JP2023044719A - タービン出口マッハ数サロゲートを利用した非モデルベース制御のためのシステムおよび方法 - Google Patents

タービン出口マッハ数サロゲートを利用した非モデルベース制御のためのシステムおよび方法 Download PDF

Info

Publication number
JP2023044719A
JP2023044719A JP2022129575A JP2022129575A JP2023044719A JP 2023044719 A JP2023044719 A JP 2023044719A JP 2022129575 A JP2022129575 A JP 2022129575A JP 2022129575 A JP2022129575 A JP 2022129575A JP 2023044719 A JP2023044719 A JP 2023044719A
Authority
JP
Japan
Prior art keywords
turbine
exit
gas turbine
compressor
surrogate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2022129575A
Other languages
English (en)
Inventor
ハロルド・ラマー・ジョーダン
Lamar Jordan Harold
デイヴィッド・スペンサー・ユーヴェンス
Spencer Ewens David
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
General Electric Co
Original Assignee
General Electric Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by General Electric Co filed Critical General Electric Co
Publication of JP2023044719A publication Critical patent/JP2023044719A/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02CGAS-TURBINE PLANTS; AIR INTAKES FOR JET-PROPULSION PLANTS; CONTROLLING FUEL SUPPLY IN AIR-BREATHING JET-PROPULSION PLANTS
    • F02C9/00Controlling gas-turbine plants; Controlling fuel supply in air- breathing jet-propulsion plants
    • F02C9/26Control of fuel supply
    • F02C9/28Regulating systems responsive to plant or ambient parameters, e.g. temperature, pressure, rotor speed
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02CGAS-TURBINE PLANTS; AIR INTAKES FOR JET-PROPULSION PLANTS; CONTROLLING FUEL SUPPLY IN AIR-BREATHING JET-PROPULSION PLANTS
    • F02C9/00Controlling gas-turbine plants; Controlling fuel supply in air- breathing jet-propulsion plants
    • F02C9/16Control of working fluid flow
    • F02C9/20Control of working fluid flow by throttling; by adjusting vanes
    • F02C9/22Control of working fluid flow by throttling; by adjusting vanes by adjusting turbine vanes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02CGAS-TURBINE PLANTS; AIR INTAKES FOR JET-PROPULSION PLANTS; CONTROLLING FUEL SUPPLY IN AIR-BREATHING JET-PROPULSION PLANTS
    • F02C9/00Controlling gas-turbine plants; Controlling fuel supply in air- breathing jet-propulsion plants
    • F02C9/16Control of working fluid flow
    • F02C9/20Control of working fluid flow by throttling; by adjusting vanes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2260/00Function
    • F05D2260/81Modelling or simulation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2260/00Function
    • F05D2260/82Forecasts
    • F05D2260/821Parameter estimation or prediction
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2270/00Control
    • F05D2270/01Purpose of the control system

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Control Of Turbines (AREA)

Abstract

Figure 2023044719000001
【課題】タービン出口マッハ数のサロゲート値を利用した非モデル型制御
【解決手段】 システムは、圧縮機(16)と、燃焼器(18)と、タービン(22)と、排気部(24)とを含むガスタービンシステム(10)を含む。システムはまた、ガスタービンシステム(10)の構成要素に結合された複数のセンサ(40)を含む。本システムは、ガスタービンシステム(10)及び複数のセンサ(40)に通信可能に結合され、ガスタービンシステム(10)の動作を制御するように構成されたコントローラ(38)をさらに含み、コントローラ(38)は、複数のセンサ(40)からのフィードバックに基づいてタービン出口マッハ数のサロゲート値を計算し、サロゲート値を利用してガスタービンシステム(10)の制御動作を導出するように構成される。
【選択図】図1

