that is axially parallel to the rotational axis 20 . That is, the machine tool (grinding device) 10 has a U-axis feeder 40 below the head 18, and this U-axis feeder 40 linearly feeds the grindstone shaft 20 and the disk body 27 above it. It is a device that linearly moves the grinding wheel shaft 20 and the disk body 27 above it within a predetermined stroke range according to the angular position of the C-axis at that time, and the direction of this linear movement is the U-axis (direction). defined as That is, in the machine tool (grinding machine) 10 shown in FIG. 1, the head 18 can move linearly (up and down) in the Z-axis direction. It is called a W-axis feeder to distinguish it from the Z-axis. In addition, the U-axis feeder 40 can be swiveled relative to the head 18 in Z-axis linear movement and swivel around the Z-axis (referred to as C-axis). The U-axis feed device 40 can linearly move the grindstone shaft 20 in the U-axis direction. Referring to FIGS. 2 and 3, more specifically describing the drive shaft control of the machine tool (grinding machine) 10, in the machine tool (grinding machine) 10, the U-axis linear feed mechanism It's on. The U-axis feed device 40 can be linearly moved along the direction of the U-axis by a feed command for the grindstone shaft (U-axis). The center of the grindstone shaft 20 rotates according to a rotation command for the C-axis. In addition, this C-axis device can be translated vertically with a Z-axis device.

図5は、図1に示したジグ研削盤の制御系の概略を示すブロック図である。本発明に係るジグ研削盤は、制御系として、制御装置300と、入出力装置310と、各軸モータ320及びそれぞれのモータドライバ330、砥石回転モータ102Aと砥石モータインバータ102invを有している。制御装置300は、コンピュータ数値制御部(CNC)302と、プログラマブルコントローラ304と、I/O(入出力)モジュール306を有している。本発明に係るジグ研削盤の制御系には、入出力装置310として、キーボード、各種スイッチ、温度センサ等と、スキップ信号に関わるツールセッタ、AEセンサ等も有している。 FIG. 5 is a block diagram showing an outline of the control system of the jig grinder shown in FIG. The jig grinder according to the present invention has, as a control system, a control device 300, an input/output device 310, each axis motor 320 and each motor driver 330, a grindstone rotation motor 102A and a grindstone motor inverter 102inv. Controller 300 includes a computer numerical control (CNC) 302 , a programmable controller 304 and an I/O (input/output) module 306 . The control system of the jig grinder according to the present invention also has a keyboard, various switches, a temperature sensor, etc. as an input/output device 310, a tool setter related to a skip signal, an AE sensor, and the like.

ここで、改めて従来例の問題点を説明しておく。図1乃至図5に示した研削装置(ジグ研削盤)10において、上述した送り装置は、例えば2軸、例えば(X-Y)平面内で円弧補間を行いながら別の回転装置(C軸回転装置)を使って、自動切込装置104(U軸送り装置40に相当する、以下同様)を法線方向、外側または内側、に向けるように加工することで、自動切込装置104の送りの範囲を超える大きさの加工も可能である。また、円弧補間の速度はオーバライドスイッチにより作業者が自由にする倍率を変えられるとするものが多い。しかしながら、円弧補間の速度を変更してしまうとサーボ系の次数およびフィードフォワード制御の有無に応じた偏差を生じるとともに、遠心力などにより切込過ぎを生じる可能性がある。また、オーバライドスイッチの操作直後に、特に急激な変化時に切込過ぎを感じる可能性がある。 Here, the problems of the conventional example will be explained again. In the grinding apparatus (jig grinder) 10 shown in FIGS. 1 to 5, the above-described feeding device is, for example, two-axis, for example, another rotating device (C-axis rotating device) while performing circular interpolation in the (X-Y) plane. is used to orient the automatic cutting device 104 (corresponding to the U-axis feeding device 40, hereinafter the same) in the normal direction, outward or inward, so that the range of feeding of the automatic cutting device 104 can be changed. It is also possible to process larger sizes. In addition, there are many cases in which the speed of circular interpolation can be freely changed by the operator by means of an override switch. However, if the speed of circular interpolation is changed, a deviation may occur depending on the order of the servo system and the presence or absence of feedforward control, and overcutting may occur due to centrifugal force or the like. Also, immediately after the override switch is operated, there is a possibility that the operator may feel that the steering wheel is being cut too sharply, especially during abrupt changes.