Description

本明細書に開示される主題は、ガスタービンエンジンに関し、より詳細には、ガスタービンエンジンを制御するためのシステム及び方法に関する。
一般に、ガスタービンシステムの性能は、時間の経過とともに低下する可能性がある。産業用制御システムなどの特定のシステムは、ガスタービンシステムの制御及び分析を可能にする能力を提供することができる。例えば、産業用制御システムは、タービンシステムを制御する際に使用されるデータを記憶するコントローラ、フィールド装置、及びセンサを含むことができる。特定の産業用制御システムは、産業用制御システムを強化するためにモデリングを使用することができる。例えば、モデルベースのコントロール(例えば、オンボードのリアルタイムのガスタービンモデル)は、直接測定されないパラメータに対する直接境界制御のためのパラメータを計算するために利用され得る。しかしながら、特定のガスタービンシステムは、これらのモデルベースの制御がない場合がある。これらのガスタービンシステムが全出力で様々な境界制約に向かって走行し、広範囲の運転条件にわたって最大の性能を発揮できるようにするために、モデルベースの制御を利用できないこれらのガスタービンシステムのための代替制御を提供することは有益である。
最初に特許請求の範囲で請求された対象(subject matter)と範囲が一致する特定の実施形態を以下に要約する。これらの実施形態は、特許請求の範囲で請求された対象の範囲を限定することを意図しておらず、むしろ、これらの実施形態は、請求対象の可能な形態の簡潔な要約を提供することのみを意図している。実際、本発明の請求対象は、以下に記載する実施形態と類似していても異なっていてもよい様々な形態を含むことができる。
第1の実施形態では、システムが提供される。本システムは、圧縮機、燃焼器、タービン、及び排気部(排気セクション)を含むガスタービンシステムを含む。システムはまた、ガスタービンシステムの構成要素に結合された複数のセンサを含む。本システムは、ガスタービンシステム及び複数のセンサに通信可能に結合され、ガスタービンシステムの動作を制御するように構成されたコントローラをさらに含み、コントローラは、複数のセンサからのフィードバックに基づいてタービン出口マッハ数(turbine exit Mach number)のサロゲート値(surrogate value:代替値)を計算し、サロゲート値を利用してガスタービンシステムの制御動作を導出するように構成される。
第2の実施形態では、方法が提供される。本方法は、ガスタービンシステムの構成要素に結合された複数のセンサからのフィードバックをコントローラで受信することを含み、ガスタービンシステムは、圧縮機、燃焼器、タービン、及び排気部を含む。本方法はまた、コントローラを介して、複数のセンサからのフィードバックに基づいてタービン出口マッハ数のサロゲート値を計算するステップを含む。本方法はさらに、コントローラを介してサロゲート値を利用してガスタービンシステムの制御動作を導出するステップを含む。
第3の実施形態では、非一時的なコンピュータ可読媒体が提供される。コンピュータ可読媒体は、プロセッサによって実行されると、プロセッサにアクションを実行させるプロセッサ実行可能コードを含む。動作は、ガスタービンシステムの構成要素に結合された複数のセンサからのフィードバックを受信することを含み、ガスタービンシステムは、圧縮機、燃焼器、タービン、及び排気部を含む。本方法はまた、複数のセンサからのフィードバックに基づいてタービン出口マッハ数のサロゲート値を計算するステップを含む。本方法はさらに、コントローラを介してサロゲート値を利用してガスタービンシステムの制御動作を導出するステップを含み、サロゲート値はガスタービンシステムの境界制御(boundary control)として作用する。
本発明のこれら及び他の特徴、態様、及び利点は、以下の詳細な説明を添付の図面を参照して読むとよりよく理解されるであろう。
本技術の態様による、タービンシステムの性能を制御する際にタービン出口マッハ数のサロゲート値を計算し利用することができるタービンシステムのブロック図である。 本技術の態様による、タービン出口マッハ数に対するタービン出口流れ関数のグラフである。 本技術の態様による、圧縮機吐出圧力に対するタービン出口流のグラフである。 本技術の態様による、タービン出口温度に対する排気温度のグラフである。 本技術の態様による、排気部出口での排気圧力に対するタービン出口総圧力のグラフである。 本技術の態様による、タービン出口マッハ数に対するタービン出口マッハ数のサロゲート値(タービン出口流れ関数の構成要素又はタービン出口流れ関数の構成要素に強く相関する測定パラメータから導出される)のグラフである。 本技術の態様による、複数の負荷掃引(multiple load sweeps)にわたるタービン出口マッハ数に対するタービン出口マッハ数のサロゲート値(タービン出口流れ関数の構成要素に強く相関する測定パラメータから導出される)のグラフである。 本技術の態様による、タービン出口マッハ数のサロゲート値を利用するタービン出口マッハ数境界制御のための一実施形態の機能ブロック図である。 本開示の態様による、タービンエンジンシステムを制御するためにタービン出口マッハ数のサロゲート値を利用する方法のフローチャートである。 本開示の態様による、タービンエンジンシステムを制御するための直接境界制御のパラメータにサロゲート値を利用する方法のフローチャートである。
本主題の1つ以上の具体的な実施形態を以下に説明する。これらの実施形態の簡潔な説明の提供に努めるため、実際の実装のすべての特徴は、明細書に記載されていない場合がある。このような実際の実装の開発では、エンジニアリングプロジェクトの場合と同様に、システム関連及びビジネス関連の制約への準拠など、実装ごとに異なる可能性がある開発者の特定の目標を達成するために、実装固有の決定を多数行う必要があることを認識すべきである。さらに、そのような開発努力は複雑で時間がかかるかもしれないが、それにもかかわらず、本開示の利益を有する当業者のための加工及び製造の日常的な作業であることが認識されるべきである。
本主題の様々な実施形態の要素を導入する場合、「a」、「an」、「the」、「said」は、要素が1つ以上あることを意味することを意図している。「含む」、「含む」、及び「有する」という用語は、包含的であることを意図しており、リストされた要素以外の追加の要素があり得ることを意味する。
現在の多くの大型のガスタービンシステムは、広範囲の運転条件に亘って最大の性能を提供するために、全出力で種々の境界制約(boundary constraints)に対応して運転される。典型的には、この性能レベルを達成するための鍵となる要素は、直接的な境界制御パラメータ(例えば、タービン出口マッハ数(Mn))のための正確な計算を提供する制御システムに、ガスタービンのリアルタイムモデルが組込まれる(オンボードモデル)、モデルベース制御(MBC)制御方式(戦略:ストラテジー)の利用である。特定のガスタービンシステムにおけるMBC制御方式が使用できない場合は、完全な性能潜在能力を達成する能力を妨げる。