そこで、本発明の実施形態の研削装置及びその制御方法においては、オーバライドスイッチの操作時にそれをそのまま制御装置300(図5参照)に適用するのではなく、一旦 砥石回転装置102を自動切込装置104で研削対象から遠い方向に送りオーバライドを適用させることとした。または、オーバライドスイッチの操作時にそれをそのまま制御装置300(図5参照)に適用するのではなく一旦 砥石回転装置102を直線軸(U軸)で半径方向に研削対象から遠い方向に送りオーバライドを適用させ徐々に元の座標に戻すという操作を自動で行う機能を用意することとした。さらに、外側を研削している時と内側を研削している時では逃がす方向を変えることができるようにすれば好適である。さらに、前述の装置を動かすために外側を研削しているか内側を研削しているかの判断を直前の自動切込装置104の動作と円弧補間の回転方向の指令の種類を込み合わせて自動で判断する仕組みを備えるようにしても良い。尚、逃がしでは自動切込装置104の動作履歴をさかのぼる方向へ向かって送るのが好適である。 Therefore, in the grinding apparatus and its control method of the embodiment of the present invention, when the override switch is operated, it is not directly applied to the control device 300 (see FIG. 5), but the grindstone rotating device 102 is temporarily changed to the automatic cutting device. At 104, a feed override is applied in a direction away from the object to be ground. Alternatively, when the override switch is operated, instead of applying it to the control device 300 (see FIG. 5) as it is, the grindstone rotating device 102 is once fed in the direction away from the grinding object in the linear axis (U-axis) in the radial direction and the override is applied. We decided to prepare a function to automatically perform the operation of gradually returning to the original coordinates. Furthermore, it is preferable to be able to change the escaping direction when grinding the outer side and when grinding the inner side. Furthermore, in order to operate the above-mentioned device, it is automatically determined whether the outer side is being ground or the inner side is being ground by combining the operation of the automatic cutting device 104 immediately before and the type of command for the rotation direction of circular interpolation. You may make it provide the mechanism which carries out. It is preferable to send the operation history of the automatic cutting device 104 in the retroactive direction.

即ち、本発明の実施形態の研削装置10は、砥石100をつけた砥石回転装置102を直線軸(U軸)で半径方向に送ったり固定したりできる自動切込装置104を有し、更に、砥石回転装置102や自動切込装置104を含む装置ごと回転装置(C軸回転装置)106で回すことができる研削装置で、2軸以上の同期制御を用いた円弧補間により研削対象の円(厚みを考慮すれば円筒形)の内面ないし外面の研削を行うことができる研削装置であって、この研削加工中に回転装置(C軸回転装置)106を用いて自動切込装置104が砥石回転装置102を直線に送る方向を円弧の法線方向にそろえることができるように構成された研削装置で、円弧補間の送り速度をオーバライドスイッチで操作者が自由に変更できるように構成された研削装置において、このオーバライドスイッチの操作時にオーバーライド指令を直ちに制御装置300に適用するのではなく、一旦 自動切込装置104で砥石回転装置102を自動切込装置104で研削対象から遠い方向に送り、その後、オーバライドを適用させることを特徴とする。 That is, the grinding machine 10 of the embodiment of the present invention has an automatic cutting device 104 capable of radially feeding and fixing a grindstone rotating device 102 with a grindstone 100 attached thereto on a linear axis (U-axis). A grinding machine that can be rotated by a rotating device (C-axis rotating device) 106 together with the grinding wheel rotating device 102 and the automatic cutting device 104. The circle (thickness A grinding device that can grind the inner or outer surface of a cylindrical shape) during this grinding process. 102 can be aligned with the normal direction of the circular arc, and the operator can freely change the feeding speed of the circular interpolation with an override switch. Instead of immediately applying the override command to the control device 300 when the override switch is operated, the automatic cutting device 104 once feeds the grinding wheel rotating device 102 away from the object to be ground by the automatic cutting device 104, and then overrides. is characterized by applying