本開示は、MBC制御を有していない大型のガスタービン(ヘビーデューティガスタービン)の限界制御のために利用することができる、正確かつ堅牢(ロバスト)な(及び容易に構築され得る)タービン出口Mnのサロゲート値を提供するシステム及び方法に向けられている。特定の実施形態では、タービン出口Mnのサロゲート値を利用するMBC制御を使用しない方法(非MBCストラテジー)は、オンボードモデルを有するガスタービンシステムにおいても利用することができ、オンボードモデルは、タービン出口Mn制御のための規定(provision)を欠いている。タービン出口Mnのサロゲート値は、ガスタービンシステム内のセンサからのフィードバック(例えば、測定パラメータ)に基づいて計算される。これらの測定されたパラメータ(例えば、圧縮機吐出口圧力、排気部出口圧力、及び半径方向プロファイル効果のために調整された排気温度)は、タービン出口Mnを直接計算するために使用されるが、ガスタービンシステム(例えば、タービン出口流量、タービン出口合計圧力、及びタービン出口温度)上では測定されないタービン出口補正流量関数に関連するパラメータに相関する。タービン出口Mnのサロゲート値の限界レベルは、のサロゲート値空間で定義された限界を有するサイクル性能に基づく等価Mnに機能的に対応する。タービン出口Mnのサロゲート値は、制御動作(例えば、入口ガイドベーン(IGV)のアクチュエータ上で)を導出し実行するために利用され得る。タービン出口Mnのサロゲート値の利用は、ガスタービンシステムのハードウェアのアップグレードを可能にし、これはハードウェアのアップグレードをサポートするための完全なMBCアップグレードよりも費用効果が高い。
上述のことを念頭に置いて、図1は、タービンシステム10の性能を制御する際にタービン出口Mnのサロゲート値を計算し、タービン出口Mnのサロゲート値を利用するために本開示の技術を使用することができるタービンシステム10(例えば、ガスタービンシステム)の一実施形態のブロック図である。図示のタービンシステム10は、発電機などの負荷14に結合されたガスタービンエンジン12を含む。ガスタービンエンジン12は、圧縮機16と、各々が少なくとも一つの燃料ノズル20を有する複数の燃焼器18と、タービン22と、排気部24(排気セクション:例えば、ディフューザ部)とを含む。図示のように、一つ以上のシャフト26が、負荷14、圧縮機16、及びタービン22を接続する。圧縮機16は、少なくとも一列の入口ガイドベーン(IGV)25を含む。圧縮機16及びタービン22は各々、ステータ又はシュラウド内で回転するブレードを有するロータを含む。運転中、圧縮機16は、空気30を受け取り、圧縮空気32を燃焼器18及び/又は燃料ノズル20に送り、次いで、燃焼器18内の燃焼領域に燃料34(又は空気-燃料混合物)を噴射する。次に、混合気は燃焼器18内で燃焼して高温燃焼ガス36を生成し、タービン18内のブレードを駆動する。タービン18がシャフト26を回転させるように駆動されると、圧縮機16は、空気16を燃焼器18および/または燃料ノズル20に送るべく圧縮するように駆動される。
さらに、図示のタービンシステム10は、タービンシステム10の動作を一般的に制御することができるコントローラ38を含む。例えば、特定の実施形態では、コントローラ38は、ガスタービンエンジン12全体に配置された多数のセンサ40(例えば、温度センサー、圧力センサー、流量センサー、又は他の適切なセンサー)に結合されてもよい。コントローラ38は、タービンエンジン12に関する情報を受信するために、センサ40と通信(例えば、ネットワーク又はバスを介して)することができる。例えば、コントローラ38は、ガスタービンエンジン12の排気部24に結合された温度センサ40と通信して、排気ガス(例えば、制御排気温度測定面に沿って測定する)の温度を受け取ることができる。さらなる例では、圧縮機16に結合された圧力センサ40は、圧縮機吐出圧力をコントローラ38に通信することができる。さらに別の例では、排気部24に結合された圧力センサ40は、排気部24の出口で排気圧力をコントローラ38に通信することができる。さらに、特定の実施形態では、コントローラ38は、ガスタービンエンジン12の動作を制御又は変更するために、タービンシステムの特定の構成要素(例えば、圧縮機16、燃焼器18、タービン22、吸気ベーン(例えば、IGV25)、弁、ポンプ、アクチュエータ、又は他の適切な構成要素)と通信することもできる。例えば、コントローラ38は、ガスタービンエンジン12の圧縮機16と通信して、吸気ベーンを開閉して圧縮機16内への空気30の量を増減させるようにフィールド機器(field device)に指示することができる。加えて、コントローラ38は、ガスタービンエンジン12上の燃料アクチュエータと通信して、燃料供給源34と燃焼器18との間を流れる燃料の流れ、燃料分割、及び/又はタイプを選択的に調整することができる。さらに、コントローラ38は、IGVの相対位置を調整し、入口抽気熱を調整し、又はガスタービンエンジン12上の他の制御設定を起動するために、追加のアクチュエータと通信することができる。
さらに、コントローラ38によって実行される動作には、センサ40からのフィードバックに基づいてタービン出口Mnのサロゲート値を決定又は計算することが含まれる。例えば、以下により詳細に説明されるように、タービン出口Mnのサロゲート値は、圧縮機吐出量圧力、排気部出口圧力、及び半径方向プロファイル効果について調整された排気温度に基づいて計算され得る。タービン出口Mnのサロゲート値は、ガスタービンエンジン12の境界制御又は動作限界(boundary control or operational limit)として機能する。コントローラ38によって実行される動作には、ガスタービンエンジン12の制御動作を導出するためにタービン出口Mnのサロゲート値を利用することも含まれる。特に、サロゲート値は、コンプレッサIGV、閉ループ最大オープンエフェクタ制御制約(closed loop max open effector control constraint)への入力として利用することができる。
さらに、コントローラ38は、プロセッサ42と、プロセッサ42に通信可能に結合されたメモリ44(例えば、一過性でないコンピュータ可読媒体/メモリ回路)とを含み、図1のガスタービンシステム10に関連する動作を実行するために実施される1つ以上の命令セット(例えば、プロセッサ実行可能命令)を記憶する。より具体的には、メモリ44は、ランダムアクセスメモリ(RAM)などの揮発性メモリ、及び/又は読み取り専用メモリ(ROM)、光学ドライブ、ハードディスクドライブ、又はソリッドステートドライブなどの不揮発性メモリを含むことができる。さらに、プロセッサ42は、一つ以上の特定用途向け集積回路(ASIC)、一つ以上のフィールドプログラマブルゲートアレイ(FPGA)、一つ以上の汎用プロセッサ、又はそれらの任意の組み合わせを含むことができる。さらに、「プロセッサ」という用語は、当該技術分野でプロセッサと呼ばれる集積回路のみに限定されるものではなく、コンピュータ、プロセッサ、マイクロコントローラ、マイクロコンピュータ、プログラマブルロジックコントローラ、特定用途向け集積回路、及び他のプログラマブル回路を広く指す。
図2は、タービン出口Mnに対する出口流れ関数(exit flow function)のグラフ46である。グラフ46は、タービン出口軸Mnを表すX軸48と、タービン出口流れ関数を表すY軸50とを含む。ガスタービンのタービンの固定最終段(fixed last stage)のタービン出口流関数は、流れ成分(WX)すなわちタービン出口流、圧力成分(PT3)すなわち総圧力(total pressure)、及び温度成分(TT3)すなわち総温度(total temperature)の関数である。グラフ46のプロット52に示されるように、タービン出口流れ関数は、タービン出口Mnと強く相関し、非MBC制御方法(ストラテジー)においてタービン出口Mnのサロゲート値として機能し得る。より具体的には、タービン出口Mnは、タービン出口流れとタービン出口絶対温度をタービン出口圧力で割った平方根との積にほぼ比例する。さらに、タービン出口Mnのサロゲート値の限界レベルは、サロゲート値空間で定義された限界を有するサイクル性能に基づく等価Mnに関数的に対応する。タービン出口Mnのサロゲート値は、MBC制御方法において実際のタービン出口Mnを利用するよりも少なくとも同様に(良くないとしても)、動作点を制限タービン出口Mnに調整することができる。特に、タービン出口Mnのサロゲート値は、周囲条件、排気システム設計圧力降下変動、部品性能変動、及び制御センサの不確実性において変動を処理するのに十分に堅牢であり、使用可能である。
タービン出口流量、総圧力、及びタービン出口での総温度は、容易に測定又は利用できない。しかしながら、タービン出口流、総圧力、及び総温度は、図3乃至5に示されるように、測定されたパラメータを制御するために強い相関を有する。特定の実施形態では、タービン出口Mnのサロゲート値を決定する際に、図3乃至図5のパラメータに対する他のパラメータ及び/又は追加のパラメータを利用することができることに留意されたい。図3は、圧縮機吐出圧力に対するタービン出口流のグラフ54である。グラフ54は、圧縮機吐出圧力を表すX軸56と、タービン出口流を表すY軸58とを含む。タービン出口流は圧縮機入口流に比例するので、圧縮機抽出の固定された設計及びタービンの1段目の形状については、タービン入口圧力と圧縮機流との間に強い相関関係がある。所与の燃焼システムについて、これは、タービン入口圧力と圧縮機吐出口圧力との間で同様に強い均衡を示すように拡張することができる。プロット60は、流れ成分又はタービン出口流れが、圧縮機吐出時に圧力と強い相関を有することを示す。従って、圧縮機吐出量圧力(測定されたパラメータ)は、タービン出口Mnのサロゲート値を計算する際に、タービン出口流のサロゲート値として機能し得る。
図4は、タービン出口温度に対する排気温度のグラフである。グラフ62は、排気温度を表すX軸64と、タービン出口温度を表すY軸66とを含む(制御排気温度フレーム(control exhaust temperature frame)で排気部内で測定され、半径方向プロファイル効果(radial profile effects)のために調整されたものである)。タービン出口の総温度は典型的な排気温度測定に強く関係している。これらは、タービン出口と排気部の制御排気温度測定面(control exhaust temperature measurement plane)との間に導入される排気フレーム冷却の希釈化効果によって異なる。プロット68は、温度成分又はタービン出口温度が、排気部で測定された排気温度と強い相関を有することを示す。これは、排気温度がタービン出口温度にフレームブロワー希釈化(frame blower dilution)を加えたものであるであることから予想される。従って、排気温度(測定されたパラメータ)は、タービン出口Mnのサロゲート値を計算する際にタービン出口温度のサロゲート値として作用し得る。
図5は、排気部出口での排気圧力に対するタービン出口総圧力のグラフである。グラフ70は、排気部出口における排気圧力を表すX軸72と、タービン出口の総圧力を表すY軸74とを含む。タービン出口圧力は、排気部すなわち排気ディフューザーセクションの出口において測定された圧力に強く関連し、主に排気システムの圧力回復によって相関される。全負荷運転に関連する限られた範囲のタービン出口Mnにわたってサロゲートを使用することを意図した固定設計の場合、この圧力回復(pressure recovery)の変動はかなり限定的される。これらの境界条件は、排気システム圧力回復を通して関連付けられ、関心のある範囲は、旋回角およびMnにおいて限られた変動を有する。プロット76は、圧力部品又はタービン出口の総圧力が、排気部の出口で測定されるときに、排気圧力と強い相関を有することを示す。従って、排気圧力(測定されたパラメータ)は、タービン出口Mnのサロゲート値を計算する際に、タービン出口合計圧力のサロゲート値として機能させることができる。
図2で上述したように、タービン出口流れ関数は、タービン出口Mnと強く相関しており、非MBC制御方式においてタービン出口Mnのサロゲート値として機能し得る。従って、タービン出口Mnのサロゲート値は、タービン出口絶対温度の平方根にタービン圧力を乗じた値に基づいてもよい。図5は、タービン出口Mnに対するタービン出口Mnのサロゲート値(タービン出口流れ関数の構成要素又はタービン出口流れ関数の構成要素に強く相関する測定パラメータから導出される)のグラフ78である。グラフ78は、タービン出口軸方向Mnを表すX軸80と、タービン出口Mnサロゲート(PR*Sqrt(T))を表すY軸82とを含み、ここで、PRは圧力比に等しく、Tは温度に等しい。プロット84は、タービン出口軸方向Mnに対してタービン出口流れ関数の(例えば、タービン出口の総圧力(PT3)及びタービン出口の絶対温度(TT3)の値を導き出すためにMBCを利用するシステムで収集されるような)成分について計算されたタービン出口Mnのサロゲート値を表す。プロット86は、タービン出口軸方向Mnに対して、排気部の制御排気温度測定面で測定されるタービン排気温度(T)及び排気部の出口で測定される排気圧力(P)のような、タービン出口流れ関数の成分に強く相関する(かつ代替として利用される)測定パラメータを利用して計算されたタービン出口Mnのサロゲート値を表す。グラフ表示78に示されるように、プロット86におけるタービン出口Mnのサロゲート値についてのサロゲート測定パラメータを利用することは、プロット84におけるタービン出口流れ関数の成分を利用することと同様にタービン出口軸方向Mnに相関される。従って、次式(PCD/P)*(TTXM_R)(ここで、PCDは測定された圧縮機吐出量圧力を表し、TTXM_Rはランキン調整(Rankine adjusted)されたタービン排気温度を表す)から導出されるタービン出口Mnのサロゲート値は、タービン出口Mnに強く関連し、合理的な境界制御のサロゲート値を提供し得る。
図7は、複数の負荷掃引にわたるタービン出口Mn(X軸90)に対するタービン出口Mnのサロゲート値(Y軸92)(タービン出口流れ関数の成分に強く相関する測定パラメータから導出される)のグラフ88である。複数の負荷掃引(multiple load sweeps)を、ガスタービンシステムを用いて、異なる周囲圧力条件(例えば、通常のサイクル性能を想定して、12.7から14.7ポンド力/平方インチ(psia)又は約87.6から101.4キロパスカル(kPa)の範囲)でベースMn掃引にわたって実施した。更に、複数負荷掃引を、公称サイクル性能とTfire抑制(suppression)を有するタービン出口Mn制御に対して期待される異なる極低温(例えば、-60°Fから-10°F、又は約-51.1°Cから-12.2°Cの範囲)にわたってガスタービンシステムを用いて実施した。プロット94は、タービン出口Mnのサロゲート値(タービン出口流れ関数の成分に強く相関する測定パラメータから導出される)が、タービン出口Mnと強い相関を有することを示す。