また、砥石100をつけた砥石回転装置102を直線軸(U軸)で半径方向に送ったり固定したりできる自動切込装置104を有し、さらに砥石回転装置102や自動切込装置104を含む装置ごと回転装置(C軸回転装置)106で回すことができる研削装置で、2軸以上の同期制御を用いた円弧補間により円の内面ないし外面の研削を行うことができる研削装置で、この研削加工中に回転装置(C軸回転装置)106を用いて自動切込装置104が砥石回転装置102を直線に送る方向を円弧の法線方向にそろえることができるように構成された研削装置で、円弧補間の送り速度をオーバライドスイッチで操作者が自由に変更できるように構成された研削装置において、このオーバライドスイッチの操作時に、オーバーライド指令を直ちに制御装置300に適用するのではなく、一旦 自動切込装置104で砥石回転装置102を直線軸で半径方向に研削対象から遠い方向に送りオーバライドを適用させ、時間の経過とともに徐々に元の座標(CNC制御の目標座標)に戻すという操作を自動で行う機能を用意していることを特徴とする。 It also has an automatic cutting device 104 that can radially feed and fix a grinding wheel rotating device 102 with a grinding wheel 100 attached thereto on a linear axis (U-axis). It is a grinding device that can be rotated by a rotating device (C-axis rotating device) 106 together with the device, and can grind the inner surface or outer surface of a circle by circular interpolation using synchronous control of two or more axes. The grinding machine is configured so that the direction in which the automatic infeed device 104 feeds the grindstone rotating device 102 linearly using the rotating device (C-axis rotating device) 106 during processing can be aligned with the normal direction of the arc, In a grinding apparatus configured so that an operator can freely change the feed speed of circular interpolation with an override switch, when the override switch is operated, instead of immediately applying the override command to the control device 300, automatic cutting is performed once. By means of the device 104, the grindstone rotating device 102 is moved radially along the linear axis in the direction away from the object to be ground, and the feed override is applied, and the operation of gradually returning to the original coordinates (target coordinates of CNC control) over time is automatically performed. It is characterized by the provision of functions.

上記研削装置10において、更に、研削対象の外側(外周面加工時等)を研削している時と内側(内周面加工時等)を研削している時では、上記の逃がす方向を変えるようにしても良い。また、上記研削装置10において、さらに、外側を研削しているか内側を研削しているかの判断を直前の自動切込装置104の動作と円弧補間の回転方向の指令の種類を込み合わせて自動で判断する仕組みを備えるようにしても良い。 さらに、上記研削装置10において、逃がしでは自動切込装置104の動作履歴をさかのぼる方向へ向かって送るようにしても良い。 In the grinding apparatus 10, when the outer side of the object to be ground (during processing of the outer peripheral surface, etc.) and the inner side (during processing of the inner peripheral surface, etc.) of the object to be ground are ground, the releasing direction is changed. You can do it. In addition, in the grinding device 10, whether the outer side is ground or the inner side is ground is determined automatically by combining the operation of the automatic cutting device 104 immediately before and the type of command for the rotation direction of circular interpolation. You may make it provide the mechanism which judges. Furthermore, in the grinding apparatus 10, the operation history of the automatic cutting device 104 may be sent in a retroactive direction for relief.

図6は、本発明の実施形態の研削装置及びその制御方法における(a)オーバライド指令、(b)自動切込位置、(c)実回転速度の関係を示すグラフである。本発明の実施形態の研削装置及びその制御方法では、図6(a)に示すように、オーバライドスイッチが操作された時点で、図6(b)に破線で示すように、直ちに(制御装置300(図5参照)に)適用するのではなく、一旦自動切込装置104による自動切込位置を半径方向に研削対象から遠い方向に送り、徐々に元の(座標の)指令位置に戻す操作とすることで、図6(c)に示すように、実回転速度もその分遅れて追いついてくるようになる。 FIG. 6 is a graph showing the relationship among (a) override command, (b) automatic cutting position, and (c) actual rotational speed in the grinding apparatus and control method thereof according to the embodiment of the present invention. In the grinding apparatus and its control method of the embodiment of the present invention, as shown in FIG. 6(a), when the override switch is operated, immediately (control device 300 (See FIG. 5)), but once the automatic cutting position by the automatic cutting device 104 is sent in the radial direction away from the grinding object, and then gradually returned to the original (coordinate) command position. By doing so, as shown in FIG. 6(c), the actual rotation speed also catches up with a corresponding delay.