図8は、タービン出口Mnサロゲートを利用したタービン出口Mn境界制御のための実施形態の機能ブロック図である。破線部96は、サロゲート・タービン出口Mnのための制御コードを表し、破線部98は、IGVのconから最小値、最大値及びパスへの制約のための制御コード(control code for IGV con to Min, Max, and Path constraints)を表す。破線部96に示されるように、タービン出口Mn限界(Mn,x Limit)は、タービン出口Mnサロゲート限界(Mn,xSurrogate Limit)を生成するために、制御曲線100又はテーブル(タービン出口Mnサロゲート(Mn,x surrogate)とタービン出口Mn限界との関係)に当てはめられる。タービン出口サロゲート限界(一定限界又は可変限界であり得る)は、比較器102に与えられる。また、破線部96に示すように、測定された圧縮機吐出量圧力(Pcd)は、排気部の出口において測定された排気圧力によって(参照番号104に示すように)除算され、タービン圧力比(TPR)が得られる。排気部の制御排気温度測定面で測定されるタービン排気温度(TX)は、タービンの絶対出口温度となるために基準日温度(standard day temperature)(例:459.67)を加算して比較器106に与えられる。比較器106の出力の平方根(参照番号108によって示されるように)は、ランキンタービン排気温度(TxRankine)を提供し、この温度は、タービン出口Mnサロゲートを生成するためのTPRによって(参照番号110によって示されるように)乗算される。タービン出口Mnサロゲートは、破線部98内のコントローラ(例えば比例積分コントローラ:proportional integral controller)112への入力として提供される出力を生成するために、タービン出口サロゲート限界と共に比較器102に提供される。コントローラは、タービン出口Mnサロゲートから導出されたコンプレッサIGV、閉ループ最大オープンエフェクタ制約(compressor IGV, closed loop max open effector constraint:IGVMn,x)をIGVループ優先順位付け及び選択ロジック114に提供する。さらに、他の最大オープンIGV制約又は他の境界、スケジュール、及びパス(例えば、最大圧縮機吐出温度、圧縮機操作性、エアロ制約、機械的限界など)からのIGV要求が、IGVループ優先順位付け及び選択ロジック114に提供される。IGVMn、x及び他の最大オープンIGV制約は、優先選択を介して進み、IGVループ優先順位付け及び選択ロジック114は、IGV設定又はIGV要求を出力する。
図9は、タービンエンジンシステムを制御するためにタービン出口Mnのサロゲート値を利用する方法116のフローチャートである。方法116の一つ以上のステップは、ガスタービンシステム(例えば、図1のコントローラ38)の制御装置によって実行することができる。方法116は、ガスタービンシステムの構成要素に結合されたセンサからのフィードバックを受信するステップ(ブロック118)を含む。例えば、圧縮機又は排気部に結合されたセンサからフィードバックを受け取ることができる。フィードバックは、圧縮機排出圧力、排気部出口圧力、及び排気温度(例えば、排気部内の制御排気温度測定面に沿って測定する)などの測定パラメータを含むことができる。測定されたパラメータは、タービン出口Mnのサロゲート値を直接計算するために使用されるであろうが、ガスタービンシステム上で測定されないか、又は利用できないタービン出口流れ関数に関連するパラメータに相関する(及び代替として機能する)。方法116はまた、センサからのフィードバックに基づいてタービン出口Mnのサロゲート値を計算するステップ(ブロック120)を含む。例えば、タービン出口Mnのサロゲート値は、上記のように測定された圧縮機吐出量圧力、排気部出口圧力、及び排気温度に基づいて計算され得る。タービン出口Mnのサロゲート値は、ガスタービンシステムの境界制御として機能する。方法116はさらに、タービン出口Mnのサロゲート値を利用してガスタービンシステムの制御動作を導出するステップ(ブロック122)を含む。制御動作は、図8で説明したように導出される。方法116は、アクチュエータを制御するために、コンプレッサ内のIGVに結合されたアクチュエータに(サロゲート値に基づいて)制御信号を供給するステップをさらに含む(ブロック124)。タービン出口Mnのサロゲート値は、非MBC制御方式(非MBC戦略:nonMBCストラテジ)において利用され得る。特定の実施形態では、MBCを含むが、タービン出口MnのためのMBCが利用できないガスタービンシステム(例:レガシーシステム:従来システム)上でタービン出口Mnのサロゲート値が利用される。
タービン出口Mnのサロゲート値を利用するための非MBC方制御方式はまた、境界制御を提供する他のパラメータのために利用することができる。図10は、タービンエンジンシステムを制御するための直接境界制御(direct boundary control)のためのパラメータとしてのサロゲート値を利用する方法126のフローチャートである。方法126の一つ以上のステップは、ガスタービンシステム(例えば、図1のコントローラ38)の制御装置によって実行することができる。方法126は、ガスタービンシステムの構成要素に結合されたセンサからのフィードバックを受信するステップ(ブロック128)を含む。例えば、フィードバックは、圧縮機、燃焼器、タービン、排気部、又はガスタービンシステムの他の構成要素に結合された複数のセンサから受け取ることができる。測定されたパラメータは、本来であればサロゲート値を直接計算するために利用されるが、ガスタービンシステム上で測定されていないか、又は利用できない所望の境界制御パラメータのためのサロゲート値に関連するパラメータと相関する(かつ、代替として機能する)ことができる。方法116はまた、センサからのフィードバックに基づいて所望の境界制御パラメータに対するサロゲート値を計算するステップ(ブロック130)を含む。方法126はさらに、ガスタービンシステムの制御動作を導出するために所望の境界制御パラメータのサロゲート値を利用するステップ(ブロック132)を含む。方法126はさらに、ガスタービンシステムの構成要素又は構成要素又はアクチュエータを制御するため、構成要素に結合されたアクチュエータに制御信号(サロゲート値に基づく)を提供するステップ(ブロック134)を含む。
開示された実施形態の技術的効果は、MBC制御を有しないヘ大型ガスタービンの限界制御(limit control)のために利用され得る、正確かつ堅牢な(かつ容易に構築され得る)タービン出口Mnのサロゲート値を提供することを含む。特定の実施形態では、タービン出口Mnのサロゲート値を利用する非MBC制御方式は、オンボードモデルを有するガスタービンシステムにおいても利用することができ、オンボードモデルは、タービン出口Mn制御において十分対応していない。タービン出口Mnのサロゲート値の利用は、ガスタービンシステムのハードウェアのアップグレードを可能にし、これはハードウェアのアップグレードをサポートするための完全なMBCアップグレードよりも費用効果が高い。タービン出口Mnのサロゲート値は、MBC制御方式において実際のタービン出口Mnを利用するのと同等に(より良いとは言えないながらも)、動作点を制限タービン出口Mnで調整することができる。特に、タービン出口Mnのサロゲート値は、周囲条件、排気システム設計圧力降下変動、部品性能変動、及び制御センサの不確実性において変動を処理するのに十分に堅牢で使用可能である。
この記述された説明は、最良の態様を含む主題を開示するために、また、任意の装置又はシステムを製造及び使用すること、及び任意の組み込まれた方法を実行することを含む、当業者が主題を実施することを可能にするために、例を使用する。発明の特許可能な範囲は、特許請求の範囲によって定義され、当業者に想起可能な他の例を含むことができる。そのような他の例は、それらが特許請求の範囲の文字どおりの言語と異ならない構造的要素を有する場合、又はそれらが特許請求の範囲の文字どおりの言語と実質的に異ならない同等の構造的要素を含む場合、特許請求の範囲の範囲内であることを意図している。
本明細書で提示され、請求されている技術は、本技術分野を明らかに改善する実際的な性質の材料対象及び具体例に言及され、適用され、したがって、抽象的、無形的又は純粋に理論的ではない。さらに、この明細書の末尾に添付された特許請求の範囲が、「[機能]を[実行]するための手段...」又は「[機能]を[実行]するためのステップ...」として指定された一つ又は複数の要素を含んでいる場合、そのような要素は35 U.S.C.第112条(f)に基づいて解釈されることが意図されている。しかし、他の方法で指定された要素を含むクレームについては、当該要素は35 U.S.C.第112条(f)に基づいて解釈されないことが意図されている。
本発明のさらなる態様は、以下の実施態様によって提供される。
[実施態様1]
圧縮機(16)と燃焼器(18)とタービン(22)と排気部(24)とを含むガスタービンシステム(10)と、
ガスタービンシステム(10)の構成部品に結合された複数のセンサ(40)と、
ガスタービンシステム(10)及び複数のセンサ(40)とに通信可能に結合され、ガスタービンシステム(10)の動作を制御するように構成されたコントローラ(38)であって、コントローラ(38)は、複数のセンサ(40)からのフィードバックに基づいてタービン出口マッハ数のサロゲート値を計算し、サロゲート値を利用してガスタービンシステム(10)の制御動作を導出するように構成される、コントローラ(38)と。
を含むシステム。
[実施態様2]
圧縮機(16)内の入口ガイドベーン(25)に結合されたアクチュエータを含み、制御動作がアクチュエータを制御することを含む、実施態様1に記載のシステム。
[実施態様3]
複数のセンサ(40)は、圧縮機(16)及びタービン(22)に結合される、実施態様1に記載のシステム。
[実施態様4]
フィードバックが、圧縮機吐出圧力に関する測定パラメータ、排気セクション出口圧力に関する測定パラメータ及び、半径方向プロファイル効果のために調整された排気温度に関する測定パラメータを含む、実施態様3に記載のシステム。
[実施態様5]
測定されたパラメータは、タービン出口マッハ数を直接計算するために使用されるが、ガスタービンシステム(10)上で測定されないタービン出口流れ関数に相関するパラメータに関連する、実施態様4に記載のシステム。
[実施態様6]
パラメータは、タービン出口流、タービン出口圧力、及びタービン出口絶対温度を含む、実施態様5に記載のシステム。
[実施態様7]
サロゲート値は、ガスタービンシステム(10)のための境界制御として機能するように構成される、実施態様1に記載のシステム。
[実施態様8]
圧縮機(16)と燃焼器(18)とタービン(22)と排気部(24)とを含むガスタービンシステム(10)の構成要素に結合された複数のセンサ(40)からのフィードバックをコントローラ(38)が受け取るステップと、
複数のセンサー(40)からのフィードバックに基づいて、コントローラ(38)がタービン出口マッハ数のサロゲート値を計算するステップと、
サロゲート値を利用してガスタービンシステム(10)の制御動作をコントローラ(38)が導出するステップと、
を含む方法。
[実施態様9]
アクチュエータを制御するために、圧縮機(16)内の入口ガイドベーン(25)に結合されたアクチュエータに、サロゲート値に基づく制御信号を提供するステップを含む、実施態様8に記載の方法。
[実施態様10]
複数のセンサー(40)が、圧縮機(16)及びタービン(22)に結合される、実施態様8に記載の方法。
[実施態様11]
フィードバックが、圧縮機吐出圧力に関する測定パラメータ、排気セクション出口圧力に関する測定パラメータ及び、半径方向プロファイル効果のために調整された排気温度に関する測定パラメータを含む、実施態様10に記載の方法。
[実施態様12]
測定されたパラメータは、タービン出口マッハ数を直接計算するために使用されるが、ガスタービンシステム(10)上で測定されないタービン出口流れ関数に相関するパラメータに関連する、実施態様11に記載の方法。
[実施態様13]
パラメータは、タービン出口流、タービン出口圧力、及びタービン出口絶対温度を含む、実施態様12に記載の方法。
[実施態様14]
サロゲート値は、ガスタービンシステム(10)のための境界制御として機能する、実施態様8に記載の方法。
[実施態様15]
ガスタービンシステムの構成要素に結合された複数のセンサからのフィードバックをプロセッサに受信させるプロセッサ実行可能コードを含む、非一時的なコンピュータ可読媒体であって、
プロセッサによって実行されると、
圧縮機、燃焼器、タービン、及び排気部を含むガスタービンシステムの複数のセンサーからのフィードバックに基づいてタービン出口マッハ数のサロゲート値を計算するステップと、
サロゲート値を利用してガスタービンシステム(10)の制御動作を導出するステップと、
が実行され、サロゲート値がガスタービンシステムの境界制御として機能する、非一時的なコンピュータ可読媒体。
[実施態様16]
プロセッサ実行可能コードは、プロセッサによって実行されると、プロセッサに、サロゲート値に基づく制御信号を、圧縮器内の入口ガイドベーンに結合されたアクチュエータに供給させ、アクチュエータを制御する、実施態様15に記載の非過渡的コンピュータ可読媒体。
[実施態様17]
複数のセンサー(40)が、圧縮機(16)及びタービン(22)に結合される、実施態様15に記載の非過渡的コンピュータ可読装置。
[実施態様18]
フィードバックが、圧縮機吐出圧力に関する測定パラメータ、排気セクション出口圧力に関する測定パラメータ及び、半径方向プロファイル効果のために調整された排気温度に関する測定パラメータを含む、実施態様17に記載の非過渡的コンピュータ読取り可能なコンピュータ。
[実施態様19]
測定されたパラメータは、タービン出口マッハ数を直接計算するために使用されるが、ガスタービンシステム(10)上で測定されないタービン出口流れ関数に相関するパラメータに関連する、実施態様18に記載の非過渡的コンピュータ可読装置。
[実施態様20]
パラメータは、タービン出口流、タービン出口圧力、及びタービン出口絶対温度を含む、実施態様19に記載の非過渡的コンピュータ可読装置。
10:タービンシステム 12:ガスタービンエンジン 14:負荷 16:圧縮機 18:燃焼器 20:燃料ノズル 22:タービン 24:排気部 25:入口ガイドベーン 26:シャフト 30:空気 32:圧縮空気 34:燃料 36:高温燃焼ガス 38:コントローラ 40:センサ 42:プロセッサ 44:メモリ 48:タービン出口軸数 50:タービン出口流れ関数 56:圧縮機吐出圧力-PSIA 58:タービン出口流-PPS 64:TTXM、排気温度-F 66:TT3、タービン出口温度-F 72:排気部出口における排気圧力-PSIA 74:PY3、タービン出口総圧力-PSIA 80:タービン出口軸方向マッハ数 82:タービン出口軸方向 84:タービン出口MnサロゲートPR*√T 90:タービン出口マッハ数 92:タービン出口Mnサロゲート 100:制御曲線 112:比例積分コントローラ 114:IGVループ優先順位付け及び選択ロジック