また、図7は、本実施形態の研削装置における加工プロセス開始から終了までの制御処理のフローチャートである。即ち、本実施形態の研削装置において加工プロセスが開始され(S701)、加工中にオーバライドスイッチの操作等がありオーバライド変化が生じるかチェックし(S702)、速度変化が生じるか否かを判定する(S703)。速度変化が生じる場合は(S703でYES)、その時点で残っている逃がし量に対する逃がし加算量を計算し(S704)、逃がし方向を判断し(S705)、逃がし加算操作を実行し(S706)、速度が変更される(S707)。この変更された速度で切込が行われ、C軸の回転が終了したか否かを判定し(S708)、C軸の回転が終了した場合は(S708でYES)、加工プロセスが終了する(S709)。一方、C軸の回転が終了していなければ(S708でNO)、S702に戻る。また、上述したS703の判定で速度変化が無い場合は(S703でNO)、逃がし減衰操作を実行し(S710)、S708に至る。 FIG. 7 is a flow chart of control processing from the start to the end of the machining process in the grinding apparatus of this embodiment. That is, the machining process is started in the grinding apparatus of the present embodiment (S701), it is checked whether an override switch is operated during machining and an override change occurs (S702), and it is determined whether or not a speed change occurs ( S703). If the speed change occurs (YES in S703), the relief addition amount for the relief amount remaining at that time is calculated (S704), the relief direction is determined (S705), the relief addition operation is executed (S706), The speed is changed (S707). Cutting is performed at this changed speed, and it is determined whether the rotation of the C-axis has ended (S708). If the rotation of the C-axis has ended (YES in S708), the machining process ends ( S709). On the other hand, if the rotation of the C-axis has not ended (NO in S708), the process returns to S702. If it is determined in S703 that there is no speed change (NO in S703), the escape damping operation is executed (S710), and the process proceeds to S708.

図8(a)は、図7に示した加工プロセス開始から終了までの制御処理のメインフローを示し、図8(b)は、さらに、外側を研削しているか内側を研削しているかの判断を直前の自動切込装置104の動作と円弧補間の回転方向の指令の種類を込み合わせて自動で判断する制御処理のフロー、図8(c)は、逃がしでは自動切込装置104の動作履歴をさかのぼる方向へ向かって送るようにする制御処理を示す図である。図8(a)のメインフローについては、図7を用いて説明した通りである。本実施形態の研削装置では、図7のS705における逃がし方向を判断するために、さらに、図8(b)に示すように、自動切込記録を作成しておく。即ち、自動切込指令が開始されると(S801)、自動切込の方向指令を生成する度に(S802)、切込方向を記録しておき(S803)、この切込方向の記録(履歴)を参照して、図7のS705における逃がし方向を判断する。そして、自動切込の動作が実行されると(S804)、自動切込指令は終了する(S805)。また、逃がし方向を判断するために、図8(c)に示すように、NCのモーダル情報も参照する。即ち、S806において、モード情報として、円弧/直線・法線方向の向き (経路の右/左?)等を参照し、また、逃がし方向の判断において、主に最後の自動切込を戻す方向を参照する。直前の動作が開始位置への移動である場合は補正量を0扱いする。プロセスの進行状態によって方向が分からない場合は、法線方向制御と円弧補間のモードを確認し、例えば、G41.1かつG02のときU負方向、G42.1かつG02のときU正方向、G41.1かつG03のときU正方向、G42.1かつG03のときU負方向などの加工毎の事前設定を使う。 FIG. 8(a) shows the main flow of control processing from the start to the end of the machining process shown in FIG. is automatically determined by combining the operation of the previous automatic cutting device 104 and the type of command for the rotation direction of circular interpolation. is a diagram showing a control process for sending in a backward direction. The main flow of FIG. 8(a) is as described with reference to FIG. In the grinding machine of this embodiment, in order to determine the relief direction in S705 of FIG. 7, an automatic cutting record is further created as shown in FIG. 8(b). That is, when an automatic cutting command is started (S801), every time an automatic cutting direction command is generated (S802), the cutting direction is recorded (S803), and this cutting direction is recorded (history ) to determine the escape direction in S705 of FIG. Then, when the automatic cutting operation is executed (S804), the automatic cutting command ends (S805). In order to determine the release direction, the NC modal information is also referred to as shown in FIG. 8(c). That is, in S806, as mode information, the direction of the arc/straight line/normal direction (right/left of the route?) is referred to, and in the judgment of the escape direction, the direction to return the last automatic cut is mainly determined. refer. If the previous action was to move to the start position, treat the correction amount as 0. If the direction is unknown due to the progress of the process, check the mode of normal direction control and circular interpolation, for example, U negative direction when G41.1 and G02, U positive direction when G42.1 and G02, G41 .1 and G03 use U positive direction, G42.1 and G03 U negative direction, etc. Use presets per machining.