Claims (10)

  1. 圧縮機(16)と燃焼器(18)とタービン(22)と排気部(24)とを含むガスタービンシステム(10)と、
    ガスタービンシステム(10)の構成部品に結合された複数のセンサ(40)と、
    ガスタービンシステム(10)及び複数のセンサ(40)とに通信可能に結合され、ガスタービンシステム(10)の動作を制御するように構成されたコントローラ(38)であって、コントローラ(38)は、複数のセンサ(40)からのフィードバックに基づいてタービン出口マッハ数のサロゲート値を計算し、サロゲート値を利用してガスタービンシステム(10)の制御動作を導出するように構成される、コントローラ(38)と。
    を含むシステム。
  2. 圧縮機(16)内の入口ガイドベーン(25)に結合されたアクチュエータを含み、制御動作がアクチュエータを制御することを含む、請求項1に記載のシステム。
  3. 複数のセンサ(40)は、圧縮機(16)及びタービン(22)に結合される、請求項1に記載のシステム。
  4. フィードバックが、圧縮機吐出圧力に関する測定パラメータ、排気セクション出口圧力に関する測定パラメータ及び、半径方向プロファイル効果のために調整された排気温度に関する測定パラメータを含む、請求項3に記載のシステム。
  5. 測定されたパラメータは、タービン出口マッハ数を直接計算するために使用されるが、ガスタービンシステム(10)上で測定されないタービン出口流れ関数に相関するパラメータに関連する、請求項4に記載のシステム。
  6. パラメータは、タービン出口流、タービン出口圧力、及びタービン出口絶対温度を含む、請求項5に記載のシステム。
  7. サロゲート値は、ガスタービンシステム(10)のための境界制御として機能するように構成される、請求項1に記載のシステム。
  8. 圧縮機(16)と燃焼器(18)とタービン(22)と排気部(24)とを含むガスタービンシステム(10)の構成要素に結合された複数のセンサ(40)からのフィードバックをコントローラ(38)が受け取るステップと、
    複数のセンサー(40)からのフィードバックに基づいて、コントローラ(38)がタービン出口マッハ数のサロゲート値を計算するステップと、
    サロゲート値を利用してガスタービンシステム(10)の制御動作をコントローラ(38)が導出するステップと、
    を含む方法。
  9. アクチュエータを制御するために、圧縮機(16)内の入口ガイドベーン(25)に結合されたアクチュエータに、サロゲート値に基づく制御信号を提供するステップを含む、請求項8に記載の方法。
  10. 複数のセンサー(40)が、圧縮機(16)及びタービン(22)に結合される、請求項8に記載の方法。
JP2022129575A 2021-09-20 2022-08-16 タービン出口マッハ数サロゲートを利用した非モデルベース制御のためのシステムおよび方法 Pending JP2023044719A (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US17/479,200 2021-09-20
US17/479,200 US20230086029A1 (en) 2021-09-20 2021-09-20 System and method for non-model based control utilizing turbine exit mach number surrogate