尚、回転速度の変化に応じた切込み過ぎ量(半径変化Δr)は、以下の数式(1)で定義するのが一般的である。

Figure 2023048942000003
It should be noted that the overcut amount (radius change Δr) according to the change in rotational speed is generally defined by the following formula (1).
Figure 2023048942000003

典型的な工作機械用のサーボ制御系で円弧指令での一定速回転中の半径の減少ΔRは、速度制御部・電流制御部の応答が十分に高速で補間後加減速も十分に高速なら以下の数式(2)のように近似される。

Figure 2023048942000004
In a typical machine tool servo control system, the radius decrease ΔR during constant speed rotation with an arc command is as follows if the response of the speed control unit and current control unit is sufficiently fast and the acceleration/deceleration after interpolation is sufficiently fast. is approximated by Equation (2).
Figure 2023048942000004

尚、一般的には図9に示すような円弧補間の制御系が用いられている。 In general, a circular interpolation control system as shown in FIG. 9 is used.

10 ジグ研削盤(研削装置)、 100 砥石、 102 砥石回転装置、104 自動切込装置、 106 別の回転装置(C軸回転装置)、300 制御装置、 W ワーク、 10 jig grinder (grinding device), 100 grindstone, 102 grindstone rotating device, 104 automatic cutting device, 106 another rotating device (C-axis rotating device), 300 control device, W work,

Claims (5)

砥石をつけた砥石回転装置を直線軸で半径方向に送ったり固定したりできる自動切込装置を有し、さらに前記砥石回転装置及び自動切込装置を含む装置ごと別の回転装置で回すことができる研削装置で、2軸以上の同期制御を用いた円弧補間により円の内面ないし外面の研削を行うことができる研削装置であって、この研削加工中に前記別の回転装置を用いて前記自動切込装置が前記砥石回転装置を直線に送る方向を円弧の法線方向にそろえることができるように構成された研削装置で、円弧補間の送り速度をオーバライドスイッチで操作者が自由に変更できるように構成された研削装置において、前記オーバライドスイッチの操作時に、オーバライド指令を直ちに制御装置に適用するのではなく、一旦、前記自動切込装置で前記砥石回転装置を前記自動切込装置で研削対象から遠い方向に送り、その後、オーバライドを適用させることを特徴とする研削装置。 It has an automatic cutting device that can radially feed and fix a grinding wheel rotating device with a grinding wheel on a linear axis, and the device including the grinding wheel rotating device and the automatic cutting device can be rotated by a separate rotating device. A grinding machine capable of grinding the inner surface or the outer surface of a circle by circular interpolation using synchronous control of two or more axes, wherein during this grinding process, the automatic A grinding device in which the direction in which the cutting device feeds the grinding wheel rotating device in a straight line can be aligned with the normal direction of the arc, and the operator can freely change the feeding speed of circular interpolation with an override switch. In the grinding apparatus configured as above, when the override switch is operated, the override command is not immediately applied to the control device, but the automatic cutting device temporarily moves the grinding wheel rotating device from the grinding object by the automatic cutting device. Grinding device characterized by feeding in a far direction and then applying an override. 砥石をつけた砥石回転装置を直線軸で半径方向に送ったり固定したりできる自動切込装置を有し、さらに前記砥石回転装置及び自動切込装置を含む装置ごと別の回転装置で回すことができる研削装置で、2軸以上の同期制御を用いた円弧補間により円の内面ないし外面の研削を行うことができる研削装置で、この研削加工中に前記別の回転装置を用いて前記自動切込装置が前記砥石回転装置を直線に送る方向を円弧の法線方向にそろえることができるように構成された研削装置であって、円弧補間の送り速度をオーバライドスイッチで操作者が自由に変更できるように構成された研削装置において、前記オーバライドスイッチの操作時に、オーバライド指令を直ちに制御装置に適用するのではなく、一旦、前記自動切込装置で前記砥石回転装置を直線軸で半径方向に研削対象から遠い方向に送り、その後、オーバライドを適用させ時間の経過とともに徐々に元の座標に戻すという操作を自動で行う機能を有することを特徴とする研削装置。 It has an automatic cutting device that can radially feed and fix a grinding wheel rotating device with a grinding wheel on a linear axis, and the device including the grinding wheel rotating device and the automatic cutting device can be rotated by a separate rotating device. A grinding device capable of grinding the inner surface or outer surface of a circle by circular interpolation using synchronous control of two or more axes, and during this grinding process, the automatic cutting using the separate rotating device A grinding apparatus configured so that the direction in which the apparatus feeds the grindstone rotating device in a straight line can be aligned with the normal direction of the arc, and the operator can freely change the feed speed of circular interpolation with an override switch. When the override switch is operated, instead of immediately applying the override command to the control device, the automatic infeed device temporarily moves the grinding wheel rotating device along the linear axis in the radial direction away from the object to be ground. A grinding apparatus characterized by having a function of automatically performing an operation of sending in a distant direction, then applying an override, and gradually returning to the original coordinates over time. 請求項1又は2に記載の研削装置において、さらに、外側を研削している時と内側を研削している時では逃がす方向を変えることが可能に構成されていることを特徴とする研削装置。 3. The grinding apparatus according to claim 1, wherein the grinding apparatus is further configured such that the releasing direction can be changed between when grinding the outer side and when grinding the inner side. 請求項1乃至3に記載の研削装置において、さらに、外側を研削しているか内側を研削しているかの判断を直前の前記自動切込装置の動作と前記円弧補間の回転方向の指令の種類を込み合わせて自動で判断する仕組みを備えることを特徴とする研削装置。 4. The grinding apparatus according to claim 1, further comprising: determining whether the outer side or the inner side is being ground; A grinding apparatus characterized by comprising a mechanism for automatically judging a crowded state. 請求項1乃至4に記載の研削装置において、逃がしでは前記自動切込装置の動作履歴をさかのぼる方向へ向かって送ることを特徴とする研削装置。 5. A grinding apparatus according to claim 1, wherein the relief feeds the operation history of said automatic cutting device in a retroactive direction.
JP2021158546A 2021-09-28 2021-09-28 Grinding device Pending JP2023048942A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2021158546A JP2023048942A (en) 2021-09-28 2021-09-28 Grinding device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2021158546A JP2023048942A (en) 2021-09-28 2021-09-28 Grinding device

Publications (1)

Publication Number Publication Date
JP2023048942A true JP2023048942A (en) 2023-04-07

Family

ID=85779844

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2021158546A Pending JP2023048942A (en) 2021-09-28 2021-09-28 Grinding device

Country Status (1)

Country Link
JP (1) JP2023048942A (en)

Similar Documents

Publication Publication Date Title
US11338404B2 (en) Machine tool and control apparatus of the machine tool
EP1927911A2 (en) Machining apparatus
JP2007000945A (en) Grinding method and device
JP2017209770A (en) Workpiece machining method, spindle angle correcting device, and composite lathe
US20190217405A1 (en) Gear machining apparatus and gear machining method
JP5440154B2 (en) Grinding program, automatic grinding program and cylindrical grinder
JP6058497B2 (en) Machine tool and control method thereof
JP2023048942A (en) Grinding device
US6988860B2 (en) Cutting tool and cutting method using the cutting tool
JP2023048638A (en) Grinding device and control method thereof
JP6249904B2 (en) Work processing control device for machine tool, work processing method using the control device, and work processing program
JP2017126274A (en) Numerical control device having cut-in control function by turret rotation
CN111712343A (en) Machine tool
JP3482331B2 (en) Finishing method
CN117440869A (en) Vibration cutting condition setting device for machine tool
JP7161254B2 (en) Processing method, processing equipment and program
JP2821498B2 (en) Processing method
JP6430217B2 (en) Profile grinding machine
JP2007125644A (en) Truing device of grinding wheel
JP7143025B2 (en) Grinding device and its control method
JPH10109268A (en) Coolant supply device for grinding machine
JP4266791B2 (en) Machining method
JP7301610B2 (en) Grinding device and its control method
WO2022224291A1 (en) Hobbing machine
JP2002331433A (en) Cutting work unit