Publications (1)

Publication Number Publication Date
JP2023044719A true JP2023044719A (ja) 2023-03-31

Family

ID=83152069

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2022129575A Pending JP2023044719A (ja) 2021-09-20 2022-08-16 タービン出口マッハ数サロゲートを利用した非モデルベース制御のためのシステムおよび方法

Country Status (4)

Country Link
US (1) US20230086029A1 (ja)
EP (1) EP4151847A1 (ja)
JP (1) JP2023044719A (ja)
CN (1) CN115840353A (ja)

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3684208B2 (ja) * 2002-05-20 2005-08-17 株式会社東芝 ガスタービン制御装置
US7784288B2 (en) * 2006-03-06 2010-08-31 General Electric Company Methods and systems of variable extraction for compressor protection
US8965728B2 (en) * 2011-05-10 2015-02-24 General Electric Company Exhaust strut radial temperature measurement
US9103279B2 (en) * 2012-11-01 2015-08-11 General Electric Company Model based control tuning process for gas turbines
US9255525B2 (en) * 2012-11-30 2016-02-09 General Electric Company System and method for gas turbine operation
US9556798B2 (en) * 2013-01-28 2017-01-31 General Electric Company Systems and methods for measuring a flow profile in a turbine engine flow path
US20170167389A1 (en) * 2015-12-15 2017-06-15 General Electric Company System and Method for Controlling Gas Turbine Exhaust Energy Via Exhaust Gas Damper and Compressed Gas Supply
US20180058334A1 (en) * 2016-08-30 2018-03-01 General Electric Company System and method to vary exhaust backpressure on gas turbine

Also Published As

Publication number Publication date
EP4151847A1 (en) 2023-03-22
US20230086029A1 (en) 2023-03-23
CN115840353A (zh) 2023-03-24

Similar Documents

Publication Publication Date Title
US6912856B2 (en) Method and system for controlling gas turbine by adjusting target exhaust temperature
JP6114511B2 (ja) ガスタービンの燃焼システムを自己調節するためのシステムおよび方法
US9476361B2 (en) Systems and methods for control of operating life of a gas turbine
US7593803B2 (en) Method for controlling fuel splits to gas turbine combustor
US9014945B2 (en) Online enhancement for improved gas turbine performance
US7549292B2 (en) Method of controlling bypass air split to gas turbine combustor
US7742904B2 (en) Method and system for gas turbine engine simulation using adaptive Kalman filter
EP3892829B1 (en) Modeling and control of gas cycle power plant operation with variant control profile
EP2423489A2 (en) Methods for controlling fuel splits to a gas turbine combustor
US10626800B2 (en) System and method for calibrating a case cooling system for a gas turbine engine
CN107076032B (zh) 用于干式低排放发动机的总体火焰温度调节器
Nielsen et al. Modeling and validation of the thermal effects on gas turbine transients
US20170175567A1 (en) Model-based performance estimation
JP2023044719A (ja) タービン出口マッハ数サロゲートを利用した非モデルベース制御のためのシステムおよび方法
EP3974634A1 (en) Temperature based gas turbine control and method
Iliescu et al. Gas turbine modeling for load-frequency control
JP2022044539A (ja) 複数のガスタービンの分割負荷を変化させることによるガスサイクル発電プラント動作のモデル化および制御
Fuksman et al. Modeling of a Turbofan Engine Start Using a High Fidelity Aero-Thermodynamic Simulation
EP4123150A1 (en) System and method for variable geometry mechanism configuration
US20160305335A1 (en) Application of probabilistic control in gas turbine tuning for emissions-exhaust energy parameters, related control systems, computer program products and methods

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20221214

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20230113

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20231110

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20231111

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20231121